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ABSTRACT

At the access to networks, in contrast to the core, distances and feedback delays, as well as link
capacities are small, which has network engineering implications that are investigated in this
paper. We consider a single point in the access network which multiplexes several bursty users.
The users adapt their sending rates based on feedback from the access multiplexer. Important
parameters are the user’s peak transmission rate p, which is the access line speed, the user’s
guaranteed minimum rate r, and the bound e on the fraction of lost data.

Two feedback schemes are proposed. In both schemes the users are allowed to send at rate p if
the system is relatively lightly loaded, at rate r during periods of congestion, and at a rate between
r and p, in an intermediate region. For both feedback schemes we present an exact analysis, under
the assumption that the users’ file sizes and think times have exponential distributions. We use
our techniques to design the schemes jointly with admission control, i.e., the selection of the
number of admissible users, to maximize throughput for given p, r, and e. Next we consider
the case in which the number of users is large. Under a specific scaling, we derive explicit large
deviations asymptotics for both models. We discuss the extension to general distributions of user
data and think times.

2000 Mathematics Subject Classification: 60K25 (primary).
Keywords and phrases: access network, feedback regulation, fluid models, spectral expansion,
many-sources scaling, large deviations.



1 Introduction

In today’s communication networks, design and control of the network core and access are different,
primarily because of the differences in scale in bandwidth and distance. Quite often the bottleneck
is the access, rather than the core. This may happen because the access network is characterized
by relatively low line speeds and the limited ability of users to buffer and shape traffic (think of the
extreme case of a user with a wireless handset). Access control, supported by the use of feedback,
is an important mechanism to address this problem. Since distances between users/clients and
network access points are relatively short, feedback delay due to propagation is negligible, which
contributes to the efficacy of feedback control. In this paper we investigate the problems of access
control by introducing simple models and techniques for their evaluation, and design and performance
optimization.

We make three main contributions. First, we present two simple models of network access. The
models provide a framework for the joint design of feedback-based schemes for the adaptation of
source rates and admission control. Second, we show how to compute the stationary behavior of
the aforementioned feedback queues. We illustrate the use of these techniques to solve the design
problem. Finally we show how to use the theory of large deviations to obtain explicit results when

the system and the number of sources is large.

In our model each user alternates between ‘on’ periods of transmission, and ‘off’ periods or ‘think
times’. The user model here differs from the familiar on-off source models, e.g. [2], in that file sizes
(where a file size is the amount of data the source transmits during an active period) are independent,
identically distributed (iid) random variables, but the on periods are not specified a priori. The on-
periods are determined by the combination of the file sizes and the transmission rates allocated by
the access control scheme, to be described below, which depend on the interaction of the multiplexer
with the collective behavior of users. In contrast, the think times are iid random variables. The
lengths of on periods and the throughputs of the individual users are key performance quantities to
be obtained from an analysis of the model.

The access line speed (p) is typically small compared to the output rate of the access multiplexer,
and therefore constitutes an important constraint.

Another model feature is the minimum throughput rate (r) that is guaranteed to users. In a number
of applications clients derive zero utility if the throughput is below a threshold. This point has been
made by Massoulié and Roberts [22] for the case of TCP traffic, in which performance collapse may
ensue. As soon as the notion of a minimum guaranteed rate is introduced, admission control needs
to be considered, together with the calculation of the capacity of the network.

We present two schemes for feedback-based adaptation of the users’ rates. In both schemes users
are allowed to transmit at rate p if the system is relatively lightly loaded, at rate r during periods of
congestion, and at a rate between r and p, which is determined by the processor sharing discipline,
in an intermediate region. In our model the feedback signal from the buffer to the sources is assumed
to arrive with negligible delay, which is reasonable when the round trip distances are small. In the

first scheme the feedback is based on the number of active users and whether the queue is empty



or not. The second scheme utilizes a threshold B; on the buffer content. Depending on whether
the buffer content is less than, equal to, or greater than By, the user rate is p, determined by the
processor sharing discipline, or r, respectively. Importantly, the second scheme does not require
knowledge of the (activity) state of the users, and is simpler to implement on that count. However,
the analysis of the first queue is simpler and our results for it are in closed form. As discussed below,
the combined use of the threshold and the number of admissible users in the second model provides
a greater facility for regulating important trade-offs.

We note a feature of the behavior of the models, which is counter-intuitive. Our analysis shows that
the effect of feedback is to increase the mean time that the buffer is empty, while simultaneously
increasing the throughputs of the users. The explanation of this apparently paradoxical behavior is
that the rates allocated to the users are higher during the periods that the buffer is empty. Hence
feedback has the effect of reducing the on periods and consequently the cycle time of each user, and
thereby it increases individual users’ throughput and the system throughput, which is defined as the
sum of the individual users’ throughputs.

Next consider the role of the feedback parameter Bj, the threshold level in the buffer content. By
reasoning as above, we infer that increasing B; has the effect of increasing the throughput of the
users. However, this is at the cost of increasing the probability of buffer overflow. Similarly, with all
other parameters held fixed, increasing the number of users N has the effect of increasing both the
total system throughput as well as the probability of buffer overflow. Hence, this model allows the
study of interesting trade-offs between several important quantities, including the individual users’
throughput, the system throughput, the loss probability and the number of users. By proper design
the parameters B; and N can regulate the trade-off.

There are several possible frameworks in which the trade-offs may be studied and quantified. For
instance, we may require that the fraction of source data that is lost does not exceed a given QoS
parameter €. In a first interesting design problem N and € are given, and we find the value of
threshold B; that maximizes the throughput. In another design problem we may seek a joint design
of the feedback control scheme and admission control, i.e., selection of B; and N such that the
system throughput is maximized. The numerical procedure that is developed in this paper allows
such design questions to be addressed. Indeed one of the highlights of the numerical results that we

present later in the paper is the computed solution for an instance of the above design problem.

The two proposed feedback schemes both fall into the category of feedback fluid queues, which were
introduced in [28] as generalizations of the well-known Markov-modulated fluid models in e.g. [2],
[17]. In the latter, a fluid buffer receives or depletes fluid at rate r; (positive or negative) at times
when a background continuous-time Markov chain is in state 7. Typically, stochastic fluid models are
characterized by the generator (@) of the background process and a diagonal rate matrix (R) which
contains all fluid rates r;. In feedback fluid queues most of the above remains true, except that the
behavior of the background process (i.e. the matrix @), and possibly the matrix R as well, depends
on the current buffer content. As a result the background process is no longer an autonomous Markov
process. In this paper we confine ourselves to feedback fluid queues in which ) and R are piecewise

constant functions of the buffer content level, see also [29]. Notice the crucial difference with [11],



in which there are also thresholds, like here, but these only affect R, and not also ). The analysis
of the feedback fluid queues, based on spectral expansions [2], [10], [11], [17], is one of the main

contributions of this paper.

An intrinsic drawback of the analytical approach described so far is that it is computationally inten-
sive. This provides motivation for simpler, asymptotic approaches to deal with the access models. In
both access models, we study the large-deviations asymptotics for the regime in which the number of
users grows large and resources (buffer and bandwidth) scale proportionally, the scaling introduced
by Weiss [33]. We derive ‘exponential approximations’, comparable to those in [3], [4], [9] for the
ordinary FIFO discipline. Exponential approximations of the first feedback model, i.e., without the
threshold, were obtained earlier by Ramanan and Weiss [25] for the special case of exponential file
sizes and think times. Our major contribution is that these results are explicit and the computations
are simple. Some of them have nice insensitivity properties, i.e., depend on the distributions of the

think times and file sizes only through their means.

