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ABSTRACT

Let B be a fractional Brownian motion with Hurst index H € (0,1). Denote by z1 < z2 < --- the positive,
real zeros of the Bessel function J_jz of the first kind of order —H, and let y1 < y2 < --- be the positive
zeros of Jj_ . We prove the series representation

>, sin Tnt . 1 —cos Ynt
Bt = Z Xn + Z — Y’ny
Zn n=1 Yn

n=1

where X71,Xo,... and Y7,Ys,... are independent, Gaussian random variables with mean zero and

VarX, = 2c%{m;2HJ;_2H(xn), VarY, = ZC%y;2HJ:?_I(yn), where the constant c% is defined by

C%—I = 77 IT'(1 + 2H) sinmH. With probability 1, both random series converge absolutely and uniformly in
t€0,1].
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1 Introduction

Let B = (B¢)t>0 be a standard fractional Brownian motion (fBm) with Hurst index H € (0, 1),
that is a centered Gaussian process with continuous sample paths and covariance function

EB;B; = (1?7 + s*H — |s — t|*) . (1.1)

The fBm with Hurst index H is a process with stationary increments and self-similarity index H,

meaning that (Bgt):>0 4 (aHBt)tZO for every a > 0. When the Hurst index equals 1/2, the fBm
is simply the ordinary standard Brownian motion. The study of fBm goes back to Kolmogorov



(1940), who showed in particular that the expression on the right-hand side of (1.1) defines a
covariance function. Mandelbrot and Van Ness (1968) gave the fBm its present name.

The increments of fBm are negatively correlated for H < 1/2, and positively for H > 1/2.
The fBm with Hurst index H > 1/2 is often used to incorporate long-range dependence in
stochastic models. One area where fBm has been widely used in recent years is telecommu-
nications (see e.g. Leland et al. (1994), Norros (1995)). Another example is continuous-time
mathematical finance, where the fBm is sometimes considered as an alternative for ordinary
Brownian motion (see e.g. Cutland et al. (1995), Salopek (1998), Sottinen (2001)). This ap-
proach is however subject to some controversy, since the fBm introduces arbitrage opportunities
into the models (cf. Rogers (1997), Sottinen and Valkeila (2001)).

Motivated by the applications, considerable progress has recently been achieved in the
theoretical study of fractional Brownian motion. Let us mention in particular the development
of stochastic integration with respect to fBm (see for instance Decreusefond and Ustiinel (1999),
Alos et al. (2000), Pipiras and Tagqu (2000), Coutin et al. (2001), Pipiras and Tagqu (2001))
and the rediscovery of certain relations between fBm and continuous, Gaussian martingales (see
e.g. Norros et al. (1999), Nuzman and Poor (2000)).

For standard Brownian motion (the case H = 1/2), there exist various explicit, almost sure
series expansions. These represent the Brownian motion W as a sum of the type > 9y (t)Xn,
where X1, Xo,... are ii.d., standard Gaussian random variables and 1,%2,... are certain
functions. A well-known example is the Karhunen-Loéve expansion

X,, tel0,1] (1.2)

n=1

(cf. e.g. Yaglom (1987), p. 451). To obtain alternative expansions for the case H = 1/2, simply
note that if we restrict the time parameter to the interval [0, 1], the covariance EW Wy = s A ¢
is the inner product in L?[0,1] of the indicator functions Lio,s) and 1(gy). If we expand these
indicators with respect to an arbitrary complete, orthonormal system of functions in L?[0, 1],
we obtain a series expansion for the Brownian motion. For example, the orthonormal system
V2sinnmrx yields the expansion

= 1- t
We=v2Y — 2y, telo,1], (1.3)
nm
n=1
where Y1,Ys,..., are i.i.d., standard Gaussian random variables. We can of course also combine

expansions (1.2) and (1.3). This yields the representation

W isin(n—%)th +il—cosmrty e 0.1] (1.4)

t - - 1\ - b b 9 -
n=1 (’I’L o %)ﬂ- " n=1 nm "

where X1, Xs,... and Y1,Ys,..., are two independent sequences of i.i.d., standard Gaussian

random variables.



