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Sample-Path Large Deviations

ABSTRACT
This paper considers Gaussian flows multiplexed in a queueing network. A single node being a
useful but often incomplete setting, we examine more advanced models. We focus on a
(twonode) tandem queue, fed by a large number of Gaussian inputs. With service rates and
buffer sizes at both nodes scaled appropriately, Schilder’s sample-path large deviations
theorem can be applied to calculate the asymptotics of the overflow probability of the second
queue. More specifically, we derive a lower bound on the exponential decay rate of this overflow
probability and present an explicit condition for the lower bound to match the exact decay rate.
Examples show that this condition holds for a broad range of frequently-used Gaussian inputs.
The last part of the paper concentrates on a model for a single node, equipped with a priority
scheduling policy. We show that the analysis of the tandem queue directly carries over to this
priority queueing system.
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1 Introduction

Traffic engineering in communication networks greatly benefits from models that are capable
of accurately describing and predicting the performance of the system. This modeling is a
challenging task, as a broad variety of traffic types are multiplexed in the network, with each
of them having its specific (stochastic) characteristics. A commonly used modeling step is
to represent the network nodes as queues, and to use queueing theory to analyze the perfor-
mance (in terms of loss, delay, throughput, etc.) of the nodes. For the single queue operating
under the first-in-first-out (FIFO) discipline, even for advanced traffic models detailed anal-
yses are available. Evidently this single-node FIFO model gives valuable insights, but is an
oversimplification of reality. We mention two serious limitations.
First, traffic streams usually traverse concatenations of hops (rather than just a single node).
Secondly, it is envisaged that the service at these hops distinguishes between several traffic
classes (by using priority mechanisms, or the more advanced generalized processor sharing
discipline), cf. the Differentiated Services (diffserv) approach proposed by the Internet Engi-
neering Task Force [17]. This motivates the recent interest in performance evaluation for these
more complex queueing models.
As indicated above, each type of traffic has its own stochastic properties, often summarized by
the correlation structure. Traditional traffic models allow only short-range dependent traffic
processes, such as Markov-modulated Poisson processes or exponential on-off sources, in which
correlations decay relatively fast. Traffic measurements in the 1990s, however, showed that in
various situations long-range dependent traffic models are more appropriate. This explains the
popularity of Gaussian models, as they cover both short-range (cf. Ornstein-Uhlenbeck) and
long-range dependent models (for instance fractional Brownian motion, see e.g. [19]). Another
complicating issue is the fact that network traffic is usually influenced by feedback loops (think
of TCP), which control how the user’s traffic supply is transmitted into the network. Kilpi and
Norros [18] however argue that (non-feedback) Gaussian traffic models are justified as long as
the aggregation is sufficiently large (both in time and number of flows), due to Central Limit
type of arguments.
This paper concentrates on the evaluation of tail asymptotics in queueing systems that are
more advanced than a single FIFO node. More specifically, we examine in detail tandem queues
(particularly the second queue) and priority queues (particularly the low-priority queue) – it
turns out that the analysis of the tandem queue essentially carries over to the priority system.
Our paper is meant as a first step towards the analysis of networks with general topology, with
nodes operating under advanced scheduling disciplines such as Generalized Processor Sharing
(GPS).
In the tandem model we assume that n i.i.d. Gaussian sources feed into the queueing system,
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where the (deterministic) service rates of the queues, as well as the buffer thresholds are scaled
by n, too. We now let n go to infinity; the resulting framework is often referred to as the
many-sources scaling, as was introduced in [31].
A vast body of results exists for single FIFO queues under the many-sources scaling. Most
notably, under very mild conditions on the source behavior, it is possible to calculate the
exponential decay of the probability pn(b, c) that the queue (fed by n sources, and emptied at
a deterministic rate nc) exceeds level nb. Early references in this large-deviations framework
are the logarithmic asymptotics found in, e.g., Botvich and Duffield [7], and Courcoubetis and
Weber [8]. We remark that exact asymptotics for Gaussian inputs were recently found by
Dȩbicki and Mandjes [9]. For Gaussian sources the logarithmic asymptotics of [7] read

lim
n→∞

1
n

log pn(b, c) = − inf
t>0

(b + (c − µ)t)2

2v(t)
, (1)

where µ is the mean input rate per source, and v(t) is the variance of the amount of traffic
generated by a single source in a time interval of length t. The goal of the present paper is to
find expressions similar to (1) for tandem and priority queues.
Our work fits in the framework of a series of articles by Mannersalo and Norros [1, 23, 24, 25].
These papers examine queues with Gaussian sources, such as the single-node FIFO queue, but
also priority queues and queues with GPS scheduling. For the latter types of queues, they
derive heuristics for the decay rate of the overflow probabilities. The present paper shows
that, for priority queues, these heuristics are typically close, but that there is a gap with the
exact outcome. For both the tandem and priority queue a lower bound on the decay rate of
the overflow probability is derived. In addition, we present an explicit condition under which
this lower bound matches the exact value of the decay rate. Notice that lower bounds of the
decay rate are usually of practical interest, as typically the network has to be designed such
that overflow is sufficiently rare.
Our analysis exploits the above-mentioned similarity between priority and tandem queues.
The techniques applied stem from large-deviations theory, particularly sample-path large de-
viations, based on (the generalized version of) Schilder’s theorem. We mention that for priority
systems in discrete time, different bounds were found by Wischik [32]; we will comment on
the relation with our results later.
The paper is organized as follows. Section 2 introduces the tandem model, and presents
preliminaries on (sample-path) large deviations. Section 3 analyzes the decay rate of the
overflow probability of the second queue in a tandem system. This analysis is illustrated in
Section 4 by a number of (analytical and numerical) examples. Section 5 studies the priority
system, addressing the decay rate of the overflow probability in the low-priority queue.
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2 Model and preliminaries

This section introduces the tandem model that is analyzed in Section 3. In addition, we
present preliminaries on large-deviations theory and the many-sources scaling.

2.1 Tandem model

Consider a two-queue tandem model, with (deterministic) service rate nc1 for the first queue
and nc2 for the second queue. We assume that c1 > c2, in order to exclude the trivial case
where the buffer of the second queue cannot build up.
We consider n sources (whose characteristics are specified in Section 2.2) that feed into the
first queue. Traffic of these sources that has been served at the first queue immediately flows
into the second queue – we assume no additional sources to feed the second queue. We
are interested in the steady-state probability of the buffer content of the second queue Q2,n

exceeding a certain threshold nb, b > 0, when the number of sources gets large, or, more
specifically, its logarithmic asymptotics:

J := − lim
n→∞

1
n

log P(Q2,n > nb). (2)

Note that we assume the buffer sizes of both queues to be infinite. We remark that it is not
a priori clear that the limit in (2) exists; its existence is a result of our study (Theorem 3.1).

2.2 Gaussian sources

Let Ai(·) denote i.i.d. centered Gaussian processes with continuous sample paths and station-
ary increments, and Ai(·) ≡ 0, for i = 1, . . . , n. Then, for s < t, we interpret Ai(s, t) :=
Ai(t) − Ai(s) as the amount of traffic generated by the ith source in (s, t]. Denote by A(s, t)
the generic random variable corresponding to a single source. The Gaussian sources are
characterized by their variance function v(·) (which is necessarily continuous); for s < t,
VarA(s, t) = v(t − s).
Although in this setup the Gaussian processes are centered, our analysis is capable of handling
the situation in which the sources have a positive mean traffic rate µ (smaller than both c1

and c2, to guarantee stability). This is due the fact that the results for centered sources can
be translated immediately into results for non-centered sources, see Remark 2.6.
In the sequel we will frequently use the bivariate random variable (A(t), A(s)). It obviously
obeys a two-dimensional Normal distribution with zero mean and covariance matrix Σ(s, t).
With Γ(s, t) := Cov(A(t), A(s)), this covariance matrix is given by

Σ(s, t) :=

(
v(t) Γ(s, t)

Γ(s, t) v(s)

)
and Γ(s, t) =

v(t) − v(|t − s|) + v(s)
2

.
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Gaussian sources have the conceptual problem that the possibility of negative traffic is not
ruled out, as opposed to ‘classical’ input processes, such as (compound) Poisson processes or
on-off sources. However, in queueing theory a key role is played by functionals of the arrival
process, which are well-defined, regardless of whether the input stream corresponds to non-
negative traffic or not. Consider for instance the stationary distribution of a queue fed by
a single source, emptied at rate c, given by the well-known formula supt>0(A(−t, 0) − ct).
Clearly, the distribution of such functionals can still be evaluated for Gaussian input, see e.g.
Norros’ pioneering work for fBm [26], or [15]. We remark that such an approach leads to
non-negative queue lengths in tandem systems with Gaussian inputs – this will follow directly
from representation (10). For priority systems it is explained in detail in [25, Section 2.3]
how negative queue-lengths can be avoided (a discrete-time version of the priority discipline
is introduced, in which negative traffic can annihilate queued traffic).

