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THE ASYMPTOTIC VARIANCE OF DEPARTURES
IN CRITICALLY LOADED QUEUES

A. AL HANBALI, M. MANDJES, Y. NAZARATHY, AND W. WHITT

ABSTRACT. We consider the asymptotic variance of the departure counting pro-
cessD(t) of the GI/G/1 queue;D(t) denotes the number of departures up to time
t. We focus on the case that the system load % equals 1, and prove that the asymp-
totic variance rate satisfies

lim
t→∞

VarD(t)

t
= λ

(
1−

2

π

)(
c2a + c2s

)
,

where λ is the arrival rate and c2a, c2s are squared coefficients of variation of the
inter-arrival and service times respectively. As a consequence, the departures vari-
ability has a remarkable singularity in case % equals 1, in line with the BRAVO ef-
fect (Balancing Reduces Asymptotic Variance of Outputs) which was previously
encountered in the finite-capacity birth-death queues.
Under certain technical conditions, our result generalizes to multi-server queues,
as well as to queues with more general arrival and service patterns. For the M/M/1
queue we present an explicit expression of the variance of D(t) for any t.

KEYWORDS. GI/G/1 queues ? critically loaded systems ? uniform integrability ?
departure processes ? renewal theory ? Brownian bridge ? multi-server queues
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1. INTRODUCTION

In the study of queueing systems, the analysis of departure processes has played
an important role. Following Burke’s theorem [5], stating that departures of a
stationary M/M/1 queue form a Poisson process, many papers have dealt with
properties of inter-departure times, departure counting processes, and approxi-
mations. A classic survey is by Daley [8], while other useful references in this area
are [9] and [10, Ch. VII].
A key object in the analysis of departure processes is the variance of the number
of departures between time 0 and t, in the sequel denoted by D(t); see e.g. [7].
From an application point of view, insight into VarD(t) is of crucial importance
in the performance analysis of supply chain and manufacturing networks; several
recent studies [11, 13, 14, 20, 25] have investigated approximations for departure
processes in complex queueing systems. Related research deals with decoupling
queueing networks into sub-systems where the output of one or several queues is
fed as an input to other queues; see [18, 29, 30, 31] and references therein. In such
cases, it is of crucial importance to understand the structure of VarD(t).

Contribution & main result. In this paper we contribute to the analysis of VarD(t)
by considering the critically loaded GI/G/1 queue. This critically loaded regime, in
which the mean inter-arrival time equals the mean service time, is relevant from a
practical standpoint (as in many real-life situations queues are saturated or close
to saturation). Moreover, it is mathematically interesting since it leads to counter-
intuitive results in line with the BRAVO (Balancing Reduces Asymptotic Variance
of Outputs) effect observed previously in finite-capacity birth-death queues [22],
see also [21].
We now describe the contribution of our work in more detail. In our GI/G/1
queue we denote by Q(t) the number of customers present at time t. We let ζA
represent a generic inter-arrival time and ζS a generic service time. We denote the
system load by % := λ/µ, with λ := 1/EζA and µ := 1/EζS , and we let the squared
coefficients of variations (ratio of variance and square of the mean) of ζA and ζS be
c2a and c2s, respectively. We study the asymptotic variance of the departure process,
defined as

σ := lim
t→∞

VarD(t)
t

,

when the queue is critically loaded, that is, % = 1. Under suitable regularity con-
ditions, it is not hard to prove that m := limt→∞ ED(t)/t = min {λ, µ} , whereas
σ = λc2a for % < 1 and σ = µc2s for % > 1. However, there evidently is no explicit
expression for σ in case % = 1, in the literature. We show that

(1) σ = λ

(
1− 2

π

)(
c2a + c2s

)
, % = 1.

It thus follows that the variability function v(%) := σ/m = limt→∞ VarD(t)/ED(t)
has a singular point at % = 1, which can be regarded as a manifestation of the
BRAVO phenomenon. More specifically, for % 6= 1, v(%) is essentially determined
by either the arrival or the service process; for % = 1, v(%) is determined by both
the arrival and the service process. Consider for instance the M/M/1 queue; then
v(%) = 1 for % 6= 1, but it is reduced to 2(1− 2/π) ≈ 0.72 at % = 1.
In addition to the GI/G/1, (1) is a fundamental quantity which appears in a vari-
ety of critically loaded systems. We show that it holds for the GI/G/s queue (with
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s ∈ N servers), and generalizes to multi-channel, multi-server queues with more
general (non-renewal) arrival and service patterns (see Theorems 6.1 and 6.2). We
also demonstrate numerically that when ρ ≈ 1 (but is not necessarily equal to 1),
the variance for finite t approximately follows (1); see Figure 1. This numerical ex-
periment illustrates that the BRAVO phenomenon may also be observed in practice,
in that it is not limited to the ‘singular’ case of ρ = 1.

Outline of technical results. Our starting point for obtaining (1) is a diffusion limit
presented in [15, Sec. 4], where it is shown that for critically loaded queues the
sequence of processes

D̂n(t) =
D(nt)− λnt√

n
, n = 1, 2, . . .

converges weakly to

(2) D̂(t) = inf
0≤s≤t

{c2aB1(s) + c2sB2(t− s)},

where B1(·) and B2(·) are independent standard Brownian motions. It then turns
out that

σ = λVarD̂(1),

given suitable uniform integrability (UI) conditions. The details are in the proof
of Theorem 2.1. We then identify the distribution of D̂(1) (which for brevity we
denote by simply D̂). We show that VarD̂ = (1 − 2/π)(c2a + c2s). This is done by
relying on explicit formulae for the distribution of the maximum value attained
by a Brownian bridge.
In attacking the UI conditions, our problem narrows down to proving that the
sequence {Q(t)2/t} is UI. We subsequently prove UI for the M/M/1 queue, the
GI/M/1 queue, and the GI/NWU/1 queue (where ‘NWU’ stands for new worse
than used). The analysis of these three cases is of an incremental nature, in the
sense that the argumentation becomes increasingly involved; we rely on proper-
ties of the reflection map for the queue length, some stochastic ordering results,
and a number of new renewal-theoretic results (which are of independent inter-
est). Finally we find that a sufficient condition for the UI requirement is that