The role of feedback in packet networks has a long history, see [30, Ch. 7] for a review. Recently
there has been a resurgence of interest, driven in part by work on explicit congestion notification
(ECN) marking schemes by Gibbens and Kelly [12], [13], [16], and others. In [24] a feedback model
with feedback delays is considered based on the marking scheme of [10]. However, the feedback
considered there regulates the marking of packets to be dropped later on, whereas in our model the
feedback regulates the actual source rate. The processor sharing discipline has been highlighted in
recent work on QoS delivery by Roberts et al. [26], [27], albeit in the bufferless framework.

The organization of the paper is as follows. Section 2 deals with the first access model. Section 3 con-
siders the more advanced feedback scheme that utilizes a threshold. The large deviations asymptotics

are described in Section 5. Finally Section 6 reports on several numerical examples.

2 Feedback model without threshold

2.1 Model

We model a single aggregation or multiplexing point in the network. The output trunk speed is C,
and there are N access links. The peak (or line) rate of each access link is p. The minimum rate
given to each access user is r. We make the simplifying modeling assumption that traffic can be
considered to be continuous fluid. For the benefit of the reader, we note that in fluid models there
may be considerable transfer of fluid, i.e., high throughput, even during periods when the buffer is
empty. This is because in fluid models, once the buffer is empty, it remains empty for as long as the
total input rate does not exceed the output capacity. Also, in this section we follow a conventional
approach in inferring finite-buffer performance from an infinite-buffer model with a threshold at the
finite buffer size.

In this section we describe the scheme without threshold. When the multiplexer buffer is empty,
the access rate will be determined by dividing equally the trunk rate between the (small) number

of active users, truncated to p. At the other extreme, when the number of active users exceeds a



critical number, N in this work, then the fair share of the trunk rate for an active user drops below
the guaranteed rate of r, and the buffer is no longer empty and its content grows. As long as the
buffer content is positive, each source is assigned the rate of just r. Clearly, N” is the largest integer
not exceeding C/r.

While the buffer is empty and the number of active users is small, say below a critical number N’,
then each active user transmits at peak access rate p. It is easily seen that N’ is the largest integer
not exceeding C'/p. When the number of active users is between N’ and N”, which is the middle
range, and the buffer is empty, then the trunk speed is shared equally, i.e., the processor sharing
regime holds. Hence, when the buffer is empty there are two regimes characterized respectively by
the access line speed and the processor sharing rate. In contrast, when the buffer is not empty, there
is a unique transmission rate, namely r, the guaranteed minimum.

Table 1 summarizes the feedback protocol. Let Y (#) denote the number of active sources at time
t, and W(t) the buffer content at time ¢. In the table the allocated rate, as well as the sign of the
‘drift’ of the buffer content are given, as functions of Y (¢) and W (¢).

Number of Wi(t)=0 W(t) >0
active sources

0<Y@#) <N |p ©)[r (=)
N <Y@#) <N"|C/Y(#) (0)|r (—)
N"<Y(t) <N | NA r o (+)

Table 1: Allowed user transmission rates (and sign of the buffer drift), as functions of number of

active sources and buffer content.

An important aspect of our model is the behavior of the homogeneous sources. Each source alternates
between activity (‘on’) and inactivity (‘off’). The inactivity periods are independent, exponentially
distributed random variables with mean A~'. Each source transmits a file during its activity period,
whose size (in bits) is independent of everything else and exponentially distributed with mean =
The length of the induced activity period is not given a priori, since this depends on the rate(s) at
which the file is transmitted. A QoS parameter is €, which the buffer overflow probability is required
not to exceed.

Since the long run fraction of time a source is on, given that the buffer level is large, is A/(A + pr)
(note that (ur) ! is the maximum time to transmit a file of size 4~ !), the stability condition of this
model is given by

AT

N
A+ pr

<C. (1)

As the buffer is finite, there is a need to prevent N from being too large. One of the objectives of
the analysis is to calculate the capacity of our system, which is the largest value of N such that the
overflow probability of the queue does not exceed €. In particular, the number N, (€) of connections
admissible as a function of € and the guaranteed rate r, is an important design parameter. We return

to the calculation of this quantity in Section 6.3.



2.2 Preliminary results

To analyze the model described in Section 2.1, we first review some results from the model without
feedback. Anick, Mitra, and Sondhi [2] consider the model in which the sources transmit at a constant
rate, say p, while in the on-state, i.e., the allowable transmission rate does not depend on current

occupancy of the system. Detailed results on this model are available [2, 10, 17].

Buffer content distribution. In [2] the stationary buffer content distribution is given. It is computed
as follows. Define X (¢) as the number of sources that are transmitting at time ¢. Clearly X(-)
constitutes a continuous-time Markov chain on the state space {0,... ,N}. The (i,7)th element

(i # j) of its generator @ is given by

(N—i)\ ifj=i+1,
Qi,7) =4 ipp if j =i—1,
0 otherwise.

The diagonal elements (i = j) are such that the rowsums are zero. Element (i,7) represents the
probability flux of the continuous-time Markov chain from state i to state j. Define by R the
diagonal matrix diag{ro,... ,ry} with r; the net input rate if there are i sources in the on state, i.e.,
r; =1p — C.

To find the stationary buffer content distribution IP(V < xz), we first define

Fi(z) :=P(X =i,V < x).

It is not hard to show that the vector F(-) := (Fy(-),... ,Fn(-)) satisfies F'(z)R = F(z)Q. The

spectral expansion of the solution is given by
N
F(z) = Z a;v;exp [zx], (2)
§=0

where the a; are coefficients determined later, and (z;,v;) is an eigenvalue-eigenvector pair, i.e.,
obtained from z;v;R = v;Q.

The coefficients a; are calculated as follows. Define D, the set of states with downward drifts, by
all states ¢ such that ir < C, and U, the set of states with upward drifts, by all other states. Let
Qpp,Qpv,Qup, Quy be the submatrices that are obtained by partitioning Q). The vector Fp(x)
consists of the Fj(x) with i € D; Fy(z) is defined analogously. It is easily seen that a; = 0 if Re(z;) >
0, as the distribution should range between 0 and 1. The remaining a; follow from F;(0) = 0. It

turns out that there are just as many unknowns as equations. Clearly, P(V < z) = )", Fi(z).

Idle and busy periods. Elwalid and Mitra [10] give explicit expressions for a number of quantities
that are related to the busy and idle periods of the queue. A busy period is defined as a period in
which the buffer content is positive, whereas an idle period is a period in which the buffer is empty.
It is easily seen that at the beginning of a busy period the number of sources in the on-state is equal
to N” + 1; at the end of the busy period the number of sources in the on state is in D. The lengths

of consecutive busy and idle periods are independent.



Denote by P the distribution at the end of the busy period. Then it is not hard to prove that

1
P = Fp00np 1) PO@0D; ®

see Equation 5.9 of [10]; (-, -) denotes the inner product of two vectors. The mean idle period IEI

is given by

> ien Fi(0)
(Fp(0)Qpn,1)

Finally, the mean busy period IEB can be calculated using >, F;(0) = IEI/(IE 4 IEB):

1 =3 cp Fi(0)
>iep Fi(0)

EI = —

EB=IEI -

2.3 Analysis

The model analyzed in this section has been described in Section 2.1. Recall that Y'(¢) € {0,... ,N}
denotes the number of sources that are transmitting at time ¢ in the feedback model of Section 2.1.
Notice that this does not constitute a Markov chain, unlike X (#) in Section 2.2. This is because
the sojourn times and transition probabilities depend on the amount of fluid stored in the buffer.
However, as long as the buffer is empty, Y (¢) behaves as a continuous-time Markov chain.