To the best of our knowledge, explicit series representations like (1.2), (1.3) or (1.4) have
never been obtained up to now for fBm with Hurst index H # 1/2. In this paper, we extend
the expansion (1.4) to the fractional Brownian motion with arbitrary Hurst index H € (0,1).
It turns out that for general H, the numbers (n — 1/2)7 and nm appearing in (1.4) have to be
replaced by the zeros of certain Bessel functions. Recall that for v #% —1,—2,... the Bessel
function J,, of the first kind of order v is defined on the region {z € C : |argz| < 7} as the
absolutely convergent sum

B o (_1)n(z/2)u+2n
Tulz) = T;) F'n+1)I(v+n+1)

It is well-known that for v > —1, the function J, has a countable number of real, positive, simple
zeros (see e.g. Watson (1944), Chapter 15). These zeros can be arranged in ascending order of
magnitude and they become arbitrarily large. Now let the Hurst index H € (0,1) be fixed, let
r1 < T9 < --- be the positive zeros of J_g and let y1 < y2 < --- be the positive zeros of J;_g.
In this notation, our general expansion reads

2\ sin zpt .1 — cosynt
Bi=) Xyt Yy — Y, te[o1], (1.5)
—~ —~ Un
n n
where X, Xo,... and Yi,Ys,..., are two independent sequences of independent Gaussian

random variables, with EX,, = EY, = 0 and VarX, = 20%w;2HJf_2H(a:n), Vary, =
2¢2,y7 M J 2 (yn), where the constant c2; is defined by ¢, = 77 'I'(1 + 2H) sin7H. To see that
(1.5) indeed extends the expansion (1.4) of standard Brownian motion, note that for H = 1/2

2 2
J%(z) = \/Esinz, J,%(z) = \/;cosz,

so that z, = (n — 1/2)7, y, = nm, VarX,, = 1 and VarY,, = 1.
Several proofs in the paper rely heavily on special function theory. We use properties of the

we have c%/2 =1/m and

zeros of Bessel functions, and work with Hankel transforms and Fourier-Bessel expansions. For
background information on these topics we refer the reader to the classical treatise of Watson
(1944). A more concise treatment can be found for instance in Erdélyi et al. (1953) or Hochstadt
(1971). Another technical tool that we use is the Erdélyi-Kober version of the fractional calculus,
see the appendix to this paper, where the basic definitions of Samko et al. (1993), pp. 322-324,
are recalled.

2 Spectral representations

In this section, it is useful to consider a two-sided fBm. So we assume that B = (B;)cr and

EB,B, = 1 (It]?" + |s[*" —|s — t|*7)



for all s,t € R. It is well-known that the covariance function of fBm is harmonizable. Up to a

|'1=2H with respect to

constant that depends on H, the spectral measure p of fBm has density |A
Lebesgue measure and the covariance EB; B; can be written as the inner product in L?(u1) of the
Fourier transforms (expils—1)/i\ and (exp iAt—1)/iX of the indicator functions 1 4 and 1 ;).
The precise statement is as follows (see for instance Yaglom (1987), p. 407 or Samorodnitsky

and Taqqu (1994), p. 328).

Theorem 2.1. For all H € (0,1) and s,t € R

2 it 1 —iAs __ 1
EB,B; = %H (e )A(j )12 g, (2.1)
R

where

I'(1+4 2H)sinmH

~ (2.2)

& =

The left-hand side of (2.1) is obviously real-valued. Taking the real part of both sides of

(2.1) and using the symmetry of the integrand around 0, we obtain the following ‘real-valued
version’ of Theorem 2.1, see also Samorodnitsky and Taqqu (1994), p. 329.

Corollary 2.2. For all H € (0,1) and s,t € R we have

o [®sinAssin At 4 (1 — cos As)(1 — cos At)
EB,B, = % /0 it dx, (2.3)

where c?; is given by (2.2).