P(B > x) ∼ L(x)x−1/2,

where B denotes a generic busy period, and L(·) is a slowly varying function (i.e.,
L(ax)/L(x) → 1 as x → ∞, for every a > 0) that is bounded by a constant. The
above condition has been shown to hold for the critically loaded M/G/1 in [34],
and we conjecture that it holds for the critically loaded GI/G/1 queue as well
(under appropriate moment conditions).
We refer to Theorem 2.2 for an exact statement of our results. It should be noted
that we believe that the complications when establishing the UI requirement are
primarily of a technical nature, and that we in fact believe that (1) holds for a
broader class of critically loaded GI/G/1 queues. This conjecture is formalized
following Theorem 2.2. We are also able to handle the UI conditions for GI/G/s
queues (Theorem 6.2).
To complement our asymptotic results, we perform an explicit analysis for the
departure process of the M/M/1 queue, and obtain VarD(t) at all time points in
terms of Bessel functions. This yields an alternative derivation of (1) for this case
as well as other more refined properties.
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Organization. This paper is organized as follows. In Section 2 we present the main
result. As mentioned above, we believe this result to hold under weaker assump-
tions, which we state in a conjecture. In Section 3 we derive the distribution of
D̂, and compute the explicit expression for VarD̂. In Section 4 we find conditions
under which the process {Q(t)2/t} is uniformly integrable. In Section 5 we find
the variance curve of the M/M/1 queue. We conclude in Section 6 with a discus-
sion on the extensions to the multi-server GI/G/s queue, as well as to queues with
general more general arrival and service patterns.

Preliminaries & notation. This section is concluded by a review of some general
definitions and notation, and preliminary results.
Recall that a collection of random variables {Zt} is uniformly integrable (UI) if

lim
M→∞

(
sup
t

E|Zt|1{|Zt|≥M}
)

= 0.

A well known sufficient condition is to have

sup
t

E
(
|Zt|1+ε

)
<∞, for some ε > 0.

We denote by Zt ⇒ Z the fact that Zt converges in distribution to Z. In case Zt is
UI, this also implies that limt→∞ EZt = EZ, see [4].
With X and Y non-negative random variables, X ≤st Y means that

P(X > x) ≤ P(Y > x), ∀x ≥ 0.

Observe that this immediately implies that EXn ≤ EY n for n ≥ 0. Recall that a
distribution of a random variable X is new worse than used (NWU) if

P(X > x) ≤ P(X > t+ x)
P(X > t)

, ∀x, t ≥ 0.

We denote by GI/NWU/1, the single server queue with the service times having
a NWU service distribution; see [24] for more background.
Recall that Doob’s Lp maximum inequality for both continuous time and discrete
time states that for any p > 1 and martingale {Mt},

E
((

sup
0≤s≤t

|Ms|
)p)

≤
(

p

p− 1

)p
E(|Mt|p).

We shall make frequent use of the following inequality for real x and y and r ≥ 1:

(3) |x+ y|r ≤ 2r−1 (|x|r + |y|r) ,

the validity of this statement follows from the fact that (1 + z)r/(1 + zr) reaches a
maximum at z = 1 for r ≥ 1 and z ≥ 0.

2. MAIN RESULTS

In this section we present our main results on the critically loaded GI/G/1 queue
operating under the first-come-first-served (FCFS) discipline. Assume thatQ(0) =
0 and denote by A(t) the number of arrivals during [0, t]. In addition, assume that
the first inter-arrival time is identically distributed to the generic inter-arrival time
ζA. We further denote by S(t) the renewal counting process induced by the service
times. A key role is played by the process Q, defined as

(4) Q =
{
Q(t)2

t
, t ≥ t0

}
,
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for some t0 > 0.

Theorem 2.1. Consider the critically loaded GI/G/1 queue with Eζ2
A <∞ and Eζ2

S <∞.
Assume Q is UI, then

(5) σ = λ

(
1− 2

π

)(
c2a + c2s

)
.

Proof: From the heavy-traffic functional central limit theorem in [15, Thm. 4.1],
upon applying the projection map (at the time t = 1) and the continuous mapping
theorem, we have

(6)
D(t)− λt√

λt
⇒ D̂ as t→∞.

Further, using the continuous mapping theorem we obtain

(7)
(D(t)− λt)2

λt
⇒ D̂2 as t→∞.

Under UI conditions established below, we have from (6) and (7) that

(8) lim
t→∞

E

((
D(t)− λt√

λt

)k)
= E(D̂k), k = 1, 2.

Observe that VarD(t) = E(D(t)− λt)2 − (ED(t)− λt)2, and combine this with (8)
to obtain

σ

λ
= lim
t→∞

VarD(t)
λt

= lim
t→∞

E(D(t)− λt)2

λt
−
(

lim
t→∞

ED(t)− λt√
λt

)2

= VarD̂,(9)

which yields the desired result using Proposition 3.2.
It now remains to establish the convergence of the moments in (8). To do so, we
establish that the sequences {[(D(t)−λt)/

√
λt]k, t ≥ t0}, k = 1, 2, are UI. First note

D(t) = A(t)−Q(t). Combining this with (3) yields∣∣∣∣D(t)− λt√
λt

∣∣∣∣ ≤ ∣∣∣∣A(t)− λt√
λt

∣∣∣∣+∣∣∣∣Q(t)√
λt

∣∣∣∣ , ∣∣∣∣D(t)− λt√
λt

∣∣∣∣2 ≤ 2

(∣∣∣∣A(t)− λt√
λt

∣∣∣∣2 +
∣∣∣∣Q(t)√

λt

∣∣∣∣2
)
.

It thus suffices to show that the sequences {(A(t)− λt)2/λt, t ≥ t0} and Q are UI.
UI of the first sequence is a standard result from renewal theory, cf. [12, p. 49]. UI
of the second sequence is an assumption (which we partially prove in Theorem 2.2
below). 2

The above theorem is generalized in Section 6 for multi-channel, multi-server
queues with more general arrival and service processes. We are able to establish
the UI of Q needed by Theorem 2.1 for different cases:

Theorem 2.2. If Eζ4
A <∞ and Eζ4

S <∞ then Q is UI in the following cases:

(i) Any critically loaded GI/G/1 queue with P(B > x) ∼ L(x)x−1/2 where L(·) is a
bounded, slowly varying function.

(ii) The critically loaded M/G/1 queue.
(iii) The critically loaded GI/NWU/1 queue.
(iv) The critically loaded D/G/1 queue with P(ζS > b) = 1 for some b > 0.
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The theorem is proved by a sequence of arguments in Section 4. A version of this
theorem for the GI/G/s queue is in Section 6.

We conjecture that our result also holds under milder conditions. To this end, we
first remark that the condition of (i) in Theorem 2.2 has been shown to be true
in [34] for the critically loaded M/G/1 queue with Eζ2

S < ∞. We conjecture that
this also holds for the critically loaded GI/G/1.

Conjecture 2.3. For the critically loaded GI/G/1 queue with Eζ2
A <∞ and Eζ2

S <∞,

P(B > x) ∼ L(x)x−1/2

where L(·) is a bounded, slowly varying function.