Denote the stationary buffer content distribution in the feedback model by IP(W < x). A busy period
in this model is distributed as the random variable B’, and an idle period as I'. The sequence of
busy periods is i.i.d., and so is the sequence of idle periods, as can be seen easily. The distribution
of Y(t) at the end of the busy period is denoted by (the vector) P’. The next lemma links B’ and

P’ to the corresponding quantities in the model without feedback.

Lemma 2.1 Busy periods B and B’ have the same distribution. Also, the distributions P and P’

are identical.

Proof.  Both in the models with (Section 2.1) and without (Section 2.2) feedback, during busy
periods on-periods terminate at a rate iry when there are 4 sources in their on-state. In both
models the busy period starts when there are N” + 1 = [C/r] sources transmitting. Hence, the
buffer dynamics in both models have the same probabilistic properties during a busy period. This

immediately implies both assertions. o

Corollary 2.2 With the same argument as in the proof of the previous lemma, we find

P(W < z|W >0)=P(V < z|V >0), z>0.

This immediately implies that P(W < z) equals

PV < z|V > 0)P(W > 0) + P(W =0) =



1- 5, Fi(0) IP(W > 0) + P(W = 0).

As P(W =0) =1 —TP(W > 0), the only quantity that is left to compute is the probability of an
empty buffer in our feedback model. This is given by

El El

" EI'+EB EI'+EB’

P(W = 0)

applying Lemma, 2.1. As we know IEB from Section 2.2, we only have to find IEI’. This will be done
in the next lemma, but first we introduce some required notation.

Q'pp is a square matrix of dimension N” + 1. For i # j:

(N—i)X ifj=i+1,
Qpp(ij) = ipp ifj=i—-1,
0 otherwise,

if 1 < N', and

(N —i)A ifj=d+1,
Qpp(ij) =14 Cu ifj=i-1

0 otherwise,

if i is between N’ + 1 and N”. The diagonal elements are such that the rowsums are zero, except for
'op(N",N'"), which equals —Cp — (N — N")A. Notice that, as long as the buffer is empty, Y (¢) is

a Markov chain which obeys the transition rates of Q' .

Lemma 2.3 With P is defined in (3), the mean idle time in the feedback-based model is given by

El' = (-P(Qpp) ", 1). (5)

Proof. This follows directly from standard results of mean passage times [15]. It says that the mean
time spent by Y (¢) in j before the set D is left, given that the process starts in 7, is given by the
(i,7) entry of —(Qpp) ™"

Then the reasoning is analogous to Equations (5.11) and (5.14) of [10], as follows. The vector
—P(Q" )" gives the mean time spent in all states in D during an idle period of the buffer, applying

Lemma 2.1. The sum of its entries is the mean length of the idle period. O

We arrive at the following explicit result for the buffer content distribution in the feedback-based
model. This proportionality result is similar to the results in Adan et al. [1], where another feedback

fluid queue is analyzed that differs only in the behavior when the buffer is empty.

Theorem 2.4 In the feedback-based model, the stationary buffer content distribution P(W < x) is
given by
> Fi(z) -3 Fi(0)  EB 4 EI'
1->, F;(0 EI'+IEB EI' +IEB’




where the vector F(z) is given by (2), EB by (4), and IEI' by (5). Equivalently,

ElI+EB
P =P S
(W > x) (V>x)]EI’+]EB
An important interpretation of the above theorem is the following: the gain with respect to the
model without feedback (where the sources always send at rate » when active) is expressed by the
term
EI+EB
— < 1. 6
EI'+EB — (6)

The fact that this ratio is less than 1 is due to the fact that IEI’ > IEI, which can be understood
as follows. Clearly, I’ can be interpreted as a first entrance time in the birth-death process with
generator (), ), namely as the first entrance time to state N” + 1, starting from a state 7 < N” that
is drawn from the distribution P’. Similarly I is the corresponding entrance time in the birth-death
process with generator @, due to the fact that P = P’. Since the death rates in Q',,, are larger than
those in @, while the birth rates are equal, it follows that IEI" > IE[.

In many situations, particularly when the number of sources is large, IEB will be much smaller than
IET and IEI'. In that case (6) is well approximated by IEI - (IEI')~!. That is, the ratio of mean idle
times of the buffer in the models without and with feedback effectively quantifies the performance

gain from feedback.

3 Feedback model with threshold

3.1 Model

In this section we consider a generalization of the feedback model presented in Section 2.1. As before,
Y (¢) is the number of active users at time ¢ (with state space {0,...,N}) and W (t) is the buffer
content at time t. We now introduce a threshold level B; > 0 such that the sources are allowed to
send at peak rate p as long as W(t) < By;. When W (t) = By the processor sharing policy applies.
For W (t) > B; the sources are allowed to transmit data only at the guaranteed rate r. The algorithm
is summarized in Table 2. Notice that the model described in Section 2.1 is a limiting case of this
model, as it is obtained by letting B; | 0. When the buffer content equals By, it will ‘stick’ at that
level for as long as the number of active users lies in the set N/ +1,... ,N”. We will describe the
exact solution of the stationary buffer content distribution (analogously to Section 2.3).

Notice that the stability condition for this model is the same as (1). Define the matrix Q) to be
@ (as defined in Section 2.2); generator QW) is also defined as @, but with rate r replaced by rate
p. Finally, Q) is similarly defined, but now Q(i,i — 1) = Cju. The idea is that Y (¢) behaves like a
Markov chain with generator Q®, Q®*), Q("), whenever the buffer content process W (t) is respectively
below, at, or above level B;. Furthermore R is defined as a diagonal matrix of dimension N + 1,
its ith diagonal element being given by ir — C. R®) is similarly defined, except that its sth diagonal
element is given by i¢p — C. The entries in these matrices are the net fluid rates into the buffer for
the guaranteed rate (W (t) > By) and peak rate (W (t) < Bp) regimes respectively.



Number of Wi(t)< By | W(t) = By W(t) > By

active sources

0<YH) SN |p (-) NA r (=)
N <Y@#)<N"|p (+) C/Y(t) (0)|r (=)
N'<Y(t)<N |p (+) NA r (+)

Table 2: Allowed user transmission rates (and sign of the buffer drift), as functions of number of

active sources and buffer content.

3.2 Analysis

Our purpose is to find the joint distribution G;(z) defined as G;(z) = limi_,oc P(Y (t) = i, W (t) < ).

To do this we determine the Kolmogorov forward equations for
GV (t,x) = PY(t)=i,W(t) <), 0<az< By
G(t,x) = P(Y(t)=i,W(t) <z), z> B.