2.3 Sample-path large deviations

The analysis in the next sections relies on a sample-path large deviations principle (LDP) for
centered Gaussian processes. This subsection is devoted to a brief description of the main
theorem in this field, (the generalized version of) Schilder’s theorem [5]. However, we start by
recalling (the multivariate version of) the well-known Cramér’s theorem, see [10, Thm. 2.2.30].

Theorem 2.1 [Multivariate Cramér] Let Xi ∈ Rd be i.i.d. d-dimensional random vectors,
distributed as a random vector X. Then the following LDP applies :

(a) For any closed set F ⊂ Rd,

lim sup
n→∞

1
n

log P

(
1
n

n∑
i=1

Xi ∈ F

)
≤ − inf

x∈F
Λ(x);

(b) For any open set G ⊂ Rd,

lim inf
n→∞

1
n

log P

(
1
n

n∑
i=1

Xi ∈ G

)
≥ − inf

x∈G
Λ(x),

where the large deviations rate function Λ(·) is given by

Λ(x) := sup
θ∈Rd

(
〈θ, x〉 − log Ee〈θ,X〉

)
, (3)

with the notation 〈·, ·〉 denoting the usual inner product: 〈a, b〉 := aTb =
∑d

i=1 aibi.

5



Remark 2.2 Consider the specific case that X has a multivariate Normal distribution with
mean vector µ and (d×d) non-singular covariance matrix Σ. Using log Ee〈θ,X〉 = 〈θ, µ〉+ 1

2θTΣθ

it is not hard to derive that, with (x − µ)T ≡ (x1 − µ1, . . . , xd − µd),

θ� = Σ−1(x − µ) and Λ(x) =
1
2
(x − µ)TΣ−1(x − µ), (4)

where θ� optimizes (3); it is well-known that Λ(·) is convex. ♦

We now sketch the framework of Schilder’s sample-path LDP, as established in [5], see also
[11]. We adopt the notation and setup of [1, 23]. Consider the n i.i.d. centered Gaussian
processes Ai(·), as introduced in Section 2.2. Define the path space Ω as

Ω :=
{

ω : R → R, continuous, ω(0) = 0, lim
t→∞

ω(t)
1 + |t| = lim

t→−∞
ω(t)

1 + |t| = 0
}

,

which is a separable Banach space by imposing the norm

||ω||Ω := sup
t∈R

|ω(t)|
1 + |t| .

In [1] it is pointed out that Ai(·) can be realized on Ω under the assumption that

lim
t→∞

v(t)
tα

= 0, for some α < 2. (5)

We assume Assumption (5) to be in force throughout this paper.
Next we introduce and define the reproducing kernel Hilbert space R ⊆ Ω – see [3] for a more
detailed account – with the property that its elements are roughly as smooth as the covariance
function Γ(s, ·). We start from a ‘smaller’ space R�, defined by

R� :=

{
ω : R → R, ω(·) =

n∑
i=1

aiΓ(si, ·), ai, si ∈ R, n ∈ N

}
.

The inner product on this space R� is, for ωa, ωb ∈ R�, defined as

〈ωa, ωb〉R :=

〈
n∑

i=1

aiΓ(si, ·),
n∑

j=1

bjΓ(sj , ·)
〉

R

=
n∑

i=1

n∑
j=1

aibjΓ(si, sj); (6)

notice that this implies 〈Γ(s, ·), Γ(·, t)〉R = Γ(s, t). This inner product has the following useful
property, which we refer to as the reproducing kernel property,

ω(t) =
n∑

i=1

aiΓ(si, t) =

〈
n∑

i=1

aiΓ(si, ·), Γ(t, ·)
〉

R

= 〈ω(·), Γ(t, ·)〉R. (7)
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From this we introduce the norm ||ω||R :=
√
〈ω, ω〉R. The closure of R� under this norm is

defined as the space R. Now we can define the rate function of the sample-path LDP:

I(ω) :=

{
1
2 ||ω||2R if ω ∈ R;
∞ otherwise.

(8)

For the Gaussian sources introduced in Section 2.2, the following sample-path LDP holds.

Theorem 2.3 [Generalized Schilder] The following sample-path LDP applies :

(a) For any closed set F ⊂ Ω,

lim sup
n→∞

1
n

log P

(
1
n

n∑
i=1

Ai(·) ∈ F

)
≤ − inf

ω∈F
I(ω);

(b) For any open set G ⊂ Ω,

lim inf
n→∞

1
n

log P

(
1
n

n∑
i=1

Ai(·) ∈ G

)
≥ − inf

ω∈G
I(ω).

A difficulty of Schilder’s theorem is its ‘implicitness’, as only in special cases the rate function
I(·) can be explicitly minimized over the set of interest. The authors of [1] succeed in exploiting
the reproducing kernel property to give a sample-path analysis of overflow in a single FIFO
queue (with deterministic service rate nc) fed by Gaussian inputs. With Qn denoting the
stationary buffer content, they derive

lim
n→∞

1
n

log P(Qn > nb) = − inf
t≥0

(b + ct)2

2v(t)
.

If t� denotes a minimizing t, the corresponding path is

f�(r) = −Γ(−r, t�)
v(t�)

(b + ct�) = −v(t�)−v(|t� + r|)+v(−r)
2v(t�)

(b + ct�). (9)

This path corresponds to a buffer that starts to fill at time −t�, and reaches overflow at time
0; it is not hard to check that f�(−t�) = −b − ct�, and f�(0) = 0, as desired. Notice that
the path is in R (in fact even in R�). If there is a unique optimizing path in the target set
(i.e., the set of all paths leading to overflow), it is usually referred to as the most likely path to
overflow. It has the interpretation that, given that the rare event of overflow happens, with
high probability it happens according to this trajectory. Also, t� has then the interpretation
of the most likely duration of the busy period preceding overflow. (Notice that, in this FIFO
setting, there is not necessarily uniqueness, see for instance Section 3.7 in [1] or Example 5.2
in [20], or, in a non-Gaussian setting, [21].)
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2.4 Many-sources scaling

In this section we show that the probability of our interest can be written in terms of the
‘empirical mean process’ n−1

∑n
i=1 Ai(·). The following lemma exploits the fact that we know

both a representation of the first queue Q1,n (in steady-state) and a representation of the total
queue Q1,n + Q2,n (in steady-state). Let t0 := b/(c1 − c2).

Lemma 2.4 P(Q2,n > nb) equals

P

(
∃t > t0 : ∀s ∈ (0, t) :

1
n

n∑
i=1

Ai(−t,−s) > b + c2t − c1s

)
.

Proof. Notice that a ‘reduction principle’ applies: the total queue length is unchanged
when the tandem network is replaced by its slowest link, see [4, 14]. Hence Q1,n + Q2,n =
supt>0(

∑n
i=1 Ai(−t, 0) − nc2t). Consequently we can rewrite Q2,n = (Q1,n + Q2,n) − Q1,n =

sup
t>0

(
n∑

i=1

Ai(−t, 0) − nc2t

)
− sup

s>0

(
n∑

i=1

Ai(−s, 0) − nc1s

)
. (10)

The negative of the optimizing t (s) has the interpretation of the start of the last busy period
of the total queue (the first queue) in which time 0 is contained. Notice that a positive first
queue induces a positive total queue, implying that we can restrict ourselves to s ∈ (0, t). This
implies that P(Q2,n > nb) equals

P

(
∃t > 0 : ∀s ∈ (0, t) :

1
n

n∑
i=1

Ai(−t,−s) > b + c2t − c1s

)
.

Because for s ↑ t the requirement

1
n

n∑
i=1

Ai(−t,−s) > b + c2t − c1s

reads 0 > b+(c2−c1)t, we can restrict ourselves to t > t0. We can interpret t0 as the minimum
time it takes to cause overflow in the second queue (notice that the maximum net input rate
of the second queue in a tandem system is c1 − c2). �

The crucial implication of the above lemma is that for analyzing P(Q2,n ≥ nb), we only have
to focus on the behavior of the empirical mean process. More concretely,

P(Q2,n > nb) = P

(
1
n

n∑
i=1

Ai(·) ∈ S
)

, (11)

where the set of ‘overflow paths’ S is given by

S := {f ∈ Ω : ∃t > t0, ∀s ∈ (0, t) : f(−s) − f(−t) > b + c2t − c1s}.
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0

b + c2t0

b + c2t1

b + c2t2

t0 t1 t2b + (c2 − c1)t1
b + (c2 − c1)t2

Figure 1: Graphical representation of the overflow set. For different values of t, the curve
b + c2t− c1(t− s) has been drawn. Overflow occurs if there is a t > t0 such that the empirical
mean process lies, for s ∈ (0, t), above the corresponding curve.