Conjecture 2.3, along with Theorem 2.2 (i) implies UI for all GI/G/1 queues with
finite fourth moments. We also conjecture that the fourth moment condition may
be reduced to 2 + ε moments, for some strictly positive ε. Combining this with the
multi-server result of Section 6, we conjecture the following:

Conjecture 2.4. Consider the critically loaded GI/G/s multi-server queue. Assume that
Eζ2+ε

A <∞ and Eζ2+ε
S <∞ for any ε > 0. Then (5) holds.

3. THE DISTRIBUTION OF D̂

In this section we derive the distribution of the random variable D̂, defined as
inf0≤t≤1{c1B1(t) + c2B2(1 − t)}, with B1 and B2 be two independent standard
Brownian motions. This answers an open question posed in [15]. As usual, Φ(x)
is the distribution function of a standard normal random variable.

Theorem 3.1. Let c1, c2 ≥ 0. Then

P(D̂ ≤ x) = Φ (x/c1) + Φ (x/c2)− Φ (x/c1) Φ (x/c2)

+ 1/
√

2π
∫ ∞

0

e−L(u,x)Φ (−M(u, x)) du,(10)

L(u, x) := 1/2
(
u(c21 − c22)/č2 − x/c1

)2
, M(u, x) := (2uc1c2)/č2 + x/c2,

č :=
√
c21 + c22.

For the case c1 = c2 = c the last term in the right-hand side of (10) simplifies to

e−x
2/(2c2)/

√
2π
(
e−x

2/(2c2)/
√

2π − xΦ (−x/c) /c
)
.

Proof: Define the event

E (b1, b2) := {B1(1) = b1, B2(1) = b2},

for arbitrary b1 and b2. Further, denote byB(b)(t) a Brownian bridge process which
starts at 0 at time 0 and ends at b at time 1 (i.e., B(b)(t) = B(t)− t(B(1)− b), where
B(·) is a standard Brownian motion). Conditioning on E (b1, b2) we have,

P(D̂ ≤ x |E (b1, b2)) =
{

P(inf0≤t≤1{b2c2 + čB(d)(t)} ≤ x), x ≤ min(b1c1, b2c2),
1, x > min(b1c1, b2c2),

where d := (b1c1 − b2c2)/č.
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Manipulating the above probability of the Brownian bridge, we obtain

P
(

inf
0≤t≤1

{b2c2 + čB(d)(t)} ≤ x
)

= P
(

sup
0≤t≤1

{−B(d)(t)} ≥ (b2c2 − x)/č
)

= P
(

sup
0≤t≤1

{B(−d)(t)} ≥ (b2c2 − x)/č
)
.

The first equality is trivial and the second step follows from the symmetry of the
Brownian bridge. Now use that [19, Ch. V]

P
(

sup
0≤t≤1

{B(b)(t)} > y

)
= e−2y(y−b),

to arrive at

P(D̂ ≤ x |E (b1, b2)) =
{

exp{− 2
č2 (x− b1c1)(x− b2c2)}, x ≤ min(b1c1, b2c2),

1, x > min(b1c1, b2c2).

By unconditioning, we obtain that

P(D̂ ≤ x) =
1

2π

∫
(b1,b2)∈R2

P(D̂ ≤ x |E (b1, b2))e−
1
2 (b21+b22) db1 db2

=
1

2π

∫
min(b1c1,b2c2)<x

e−
1
2 (b21+b22) db1 db2

+
1

2π

∫
min(b1c1,b2c2)≥x

e−( 2
č2

(x−b1c1)(x−b2c2)+ 1
2 (b21+b22)) db1 db2.

The first integral of the last expression can be represented as Φ(x/c1) + Φ(x/c2)−
Φ(x/c1)Φ(x/c2). For the integral on the right hand side, we first change the region
of integration to the positive quadrant then, move the terms involving only b1 out
of the inner integral and then complete the square:

1
2π

∫ ∞
0

∫ ∞
0

e−(
2c1c2
č2

b1b2+ 1
2 (b1+ x

c1
)2+ 1

2 (b2+ x
c2

)2) db1 db2

=
1√
2π

∫ ∞
0

e−L(u,x)Φ (−M(u, x)) du.(11)

For the case where c1 = c2 = c, the remaining integral can be simplified to the
desired expression by changing the order of integration. 2

We are now able to obtain an explicit expression for VarD̂.

Proposition 3.2.

ED̂ = −
√

2(c21 + c22)/π, ED̂2 = c21 + c22, VarD̂ = (c21 + c22)(1− 2/π).

Proof: We first determine the density of D̂ by differentiating the distribution func-
tion, and calculate the first and second moments in the standard manner. The part
of the density obtained from Φ(x/c1) + Φ(x/c2) − Φ(x/c1)Φ(x/c2), multiplied by
x or x2 can be integrated relatively easily. The part related to (11) should first be
integrated over x (after multiplication by x or x2). In both cases, this yields an inte-
gral over the positive quadrant of a function proportional to bivariate independent
Gaussian distributions, which can therefore be simplified. Upon combining these
terms, we obtain the result. 2
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4. UNIFORM INTEGRABILITY

Our main result, Theorem 2.1 involves the assumption that Q is UI. In this section
we find sufficient conditions for this assumption to hold, thus establishing (i)-(iv)
in Theorem 2.2. We apply several methods in the analysis: in Section 4.1, we
use the reflection mapping for the queue to establish UI for the M/M/1 and then
for the GI/M/1. In Section 4.2, we construct couplings that involve the reflected
queueing process, the actual queue process and the count of the number of busy
cycles. This allows us to establish the UI for the GI/NWU/1 queue, and for the
GI/G/1 queue under an additional condition on the tail of the busy period. In
Section 4.3, we show UI for the D/GI/1 case by using a different approach: we
relate Q(t) and Wn, the workload seen by the n-th arrival, and then apply a UI
result from [27].
Note that Corollary 4.6 is more general than Corollary 4.4, which is in turn more
general than Corollary 4.2. As we feel that these results are of independent interest,
and as they add insight, we chose to present all three results.

4.1. Reflection Mapping for Queue Length. In this subsection we prove UI for
the GI/M/1 case. We do so by first introducing a process {Q′(t)} (which is closely
related to {Q(t)}), and prove UI for Q′, defined as

Q′ =
{
Q′(t)2

t
, t ≥ t0

}
,

for some t0 > 0. The following proposition plays a crucial role. Denote X(t) :=
A(t)− S(t) and let

(12) Q′(t) = X(t)− inf
0≤s≤t

X(s)

denote the associated reflected process. Notice that for the GI/M/1 it holds that
Q′(t) equals Q(t); see e.g. [23, p. 68]; this does not hold for the GI/G/1. For the
M/M/1 the reflected process is distributed as sup0≤s≤tX(s), but this is in general
not true for GI/M/1, cf. [3, p. 98] .