For z < By, Gl(p) (t + h,x) equals
(L= h(all, +af) G (ko — b))

+h qz@m Gz@1 (t,z) + hqz@l,z‘ GE?I(t,x) +o(h),

cf. [2]. By taking A | 0 we find, in matrix form,
0 0
“a i 162 (» — g (p)
8tG (t,z) + 8xG (t,z)R G (t,z)Q",
where G (t, ) is a N-dimensional row vector.
However, for x > B; the Kolmogorov equations take a less simple form. With Gl(p ) (t,B1—) :=
limg4p, el (t,z), we find that GZ(-T)(t + h, z) equals

Gtz — hrl")

~h (gl + a0 (67 (e — ) - G0, By))

~h (gl + i) (67 B) - 6P By -))

~h(Ly + ) G (8B -)

+hgy s (G0 (o) = GO (1, B) + e, (G (10) = G (1, BY))

+hal; (G B) - G (1B ) + by (GEL B - 6B (1,B1-))

71—

+ha . GP (1, Bi-) + thﬁ)l,z- G\ (t, Bi=) + o(h).

i1,
After letting h — 0, this leads to
260(a) + GO RO =
(G(T) (ta ZE) - G(r) (ta Bl)) Q(r) +

(GU(t,B1) — GV (¢, B;-)) QW) + G (¢, B, —) QW).

10



Assuming stationarity, we now set G (t,z) = GET) (z) and Gz(p)(t,x) = Gz(p)(x) fori =0,...,N,

i
and take all derivatives with respect to ¢ equal to 0. In matrix form,

d

a(;,(zﬂ) (z)R® = GP)(z) Q™), and (7)
d
—GO(@) RO = (@) - GO(B1) QY + (GO(B1) - &GP (Bi-) QY + G(B-) Q)
(8)
Solving (7) is immediate and leads to
N
GP(z) = Zagp)vgp) exp [z](-p)x] , (9)
j=0
where (z](-p ), vg-p )) is an eigenvalue-eigenvector pair of z](-p )vg-p IR = vg-p )Q(”), and the ag-p ) are coeffi-

cients. The solution of (8) can be found as follows. To deal with the inhomogeneous terms we first
differentiate with respect to z, so that we find homogeneous equations for g (z) = (G (). We
write down the solution for the resulting system of equations using the spectral method.

In the case that all eigenvalues are different, we find the solution to the differentiated system to be
of the form

where (z](-r),vg-r)) is an eigenvalue-eigenvector pair of z](-r)v§-r)R(’") = vgr)Q(’"), and the &gr) are coeffi-
(r)

cients. As Q") is a generator, it has an eigenvalue 0, and hence one of the eigenvalues z; 18 zero,

say z](r) = 0, cf. [23]. With this in mind integration immediately yields that G (z) equals

(r) (1) (r) (r) (1)

Z a; vy’ exp [zj x} —i—aj* Vi, T+ w,
J#Js

where ag-r) = &;-r) / z](-r) for 7 # ju, ag-:) = dg-:), and the components w; of w are integration constants.

Now the vectors alP), a*) and w can be found by considering the following boundary conditions:

(i) G(-p)(()) =0 for alls > N’ +1 (i.e., the buffer cannot be empty when it fills), leading to N — N’

1
equations.

(i) Similarly, G")(B,—) = G\"(By) for all i € {N” +1,... ,N'}. This gives N + N' — N" + 1

i
equations.
(r)
J
should remain bounded for z — oo. There are N” + 1 such eigenvalues [23]. Notice that this

(iii) For all zj(-r) with a non-negative real part, the corresponding a:’ is zero, since the GZ(-T)((L‘)

also entails that the equilibrium distribution of Y (¢) is given by w.
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(iv) By letting z — oo in (8), setting the left hand side equal to zero, we find the N + 1 global
balance equations for w = lim, G(’")(x). What we do here in fact, is to substitute the
integrated solution (3.2) back into the inhomogeneous (undifferentiated) equations (8) to find
the integration constants. ;From the global balance equations we can derive the IV local balance
equations for i € {1,...,N},

(N—i+nx%4:wu@ﬁ—@”wg)+CNQ$NBQ—G@uh4)+mm#%BPy

(v) Finally we normalize: Zf\;o w; = 1.

Noticing that there are just as many boundary conditions as coefficients (namely 3N +3), we conclude
that the system is solvable. We have proved:

Theorem 3.1 The above procedure gives the exact solution to the buffer content distribution.

The above solution enables the computation of several key quantities. Denoting the throughput per

user by 7, it is straightforward to obtain that N7 equals

N N N
S G (B1-)+ Y G (B) -G (Bi-) + Y ir(wi — G (By)).
i=0 i=N'+1 i=0

The mean file transfer delay IET is found from

1/p
T = BT+ 1) (10)

4 General feedback fluid model with multiple thresholds

4.1 Model

In this section we consider a general framework for feedback fluid queues involving multiple thresh-
olds, while the buffer may be finite or infinite. We let W (¢) denote the fluid level in the buffer at time
t and Y (¢) be the state of the regulating process at time ¢. The size of the fluid reservoir is denoted
by B, which may be finite or infinite. Furthermore we identify thresholds B®) k = 0,... , K, such
that

0=B0 « B «... « BE-D o BK) _ B < .

At times t when B®—1) <« W(t) < B® k =1,... , K, we say the system is in regime k, while we say
it is at threshold k at time ¢ when W () = B®) k =0,... , K. In the remainder any superscript (¥
will refer to regime and/or threshold k.

We assume that the state space of the process Y (¢) is finite, and we denote it by S = {1,... ,N}.
The dynamics of the system are given as follows: When the system is in regime & (at threshold k),

the process Y (£) behaves like an irreducible Markov process with generator Q) (Q*)). Furthermore,

12



(k)

the net rate of change of the process W (t) is given by r;”’ at times when the system is in regime %

and Y (t) = i. For each regime k, these rates are collected in a diagonal matrix R(*) with elements
k)
(R®);; = ",

In order to state some assumptions on the rates rgk), we define for all regimes the subsets of S

consisting of up-states respectively down-states, as

s® = fiesp® > o} (11)
s® = fespr® <ol (12)

;From now on we will assume the following to hold:

(1) S_(f) uS™) =8 for all k, i.e. each fluid rate is nonzero. This assumption is made for the sake

of brevity.

(2) Sﬁ““) Nns® = & for all k, i.e. there is no state ¢ € S for which rgk) < 0 and rgk—H) > () for
some k. Not only does this assumption seem natural to make from an applications point of

view, it also excludes certain ambiguity problems that are discussed shortly.

(3) S(_kH) N S(_k) # @ for all k, i.e. each threshold can be crossed downwards in at least one state
i€ 8.

(4) Ssrkﬂ) N Ssrk) # & for all k, i.e. each threshold can be crossed upwards in at least one state
i€S.

(5) In the case when B = oo, we assume the following stability condition,

N
S a0 <o, (13)
i=1

where WZ(K) is the stationary distribution of a Markov process with generator Q). Hence this

assumption entails that the expected rate of change of the buffer content process, conditional

(K-1)

on the process being above level B , 1S negative.

Notice that, when Y (¢) € S*FD A S(f) (when this set is nonempty), there is a confluence of drifts
in B%), so that the content process may stay at B®*) for a while, until Y (t) jumps to a state
jé¢ S(,k—H) N Sﬂ“). This clarifies the ambiguity problem that is solved by the second assumption, since
this assumption ensures that it is clearly determined what happens to the buffer content immediately
after Y (¢) jumps from j € SEH A Sﬁ“) to i ¢ S A S(f).

Under the assumptions above it can be shown that the joint process (Y (¢), W (¢)) is regenerative with
finite expected cycle length. Hence it converges in distribution to a pair of random variables (Y, W).