Let us note that the two terms on the right-hand side of (2.3) correspond to the ‘odd’ and
‘even’ parts of the fBm. Indeed, let the odd and even parts be defined by BY = (B; — B_;) and
Bf = 1(B, + B_¢). Clearly, the sample paths of B® (resp. B¢) are odd (resp. even) functions
and B = B° 4+ B€. Moreover, since EB_;B; = EB;B_; for all s,t € R, the Gaussian processes
B? and B¢ are independent. In particular, we have

EB;B; = EB? By + EB: By . (2.4)
It is easily verified that the odd part has covariance function
EBSBY = L (|s + ¢t —|s — ¢|*H) .
Hence, by formula 2.6 (3) on p. 78 of Erdélyi et al. (1954a), we have
*° sin Assin At
]EB?B? = 6121[/(; W dA. (25)
By relations (2.3) and (2.4), it follows that

epe 2 [T (1 —cosAs)(1— cosAt)




3 Integral representations

Relations (2.3), (2.5) and (2.6) represent the covariance functions of the fBm and its odd and
even parts in terms of inner products in the frequency domain. In the present section we write
the covariances as inner products in the time domain. The proofs rely on the fact that we
can find explicit expressions for the Hankel transforms (of appropriate order) of the functions
A= (sin M) /AFHY/2 and X (1 — cos At) /A H1/2 appearing in (2.5) and (2.6).

We begin with the odd part of the fBm. For ¢t > 0 we define the kernel ky by

o ﬁ g2 2\H-1
kt (u) = m u?2 (t —Uu ) 2 1(0’t)(u). (31)
Theorem 3.1. For all H € (0,1) and s,t > 0 we have
sAL
EBSBY = c% / kS (u) k2 (u) du, (3.2)
0

where c?, is defined by (2.2) and kY by (3.1).

Proof. We use the fact that for every ¢ > 0 the function k{ is the Hankel transform of order
—H of the function A — (sin At)/A#+1/2 and vice versa. Indeed, by formulas 8.7 (4) on p. 32
and 8.5 (33) on p. 26 of Erdélyi et al. (1954b), we have
*° sin At
k2 () = / im—lj_ () vV dA (3.3)
0

H+2

and

sin A\t >
T /0 kP (u)J— g (Au) vV u du. (3.4)
Both functions are easily seen to belong to L20, 00), so by Parseval’s relation for Hankel trans-
forms (see Macaulay-Owen (1939)), we have

| retwke ) du =

/°° SIAESINAS 12m gy (3.5)
0

)\2

If we multiply this by c2, and use relation (2.5), we obtain (3.2).

We note that usually, the Parseval relation is only proved for Hankel transforms of order
v > —1/2, which corresponds in our case to H < 1/2. It is well-known however that for
—1 < v < —1/2, the L?-theory of Hankel transforms still goes through in great generality (see
e.g. Titchmarsh (1937), Theorem 129, p. 221). In our particular case, it is quite easy to give a
direct proof of relation (3.5) for H > 1/2. First we use (3.3) to write the left-hand side of (3.5)
as

>, °° sin At
/0 k2 (u) (/0 /\H—JF%JH()\U)\/)\ud)\) du.
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Since the function  — J_p(x)\/ is bounded, k? is integrable and X — 1/X+1/2 is integrable
for H > 1/2, we are allowed to interchange the order of integration. Hence, the integral is equal
to

°° sin At ©
/0 L (/ ks(u)JH()\u)v)\udu> dA.

0

In view of (3.4), the inner integral now equals (sin As)/A#+1/2 and we arrive at the desired
relation (3.5). O

For the even part of the fBm, we need a more complicated kernel function. For ¢ > 0, we

define
. Tu: 0 d t 1

ﬁu%—H (t2 _ u2)H—% t ($2 _ u2)H_%

(3.6)

To see that the two expressions are indeed equal, use integration by parts to rewrite the integral
in the first expression as

dz.

(t2 _ u2)H+% t ($2 . u2)H+%
" / i
(2H + 1)t « (2H+ 1)z

It is then straightforward to obtain the second expression. Also observe that for H > 1/2, the
kernel ki can be written in a less complicated form. We have

Eifﬁﬁiu'*f(A%xQ—u%H‘%d%>1mw“0 (3.7)

L(H - 3)

(MY

ki (u) =

in that case.