Proposition 4.1. Assume that both

(13) E

((
sup

0≤s≤t
{|A(s)− λs|}

)4
)

and E

((
sup

0≤s≤t
{|S(s)− λs|}

)4
)

are O(t2). Then it holds that
(i) E(Q′(t)4) = O(t2).

(ii) supt≥t0 E(Q′(t)2/t2) <∞.
(iii) Q′ is UI.

Proof Use inequality (3), with r = 4, to obtain that

Q′(t)4 ≤ 8

(
X(t)4 +

(
sup

0≤s≤t
−X(s)

)4
)
.

We now deal with both terms separately. The first term is bounded as follows:

X(t)4 = ((A(t)− λt)− (S(t)− λt))4 ≤ 8
(
|A(t)− λt|4 + |S(t)− λt|4

)
,

and therefore it follows from (13) that

(14) E
(
X(t)4

)
= O(t2).
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We then consider the second term:(
sup

0≤s≤t
−X(s)

)4

≤
(

sup
0≤s≤t

|X(s)|
)4

=
(

sup
0≤s≤t

∣∣(S(s)− λs
)

+
(
λs−A(s)

)∣∣)4

≤
(

sup
0≤s≤t

{|S(s)− λs|+ |A(s)− λs|}
)4

≤
(

sup
0≤s≤t

|S(s)− λs|+ sup
0≤s≤t

|A(s)− λs|
)4

≤ 8
((

sup
0≤s≤t

|S(s)− λs|
)4 +

(
sup

0≤s≤t
|A(s)− λs|

)4)
.

Again invoking (13) yields

(15) E
(

sup
0≤s≤t

−X(s)
)4 = O(t2).

Upon combining (14) and (15), we obtain (i). The result (ii) follows directly from
(i), and (iii) follows from the sufficient condition of UI in (ii). 2

It now follows (almost) immediately that we have uniform integrability of Q in
the M/M/1 case.

Corollary 4.2. For the critically loaded M/M/1 queue, Q is UI.

Proof All we need to show is that the arrival and service Poisson processes satisfy
(13). To this end, observe that the process {A(t) − λt} is a martingale. Applying
Doob’s maximum inequality, we obtain

E
((

sup
0≤s≤t

(A(s)− λs)
)4) ≤ (4

3

)4

(3λ2t2 + λt) = O(t2).

An identical argument is used for {S(t)− λt}. 2

Having established the uniform integrability of Q in the critically loaded M/M/1
case, we now attempt to generalize the above martingale argument for the GI/M/1
case. We do so in the theorem below, which we believe to be of independent in-
terest as well; to the best of our knowledge, it has not appeared elsewhere in the
literature.

Theorem 4.3. Let {ζi, i ≥ 0} be a sequence of nonnegative i.i.d. random variables, and
Sn :=

∑n
i=1 ζi their partial sums. Denote the corresponding renewal counting process by

N(t) := sup {n : Sn ≤ t} . Define Eζ1 := γ−1, and assume Eζ4
1 <∞. Then,

E

((
sup

0≤s≤t
{|N(s)− γs|}

)4
)

= O(t2).

Proof Denote V (t) = infn{n : Sn ≥ t}, so that N(t) + 1 = V (t) and SN(t) ≤ t ≤
SV (t). As a result of these inequalities we have that

γs−N(s) ≤ γSV (s) −N(s) = γSV (s) − V (s) + 1 ≤ sup
0≤n≤V (s)

{γSn − n}+ 1,
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and on the other hand

N(s)− γs ≤ N(s)− γSN(s) ≤ sup
0≤n≤N(s)

{n− γSn}

≤ sup
0≤n≤V (s)

{n− γSn} ≤ sup
0≤n≤V (s)

|γSn − n|+ 1.

Combining these two inequalities, we obtain

|N(s)− γs| ≤ sup
0≤n≤V (s)

|γSn − n|+ 1.

Denote Mn :=
∑n
i=1 ξi, where ξi := γζi − n (which is a martingale). Taking the

supremum over s between 0 and t yields

(16) sup
0≤s≤t

|N(s)− γs| ≤ sup
0≤n≤V (t)

|γSn − n|+ 1 = sup
0≤n≤V (t)

|Mn|+ 1.

We are interested in the 4-th moment of the quantity in the left-hand side of (16).
Due to (3), we have

(17) E
((

sup
0≤s≤t

|N(s)− γs|
))4

≤ 8E

( sup
0≤n≤V (t)

|Mn|

)4
+ 8.

Recalling that Mn is a martingale, observe that V (t) is a stopping time with re-
spect to the natural filtration of {Mn} and hence Mn∧V (t) is a martingale as well.
Therefore, due to Doob’s maximum inequality, for k = 0, 1, . . .,

(18) E

((
sup

0≤n≤k
|Mn∧V (t)|

)4
)
≤
(

4
3

)4

E
(
(Mk∧V (t))4

)
.

Further observe that the sequence {sup0≤n≤k |Mn∧V (t)|} is monotone increasing in
k, and, almost surely,

lim
k→∞

(
sup

0≤n≤k
|Mn∧V (t)|

)4

=
(

sup
0≤n
|Mn∧V (t)|

)4

=

(
sup

0≤n≤V (t)

|Mn|

)4

.

Applying the monotone convergence theorem, we obtain

(19) lim
k→∞

E

((
sup

0≤n≤k
|Mn∧V (t)|

)4
)

= E

( sup
0≤n≤V (t)

|Mn|

)4
 .

Further observe that, almost surely

lim
k→∞

|Mk∧V (t)|4 = |MV (t)|4.

Also E supk |Mk∧V (t)|4 <∞, as follows from(
Mk∧V (t)

)4 ≤ 8γ4
(
Sk∧V (t)

)4 + 8
(
k ∧ V (t)

)4 ≤ 8γ4
(
SV (t)

)4 + 8
(
V (t)

)4
,

and the fact that for fixed t the right-hand side has finite mean, see e.g. [12].
Now applying the dominated convergence theorem, we obtain

(20) lim
k→∞

E
((
Mk∧V (t)

)4) = E
((
MV (t)

)4)
.