Remark 2.5 A straightforward time-shift shows that the probability that the empirical mean
process is in S coincides with the probability that it is in T , with

T := {f ∈ Ω : ∃t > t0, ∀s ∈ (0, t) : f(s) > b + c2t − c1(t − s)}. (12)

However, the set T is somewhat easier to interpret, see Figure 1. For different values of t (i.e.,
t2 > t1 > t0 = b/(c1 − c2)), the line b + c2t − c1(t − s) has been drawn. The empirical mean
process n−1

∑n
i=1 Ai(·) is in T if there is a t > t0 such that for all s ∈ (0, t) it stays above the

line b + c2t − c1(t − s). Notice that T resembles the set corresponding to the probability of
long busy periods in a single queue, as studied in [27]. ♦

Remark 2.6 As indicated above, our results are for centered sources, but they can be trans-
lated easily into results for non-centered sources. Then the traffic generated by Gaussian
source i in the interval [s, t) is A(s, t) + µ(t − s), where A(s, t) corresponds to a centered
source; here 0 < µ < min{c1, c2} and s < t. Let q(µ, c1, c2) be the probability that the second
queue exceeds nb, given that input rate µ and service rates c1 and c2 are in force. From (10) it
follows immediately that q(µ, c1, c2) = q(0, c1 − µ, c2 − µ), and hence we can restrict ourselves
to centered sources. ♦

3 Analysis

In this section we analyze the logarithmic asymptotics of P(Q2,n > nb). In Section 3.1 we
show that the decay rate in (2) exists, of which we derive a lower bound in Section 3.2. It
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turns out that this lower bound has an insightful interpretation, which is given in Section 3.3.
Section 3.4 presents conditions under which the lower bound is tight (meaning that the decay
rate and lower bound match). Finally, in Section 3.5 we prove and explain some properties of
the most likely path that we found.

3.1 Decay rate of the overflow probability

In this subsection we establish the existence of the decay rate (2) of P(Q2,n > nb). We already
saw in Equation (11) that P(Q2,n > nb) can be rewritten as the probability that the empirical
mean process is in S (which is an open subset of Ω). The existence of the decay rate follows
from Schilder’s result (Theorem 2.3), by showing that S is an I-continuity set, i.e., that the
infima of I(·) over S and S match.

Theorem 3.1

J = inf
f∈S

I(f) = inf
f∈S

I(f).

The proof of Theorem 3.1 can be found in Appendix A.

3.2 Lower bound on the decay rate

The main result of this subsection is a tractable lower bound on J , which is given in Theo-
rem 3.2. Observe that

S =
⋃

t>t0

⋂
s∈(0,t)

Ss,t with Ss,t := {f ∈ Ω : f(−s) − f(−t) > b + c2t − c1s}.

Hence we are interested in the decay rate of the union of intersections. The decay rate of a
union of events is simply the maximum over the decay rates of the individual events. The
decay rate of an intersection is not standard. In the next theorem we find a straightforward
lower bound on this decay rate. Define

Us,t := {f ∈ Ω : −f(−t) ≥ b + c2t; f(−s) − f(−t) ≥ b + c2t − c1s}.

Theorem 3.2 The following lower bound applies:

J ≥ inf
t>t0

sup
s∈(0,t)

inf
f∈Us,t

I(f). (13)

Proof. Clearly,

J = inf
t>t0

inf
f∈ ⋂

s∈(0,t)
Ss,t

I(f).
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Now fix t and consider the inner infimum. If f(−s) − f(−t) > b + c2t − c1s for all s ∈ (0, t),
then also (f is continuous) f(−s) − f(−t) ≥ b + c2t − c1s for all s ∈ [0, t]. Hence,

⋂
s∈(0,t)

Ss,t ⊆
⋂

s∈[0,t]

Us,t ⊆ Ur,t

for all r ∈ (0, t), and consequently

inf
f∈ ⋂

s∈(0,t)
Ss,t

I(f) ≥ inf
f∈Ur,t

I(f).

Now take the supremum over r in the right-hand side. �

Theorem 3.2 contains an infimum over f ∈ Us,t. In the next lemma we show how this infimum
can be computed. Recalling display (4), the bivariate large-deviations rate function of(

n∑
i=1

Ai(−t, 0)
n

;
n∑

i=1

Ai(−t,−s)
n

)

is, for y, z ∈ R and t > 0, s ∈ (0, t), given by Λ(y, z) := 1
2 (y, z) Σ(t − s, t)−1(y, z)T. We also

introduce the following quantity, which plays a key role in our analysis:

k(s, t) := E(A(−s, 0) | A(−t, 0) = b + c2t)

= E(A(s) | A(t) = b + c2t) =
Γ(s, t)
v(t)

(b + c2t). (14)

Under the following assumption, the infimum over Us,t can be simplified considerably. The
same assumption will be useful when deriving tigthness conditions in Section 3.4.

Assumption 3.3
√

v(·) ∈ C2([0,∞)) is strictly increasing and strictly concave.

Lemma 3.4 Under Assumption 3.3, for t > t0 and s ∈ (0, t),

inf
f∈Us,t

I(f) = Υ(s, t) :=

{
Λ(b + c2t, b + c2t − c1s), if k(s, t) > c1s;
(b + c2t)2/2v(t), if k(s, t) ≤ c1s.

Proof. Observe that

P

(
n∑

i=1

Ai(·)
n

∈ Us,t

)
= P

(
n∑

i=1

Ai(−t, 0)
n

≥ b + c2t;
n∑

i=1

Ai(−t,−s)
n

≥ b + c2t − c1s

)
. (15)

Hence we can use Theorem 2.1, yielding

inf
f∈Us,t

I(f) = inf Λ(y, z),

11



where the last infimum is over y ≥ b + c2t and z ≥ b + c2t − c1s. Using that Λ(·, ·) is convex,
this problem can be solved in a standard manner. It is easily verified that the contour of Λ
that touches the line y = b + c2t does so at z-value

z0 :=
Γ(t − s, t)

v(t)
(b + c2t);

also the contour that touches z = b + c2t − c1s does so at y-value

y0 :=
Γ(t − s, t)
v(t − s)

(b + c2t − c1s).

We first show that it cannot be that y0 > b+ c2t, as follows. If y0 > b+ c2t, then the optimum
would be attained at (y0, b + c2t − c1s). Straightforward computations, however, show that
y0 > b + c2t would imply that (use Γ(t, t − s) ≤

√
v(t)v(t − s) )(√

v(t) −
√

v(t − s)
)

(b + c2t) >
√

v(t) c1s. (16)

This inequality is not fulfilled for s = 0 (0 �> 0) nor for s = t (b + c2t �> c1t for t > t0). As the
left hand side of (16) is convex (in s) due to Assumption 3.3, whereas the right hand is linear
(in s), there is no s ∈ (0, t) for which the inequality holds. Conclude that y0 > b + c2t can be
ruled out. Two cases are left:

(A) Suppose z0 > b + c2t − c1s, or, equivalently, k(s, t) ≤ c1s. Then (b + c2t, z0) is optimal,
see the left panel of Figure 2, with rate function (b + c2t)2/2v(t), independent of s.

(B) In the remaining case (where y0 ≤ b+c2t and z0 ≤ b+c2t−c1s) the optimum is attained
at the (b+ c2t, b+ c2t− c1s), i.e., the ‘corner point’, see the right panel in Figure 2. This
happens if k(s, t) > c1s, and gives the desired decay rate.

This proves the stated. As an aside we mention that if k(s, t) = c1s, then both regimes
coincide: Λ(b + c2t, b + c2t − c1s) = (b + c2t)2/2v(t). �

Corollary 3.5 Under Assumption 3.3, the following lower bound applies:

J ≥ inf
t>t0

sup
s∈(0,t)

Υ(s, t).

3.3 Interpretation of the lower bound

The results of the previous section have a helpful interpretation, leading to two regimes for
values of c1. For c1 smaller than some critical link rate cF

1 , we show in Corollary 3.7 that the
lower bound of Corollary 3.5 can be simplified considerably.

12
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�
yb + c2t
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b + c2t
−c1s

b + c2t

b + c2t
−c1s

�

�
y

z

Figure 2: Contour lines of the (two-dimensional) rate function; the objective function is to be
minimized over the shaded region.