Theorem 3.2. For all H € (0,1) and s,t > 0 we have
SNt
Eww:@/ kS (u) kS (u) du, (3.8)
0

where c?, is defined by (2.2) and k{ by (3.6).

Proof. We will show that for every ¢ > 0, the function kf is the Hankel transform of order
1 — H of the function A — (1 — cos At)/A#11/2 and vice versa, i.e.

. 1 —cos\t

2



and

1 — cos At * o
LT CosAt :/ Ef (u)J1—g(Auw)V Audu. (3.10)
0

A+3

First we note that the kernel kf is an Erdélyi-Kober-type fractional integral of the function

With ¢ = 2 and n = 3/4 — H/2 we have, in the notation of Samko et al. (1993), p. 322,

H 1

B () = (102 () Lo ().

H_1
This can easily be verified by comparing the definition of the operator I, 2, (see the appendix)
with the first expression in (3.6). Hence, by fractional integration by parts (see (A.5)), the
Hankel transform of order 1 — H of the kernel kf satisfies

/ h k$ (u)Jy g (Au)Vudu =

0

Co 1 (3.11)
[ @ = [ wrwnlh o
where g)(u) = /A/uJi_g(Au). The fractional integral of g) appearing in (3.11) can be calcu-

lated exphc1t1y. Note that the order H — 1/2 of the fractional integral may be negative, but
always exceeds —1/2. Therefore, by formula (A.2), we have

—o(H—3+n)

H-1 u 2 d 1 H4l
I 2 — ( O'(H+2+7'])I "2 )
040, 97 (%) 2 du \" 09 97 (¥) (3.12)

1 H +3
:iu 2%( +2fo+o.’,]g>\( ))

Since H +1/2 > 0, formula (A.1) implies that

H+1 ou H-3 /“ 9 3
I S— u- — 2 2 J )\ d .
0+a,n9A( u) = F(HJF%) o ( ) Y 1—a (YN VyAdy
The latter integral may be evaluated with the help of formula 8.5 (33) on p. 26 of Erdélyi et al.
(1954b). We find that

e ga(u) = 243y~ =)= Ty ().

Plug this into (3.12) and use the fact that (d/dz)(z"J,(z)) = 2 J,—1(2) to obtain

1 2H

IOJF;;,ng)\(u):ﬁu_ 222~ sin \u.



In view of (3.11), we conclude that

) Y 1 — cos At
0 0 )\—+H

2

So indeed, the kernel k§ and the function X — (1 — cos At)/A7+1/2 form a Hankel transform pair
of order 1— H, which proves (3.9) and (3.10). Apply the Parseval relation for Hankel transforms
to complete the proof. O

Remark 3.3. In the preceding proof we have used the fact that the kernel & defined by (3.6) can
be expressed as an Erdélyi-Kober-type fractional integral of the function f(u) = ml/29=HyH=-1/2
we have
H-L
kf(u) = It_.22§_

14y

g flu), 0<u<t.

Let us note that the kernel kf defined by (3.1) admits a similar expression. It is easily verified
that

H—

k?(u) = It—§2,§i—%H f(u), 0 <u<t.

If we combine Theorems 3.1 and 3.2 and use relation (2.4), we obtain the following repre-
sentation of the covariance function of the fBm.

Theorem 3.4. For all H € (0,1) and s,t > 0 we have
sAt
EB,B, = % / (kS () ) + RS () (w) ) (3.13)
0

where c? is defined by (2.2) and k{ and k{ by (3.1) and (3.6).

Note that Theorem 3.4 can be rephrased as a (finite past) moving average-type result. It
states that

t t
BiLcy / k2 (u) AW? + cg / k¢ (u) AW,
0 0

where W° and W¢€ are two independent, standard Brownian motions. Compare this for instance
with Theorem 5.2 of Norros et al. (1999), which gives a moving average representation of the
fBm in terms of a single standard Brownian motion.