Combining (18), (19) and (20) we obtain,

E

( sup
0≤n≤V (t)

|Mn|

)4
 ≤ (4

3

)4

E
(
M4
V (t)

)
.
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We now complete the proof by showing that the right-hand side of the previous
display is O(t2). To this end, denote E(ξ`i ) = m`, and recall that it was assumed
that m` < ∞, ` = 1, 2, 3, 4. Further let γ(r) denote the cumulant generating func-
tion of ξi, i.e., γ(r) = log(E(erξi)), Re(r) ≤ 0. Let γ(n)(r) denote the n-th derivative
of γ(r). Observe that γ(0) = 0, γ(1)(0) = m1 = 0, γ(2)(0) = Var(ξi) = m2 and
that γ(3)(0) and γ(4)(0) can be expressed in terms of m`, ` = 2, 3, 4. Since V (t) is a
stopping time, Wald’s identity [26] yields

E exp
(
rMV (t) − V (t)γ(r)

)
= 1.

Taking the second and fourth order derivative (with respect to r) of the latter equa-
tion at 0, we find that

E(MV (t))2 = EV (t)m2,(21)

E(MV (t))4 = γ(4)(0)EV (t) + 4γ(3)(0)EV (t)MV (t) − 3EV (t)2m2
2(22)

+ 6m2EV (t)(MV (t))2.

Then, note that the Cauchy-Schwarz inequality gives

EV (t)MV (t) ≤
√

EV (t)2E(MV (t))2,(23)

EV (t)(MV (t))2 ≤
√

EV (t)2E
(
(MV (t))2

)2 = E(MV (t))2
√

EV (t)2.(24)

Also, EV (t) = O(t) and EV (t)2 = O(t2), see e.g. [3, Ch. V]. From (21), we de-
duce that E(MV (t))2 = O(t). Using (23) and (24), the latter equation gives that
EV (t)MV (t) = O(t3/2) and EV (t)(MV (t))2 = O(t2). Plugging these results into
(22) yields

E(MV (t))4 = O(t2),

as desired. 2

Corollary 4.4. For the critically loaded GI/M/1 queue, with Eζ4
A <∞, Q is UI.

Proof Theorem 4.3 gives (13) which completes the proof. 2

4.2. Coupling Q and Q′. In the previous subsection we were able to establish the
UI for the GI/M/1 queue by using the fact that Q′(t) is distributed the same as
Q(t). This property does not carry over to queues with non-exponential service
times, but nevertheless we can obtain the desired UI from Q′(t) for a large-class of
service times by using the following result, which we prove by using a coupling
argument.

Theorem 4.5. Denote by C(t) the number of busy cycles of the process {Q(t)} during
the time interval [0, t]. Let r ≥ 1. Then,

(i) For GI/NWU/1: Q(t) ≤st Q
′(t), t ≥ 0.

(ii) For GI/G/1: EQ(t)r ≤ 2r−1
(
EQ′(t)r + EC(t)r

)
, t ≥ 0,

Proof We begin with (i). LetL(·) denote the probability law of a stochastic process.
We shall construct a probability space supporting two coupled processes {Q̃(t)}
and {Q̃′(t)} such that,

(25) Q̃(t) ≤ Q̃′(t), t ≥ 0, w.p. 1,

where L(Q) = L(Q̃) and L(Q′) = L(Q̃′). Establishing such a construction is
equivalent to stochastic order on the function space of sample paths, see [17], from
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which (i) is an elementary consequence. We let Q̃ = Q, so that it remains to pro-
duce (25) with L(Q′) = L(Q̃′). We let both systems start empty and give both
systems the given arrival process for Q. We redefine the service times of the upper
bound system {Q̃′(t)} every time an arrival comes to an empty system. Otherwise,
arrivals are assigned identical service times in both systems, which are taken from
the given i.i.d service times for Q. The construction is recursive over busy cycles
of the process Q̃; i.e., we do mathematical induction over successive epochs at
which an arrival finds the upper bound system empty. Clearly, the sample paths
of the two systems are identical until the first time that an arrival in the upper
bound system finds the system empty. Because of the reflection construction, the
actual service time in the upper bound system is a residual service time, but by the
NWU assumption, that residual service time is stochastically larger than an ordi-
nary service time. Given that stochastic order, we can construct a new service time
for the upper bound process that is greater than or equal to the corresponding ser-
vice time in the lower bound system w.p. 1, and yet has its given probability law.
Performing this simple construction maintains L(Q′) = L(Q̃′). We repeat this con-
struction each time an arrival at the upper bound system finds an idle server; nec-
essarily the corresponding arrival in the lower bound system finds the server idle
too. By this special construction, we make the service times of the upper bound
process greater than or equal to the service times in the lower bound process w.p.
1, while their distributions remain unchanged. It is known and not difficult to
show that the queue length sample paths will be ordered w.p. 1 if two systems
differ only by service times that are all ordered; this is, e.g., the basis for Theorems
5 and 8 and the remark on page 216 of [28]. Hence we achieve the sample-path
order in (25) while keeping the relations L(Q) = L(Q̃) and L(Q′) = L(Q̃′). This
sample path order holds over the successive finite time segments [0, τn), where τn
is the time that the nth busy cycle begins. By mathematical induction, it thus holds
over the entire positive halfline. We thus have (i).

We now turn to (ii). We shall achieve the moment inequality by constructing a
coupling of Q(t), C(t), and Q′(t) on the same probability space. Again we let
Q̃ = Q, so it remains to produce

(26) Q(t) ≤ Q̃′(t) + C(t), t ≥ 0, w.p. 1.

with L(Q′) = L(Q̃′). We shall do the construction by finding an intermediate
system Q̂ with

(27) Q(t) ≤ Q̂(t) ≤ Q̃′(t) + C(t), t ≥ 0, w.p. 1,

where still L(Q′) = L(Q̃′).
We let all three systems start empty and give them the specified arrival process for
Q. We let all three systems be assigned the same service times from the sequence
of i.i.d. random variables for Q.
The right hand side of (27) indicates Q′(t) with an additional customer added per
busy period which is added whenever an arrival finds an empty system in Q. We
let the service time of the extra arrival for Q̃′match the service time of the arrival in
Q, so that we can think of an extra initial customer with the residual service time,
and otherwise the same arrivals having identical service times. We now construct
the system Q̂ from Q̃′ by combining the customer with the residual service time
and the new customer into a single customer with the sum of the residual service
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time and the new service time. Hence, by this ‘combining’ of customers, at the
start of every busy period, Q̂(t) is initially less than Q̃′(t) + 1, and the inequality
holds throughout the busy period. Again using induction as in (i), we have the
second inequality in (27).
With this construction, Note that Q̂ differs from Q only by having some customers
with longer service times. In particular, whenever an arrival in Q finds an empty
system, that customer has a shorter service time than the corresponding arrival
in Q̂. As a consequence, by the same reasoning as in part (i), we have the first
inequality in (27). Combining now with (3) directly implies the final claimed mo-
ment inequality. 2

Note that the coupling in part (ii) of the above proof also implies that there exists
a joint distribution between Q′(t) and C(t) such that Q(t) ≤ Q′(t) + C(t),w.p. 1.
Also note that in the above theorem we did not use the renewal structure of the
arrival process and thus the result actually holds for for queues with arbitrary
arrival processes.
We now have UI of Q for the GI/NWU/1 queue.