Its distribution will be denoted by

Gi(x) =TP(Y =, W < ), i=1,...,N, 0<z<B.
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4.2 Analysis

Our goal is to find explicit expressions for the distribution G;(x). We start off by defining for
k=1,...,K, the following functions,

G¥(z) = lim P(Y(t) =4, W(t) <z), B¥ D <z <B® jes. (14)

? t—o00

When we derive the Kolmogorov forward equations for the system, similarly as in Section 3, and then

(k)

assume stationarity, we find that the functions G;"’ () satisfy a system of KN differential equations,

that can be represented, in matrix form, as

dG®)
T(x) R® = g5 o
+ GE(BE-D) Q-1 _ k)
+ G(k—l)(B(k—l)_) (Q(k—l) _ Q(k—l))

+ GW(BL_y (M — QM)
+ M) (0O — Q) k=1,...,K, (15)

where G#) (B ) = lim, gk G¥) (). Unlike in the Markov modulated setting, these equations
are inhomogeneous (apart from the one for £ = 1 if Q® = QM) as was the case in Section 3). Once
we solve the K matrix differential equations (15) using some appropriate boundary conditions, we
are done in the infinite buffer case. The probabilities G;(x) that we are looking for are then given
by the components of G(z) = G¥)(z), where k is such that B*~1) < g < B,

In the finite buffer case the same is true for z < B. However we now also have to find p; = G;(B),7 =
1,..., N, the stationary probability that the regulating process is in state ¢. Due to the presence
of feedback these probabilities cannot be found beforehand as in the traditional Markov modulated
fluid models. However, we can write down the (global) balance equations for them in terms of the
(k)

functions G, via the forward Kolmogorov equations for the process Y (t). We find in matrix form

p Q)

cM(B-) (QF) - Q)
GF(BE=Dy (QF-1) — oK)
GE-D(BE-D_y (QUK-1 — Q(K-1))

0

+ + o+

+ GcOBW-y (M — )
+ GW(0) (QV — M), (16)

4.3 Solution for the finite buffer

Our next step is to solve the matrix differential equations (15) for £ = 1,... , K, in the case that

B < oo0. To deal with the inhomogeneous terms we first differentiate with respect to z, so that we

14



find homogeneous equations for

AG®) (z)

(k)
g () o

We write down the solution for the resulting system of equations using the spectral method. Therefore

we consider the eigensystems
viD QW = Iy gE =1 N, k=1,... K, (17)

(%)

where 2>’ and v( ) ,j=1,...,N are the j-th eigenvalue and left-eigenvector corresponding to the
matrix Q%) (R (k)) . Since for each k the matrix Q), has an eigenvalue 0, it follows that the kth
system has an eigenvalue 0, which we denote as z((k)) =0.

In the case that all eigenvalues are different, we ﬁ]nd the solution to the differentiated system to be

of the form

Mz

k (k) (k)
2 exp [ } Vi

so that integration immediately yields

Z a exp [ ] ;-k) + a(ll(c,z)v(,lf,z)x + w(k), (18)
]¢](k) = Jx

with

PAS
o =829 and o) =

_ (k)
O i = 4

k), (k)

In total there are 2K N + N unknowns in this expression, namely a ;W
and k=1,... K.

We now turn to the boundary conditions that we have at our disposal. In order to count them as

,and p; fori,j=1,... ,N

we go along, we will denote the cardinalities of Sf) and S(_k) by Ng_k) and Ngk), respectively.

(i) G(I)(O) =0forallie 55_1). This gives Ng_l) equations.

(i) G! ( ) = G*(B®) for all i € SFT USH and k = 1,...,K — 1. This gives
k 1 (N(k) +N_(|_k+1)) equations.

(iii) GZ(-K) (B—) =p; for all i € S(_K), giving N equations.

(iv) The balance equations in (16) yield N — 1 linearly independent equations.

(v) One other equation is given by normalization, ZZJ\; (pi =1
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(vi) Last but not least, substitution of (18) into the original, inhomogeneous differential equations

(15) yields KN relations that have to be satisfied. In matrixform these are given as

B RO = W g
+ GE(BE-D) Q-1 — k)
+ GED(BE=D_) (@tk=1 — Qlk-1)

+ GW(BLy (M — QW)
+ GW) (Q© — My k=1,...,K. (19)

As an aside we mention that when Q(® = QU it follows that a(H) = 0 and that w) is a

j*
multiple of v(_g), as should be expected.
Js

Notice that conditions (i) and (ii) can be explained similarly as in Section 3, while condition (iii)
states that the buffer is full with probability 0 when it is being drained.
Using Assumption (2) we now find the total number of boundary conditions to be 2K N + N. ;From

these equations all 2K N + N unknowns can be determined.

Theorem 4.1 (Finite buffer size B)

If the eigenvalues z](-k),j =1,...,N of the matrices Q) (R(k))*l,k = 1,...,K are simple, the
stationary distribution of the process (Y (t), W (t)) is given by (18) where the 2K N + N unknowns
agk),wgk), and p;, 1,7 =1,... ,N, k=1,... ,K, can be found by the 2K N + N boundary conditions
in (i)-(vi).

When not all eigenvalues are simple, the form of the solution is different, but the number of param-

eters that have to be solved by boundary conditions remains the same.

4.4  Solution for the infinite buffer

In the case B = B) = 0o we again find

G(k)(m) = Z ag-k) exp [z](k)x] vgk) + ai’f,z)vélf,z)x + w(k), (20)
i#i® o

(k) (k)

As before, j. is the index for which 2"}, = 0 holds. It is convenient to note that we have some
Jx
extra a priori knowledge about the eigenvalues corresponding to the top regime £ = K: ordering

them according to their real values we have

Re (2")) <+ <Re <z(K) ) <0=2") <Re <Z(K) ) <. <Re ("), (21)

(K) (K) (K)
Ny Ny T+ Ny 42

which is a consequence of the negative drift in this regime, due to (13); see also [23]. In particular

we find that j,EK) = NiK) + 1, and that exactly Ng_K) eigenvalues have strictly negative real part.
The unknown parameters in solution (20) are ag-k), wl(k) and p;, where: =1,... ,N,7=1,...,N,

and £k =1,...,K. Next we determine the boundary conditions, in the same order as before.

16



(i) and (ii) are the same as for the finite buffer case, leading to N Z ( + N(k+1)) =
KN - NS ) equations.

(iii) Due to our stability assumption, see (13), we must have lim,_,,, G5)(z) = p. Hence it follows
that w(&) = p and ag.K) = 0 for all j for which Re(z](-K)) > 0. Using (21), we find that these

conditions add up to N + NSK) equations.

(iv) The balance equations, that now take the form

p Q(K)
GFE(BE-D) QK- — oK)
G(Kfl)(B(Kfl)_) (Q(K 1) Q (K— 1))

0

+ o+

+ GOBWy (M — QW)
+ GU(0) (@Y - W), (22)

again yield N — 1 linearly independent equations.
(v) One other equation is given by normalization, ZZJ\; (1 pi =1

(vi) Finally, substitution of (20) into the original, inhomogeneous differential equation (15) for
k=1,...,K—1, we find the corresponding KN — N equations from (19). However, for k = K
we do not find any extra relations, since for this case (19) simplifies to (22), with p replaced

(K) K)

by w(K). This is of course consistent with (22) itself and the relation w(X) = p under (iii),

and therefore does not add any information.

Again, the number of boundary conditions adds up to 2K N + N, as it should.
To find the following theorem, we note that the conditions in (iii) can be applied beforehand to find

the actual form of the solution in region K,

N
Z a; exp [ K)x} v§-K) +p. (23)

This means that we have N + NEK) unknowns less than in the finite buffer case.