4 Series expansions

Now let H € (0,1) be fixed. Then for every ¢ € [0, 1], the kernels k and kf defined by (3.1)

and (3.6) belong to L2[0,1]. So if 1, ¢s,... is a complete, orthonormal system of functions in
L%[0,1], we have kf(u) = 3%, a%(t)¢n(u) and kf(u) = Y00 1 a8 (t)¢n(u) in L2[0,1], where

1 1
ﬁm=AW@%ww,@w=Awmwww. (4.1)

Theorem 3.4 then implies that EB; By = ¢4 Yo% | (a%(s)al(t)+a(s)as(t)). To obtain an explicit
series representation of the covariance function of fBm, we are now going to choose a complete,
orthonormal system of functions ¢, for which we can calculate the coefficients in (4.1) explicitly.
The so-called Fourier-Bessel functions constitute such a system. The corresponding coefficients
can be expressed in terms of the Hankel transforms of the kernels kY and kf for which, as we
saw in the proofs of Theorems 3.1 and 3.2, we have an explicit expression.

To prove that the expansions that we obtain in this section are uniform in the time param-
eter, we need the following lemma.

Lemma 4.1. Let v > —1 be arbitrary and let z; < z9 < --- be the positive zeros of J,. Then
for allp > 0

o0

1
ZW—<OO'

n=1*?n J12+u(zn)

Proof. For the Bessel function J,, we have the asymptotic relation

T2+ T2 (2) ~ = (4.2)

Tz

for large |z| (cf. Watson (1944), p. 200). Since the zeros z, of J, tend to infinity, we have
Ji.,(2n) ~ 2/mzy, for n — co. Hence, it suffices to show the convergence

[ee]

1
D T <o

n=1 "

The proof is completed by evoking the last formula on p. 506 of Watson (1944), according to
which the n-th positive zero z, of J, is asymptotically of order n. U

For the covariance function of the odd part of the fBm we obtain the following series
expansion.



Theorem 4.2. Let H € (0,1) be arbitrary. Let 1 < x2 < --- be the positive, real zeros of
J_pg. For n € N, define

2

2 2cyy

=~ 4.3
"= EHIE (@) (43)

g

where c?; is given by (2.2). Then for all s,t € [0,1] we have

o0

EBJBf =)

n=1

sinz,s sinxp,t o

Ons

2
Tn

where the series converges absolutely and uniformly in (s,t) € [0,1] x [0, 1].

Proof. If we apply Lemma 4.1 with v = —H and p = 2H, we see that the series converges
absolutely and uniformly on the unit square to some limit. Hence, it remains to prove the
expansion for fixed s,t € [0,1]. For n € N, let ¢,, be the n-th Fourier-Bessel function of order
—H,ie.

W2
~ Ji—u (2|

where 1 < z2 < --- are the positive zeros of J_p. Recall that the functions ¢, form a

on(2) J_n(zn2)Vz,

complete, orthonormal system in L2[0,1] (see e.g. Hochstadt (1971), p. 264). Hence, arguing
as in the beginning of this section, we find that EB?Bf = % > o ; a%(s)al(t), with a4(t) as in
(4.1). Since ¢, is now the n-th Fourier-Bessel function of order —H, the coefficient ag(t) is the
Hankel integral that we already encountered in the proof of Theorem 3.1. By formula (3.4) we

have

_ V2 sin x,t
| J1—m(zn)] ol

This completes the proof of the theorem. O

ap(t)

n

Similarly, we get the following result for the even part of the fBm.

Theorem 4.3. Let H € (0,1) be arbitrary. Let y; < y2 < --- be the positive, real zeros of
Ji_g. For n € N, define

2¢2

2 H

TS = et ———, (4.4)
" y2H T2 L (yn)

where c? is given by (2.2). Then for all s,t € [0,1] we have

EBCBY — i (1 —cos yns)gl — oS Ynt) 7_3’
n=1 Yn

where the series converges absolutely and uniformly in (s,t) € [0,1] x [0, 1].