Corollary 4.6. For the critically loaded GI/NWU/1 queue with Eζ4
A <∞ and Eζ4

S <∞,
Q is UI.

Proof From Theorem 4.5 (i) we deduce that EQ(t)4 ≤ EQ′(t)4. By Proposition 4.1
(ii) we have that EQ′(t)4 = O(t2). Thus, EQ(t)4 = O(t2), which completes the
proof. 2

In order to use the stochastic order in Proposition 4.1 (ii) for the UI of Q in the
GI/G/1 queue, one needs first to establish the order of growth of the moments of
C(t). The following theorem is attributed to A. Löpker (personal communication).
To the best of our knowledge this general result about renewal processes has not
appeared elsewhere.

Theorem 4.7. Let N(t) and ζi be defined as in Theorem 4.3. Suppose that P(ζi ≥ x) =
1− F (x) ∼ L(x)x−α with α ∈ [0, 1) and L(·) slowly varying. Then,

EN(t)m ∼ tαmL(t)−m
Γ(1 +m)

Γ(1− α)mΓ(1 + αm)
, t→∞.

Proof

EN(t)m =
∞∑
i=1

imP(N(t) = i) =
∞∑
i=1

im(F ∗i(t)− F ∗i+1(t))

=
∞∑
i=1

imF ∗i(t)−
∞∑
i=2

(i− 1)mF ∗i(t) =
∞∑
i=1

a(i)F ∗i(t),

where a(i) = im− (i− 1)m. Clearly,
∑n
i=1 a(i) = nm. Now using Omey’s Theorem

[2, Theorem D] with ρ = m and L1(x) = 1 (where ρ and L1(·) follow the notation
of [2]), the result follows. 2

We are now in a position to relate the growth rate of C(t) to the tail asymptotics of
the busy period distribution.

Corollary 4.8. For the critically loaded GI/G/1 queue with Eζ4
A <∞ and Eζ4

S <∞, if,

(28) P (B > x) ∼ L(x)x−1/2,

with L(x) slowly varying and bounded then Q is UI.
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Proof We apply Theorem 4.7 with m = 4 to C(t) of Theorem 4.5, to obtain that
EC(t)4 = O(t2). Further, observe that Theorem 4.3 applied toA(t) and S(t) implies
condition (13), and thus by Proposition 4.1 (i), we have that EQ′(t)4 = O(t2). Since
Theorem 4.5 (i) implies that EQ(t)4 ≤ 8

(
EQ′(t)4 + EC(t)4

)
, we have

EQ(t)4 = O(t2),

and as a result,

sup
t≥t0

E
(Q′(t)2

t

)2

<∞.

Conclude that Q is UI. 2

Corollary 4.9. For the critically loaded M/G/1 queue, with Eζ4
S <∞, Q is UI.

Proof The tail asymptotics for the busy period in (28) have been established for
the critically loaded M/G/1 queue in [34, Theorem 4.1]. Consequently, the result
follows from Theorem 4.8. 2

4.3. The D/GI/1 Case. The approach we follow for the D/GI/1 queue differs sub-
stantially from the approach taken in the previous subsections. Here we simply
relate the queue size to the workload and use a previous result of UI stated in [27].

Proposition 4.10. For the critically loaded D/G/1 queue with Eζ4
S < ∞ and P(ζS >

b) = 1 for some b > 0, Q is UI.

Proof In the following we relate Q(t) and Wn, the workload seen by the n-th ar-
rival. Note that in [27, Thm. 4.1] it is shown that if Eζ2m

S < ∞, then (Wn/
√
n)k,

k ≤ 2m, is UI. Moreover, it is well known that if we have the nonnegative se-
quences of random variables Xn, Yn, and Zn such that Zn < Xn + Yn and Xn and
Yn are UI, then so is Zn.
We have that Q(t) ≤ W (t)/b + 1 and W (t) = WA(t) − (t − τA(t)) ≤ WA(t), where
τA(t) is the arriving time of the A(t)’th arrival. Therefore, we see that, for bλtc > 0,

Q(t)√
t
≤ b−1W (t) + b√

t
≤ b−1WA(t) + b

√
t

≤ b−1
√
λ
WA(t) + b√

A(t)

= b−1
√
λ

{
Wbλtc√
bλtc

+
b√
bλtc

}
,(29)

where the third inequality and the last follow from A(t) = bλtc ≤ λt (at time 0 the
queue is empty and an inter-arrival time is deterministic and equal to 1/λ). Using
(3) with r = 4, Eqn. (29) then gives(

Q(t)√
t

)4

≤ 8b−4λ2

{(
Wbλtc√
bλtc

)4

+
(

b√
bλtc

)4}
.(30)

Note that (b/
√
bλtc)4 is bounded from above by b4, t ≥ t0 > 0, which implies that

it is UI. Moreover, under the assumption Eζ4
S < ∞, we have that (Wbλtc/

√
bλtc)4

is UI, see [27, Thm. 4.1]. Hence, we have that both terms in the right-hand side of
(30) are UI, and hence so is Q. 2
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5. THE VARIANCE CURVE OF THE M/M/1 QUEUE

In this section we consider the M/M/1 queue and obtain expressions for the first
and second moments of D(t) for any t ≥ 0. We first consider arbitrary λ, µ > 0
and obtain cumbersome yet computationally tractable expressions for ED(t) and
VarD(t) in terms of integrals of Bessel functions (Theorem 5.1). These expressions
are useful for numerically illustrating the presence of the BRAVO effect for finite
t and for % ≈ 1 (Figure 1). For the critically loaded case some simplification oc-
curs and these integrals evaluate to simpler explicit expressions, given in terms of
Bessel functions (Corollary 5.2).
We are further able to perform an asymptotic expansion for ED(t) and VarD(t) for
t large (Theorem 5.3). This expansion shows that in the critically loaded case, the
variance and expectation curves have a lower order square root term that does not
exist when λ 6= µ. It also serves as an alternative proof to our main result in the
specific case of M/M/1.
Notation: We denote the convolution operator by ∗ and make use of the modified
Bessel function of the first kind:

Ij(2t) =
∞∑
n=0

tj+2n

(j + n)! · n!
.

Theorem 5.1. For the M/M/1 queue with Q(0) = 0:

ED(t) =
√
λµ

∫ t

0

(t− u)
I1(2u

√
λµ)e−(λ+µ)u

u
du.