Theorem 4.2 (Infinite buffer size)

k ),] = 1,...,N of the matrices Q) (R®=1k = 1,... | K are simple, the
stationary dzstmbutwn of the process (Y (t), W (t)) is given by (20) for k=1,... ,K —1 and by (23)
for regime K, which holds above the last (finite) threshold BE=1)_ The 2KN — NEK) unknowns in
this solution can be found by the equal number of boundary conditions in (i), (ii) and (iv)—(vi).

If the eigenvalues z;

Again, when not all eigenvalues are simple, the general form of the solution is different, but the

number of parameters that have to be solved by boundary conditions, remains the same.
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5 Many sources

The intrinsic drawback of the technique of the previous sections is its computational complexity.
When the size of the system (i.e., the number of sources) grows, a large eigensystem needs to be
solved. This explains the interest in simpler asymptotic approaches. In this section we will focus on
the so-called ‘many-sources scaling’, which was introduced by Weiss [33]. In this regime, we derive
explicit results on the overflow probability.

In the many-sources scaling, buffer and bandwidth resources are scaled by the number of users N.
In other words, if we scale C' = Ne¢, the exponential decay rate of IP(W > Nz) can be determined
explicitly in terms of x and model parameters r, p, A\, 4, and c¢. Because W is now implicitly
parametrized by N, we write Wy. The random variable Vi is defined as the buffer content in the

corresponding model without feedback (as in Section 2.2).

5.1 Feedback model without threshold
Asymptotics

A more detailed version of the following analysis can be found in Ramanan and Weiss [25].

First we estimate the average behavior of the number of active sources in the asymptotic limit (large
N). It is not hard to show that there are two regimes.

(A) In the first regime,

A
P <c
A+ pp

In this case, in the asymptotic limit, on average the sources are allowed to transmit at peak rate;

the buffer will be empty nearly always. The number of active sources on average will be Nm, with

A
m = .
A+ up

(B) In the second regime,

Ap
>c> .
A+ up A+ pr

In this case, the network will in general be in the processor sharing regime. The average number of

active users simultaneously in the system is Nm with

m;:1—§. (24)

The sources are allowed to transmit at a rate m’ between r and p, where

, cA
= . 25
(O (25)
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Lemma 5.1 The decay rate of the probability of a non-empty buffer is given by

1
lim - logIP (Wi > 0) = 1(0),

N—o00

where 1(0) is given by

() e (25

if m < c/p, and

(-9 () + 3 - 0-5)

if ¢/p<m <c/r.

Proof. Directly from Theorem 11.15 of [31], the decay rate of the probability of a non-empty buffer

equals

c/r
Kz
/m log (7“1 — x)) dx.

Here pi, is the (downward) probability flux per source, when the number of sources in the on state

is Nx. In other words,

Db if xp < ¢,
N'CE = —1 .
cp-x otherwise.
Direct calculation yields the stated expression. O

Define by A(t) the amount of fluid generated in the interval [0,¢) by one source with off-periods
Exp()), on-periods of length Exp(ru), and constant generation rate r. Let Iy (IE;, respectively)

denote expectation given that the source start in the off (on) state at time 0.

Proposition 5.2 The decay rate for positive delay values is given by

1
lim —loglP (Wy > Nz) =: I(z) = J(z) + 1(0),
N—oo N

with
o _ ¢ 0A() _ (1 _ € 0A(t)
J(x): %gg sgp (0(33 + ct) " logEe (1 7') log IEge ) . (26)

Proof. Evidently, IP (Wy > Nz) equals
P(Wy > Nz|Wx >0)IP (Wy >0).
As shown in Section 2.3,

P(Wx > Nz|Wyx >0) =P (Vy > Nz|Vy > 0).
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Immediately from Theorem 1 of Duffield [8], we have
. 1
lim —loglP (Vy > Nz|Vx > 0) = J(x).
N—oo N
Together with Lemma, 5.1 the proof of the proposition is complete. O

The variational problem in (26) cannot be solved analytically; numerical methods have to be applied.

Fortunately, for large = asymptotics are available.

Simple approximations for large buffers

Let 6* solve

—00

1
ltlim n log Ee’4®) = cf.
Define, for z =0, 1,

a; := lim log ;e A0 — co*e.
t—o00

In Duffield [8] it is proven that, for z — oo,
J(z) = 60"z — Eal — (1 — E) ap + o(z).
r r

Following the Chernoff Dominant Eigenvalue method by Elwalid, Heyman, Lakshman, Mitra, and

Weiss [9], we propose an even simpler approximation:

1
lim N logIP (Wy > Nz) ~ 6*x + I(0). (27)

N—o0
The calculation of 8* is extremely simple:

T A

r—c ¢’

and I(0) is given in Lemma 5.1. In [9] it is shown that this approximation is conservative for all x
(in fact it is the best possible linear estimate that is conservative for all ). Notice that the analysis
of [9] requires the sources to be time-reversible, which condition is trivially met for exponentially
distributed file sizes and user think times. In [9] it is concluded that the approximation is usually

not overly conservative.

General think-time and file-size distributions for large buffers
The nature of approximation (27) is, for large z,
P(Vy > Nz) = P(Vy > 0)e "N, (28)

We may follow the same approach in case of general (rather than exponentially distributed) think-
time and file-size distributions. The questions then are: how to compute the counterparts of the
probability of a non-empty buffer IP(Vy > 0) and the exponential decay rate 6*?
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The probability of a non-empty buffer. As long as the buffer is empty, the process behaves like an
infinite-server queue if the number of jobs is below N’, and like a processor sharing queue if the
number of jobs is between N’ and N” 4 1. Let Dy be the number of jobs in the system. It is easily
verified that in the case of exponential think-times and file-sizes, the blocking probability (i.e., the
probability of Dy = N” + 1) is given by

1 <M>N”+1 (rN”_N"HpN') Nl (N -N"-1)! (29)

Norm \\ N! ’

P(Dy=N"+1) = 5

where the normalizing constant Norm is given by

N’ . N"+1

1N gy (N =) p\ o ient vy NN =)
Norm = ;} (X) ) +j%:+1 (X) (T] P ) N
It is tedious but straightforward to verify that the decay rate of (29) is indeed I(0), as was defined
in Lemma 5.1.
Importantly, formula (29) also holds in the case of general think-time and file-size distributions,
with respective means A\~ and p~!. This is due to insensitivity results for networks of generalized

processor sharing queues, as was shown by Cohen [5].

Ezponential decay rate 6*. Let T be the distribution of the think-time and F' the distribution of the
file-size. During busy periods, the buffer is fed by a superposition of N on-off sources with off-times
distributed like T, and on-times distributed like F'//r (with peak rate r). Let A(t) be the amount
of traffic generated by such a source, in steady state, in an interval of length ¢. Then (under mild
technical conditions) the exponential decay rate in this model is the solution of

1 _
lim —log B’ ® = ¢, (30)

t—00

see Glynn and Whitt [14]. Equation (30) does not necessarily have a solution. In case of heavy-tailed

on-times there is no solution — approximation (28) does not apply.

General think-time and file-size distributions for small buffers

Above we concentrated on loss behavior under general think-time (with mean 1/)X) and file-size
distributions (with mean 1/4), and large buffers. For small buffers a result from Mandjes and Kim
[19] is applicable: for z | 0,

| 2
lim —logIP (Wy > Na) = 29 Jz+1(0) + O(z),
r

N—o00

with constant o given by

o= \/(cru + (r —c)A) log (%) =2 (erp — (r—co)A).