We start by drawing a parallel with the single-node FIFO result, as displayed in (1). There, t

has to be found such that

Lc(t) :=
(b + ct − EA(t))2

2VarA(t)

is minimized. Let us denote this optimizing t by tFc . Lc(t) can be interpreted as the cost of
generating b + ct in an interval of length t, and tFc as the time duration yielding the ‘lowest
cost’.
Now we turn to our tandem setting, and in particular to the result of Lemma 3.4. Computing
the minimum of Λ(y, z) over its admissible region, we saw that, under Assumption 3.3, in both
cases the optimizing y was equal to y = b + c2t. On the contrary, for the optimizing z there
were two possible regimes.
Now recall the representation (14) of k(s, t) as a conditional mean, and Equation (15). The
result in Lemma 3.4 essentially states that in the regime k(s, t) ≤ c1s the most likely realization
of
∑n

i=1 Ai(−t, 0) ≥ nb+nc2t yields
∑n

i=1 Ai(−t,−s) ≥ nb+nc2t−nc1s (with high probability,
n large). In the other regime, k(s, t) > c1s, the most likely realization of

∑n
i=1 Ai(−t, 0) ≥

nb+nc2t does not automatically yield
∑n

i=1 A(−t,−s) ≤ nb+nc2t−nc1s (with high probability,
n large); fulfilling the second constraint in (15) requires additional ‘cost’.
The next decomposition result follows immediately from Lemma 3.4 and the above.

Corollary 3.6 For s ∈ (0, t), we have Υ(s, t) = Lc2(t) + L(s | t), with

L(s | t) :=
max2{E(A(s) | A(t) = b + c2t) − c1s, 0}

2Var(A(s) | A(t) = b + c2t)
=

max2{k(s, t) − c1s, 0}
2Var(A(s) | A(t) = b + c2t)

. (17)

Similarly to the interpretation of the single-node FIFO result, we can interpret Υ(s, t) as
the cost of generating the required amount of traffic. Denoting by s� and t� the optimizing
arguments in Corollary 3.5, the intuition is as follows.

13



• ‘Cost component’ Lc2(t) is needed to generate b + c2t in the interval (−t, 0]. By taking
the infimum over t (to get t�) we find the most likely epoch to meet the constraint.

• ‘Cost component’ L(s | t) is required to make sure that no more than c1s is generated
in the interval (−s, 0], conditional on the event A(−t, 0) = b + c2t. We can interpret s�

as the epoch at which most effort has to be done to fulfill this requirement. This is of
course reflected by the fact that in Corollary 3.5 we have to take the supremum over
all s in (0, t). Evidently, if k(s, t) ≤ c1s for all s ∈ (0, t), this cost component is 0.

For large values of c1, k(s, t) will be smaller than c1s for all s ∈ (0, t), since it does not depend
on c1. As argued above, in this case the second term in Corollary 3.6 vanishes. If this holds
for the t that maximizes the first term, i.e., tFc2

, then

inf
t>t0

sup
s∈(0,t)

Υ(s, t) = Lc2(t
F
c2

). (18)

This clearly holds for all c1 larger than

cF
1 := inf{c1 | ∀s ∈ (0, tFc2

) : k(s, tFc2
) ≤ c1s}

= inf
{

c1 | ∀s ∈ (0, tFc2
) : c1 ≥

k(s, tFc2
)

s

}
= sup

s∈(0,tF
c2

)

k(s, tFc2
)

s
.

It implies that, for these large values of c1, the lower bound on J of Corollary 3.5 coincides
with the result of a single-node FIFO queue with service rate c2. The intuition behind this
is that essentially in this regime all traffic entering the first queue is served immediately, and
goes directly into the second queue; traffic is not ‘reshaped’ by the first queue. If c1 < cF

1 ,
then the first queue does play a role in delaying and reshaping the traffic before entering the
second queue, as we will see in the next subsection.

Corollary 3.7 For all c1 ≥ cF
1 , Equation (18) applies.

3.4 Tightness of the decay rate

Corollary 3.5 is a lower bound on the decay rate J . Of course, such a bound is only useful if
it is relatively close to the actual decay rate, or, even better, coincides with it. In the latter
case we say that the lower bound is tight.
In Section 3.2, we have derived a lower bound on J by replacing the decay rate of an intersection
of events by the decay rate of the least likely of these. It is important to observe that if the
optimum path in this least likely set happens to be in all the sets of the intersection, then the
lower bound is tight.
More specifically, let s� and t� be the optimizers in the lower bound of Corollary 3.5. Clearly
we can prove tightness of the lower bound by showing that the most probable path in Us�,t�

14



is in S (or S, use Theorem 3.1). In our analysis we distinguish between (A) c1 ≥ cF
1 , and

(B) c1 < cF
1 .

Regime (A): c1 larger than the critical service rate

In this situation, we know from Corollary 3.7 that the lower bound in Corollary 3.5 reduces
to the decay rate in a single FIFO queue. The following result follows easily.

Theorem 3.8 Under Assumption 3.3, if c1 ≥ cF
1 , then

J = inf
t>t0

sup
s∈(0,t)

Υ(s, t) = Lc2(t
F
c2

),

and a most probable path in S is

f�(r) = −E(A(r, 0) | A(−tFc2
, 0) = b + c2t

F
c2

). (19)

Proof. As shown in Section 3.3, in this regime t� = tFc2
, whereas the choice of s� is irrelevant

(as c1 ≥ cF
1 implies L(s | t�) = 0 for all s ∈ (0, t�)). Notice that it is now sufficient to show

that f� ∈ S, or f� ∈ S (use Theorem 3.1). We claim that f�(·) ∈ S, or more precisely, that
there exists t ≥ t0 such that for all s ∈ (0, t) it holds that f�(−s) − f�(−t) ≥ b + c2t − c1s.

This follows because, by definition of cF
1 , for all s ∈ (0, t�),

f�(−s) − f�(−t�) = E(A(−t�,−s) | A(−t�, 0) = b + c2t
�)

= b + c2t
� − k(s, t�) ≥ b + c2t

� − c1s.

This completes the proof. �

We want to stress that the above theorem holds for all Gaussian processes, regardless of the
specific shape of the variance function. Consequently, the result is also valid for long-range
dependent processes, such as fractional Brownian motion.

Regime (B): c1 smaller than the critical service rate

We follow the same approach as in Regime (A): first we derive (in Lemma 3.10) a most probable
path in Us�,t�

, and then we verify (in Theorem 3.11) whether this path is in S. It turns out
that we have to impose certain additional conditions to make the lower bound of Corollary 3.5
tight. We proceed by two technical lemmas; the proof of Lemma 3.9 is given in Appendix B.

Lemma 3.9 Under Assumption 3.3, if c1 < cF
1 , then k(s�, t�) ≥ c1s

�.

Lemma 3.10 If k(s, t) ≥ c1s, then a most probable path in Us,t is

f(r) = −E(A(r, 0) | A(−t, 0) = b + c2t, A(−s, 0) = c1s), (20)

with norm Λ(b + c2t, b + c2t − c1s).
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Proof. Using standard properties of conditional multivariate Normal random variables, we
see that f(r) equals

−θ�
1(s, t)Γ(−r, t)− θ�

2(s, t)Γ(−r, s), with

(
θ�
1(s, t)

θ�
2(s, t)

)
:= Σ(s, t)−1

(
b + c2t

c1s

)
. (21)

We finish the proof by applying Lemma 3.4, and observing that

1
2
||f ||2R = Υ(s, t) = Λ(b + c2t, b + c2t − c1s),

which is a matter of straightforward calculus. �

Before presenting our tightness result for the case c1 < cF
1 , we introduce some new notation.

• For r1, r2 < 0,

ĒA(r1, r2) := E(A(r1, r2) | A(−t�, 0) = b + c2t
�),

with Vār(·) and Cōv(·, ·) defined similarly. Also, v̄(r1) := VārA(r1, 0) and Γ̄(r1, r2) :=
Cōv(A(r1, 0), A(r2, 0)).

• For r ∈ (−t�, 0) we define the functions

m̄(r) :=
ĒA(r, 0) + c1r√

v̄(r)
, m(r) :=

m̄(r)
m̄(−s�)

, ρ(r) :=
Γ̄(r,−s�)√
v̄(r) v̄(−s�)

.

Theorem 3.11 Suppose

m(−s) ≤ ρ(−s) for all s ∈ (0, t�). (22)

Under Assumption 3.3, if c1 < cF
1 , then

J = inf
t>t0

sup
s∈(0,t)

Υ(s, t) = Λ(b + c2t
�, b + c2t

� − c1s
�),

and a most probable path is

f�(r) = −E(A(r, 0) | A(−t�, 0) = b + c2t
�, A(−s�, 0) = c1s

�).

Proof. As in Theorem 3.8, we have to show that f�(·) is in S. This is done as follows.

f�(−s) − f(−t�) = E(A(−t�,−s) | A(−t�, 0) = b + c2t
�, A(−s�, 0) = c1s

�)

= b + c2t
� − Ē(A(−s, 0) | A(−s�, 0) = c1s

�)

= b + c2t
� − ĒA(−s, 0) − Γ̄(−s,−s�)

v̄(−s�)
(
c1s

� − ĒA(−s�, 0)
)
.
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Now it is easily seen that (22) implies that f�(−s)− f(−t�) ≥ b + c2t
� − c1s for all s ∈ (0, t�).