VarD(t) = µt(µt+ 2)−
√
λµ

∫ t

0

(t− u)(µ(t− u) + 2)
I1(2u

√
λµ)

u
e−(λ+µ)udu

+ 2λµ
∫ t

0

(t− u)2 I2(2u
√
λµ)

u
e−(λ+µ)udu

+µ

∫ t

0

(
µ(λ− µ)(t− u)2 − 4µ(t− u)− 2

)
I0(2u

√
λµ)e−(λ+µ)udu

+µ
√
λµ

∫ t

0

(t− u)
(
(µ− λ)(t− u) + 2

)
I1(2u

√
λµ)e−(λ+µ)udu

+
√
λµ

∫ t

0

(t− u)
I1(2u

√
λµ)e−(λ+µ)u

u
du

−λµ
(∫ t

0

(t− u)
I1(2u

√
λµ)e−(λ+µ)u

u
du
)2

.

Proof Let Xα be an exponential random variable with mean 1/α. Let φα(z) de-
note the probability generating function (PGF) of the number of departures at the
random time Xα. We have that

φα(z) = EXαE(zD(Xα)|Xα) =
∫ ∞

0

αe−αtE(zD(t))dt.

Note that, φα(z)/α can be interpreted as the Laplace transform of EzD(t). Denote
φ1
α := φ′α(1)/α and φ2

α := φ′′α(1)/α and denote by L−1(·) the inverse Laplace trans-
form. Thus, it is readily seen that,

(31) ED(t) = L−1(φ1
α), ED(t)2 = L−1(φ2

α + φ1
α).
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From [6, p. 199, Eq. (2.71)], inserting k = 0, ρ = α, q = z, and x2(q) = r(z, α), (see
also [1, Eq. (25)]) we have the following simple expression:

(32)
φα(z)
α

=
z

µ(1− z) + α

1− r(z, α)
z − r(z, α)

,

where

r(z, α) =
λ+ µ+ α−

√
(λ+ µ+ α)2 − 4λµz

2λ
.

Furthermore, let

s(z, α) =
λ+ µ+ α+

√
(λ+ µ+ α)2 − 4λµz

2λ
=

µz

λr(z, α)
.

Differentiating (32) according to z at the point z = 1 yields

φ1
α =

λ

α2
r(1, α),(33)

φ2
α = 2µ

µ+ α

α3
− 2λ

µ+ α

α3
r(1, α) +

2λ2

α3
r(1, α)2(34)

+
2µ
α3

(
µ− (µ+ α)2

λ

) 1
s(1, α)− r(1, α)

+
2µ
α3

(µ+ α− λ)
r(1, α)

s(1, α)− r(1, α)
.

Now using an explicit inversion, as in e.g. [6, p. 81], for (33), we obtain

L−1(φ1
α) = λt ∗

√
µ/λ

I1(2t
√
λµ)e−(λ+µ)t

t
,

L−1(φ2
α) = µt(µt+ 2)−

√
λµt(µt+ 2) ∗

(I1(2t
√
λµ)

t
e−(λ+µ)t

)
+2λµt2 ∗

(I2(2t
√
λµ)

t
e−(λ+µ)t

)
+µ
(
µ(λ− µ)t2 − 4µt− 2

)
∗
(
I0(2t

√
λµ)e−(λ+µ)t

)
+µ
√
λµt
(
(µ− λ)t+ 2

)
∗
(
I1(2t

√
λµ)e−(λ+µ)t

)
.

Using (31) and reorganizing the above convolution term, we obtain the result. 2

In the case % = 1, the integrals of Theorem 5.1 evaluate into somewhat simpler
expressions given in terms of Bessel functions (rather than integrals of Bessel func-
tions).

Corollary 5.2. For the critically loaded M/M/1 queue with Q(0) = 0:

ED(t) = λt− 1
2
e−2λt

(
(1 + 4λt)I0(2λt) + 4λtI1(2λt)

)
+

1
2
,

VarD(t) =
1
4
e−4λt

(
e4λt(8λt+ 1)− (4λt+ 1)2I0(2λt)2 − 4e2λtλtI1(2λt)

−16λ2t2I1(2λt)2 − 4λtI0(2λt)
(
e2λt + (2 + 8λt)I1(2λt)

) )
.

Proof Directly evaluate the integrals of Theorem 5.1 with λ = µ. 2

Further, the integrals of Theorem 5.1 yield the following asymptotic expansion.

Theorem 5.3. For the M/M/1 queue with Q(0) = 0:

ED(t) =


λt− %

1−% + o(1) if λ < µ,

λt− 2
√

λ
π t

1/2 + 1
2 + o(1) if λ = µ,

µt− 1
%−1 + o(1) if λ > µ,
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FIGURE 1. Demonstration of the BRAVO effect for λ ≈ µ and finite
t: VarD(t) is plotted for M/M/1 systems with µ = 1. The dashed
curved is for λ = 0.9, the solid curve is for λ = 0.98 and the
dotted curve is for λ = 1.1. The thin horizontal line is at the height
1000 · 2(1− 2/π).

and

VarD(t) =


λt− %

(1−%)2 + o(1) if λ < µ,

λ2(1− 2
π )t−

√
λ
π t

1/2 + π−2
4π + o(1) if λ = µ,

µt− %
(1−%)2 + o(1) if λ > µ.

Proof The cases λ = µ and λ 6= µ are treated separately. The λ = µ case follows
directly from Corollary 5.2: To obtain the linear term divide the expressions of
Corollary 5.2 by t and evaluate the limit as t→∞. To obtain the

√
t-term, subtract

the linear term, divide by
√
t and evaluate the limit. To obtain the constant term

subtract the linear and
√
t-terms and evaluate the limit. The remaining error is

o(1).
The λ 6= µ case is more complicated. Consider first ED(t). Theorem 5.1 readily
gives:

ED(t) =
√
λµ

(
t

∫ ∞
0

I1(2u
√
λµ)e−(λ+µ)u

u
du−

∫ ∞
0

I1(2u
√
λµ)e−(λ+µ)udu

−t
∫ ∞
t

I1(2u
√
λµ)e−(λ+µ)u

u
du+

∫ ∞
t

I1(2u
√
λµ)e−(λ+µ)udu

)
=

√
λµ

(
2
√
λµ

λ+ µ+ |λ− µ|
t− 2

√
λµ

|λ− µ|(λ+ µ+ |λ− µ|)

−t
∫ ∞
t

I1(2u
√
λµ)e−(λ+µ)u

u
du+

∫ ∞
t

I1(2u
√
λµ)e−(λ+µ)udu

)
,
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where the second equality follows by interchanging the integration and the sum-
mation resulting from the definition of the I1(2

√
λµt) functions in the first two

terms. For the second two terms, we use the following result for p, s > 0, p 6= s

and γ ∈ Z: ∫ ∞
t

uγIm(pu)e−sudu =
1√

2πp(s− p)
tγ−

1
2

e(s−p)t +O

(
tγ−

3
2

e(s−p)t

)
.