Strikingly, o depends on the distributions of the think times and file sizes only through their means,

making this an insensitivity result.
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5.2 Feedback model with threshold

As in Section 5, we scale the resources buffer and bandwidth: C = N¢, and B; = Nb;. Again, this
regime allows explicit results, which we obtain below. Before we give the analysis, we first review a
result from Mandjes [18]; closely related versions were proven by Botvich and Duffield [3, Theorem
3] and Weiss [33]. For reasons of brevity, we choose to state the result informally; formal versions of

this and a closely related statement are found in [20], [21].

Lemma 5.3 Suppose N exponential on off-sources in the system without feedback (with link rate
Nc). The mean on-time is =", the mean off-time is A™', and the source sends at rate r > c while
on. Let w be the steady state on-probability; mr < c. Define py(z,a, B) as the probability that, given
the number of sources in the on-state is Na > C at time 0, the queue reaches at least level Nx, and

at the epoch this level is attained the number of sources in the on-state is NB. Then, for z — oo,

. 1
]\;l—r)noo ﬁ lngN(I, aaﬁ) —RT =

+alog (”—j) +(1 - a)log <y(1%_p”)> + Blog (%) +(1-B)log <%> +o(z),

where

and

_ pc?
p= pe2 + X(r —c)?’

Notice that in Mandjes [18] general Markov fluid sources are treated (instead of 2-dimensional).
There the solution was phrased in terms of solutions of eigensystems. For exponential on-off sources
these eigensystems allow explicit solutions, which are given in Lemma 5.3.

Now we are in a position to do the large deviations analysis. As in Section V, it turns out that there
are two possible regimes: (A) the buffer is empty with an overwhelming probability and the active
sources transmit at rate p almost all the time, and (B) the buffer occupancy is approximately nb;

on average, and the active sources send at a rate between r and p.

(A) ©(P)p < ¢, where 7(®) is the on-probability in the ‘peak rate regime: A\(X + pu)~'. In this case
the ‘average state’ of the system is a (nearly) empty buffer, and the active sources transmit at peak
rate.

In order for the buffer to exceed level Nz, where z exceeds by, four events have to occur in order: (1)
The buffer must become non-empty, i.e., the number of sources in the on-state must exceed Nc¢/p.
(2) Given that the buffer content is at the point of becoming positive, an amount of Nb; of fluid has

to accumulate. At the epoch the buffer content reaches Nbq, let the number of sources transmitting
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be Na. (3) If v is smaller than ¢/r, then the number of sources in the on-state has to grow to Ne¢/r,
in order for the buffer to exceed level Nb;. If « is already at least ¢/r then in this phase nothing
has to happen. Let N/ be the number of sources in the on-state at the end of this phase. (4) An
amount of N(z — by) of fluid has to accumulate in the buffer, where at the beginning of this phase
the number of sources transmitting is Na/. This makes the decay rate be the sum of four decay
rates:

4

1
lim —logIP (W, Nzx) =~ I;. 31
NgnmNog(N> x) ;Z (31)
Notice that this construction (the decay rate of a steady-state probability being formulated as the
solution of a transient problem, namely the decay rate of the path from equilibrium towards the rare
event) is essentially of the Freidlin-Wentzell type. Details on this approach are found in [31, Chapter

6]. A further specification of the four events is:

(1) First the number of sources in the on-state must reach level N¢/p. In this regime, the sources

1

act as on-off sources, with mean on-time (pu)~!, mean off-time A~!, and traffic rate p while

on. Due to Sanov’s theorem [7] this equals

_[c c/p c 1—c¢/p
= (5) e (55) + (1-5) e (=555

(2) Second, the system has to reach buffer Nb;. jFrom Lemma 5.3 the corresponding decay rate
(for Nby large) Ir(a) ~ 2z®b; 4+ Jo(a), with Jo(a) defined as

() 7 (p) 7P (1 — 7(P)
c y\P)m c y\P (1 — n'P))
<5> o ( p(®) ) i (1 - 5) o8 < L —p®) )

talog [—2 )+ (1—a)log [ ——%
108 7 (P)y(p) ( o) log (1_7r(p))g(p) ’

if level Nb; is reached while N« sources are transmitting. Notice that the sources still behave

as on-off sources with mean on-time (pp) !, mean off-time A\~!, and source transmission rate

p while on. In the above the following quantities were used:
7P _
p—c c yP) (p— )\ + cpp cpi

() ._ puc?
Copucd 4+ Ap—c)?

and

p (33)

(3) If @ > ¢/r then the buffer continues to grow immediately after level nb; is reached, in which

case o/ = a and the corresponding decay rate is

I (@) = 0.
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Otherwise, the number of active sources must first increase to ' = ¢/r. In this phase the buffer
content will remain constant, due to the processor sharing discipline. Analogously to Section

5.1, this trajectory corresponds to decay rate

I; () = /ac/r log (ﬁ) da.

Direct calculation gives

Ig_(a):(E—a)log<%>+(1——>log(1——>+——a—(1—a)log(1—a)

r

1

(4) In the fourth phase, the sources are on-off sources with mean on-time (ry) -+, mean off-time

A~1, and source transmission rate r while on; 7(") := AX(X\ 4 ru) 1. Define 2("), 5", 4() and
p\") analogously to (32) and (33).

If @ < ¢/r the number of sources in the on-state at the beginning of this phase is N¢/r. Notice
that at the epoch of overflow, the number of sources in the on-state will be Ne¢/r; if it were
larger, an even larger buffer could have been built up ‘for free’. By direct application Lemma
5.3 this gives decay rate I, (o) = 2(")(z — by) + J; (@) (for & — by large), where J; (@) equals

( )log(c/ >+(1—£)1og<(;:7;(/£)>.

Otherwise, if & > ¢/r, the number of sources transmitting at the beginning of the phase is Na.
This results in decay rate I, (a) = 2(") (z — b)) + J; (), where J; (a) equals

() 7(r) 7 (1 — 7
alog Y (:r) + (1 —a)log L(rﬂ))
P l—p
c c/r c 1—c¢/r
+(5) log (my(r)) + (1= 1) tog ((1 - w))y(r)‘) :

The parameter « has to be optimized, in that the sum of the four decay rates has to be minimized

over «; the optimizer o* reflects the fraction of sources transmitting at the epoch the queue length
reaches nb;. It is not hard to verify that f~(«) := I + Ja(a) + I3 (o) + J; (@) is minimized by

a = (34)

at = J S— (35)

Trivially I3 (¢/r) = I (¢/r) = 0 and J; (¢/r) = J; (¢/r), and hence f~(c¢/r) = fT(c/r). Both f~(-)
and fT(-) are convex and unimodal in a. It is also verified that either = < a* < ¢/r (and hence

a* =a7),or ¢/r < at < a” (and hence o* = o).
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(B) 7y < ¢ < 7®P)p. In this case the ‘average state’ of the system is a buffer occupancy of Nby,
and all active sources sending at rate m’, as given by (25). In equilibrium, the system is operating
in the processor sharing regime. Clearly, the first two decay rates of case A do not apply anymore,

as the queue is already operating at level nb; on average. The other two decay rates remain:

(3’) In order to reach buffer level Nz, first the number of transmitting sources has to grow from m
to Ne¢/r, where m is defined in (24). As before, this entails decay rate

c/r c
w= ], s () o
= (7= m)oe (F) + (1= )8 (1= 7)

+$ —m — (1 —m)log(1l —m).