Due to Lemma 3.9, k(s�, t�) ≥ c1s
�. With Lemma 3.10, the expression for J follows. �

Although the condition (22), required in Theorem 3.11, is stated in terms of the model pa-
rameters, as well as known statistics of the arrival process, it could be a tedious task to verify
it in a specific situation. The next lemma presents a somewhat more transparent necessary
condition for (22).
The intuition behind the lemma is the following. Observe that both ρ(·) and m(·) attain a
maximum 1 at r = −s�. For ρ(·) this follows from the observation that ρ(r) is a correlation
coefficient; for m(·) from Corollary 3.6 and Lemma 3.9. Then a necessary condition for (22)
is that in s� the curve m(·) is ‘more concave’ than ρ(·). The proof of the lemma is given in
Appendix C.

Lemma 3.12 A necessary condition for (22) is

m′′(−s�) ≤ ρ′′(−s�), (23)

or equivalently,

θ�
1(s

�, t�) (v′′(t� − s�) − v′′(s�)) + θ�
2(s�, t�) (v′′(0) − v′′(s�)) ≥ 0. (24)

Condition (24) has an insightful interpretation, which will be given in the next subsection.

3.5 Properties of the input rate path

So far, we have analyzed paths f of the cumulative amount of traffic injected into the system.
In this section we turn our attention to the first derivative of f , which can be interpreted as the
path of the input rate of the queueing system. As before, we have to consider two regimes: (A)
c1 ≥ cF

1 , and (B) c1 < cF
1 ; let Assumption 3.3 be in force. Consider the paths f� as identified

in Theorems 3.8 and 3.11, and, more specifically, their derivative g�(·) := (f�)′(·). In case (A),
with t� = tFc2

, and r ∈ (−t�, 0),

g�(r) =
b + c2t

�

2v(t�)
(v′(r + t�) + v′(−r)),

whereas in case (B) it turns out that, with r ∈ (−t�,−s�],

g�(r) =
v′(r + t�) + v′(−r)

2
θ�
1(s�, t�) +

−v′(−r − s�) + v′(−r)
2

θ�
2(s�, t�),

and with r ∈ [−s�, 0),

g�(r) =
v′(r + t�) + v′(−r)

2
θ�
1(s�, t�) +

v′(r + s�) + v′(−r)
2

θ�
2(s�, t�).
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If v′(0) = 0, we show below that the path g�(·) has some nice properties. Notice that the
requirement v′(0) = 0 holds for many Gaussian processes. It is not valid for Standard Brownian
motion (Bm), since then v(t) = t, but the special structure of Bm allows an explicit analysis,
see Section 4.1. Fractional Brownian motion (fBm), with v(t) = t2H , has v′(0) = 0 only for
H ∈ ( 1

2 , 1], see Section 4.2.

Proposition 3.13 If c1 ≥ cF
1 and v′(0) = 0, then g�(0) = g�(−t�) = c2.

Proof. Notice that, due to (1), t� satisfies

2c2
v(t�)
v′(t�)

= b + c2t
�.

The stated follows immediately from v′(0) = 0. (As an aside, we mention that g�(·) is sym-
metric in −t�/2.) �

Just as we exploited properties of t� in the proof of Proposition 3.13, we need conditions for s�

and t� in the regime c1 < cF
1 . These are derived in the next lemma.

Lemma 3.14 If c1 < cF
1 , then s� and t� satisfy the following equations:

2c2 = θ�
1(s�, t�) v′(t�) + θ�

2(s
�, t�) (v′(t�) − v′(t� − s�));

2c1 = θ�
2(s�, t�) v′(s�) + θ1(s�, t�) (v′(s�) + v′(t� − s�)).

Proof. By Lemma 3.9, k(s�, t�) ≥ c1s
�. Observe that Υ(s, t) = Λ(b + c2t, b + c2t − c1s) can

be rewritten as

θTx(s, t) − 1
2
θTΣ(s, t)θ, where x(s, t) :=

(
b + c2t

c1s

)
; (25)

here we abbreviate θ ≡ (θ�
1(s, t), θ�

2(s, t))T. We write ∂t and ∂s for the partial derivatives
with respect to t and s, respectively. The optimal s� and t� necessarily satisfy the first-
order conditions, obtained by differentiating (25) to t and s, and equating them to 0. Direct
calculations yield(

θ1c2

θ2c1

)
=

(
∂tθ1 ∂tθ2

∂sθ1 ∂sθ2

)
(Σ(s, t)θ − x(s, t)) +

(
1
2θ2

1v
′(t) + ∂tΓ(s, t)θ1θ2

1
2θ2

2v
′(s) + ∂sΓ(s, t)θ1θ2

)
.

The second equality in (21) provides x(s, t) = Σ(s, t)θ. Now the stated follows directly. �

Proposition 3.15 If c1 < cF
1 and v′(0) = 0, then (i) g�(−t�) = c2, and (ii) g�(−s�) = c1.

Also, the necessary condition (24) is equivalent to (g�)′(−s�) ≥ 0.
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Proof. Claims (i) and (ii) follow directly from v′(0) = 0 and Lemma 3.14. The last statement
follows directly after some calculations. �

Proposition 3.15 can be interpreted as follows. The second queue starts a busy period at
time −t�. During this trajectory, the first queue starts to fill at time −s� and is empty again
at time 0, if the conditions of Theorem 3.11 apply. It is also easily seen that the necessary
condition (24) has the appealing interpretation that (g�)′(−s�) ≥ 0: the input rate path should
be increasing at time −s�.

3.6 Some remarks

Remark 3.16 In our lower bound we replace the intersection over s ∈ (0, t) by the least likely
event of the intersection. Under condition (24) the occurrence of the least likely event implies
all the other events in the intersection, with high probability (in the sense that f� ∈ Us�,t�

implies that f� ∈ Us,t�

for all s ∈ (0, t�)). The examples in Section 4 show that (22) is met
for many ‘standard’ Gaussian models, but not always. If there is no tightness, a better lower
bound can be obtained by approximating the intersection by more than just one event:

J ≥ inf
t>t0

sup
s∈(0,t)m

inf
f∈Us,t

I(f),

where s = (s1, · · · , sm), and the ‘multiple-constraints set’ Us,t defined by

Us,t := {f ∈ Ω : −f(−t) ≥ b + c2t; f(−si) − f(−t) ≥ b + c2t − c1si, for i = 1, . . . , m}.

Obviously, the lower bound becomes tighter when increasing m. ♦

Remark 3.17 The approach we have followed in this section to analyze the two-node tandem
network, can be easily applied to an m-node tandem network, with strictly decreasing service
rates, i.e., c1 > . . . > cm — nodes i for which ci ≤ ci+1 can be ignored, cf. [4, 14, 16]. Note
that

∑k
i=1 Qi,n is equivalent to the FIFO queue in which the sources feed into a buffer that

is emptied at rate ck. This means that we have the characteristics of both
∑m−1

i=1 Qi,n and∑m
i=1 Qi,n, which enables the analysis of Qm,n, just as in the two-node tandem case. ♦

4 Examples

One of the reasons for considering Gaussian input processes, is that they cover a broad range
of correlation structures. Choosing the variance function appropriately, we can make the
input process exhibiting for instance long-range dependent behavior. In this section we do
the computations for various variance functions. We also discuss in detail the condition in
Theorem 3.11.
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4.1 Standard Brownian motion

The variance function for Brownian motion (Bm) is given by v(t) = t. Using (1), it is easily
found that tFc2

= b/c2. According to Corollary 3.7, cF
1 is the largest value of c1 such that for

all s ∈ (0, tFc2
),

s

tFc2

(b + c2t
F
c2

) − c1s ≤ 0,

i.e., cF
1 = 2c2. Hence, using Theorem 3.8, we have for c1 ≥ 2c2 that J = 2bc2, with a constant

input rate g�(r) = 2c2 for r ∈ (−tFc2
, 0) and g�(r) = 0 elsewhere.

Now we turn to the case where c1 < 2c2. The optimizing s� and t� are determined by
solving the first-order equations for s and t, see Theorem 3.11. We immediately obtain that
t� = b/(c1 − c2) and s� = 0. Obviously, for this regime the service rate of the first queue does
play a role. The most probable input rate path reads g�(r) = c1, for r ∈ (−t�, 0) and g�(r) = 0
elsewhere. It is easily verified that the most probable path f�(·) is in S, making the decay
rate as found in Theorem 3.11 tight. In other words,

J = Λ(b + c2t
�, b + c2t

� − c1s
�) =

bc2
1

2(c1 − c2)
.

Observe that, interestingly, Bm apparently changes its rate instantaneously, as reflected by
the most likely input rate path. This is a consequence of the independence of the increments.

4.2 Fractional Brownian motion.

The variance function for fractional Brownian motion (fBm) is given by v(t) = t2H , where H

is the so-called Hurst parameter. For H > 1
2 this corresponds to long-range dependent traffic.