10



Proof. The uniform and absolute convergence follows from Lemma 4.1 again, but now applied
with v = 1—H and p = 2H. The remainder of the proof is also analogous to the proof of Theorem
4.2. Simply expand the kernel kf with respect to the Fourier-Bessel functions of order 1 — H and
use formula (3.10) to calculate the coefficients. Finally, use the fact that J2 ;(y.) = J2 5 (yn)
(see the first display on p. 480 of Watson (1944)). O

In view of relation (2.4), a combination of Theorems 4.2 and 4.3 yields the following series
expansion for the covariance function of the fBm itself.

Theorem 4.4. Let H € (0,1) be arbitrary. Let x1 < xa < --- be the positive, real zeros of
J_ g and let y; < ya < --- be the positive, real zeros of J, . For n € N, define 02 and 12 by
(4.3) and (4.4). Then for all s,t € [0,1] we have

2. sinx,s sinz,t 2. (1 — cosyns)(1 — cos ynt)
N S
n=1 n n=1 Yn

where both series converge absolutely and uniformly in (s,t) € [0,1] x [0, 1].

Theorem 4.4 implies that we have a series expansion of the fBm in mean square sense.
Using Lemma 4.1 again, this can easily be strengthened to an almost sure series expansion.

Theorem 4.5. Let H € (0,1) be arbitrary. Let c¢% be given by (2.2), let z; < x5 < --- be
the positive, real zeros of the Bessel function J_ g and let y; < ya < --- be the positive, real
zeros of J; . Forn € N, define 02 by (4.3) and 72 by (4.4). Let X1,Xs,... and Y1,Ys,...
be independent sequences of jndependent centered Gaussian random variables on a common
probability space, with VarX,, = 02 and VarY,, = 72. Then the random process B = (Bt)tcio,]
given by

B, = Z sin z,t X, Z — COS Ynt Y,

n=1

is well-defined and with probability 1, both series converge absolutely and uniformly int € [0, 1].
The process B is a fBm with Hurst index H.

Proof. Theorem 4.4 already shows that we have equality in mean square sense, so it remains
to show that with probability 1, both series converge absolutely and uniformly. The limit B is
then automatically continuous. First consider the partial sums

N sinx,t
S =3 —" X,




We want to show that with probability 1, the processes SV = (SN )te[o,1) form a Cauchy sequence
in the space C|0, 1] of continuous functions on the interval [0,1], endowed with the supremum

metric. For N < M we have

M

sup [ - s < 3
te[0,1] n=N+1

[ X

Tn

Hence, it suffices to show that with probability 1, the random series > |X,,|/x, converges to a
finite limit. By Kolmogorov’s three-series theorem, a sufficient condition for this convergence is
that > 02/22 < oo. This is precisely the content of Lemma 4.1, with v = —H and p = 2H.
The absolute and uniform convergence of the second series can be shown in exactly the same
manner. O

A Appendix

In this appendix we recall the basic definitions of the Erdélyi-Kober-type fractional integrals,
see Samko et al. (1993), p. 322. Let f be a function defined on the interval [a,b]. Then for
a > 0, the so-called left-sided integral is defined by

Ia O'x_g(a+77)

atiom f(J?) = W /x(xa — t”)a*1t0n+0*1f(t) dt (Al)

for every x € [a,b], while for « > —n

d n
(6] _ —O(a+ o(a+n+ a+n
I3y f (@) = 27o(e) (m> ao (et [ £ (@). (A-2)
Similarly, right-sided integral is defined by
7o f(a:) _ ox’M /b(to N xa)a—lta(l—a—n)—lf(t) dt (A 3)
ea = Tay |, |
for > 0 and
I f(x)=a" B R F(x) (A.4)
b—;o.n - ox®1dr b—;on—n :

for @« > —n. Throughout the present paper, we put c =2 andn=3/4— H/2orn=1/4—H/2.
In the proof of Theorem 3.2 we apply the formula of fractional integration by parts for Erdélyi-
Kober integrals. It states that

b b
[ @ e de = [ a7 ()1 F ) da, (A.5)
see formula (18.18) on p. 324 of Samko et al. (1993).
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