See for example [6, p. 83]. Combining we obtain:

ED(t) =
2λµ

λ+ µ+ |λ− µ|
t− 2λµ
|λ− µ|(λ+ µ+ |λ− µ|)

+ o(1).

Our result for ED(t) now follows. The result for VarD(t) follows along the same
lines. 2

We end this section with a numerical example. We use Theorem 5.1 to evaluate
VarD(t) for three M/M/1 queues with % < 1, % ≈ 1 and % > 1. The integrals
of expressions involving Bessel functions are easily evaluated numerically. Vari-
ance curves of three example systems are plotted in Figure 1. The time horizon is
[0, 1000]. It can be observed that as % is varied from 0.9 to 1.1, the variance curve
decreases when % ≈ 1.
The main point made is that the BRAVO effect appears for λ ≈ µ, for finite t and
not only for the critical λ = µ case. It is further evident that the asymptotic slope
of 2(1− 2/π) which holds for % = 1 also approximately holds as a non-asymptotic
slope (for finite t) for % ≈ 1.

6. EXTENSIONS

In this section we address a number of extensions. The contribution is twofold.
Our first aim is to indicate that the (1− 2/π) effect as in (1) holds in great general-
ity. In this respect we simply require that the arrival and service processes satisfy
a functional law of large numbers (FLLN) and a functional central limit theorem
(FCLT), relying on the same diffusion limit result of [15]. In this general case, we
assume that the UI conditions hold without attempting to prove so. Our second
aim is to establish the UI conditions for the GI/G/s queue in the same manner as
the GI/G/1 queue, thus generalizing our main result to the multi-server case.
The general model we consider is a multi-channel, multi-server queue as described
in [15], see also [16]: r arrival channels of customers arrive to a queue with s

servers. When a customer arrives to find one or more free servers, he is served by
a free server under some arbitrary tie breaking rule. When a customer arrives to a
system with all s servers busy, he queues up to wait for the next available server in
a FCFS manner. The service times do not depend on the arrival channel but may
depend on the server used. The r + s arrival and service processes are mutually
independent. Denote the arrival processes Ai(t), i = 1, . . . , r and the service pro-
cesses Si(t), i = 1, . . . , s. Assume the existence of λi > 0, i = 1, . . . , r and µi > 0,
i = 1, . . . , s, such that,

lim
t→∞

EAi(t)
t

= λi, lim
t→∞

ESi(t)
t

= µi, (FLLN).

Consider the queue in the critical regime with λ:

λ =
r∑
i=1

λi =
s∑
i=1

µi.
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Further assume that there exist asymptotic variances κai > 0, i = 1, . . . , r and
κsi > 0, i = 1, . . . , s such that,

Ai(nt)− λint√
κai n

⇒ B(t),
Si(nt)− µint√

κsin
⇒ B(t) (FCLT),

where the weak convergence is as in [15] as n → ∞, and B(·) is a standard Brow-
nian motion, cf. also [32]. In case of renewal processes, κai /λi and κsi/µi are the
squared coefficient of variation of the inter-renewal times. For ease of reference,
we refer to this model as the critically loaded Gr/G/s queue. We now have the
following result.

Theorem 6.1. Consider the critically loaded Gr/G/s queue. Assume that the following
two processes are UI:{( r∑

i=1

Ai(t)− λt
)2

/λt, t ≥ t0

}
and

{
Q(t)/t2, t ≥ t0

}
.

Then:

(35) σ =
(

1− 2
π

)( r∑
i=1

κai +
s∑
i=1

κsi

)
.

Proof Follows the exact same lines as the proof of Theorem 2.1. See also [16] for a
discussion of generalizing renewal processes. 2

The critically loaded GI/G/s queue with arrival rate λ is a special case. Take r = 1
and set all s+1 processes as renewal processes with the s service processes having
the same distributions. In this case denote κa1 = λc2a and κsi = λc2s/s, i = 1, . . . , s.
The asymptotic variance (35) reduces once again to:

σ = λ

(
1− 2

π

)(
c2a + c2s

)
.

For the GI/G/s we are able to establish the required UI conditions for a variety of
cases. Observe first that the first UI condition hold for renewal arrivals as in The-
orem 2.1. Further conditions for the second sequence are given in the following:

Theorem 6.2. Consider the critically loaded GI/G/s queue operating under the first come
first served discipline. Assume Eζ4

A < ∞ and Eζ4
S < ∞. Then,

{
Q(t)/t2, t ≥ t0

}
is UI

in the following cases:

(i) P(B > x) ∼ L(x)x−1/2 where L(·) is a bounded, slowly varying function and B
is the busy period of a GI/G/1 queue with an inter-arrival time distribution which
is an s-fold convolution of ζA.

(ii) The critically loaded Gamma(1/s,λ) /G/s queue. That is,

P (ζA ≤ x) =
∫ x

0

λ1/s

Γ(1/s)
t1/s−1e−λtdt.

(iii) The critically loaded GI/NWU/s queue.
(iv) The critically loaded D/G/s queue with P(ζS > b) = 1 for some b > 0.

Proof We apply the results in [33] for the special case of GI/G/s and the cyclic
service. In the cyclic service discipline, arrival sj + i, j = 0, 1, . . . is assigned to the
ith server, i = 1, 2, . . . , s. The partition of the arrivals in this manner generates a
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collection of s GI/G/1 queues, each with service time ζS and inter-arrival time be-
ing an s-fold convolution of ζA. It is easily seen that when the GI/G/s is critically
loaded all the s individual GI/G/1 queues are also critically loaded.
Let Qi(t), i = 1, . . . , s, denote the queue length of the ith single-server queue at
time t with Qi(0) = 0. Then it follows from [33], Equation (8), that,

Q(t) ≤st

s∑
i=1

Qi(t).

We now have that for case (i)-(iv):

(36) EQ(t)4 ≤ E
( s∑
i=1

Qi(t)
)4

≤ 8s−1E
s∑
i=1

(
Qi(t)

)4 = s8s−1E
(
Q1(t)

)4 = O(t2).

The second inequality follows from s − 1 applications of (3). The O(t2) term is
obtained for cases (i)-(iv) by using the results of Section 4. Note that case (ii) is
based on the M/G/1 result of Corollary 6.1 since a convolution of sGamma(1/s,λ)
random variables is an exponential. Also observe that since Eζ4

A < ∞, the s-fold
convolution retains this property as is needed for (i) and (iii). 2
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