Now (1) gives

tFc2
=

b

c2

H

1 − H
.

By Theorem 3.8,

J =
1
2

(
b

1 − H

)2−2H (
c2 − µ

H

)2H

for all c1 ≥ cF
1 . Unfortunately, for general H there does not exist a closed-form expression

for cF
1 . Now turn to the case c1 < cF

1 . Lemma 3.12 states that (24) is a necessary condition for
tightness to hold. Observe that v′′(t) = (2H − 1)2Ht2H−2 and hence v′′(0) = ∞. It is easily
checked that θ�

2(s�, t�) ≤ 0, which implies that in this case (24) is not satisfied. Therefore the
lower bound on J is not tight.
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4.3 M/G/∞ input

A versatile traffic model is the so-called M/G/∞ input process. In this model sessions arrive
according to a Poisson process with rate λ, and stay in the system for some random duration D.
During this period they generate traffic at a unit rate. By choosing specific session-length
distributions D, both short-range and long-range dependent inputs can be modeled. For more
results on queues with M/G/∞ input traffic processes, see e.g. [12, 30]. Below we approximate
the M/G/∞ inputs by their ‘Gaussian counterpart’, i.e., Gaussian sources with the same mean
and variance as the M/G/∞ input; this procedure is extensively motivated in [1, 2].
Let the mean session-length be finite, say δ, such that the mean input rate equals λδ. We
denote by FD(·) the distribution function of D and by FDr(·) the distribution function of the
residual session-length, i.e., FDr(x) = δ−1

∫ x

0
(1 − FD(y))dy. We denote the corresponding

densities by fD(·) and fDr(·).

Let B(t) denote the amount of traffic generated by a single M/G/∞ input in an interval of
length t. We now show how to compute the variance v(·) of B(t). We will do this by first
deriving the moment generating function of B(t). In fact two types of sources contribute:

• Sources that were already present at the start of the interval. The number of these
sources has a Poisson distribution with mean λδ. Their residual duration has density
fDr(·); with probability (1 − FDr(t)) they transmit traffic during the entire interval.

• Sources that arrive during the interval. Their number has a Poisson(λt) distribution.
Given that the number of these arrivals is k ∈ N ∪ {0}, their arrival epochs are i.i.d.
random variables, uniformly over the interval (with density t−1). Their duration has
density fD(·).

Straightforward computations now yield, cf. [22],

log E

(
eθB(t))

)
= λδ(Mt(θ) − 1) + λt(Nt(θ) − 1), with

Mt(θ) :=
∫ t

0

eθxfDr(x)dx + eθt(1 − FDr(t)) and

Nt(θ) :=
∫ t

0

∫ t

u

1
t
eθ(x−u)fD(x − u)dxdu +

∫ t

0

1
t
eθ(t−u)(1 − FD(t − u))du.

Taking the second derivative of the log moment generating function (with respect to θ) and
then substituting 0 for θ, gives the variance v(t) of B(t):

λδ

(∫ t

0

x2fDr(x)dx + t2(1 − FDr(t))
)
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+λ

(∫ t

0

∫ t

u

(x − u)2fD(x − u)dxdu +
∫ t

0

(t − u)2(1 − FD(t − u))du

)
.

For fBm we could a priori rule out tightness of the lower bound due to v′′(0) = ∞, see
Lemma 3.12. For M/G/∞ inputs we show in the following lemma that v′′(0) is finite, even
for heavy-tailed D. It implies that condition (22) needs to be checked to verify tightness.

Lemma 4.1 For δ < ∞ and finite fD(·), both (i) v′(0) = 0 and (ii) v′′(0) < ∞.

Proof. Using standard rules for differentiation of integrals,

v′(t) = λδ2t (1 − FDr(t)) + λ

∫ t

0

2(t − u)(1 − FD(t − u))du

and hence v′(0) = 0. Similarly,

v′′(t) = 2λδ (1 − FDr(t) − tfDr(t)) + 2λ

∫ t

0

(1 − FD(t − u) − (t − u)fD(t − u)) du

= 2λ

∫ ∞

t

(1 − FD(s))ds.

Hence, v′′(0) = 2λδ < ∞. �

Now we consider some examples of session-length distributions. In all the examples we take b =
0.5, λ = 0.125, δ = 2 and c2 = 1.

Exponential. Using the above formula for v(·), we get

v(t) = 2λδ3

(
t

δ
− 1 + exp

(
− t

δ

))
.

Notice that v(·) tends to a straight line for large t (corresponding to short-range dependence).
Numerical computations then give cF

1 = 1.195. Taking c1 = 1.1 results in s� = 4.756, t� =
5.169 and m(r), ρ(r) as given in Figures 3 and 4. Figure 3 shows m(r) and ρ(r) for r ∈ (−t�, 0)
and in Figure 4 the figure is magnified around −s�. We see that indeed m(·) ≤ ρ(·) on the
desired interval, so the decay rate is tight. The input rate path is given in Figure 5 and satisfies
the properties as indicated in Proposition 3.15.

Hyperexponential. In case D has a hyperexponential distribution, with probability pi ∈
(0, 1) it behaves as an exponential random variable with mean ν−1

i , with i = 1, 2 and p1 +p2 =
1. It is easily verified that

v(t) = 2λ
p1

ν3
1

(
ν1t − 1 + e−ν1t

)
+ 2λ

p2

ν3
2

(
ν2t − 1 + e−ν2t

)
,

with ν2 = p2/(δ − p1/ν1). Like in the exponential case, v(·) is asymptotically linear. For p1 =
0.25 and ν1 = 5, we find cF

1 = 1.173, and s� = 4.700, t� = 5.210, when using c1 = 1.1. Also for
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Figure 3: M/exp/∞ input process.

this example m(·) ≤ ρ(·) as can be verified in Figures 6 and 7. The input rate path is given
in Figure 8.

Pareto. If D has a Pareto distribution, then P(D > t) = (1/(1 + t))α. The variance function
is given by

v(t) =
2λ

(3 − α)(2 − α)(1 − α)
(
1 − (t + 1)3−α + (3 − α)t

)
,

with α = (1 + δ)/δ, excluding δ = 1 or 1
2 . Notice that we have α = 1 1

2 , yielding v(t) ∼ t
√

t,
which corresponds to long-range dependent traffic. Numerical calculations show that cF

1 =
1.115, and for c1 = 1.1 we obtain s� = 4.373, t� = 5.432. Again m(·) is majorized by ρ(·), as
can be seen in Figures 9 and 10. The input rate path is given in Figure 11. We empirically
found that there is not always tightness in the M/Par/∞ case. If b is larger, for instance b = 1,
then (22) is not met.

5 Priority queues

In Section 3 we analyzed overflow in the second queue of a tandem system. This analysis was
enabled by the fact that we had explicit knowledge of both the first queue and the total queue.
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Figure 4: M/exp/∞ input process.

In the present section we use the same type of arguments to solve the (two-queue) priority
system.

5.1 Analysis

We consider a priority system with a link of capacity nc, fed by traffic of two classes, each
with its own queue. Traffic of class 1 does not ‘see’ class 2 at all, and consequently we know
how the high-priority queue Qh,n behaves. Also, due to the work-conserving property of the
system, the total queue length Qh,n + Q�,n can be characterized. Now we are able, applying
the same arguments as for the tandem queue, to analyze the decay rate of the probability of
exceeding some buffer threshold in the low-priority queue. This similarity between tandem
and priority systems has been observed before, see for instance [13].
We let the system be fed by n i.i.d. high-priority (hp) sources, and an equal number of i.i.d. low-
priority (lp) sources; both classes are independent. We assume that both hp and lp sources
are Gaussian, and satisfy the requirements imposed in Section 2. Define the means by µh and
µ�, and the variance functions by vh(·) and v�(·), respectively; also µ := µh +µ� (where µ < c)
and v(·) := vh(·) + v�(·). We note that in this priority setting we cannot restrict ourselves to
centered processes. We denote the amount of traffic from the ith hp source in (s, t], with s < t,
by Ah,i(s, t); we define A�,n(s, t) analogously. Also Γh(s, t), Γ�(s, t) and Rh, R� are defined as
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Figure 5: Input rate path for M/exp/∞ input process.

before.

Remark 5.1 Notice that this setting also covers the case that the number of sources of both
classes are not equal. Assume for instance that there are nα lp sources. Multiplying µ� and
v�(·) by α and applying the fact that the Normal distribution is infinitely divisible, we arrive
at n i.i.d. sources. ♦

In the tandem situation we could, without loss of generality, center the Gaussian sources. It
can be checked easily that such a reduction property does not hold in the priority setting, since
there is no counterpart of Remark 2.6. Hence we cannot assume without loss of generality
that µh = µ� = 0.