(4’) Now an additional N (z —b1) has to be built up. By Lemma 5.3 this gives decay rate (for z —b;
large) Iy =~ 2\")(z — by) + Jy, where Jy equals

(6o (757 )+ (1 £ (75
+(5) tog (w(f)/;(r)> + (1= 7)o ((1:—<C>/)Ty<>> :

Summarizing, we have shown:

Theorem 5.4 Let by = gz for some g € (0,1).
If nPp < ¢, for z — oo,

1
im — — P gr — (1 =
A}gr(l)o loglP (Wx > Nz) — 2Wgx — 2" (1 — g)x

_ { f(a)+o(r) ifa <at;
fHa®) +o(z) ifa” >af,

with o~ and ot defined by (34) and (35).
If nMr < ¢ < a®p, for x — oo,

1
lim N loglP (Wy > Nz) — 2 (1 — g)z = Iy + Jy + o().

N—o0

6 Numerical results

In this section we provide numerical results. We first consider an example where we maximize the
system throughput, using the procedure of Section 3. The second example relies on the many sources

asymptotics of Section 5.
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6.1 Model parameters and computation of stationary distribution

Infinite-buffer model. We consider an infinite buffer that is fed by 10 identical and independent on-off
sources. Let Y (¢) denote the number of active sources at time ¢; we choose the process (Y (t)) as
the regulating process. As before, W (¢) will denote the buffer content at time ¢. The output trunk
speed is C' = 11. The off-times of the sources are exponentially distributed with A = 3. File sizes
are exponentially distributed with ;4 = 2. The peak transmission rate of the sources p = 4, which
is the actual transmission rate when the buffer content is below By = 2, and the rate drops to its
minimum value r = 2 when the content is above Bj. Notice that the buffer content may stick at
By for as long as 3, 4, or 5 sources are active; then the total actual transmission rate is 11, i.e.,
the output trunk speed, equally shared among the active sources. As a consequence the transition
intensity of the process (Y(¢)) from state 7 to i — 1, given that the buffer process remains at 2, is
equal to i - 2C /i = 22. These considerations allow us to write down the diagonal matrices R(®) and
R as well as the tri-diagonal matrices Q), Q") and Q™). After the numerical determination of
the eigensystems of the matrices Q) (R®)~! and Q) (R("))~', we apply the appropriate boundary
conditions to find the 33 unknowns (note that N = 10). After solving this (linear) set of equations,
the stationary distribution G of the joint process (Y (¢), W(t)) can be found numerically. A graphical
representation of G(y) = P(W < y) = Z%go Gi(y) is given in Figure 1. The throughput 7 of the

-2

Figure 1: B = oo: logg(1 — G(y)) as a function of y

system can be found as

10
o= S grlp — GV (B) +ipGY (Bi-) + C(GV) (By) — GV (B1-)) = 10.2652. (36)
=0

Finite-buffer model. We also solved the corresponding finite-buffer model. We did the calculations
for B = 5, leaving all other parameters the same. Clearly, now the size of the ‘jump’ that G(y) has
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at y = b is exactly the (time average) probability of a full buffer:

10
PW=B)=1- G"(B) = 20110 %
=0
It is also not difficult to find the average amount of fluid sent into the buffer per unit of time, or

fluid input rate 7*:
™ = 3 grlp - GV (B) +ipGV (Bi-) + C(GV(B1) - GV (B1-)) = 10.2656,  (37)

and the average amount of fluid sent over the link per unit of time, or throughput, as

10
7= Clp; — GP(0) + jpG'P (0) = 10.2651. (38)
j=0
Notice that the numerical outcomes for these quantities are close to each other and to (36), which
can be explained by the fact that we chose the (finite) size of the buffer quite large. Indeed by
subtracting (38) from (37) we immediately find that the average amount of lost fluid per unit of
time, or fluid loss rate,

Fluid loss rate = 7% — 7 = 5.83 - 107*, (39)

is small. Another way to find this result is to use

10
Fluid loss rate = Y (jp — C)(p; — G\ (B)). (40)
5=0
The fraction of fluid that is lost can be found as the ratio of the fluid loss rate (40) (or (39)) and the
fluid input rate (37):
Fluid loss rate

Fraction of fluid lost = =5.67-107°. 41
actioft of T 108 Fluid input rate (41)

Figure 2 gives a graphical representation of the distribution in the finite buffer model. Observe the

Jump’ of G5(y) at y = By = 2.

6.2 Maximization of system throughput

With the parameters of Section 6.1, in Figures 3 and 4 we plot the throughput and the loss fraction
as functions of the threshold level for several numbers of sources: N =7,...,12.

We first consider the problem of selecting B; such that the throughput is maximized, for given N, and
maximum loss fraction e = 1075, Observe from Figure 3 that the throughput is monotonic increasing
with the threshold B; for fixed N. With Figure 4 we obtain the value of B; that corresponds to e.
As a final application we show how the threshold level B; and the number of sources N may be
jointly chosen such that the system throughput is maximized, again with the fraction of lost fluid
not to exceed ¢ = 107%. From Figure 4 it can be seen that only N = 7,8, and 9 satisfy the loss
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0.2

<w

Figure 2: B =5: logo(1 — G(y)) (top), and G3(y), G5(y) and Gr(y) (bottom) as functions of y

fraction criterion for any value of By. From Figure 3 we compare the corresponding throughputs
for (N, By) for the three cases. It turns out that the system throughput is maximized by choosing
N =9 and B; = 2.05, giving a throughput of 9.5725. This also allows us to compute the mean file

transfer time, see (10): solve IET from

9.5725  0.5000
9  IET+0.3333’

giving IET = 0.1368. During the active period a source’s throughput is 0.5000/0.1368 = 3.6526,

which is between r = 2 and p = 4.

6.3 Impact of the choice of the guaranteed rate r

The purpose of this subsection is to provide an illustration of the effect of the feedback mechanisms
proposed in a more practical situation. For reasons of convenience, we assume that the number of
sources is sufficiently large to use the approximations of Section 5. We consider a 45 Mbit/s link,
with a buffer of 10 Mbit. The sources have peak rates of 3 Mbit/s. The users alternately send files
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Figure 3: Throughput as a function of threshold By for N = 7 (bottom), ... , 12 (top)

(exponentially distributed with mean 100 kbit) and ‘think’ (exponentially distributed with mean 10
seconds). We let the loss probability again be ¢ = 10%. Notice that r is the guaranteed minimum
throughput advertised to customers and therefore is an important parameter.

Clearly, for a fixed value of By (possibly 0), the loss probability increases with . On the other hand,
the number of admissible sources IV, decreases in r, for fixed loss probability. In Figure 5, N, is given
as a function of r, for different values of By (B; =0,2,...,8 Mbit). We observe that for low values
of r, N, is quite sensitive to the threshold value Bj; the opposite is true for r in the neighborhood

of p.

7 Conclusions

This paper has analyzed schemes for feedback-based adaptation of transmission rates to an access
multiplexer. The emphasis is on the modeling and development of computational methods. The
natural next step is a systematic numerical exploration of the design trade offs that follow from the
model. As mentioned, increasing the threshold B; leads to a reduction in the number of admissible
sources, but at the same time an increase in the individual sources’ throughputs. By could be chosen
such that the total throughput over all admissible sources is maximized. Another important direction

for future work is the generalization to multiple classes.
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