Analogously to Lemma 2.4, we obtain that P(Q�,n > nb) equals

P

(
∃t > 0 : ∀s > 0 :

1
n

n∑
i=1

Ah,i(−t,−s) +
1
n

n∑
i=1

A�,i(−t, 0) > b + c(t − s)

)
.

Let Jp be the exponential decay rate of P(Q�,n > nb); analogously to Theorem 3.1 it can be
shown that this decay rate exists. Similarly to the tandem case, with f(·) ≡ (fh(·), f�(·)),

Ss,t
p := {f ∈ Ω × Ω : fh(−s) − fh(−t) − f�(−t) > b + c(t − s)};
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Figure 6: M/H2/∞ input process.

Us,t
p :=

{
f ∈ Ω × Ω :

−fh(−t) − f�(−t) ≥ b + ct;
fh(−s) − fh(−t) − f�(−t) ≥ b + c(t − s)

}
; (26)

P(Q�,n > nb) = P

((
1
n

n∑
i=1

Ah,i(·);
1
n

n∑
i=1

A�,i(·)
)

∈
⋃
t>0

⋂
s>0

Ss,t
p

)
.

Theorem 5.2 The following lower bound applies:

Jp ≥ inf
t>0

sup
s>0

inf
f∈Us,t

p

I(f), (27)

with f̄h(t) := fh(t) − µht, f̄�(t) := f�(t) − µ�t, and

I(f) :=
1
2
||f̄h||2Rh

+
1
2
||f̄�||2R�

.

The infimum over f ∈ Us,t
p can be computed explicitly, as in Lemma 3.4. As the analysis is

analogous to the tandem case, but the expressions are more complicated, we only sketch the
procedure. Again there is a regime in which one of the two constraints is redundant. Define

kp(s, t) := E(Ah(s) | Ah(t) + A�(t) = b + ct).

Using the convexity of the large-deviations rate function, it can be shown that, if

E(Ah(t − s) + A�(t) | Ah(t) + A�(t) = b + ct) > b + c(t − s),
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Figure 7: M/H2/∞ input process.

only the first contraint in (26) is tightly met; it is equivalent to require that kp(s, t) < cs. (If
kp(s, t) ≥ cs either both constraints in (26) are met with equality, or only the second constraint
is met with equality; exact conditions for these two cases are easy to derive, but these are not
relevant in this discussion). As before, under kp(s, t) < cs, we obtain the decay rate

inf
f∈Us,t

p

I(f) =
(b + (c − µ)t)2

2v(t)
, (28)

cf. the FIFO queue with link rate nc; in the other cases the expressions are somewhat more
involved. Denote by tF the value of t > 0 that minimizes the right hand side of (28).
Similarly to the tandem case, there is a regime (i.e., a set of values of the link rate c) in which
Jp coincides with the decay rate of a FIFO queue. In this regime, which we call regime (A),
conditional on a large value of the total queue length, it is likely that the hp queue is empty,
such that all traffic that is still in the system is in the lp queue. Hence, for all c in

{c | ∀s > 0 : kp(s, tF ) < cs} (29)

we conclude

Jp =
(b + (c − µ)tF )2

2v(tF )
.
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Figure 8: Input rate path for M/H2/∞ input process.

If c is not in the set (29), we can use the methodology of Section 3 to find a condition under
which the lower bound of Theorem 5.2 is tight; we call this regime (B).

Remark 5.3 In the tandem case, we found that the FIFO result holds for c1 ≥ cF
1 , whereas

it does not hold for c1 < cF
1 ; the threshold value cF

1 was found explicitly in Section 3.3. In
the priority setting there is not such a clear dichotomy. Consider for instance the situation in
which both types of sources correspond to Brownian motions; vh(t) ≡ λht, v�(t) ≡ λ�t, and
λ := λh + λ�. Define

Ξ :=
√

µ2
� +

λ�

λh
(c − µh)2.

Then straightforward calculus yields that for (λh − λ�)c ≤ λh(µh + 2µ�) − λ�µh, regime (A)
applies (i.e., the FIFO result holds):

Jp =
2b(c − µ)

λ
,

whereas otherwise we are in regime (B):

Jp =
b(Ξ − µ�)

λ�
;
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Figure 9: M/Par/∞ input process.

this is shown by verifying that the lower bound of Theorem 5.2 is tight for the specific case of
Brownian motion input. Using µh + µ� < c, it can be verified easily that this implies that for
λh ≤ λ� the FIFO solution applies, whereas for λh > λ� only for

c ≤ λh(µh + 2µ�) − λ�µh

λh − λ�
,

the FIFO solution applies. ♦

5.2 Discussion

Large deviations for priority queues have been studied in several papers. We mention here the
work by Mannersalo and Norros [23] and Wischik [32]. We briefly review their results, and
compare them with our analysis. Our lower bound then reads

J (I)
p := inf

t>0
sup
s>0

Υp(s, t), with Υp(s, t) := inf
f∈Us,t

p

I(f).

Just as we did, Mannersalo and Norros [23] identify two cases. They get the same solution for
our regime (A), i.e., the situation in which, given a long total queue length, the hp queue is
relatively short, cf. also Berger and Whitt’s [6] empty buffer approximation.
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Figure 10: M/Par/∞ input process.

In regime (B) the hp queue tends to be large, given that the total queue is long. To prevent
this from happening, [23] proposes a heuristic that minimizes I(f) over

{f ∈ Ω × Ω : ∃t > 0 : −fh(−t) − f�(−t) ≥ b + ct;−fh(−t) ≤ ct}. (30)

Because regime (B) applies, the optimum paths in the set (30) are such that the constraints
on f are tightly met; consequently (30) is a subset of U t,t

p . Hence the resulting decay rate,
which we denote by J

(II)
p , yields a lower bound, but our lower bound will be closer to the real

decay rate:

J (II)
p := inf

t>0
Υp(t, t) ≤ inf

t>0
sup
s>0

Υp(s, t) = J (I)
p .

Remark 5.4 In the simulation experiments performed in [23], the lower bound J
(II)
p (b) is

usually close to the exact value. Our numerical experiments (cf. the examples on the tandem
queue in Section 4) show that the hp buffer usually starts to fill shortly after the total queue
starts its busy period. This means that in many cases the error made by taking s = t is
relatively small. It explains why the heuristic based on set (30) performs well. ♦

Wischik [32] focuses on discrete time, and allows more general traffic than just Gaussian
sources. Translated into continuous time, in regime (B), his lower bound on the decay rate
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J
(III)
p (Theorem 14) minimizes I(f) over

{f ∈ Ω × Ω : ∃t > 0 : ∃s > 0 : −fh(−t) − f�(−t) ≥ b + ct;−fh(−s) ≤ cs}; (31)

again a straightforward comparison gives that our lower bound J
(I)
p is closer to the actual

decay rate:

J (III)
p := inf

t>0
inf
s>0

Υp(s, t) ≤ inf
t>0

sup
s>0

Υp(s, t) = J (I)
p .

Remark 5.5 Recent work by Mannersalo and Norros [24] suggests that a similar approach
could work for a queue operating under the Generalized Processor Sharing (GPS) scheduling
discipline. For two classes of traffic (both with n sources), sharing a resource with link capacity
nc and two buffers, the model is parametrized by the weights φ1, φ2 ∈ [0, 1], summing to 1. If
both queues are non-empty, both classes receive their guaranteed service rates nφ1c and nφ2c,

respectively. If one class does not use all its bandwidth, it can be taken over by the other
class in a work-conserving manner. For more details on the system mechanics for GPS, see
e.g. [28, 29].
Consider the probability that the first queue exceeds level nb, under the assumption that the
mean input rates of both classes are smaller than their respective guaranteed service rates.
Notice that the backlog of type 2 does not exceed that of a FIFO queue with link rate nφ2c.

31



This suggests that, in self-evident notation, the decay rate is well approximated by the infimum
of I(f) over

{f ∈ Ω × Ω : ∃t > 0 : ∀s > 0 : −f (1)(−t) − f (2)(−t) − f (2)(−s) ≥ b + ct − cφ2s}.

Reasoning heuristically, see also [24], it is not likely that (i) queue 2 is non-empty at the start
of the busy period preceding overflow of queue 1, (ii) there is traffic left in queue 2 at the
epoch queue 1 reaches overflow. This would lead to a minimization over

{f ∈ Ω × Ω : ∃t > 0 : ∀s > 0 : −f (1)(−t) − f (2)(−t) ≥ b + ct;−f (2)(−s) ≤ cφ2s},

cf. the sets Us,t (as identified for the tandem system) and Us,t
p (priority system). A lower

bound for this decay rate is again found by taking the infimum over t > 0 and the supremum
over s > 0, as before. ♦
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A Proof of Theorem 3.1

To prove Theorem 3.1, we first present an auxiliary result, cf. [27, Proposition 4.2]. The set
S is open; we now determine its closure. Define

St := {f ∈ Ω : ∀s ∈ (0, t) : f(−s) − f(−t) > b + c2t − c1s};

Ss,t := {f ∈ Ω : f(−s) − f(−t) > b + c2t − c1s}.

Lemma A.1 The closures of St and S are characterized as follows:

St = {f ∈ Ω : ∀s ∈ (0, t) : f(−s) − f(−t) ≥ b + c2t − c1s}. (32)

S =
⋃

t≥t0

St. (33)

Proof. We first prove (32). ‘⊆’ is obvious:

St =
⋂

s∈(0,t)

Ss,t ⊆
⋂

s∈(0,t)

Ss,t.

Now consider ‘⊇’. Let f be in the right hand side of (32). Define, with y+ := max{0, y}, and
y− := min{0, y},

fn(u) := f(u) +
1
n

(u− + t)+.

It is easy to see that (i) ||f − fn||Ω → 0, and (ii) fn ∈ St; here (ii) follows from

fn(−s) − fn(−t) = f(−s) − f(−t) +
1
n

(t − s) > b + c2t − c1s

for s ∈ (0, t). This proves (32).

Next we show (33). Again we establish two inclusions. ‘⊇’ is done by picking an arbitrary f

from the right hand side.
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• Suppose there is a t > t0 such that f ∈ St, then we can reuse the above argument: take
an f from the right hand side of (33), and show that there is a sequence fn in S such
that ||f − fn||Ω → 0. This is exactly as before.

• Suppose f is only in the union in the right hand side of (33) for t = t0, then we have
to show that f can be approximated by an fn ∈ St0+δn , with ||f − fn||Ω → 0, and
δn := 1/n. This is done by the following sequence:

fn(t) =




f(t) for t > −t0;
c1(t + t0) + f(−t0) for t ∈ [−t0 − δn,−t0];
−c1δn + f(t) + f(−t0) − f(−t0 − δn) for t < −t0 − δn.

Now fn ∈ St0+δn , as can be seen as follows. For s ∈ (0, t0), using f ∈ St0 in conjunction
with (32),

fn(−s) − fn(−t0 − δn) = f(−s) + c1δn − f(−t0)

≥ b + c2t0 − c1s + c1δn > b + c2(t0 + δn) − c1s,

due to c1 > c2. For s ∈ [t0, t0 + δn), similarly,

fn(−s) − fn(−t0 − δn) = −c1s + c1t0 + c1δn

= −c1s + b + c2t0 + c1δn > b + c2(t0 + δn) − c1s.

Now concentrate on ‘⊆’; take f ∈ S.

• Hence there is a sequence fn ∈ S such that ||f − fn||Ω → 0. Because fn ∈ S, there is a
sequence of epochs tn (all of them strictly larger than t0) such that fn ∈ Stn .

• tn is bounded. This can be seen as follows. Clearly, due to fn ∈ Stn ,

fn(−s) − fn(−tn) > b + c2tn − c1s

for all s ∈ (0, tn). Hence also −fn(−tn) ≥ b + c2tn (let s ↓ 0), and consequently

||f − fn||Ω ≥ f(−tn) − fn(−tn)
1 + tn

≥ b + c2tn
1 + tn

+
f(−tn)
1 + tn

.

Suppose tn were not bounded, letting n → ∞ would lead to a contradiction: 0 ≥ c2 (use
that f(u)/(1 + u) → 0 for u → ∞).

• Hence we can pick a subsequence tnk
such that tnk

goes to some finite limit t∞ ≥ t0 for
k → ∞. Now f ∈ St∞ , since, for all s ∈ (0, t∞) and k sufficiently large,

fnk
(−s) − fnk

(−tnk
) ≥ b + c2tnk

− c1s.

This proves the stated. �
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We now prove Theorem 3.1.

Proof of Theorem 3.1. Clearly, from Schilder’s result,

inf
f∈S

I(f) ≤ J ≤ inf
f∈S

I(f).

To show the stated, we prove that the infima over S and S coincide.
Let T be defined by (12), and let T t and T s,t be defined analogously to St and Ss,t; their
closures are determined as in Lemma A.1. It is evident that the infima over S and T coincide.
As mentioned above, our aim is to prove that the infima over S and S match, but it turns out
to be more convenient to show that the infima over T and T match.
This is done by choosing f from T ∩R arbitrarily, and showing that we can approximate it by
a path in T . Clearly f ∈ T t� for some t� ≥ t0. Let ζ be an arbitrary path in R that is strictly
positive in (0, t�], and define fn := f + ζ/n. Then there is a tn > t� such that fn ∈ T tn . This
can be seen as follows.

• First observe that f(s) ≥ b+ c2t
� − c1(t� −s) for all s in the closed interval [0, t�]. Hence

for all s ∈ (0, t�], and n ∈ N,

fn(s) = f(s) +
1
n

ζ(s) > b + c2t
� − c1(t� − s).

• As this inequality also holds for s = t�, we conclude that there is a tn > t� with
fn(s) > b + c2tn − c1(tn − s) for all s ∈ (0, tn), or, equivalently, that fn ∈ T tn .

Now notice that, for n → ∞,

||fn||2R = ||f +
1
n

ζ||2R → ||f ||2R,

which proves the asserted. �

B Proof of Lemma 3.9

Proof. The lemma is proven in three steps. Notice that, as we are in Regime (B), it holds
that c1 < cF

1 = K(tFc2
), with

K(t) := sup
s∈(0,t)

k(s, t)
s

. (34)

• In [9, Lemma 3.1] it is shown that, under (5) and Assumption 3.3, Lc2(t) is decreasing
for t < tFc2

, and increasing for t > tFc2
.
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• We now prove by contradiction that K(t�) ≥ c1. Suppose K(t�) < c1. Then, by (34),
for all s ∈ (0, t�) it holds that k(s, t�) < c1s, and hence also sups∈(0,t�) L(s | t�) = 0, see
(17). Now consider the decomposition of Corollary 3.6:

sup
s∈(0,t)

Υ(s, t) = Lc2(t) + sup
s∈(0,t)

L(s | t); (35)

t� is minimizer of this expression. Because k(s, t) is continuous, also for the closed
interval [0, t�] it holds that k(s, t�) < c1s. Hence it is possible to decrease t� such that
the first term in the right hand side of (35) decreases (as we approach tFc2

from above, see
Step 1), while the second remains 0. Hence the sum of both terms decreases, implying
that t� cannot be optimal. So it cannot be that both

K(t�) < c1 and t� > tFc2
.

Similarly K(t�) < c1 rules out t� < tFc2
. Hence K(t�) < c1 implies t� = tFc2

. However,
K(tFc2

) > c1. Contradiction.

• Notice that K(t�) ≥ c1, in conjunction with (17), directly implies that k(s�, t�) ≥ c1s
�.

This proves the stated. �

C Proof of Lemma 3.12

Proof. First we show that (23) holds. As noted earlier, both m(·) and ρ(·) have a maximum 1
at −s�. This means that (23) is necessary to enforce m(r) ≤ ρ(r) for r in a neighborhood
of −s�.
Next we show that (23) is equivalent to (24). First multiply both m(·) and ρ(·) by h(·), where

h(r) :=

√
v̄(r)

v̄(−s�)
(
ĒA(−s�, 0) − c1s

�
)
.

Since h(r) : (−t�, 0) → R+, this yields the requirement π(r) ≤ n(r) for all r ∈ (−t�, 0), with

π(r) := ĒA(r, 0) + c1r, and n(r) :=
Γ̄(r,−s�)
v̄(−s�)

(
ĒA(−s�, 0) − c1s

�
)
.

Recall that m(·) and ρ(·) have the same function value and derivative at −s�. It is easy to
derive that this implies that (m · h)(−s�) = (ρ · h)(−s�) and (m · h)′(−s�) = (ρ · h)′(−s�).
Therefore, the necessary condition becomes π′′(−s�) ≤ n′′(−s�).
Using standard formulae for conditional means of multivariate Normal random variables,

ĒA(r, 0) = +
Γ(−r, t�)

v(t�)
(b + c2t

�),
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leading to

d2

dr2

(
ĒA(r, 0) + c1r

)∣∣∣∣
r=−s�

=
b + c2t

�

2v(t�)
(v′′(s�) − v′′(t� − s�)).

Assuming r ≤ −s�,

Γ̄(r,−s�) =
v(−r) + v(s�) − v(−r − s�)

2
− Γ(−r, t�)Γ(s�, t�)

v(t�)
,

such that

d2

dr2
Γ̄(r,−s�)

∣∣∣∣
r=−s�

=
v′′(s�) − v′′(0)

2
− v′′(s�) − v′′(t� − s�)

2
v(s�, t�)

v(t�)
.

It can be checked that the same result holds when the derivative is calculated for r > −s�.
Now it is a straightforward but tedious computation to prove that this implies that π′′(−s�) ≤
n′′(−s�) is equivalent to (24). �
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