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SIMULATION-BASED COMPUTATION
OF THE WORKLOAD CORRELATION FUNCTION

IN A LÉVY-DRIVEN QUEUE

PETER W. GLYNN AND MICHEL MANDJES

ABSTRACT. In this paper we consider a single-server queue with Lévy input, and in par-
ticular its workload process (Qt)t≥0, focusing on its correlation structure. With the corre-
lation function defined as r(t) := Cov(Q0, Qt)/Var Q0 (assuming the workload process is
in stationarity at time 0), we first study its transform

∫∞
0

r(t)e−ϑtdt, both for the case that
the Lévy process has positive jumps, and that it has negative jumps. These expressions
allow us to prove that r(·) is positive, decreasing, and convex, relying on the machinery
of completely monotone functions. For the light-tailed case, we estimate the behavior of
r(t) for t large. We then focus on techniques to estimate r(t) by simulation. Naive simu-
lation techniques require roughly (r(t))−2 runs to obtain an estimate of a given precision,
but we develop a coupling technique that leads to substantial variance reduction (required
number of runs being roughly (r(t))−1). If this is augmented with importance sampling,
it even leads to a logarithmically efficient algorithm.

KEYWORDS. Lévy processes ? reflection ? workload process ? correlation function ? simu-
lation ? coupling ? importance sampling

1. INTRODUCTION

Consider a queueing system, and, more particularly, its workload process (Qt)t≥0. Where
one usually focuses on the characterization of the (transient or steady-state) workload,
another interesting problem relates to the identification of the workload correlation func-
tion r(t) := Cov(Q0, Qt)/VarQ0, assuming that the workload process is in stationarity at
time 0. For several queueing systems this correlation function has been explicitly com-
puted; [17], for instance, analyzes the number of customers in the M/M/1 queue. Often
explicit formulae are hard to obtain, but the analysis simplified greatly when looking at
the transform

ρ(ϑ) :=
∫ ∞

0
r(t)e−ϑtdt.

In his seminal paper [5], Beneš managed to compute ρ(·) for the workload in the M/G/1
queue; relying on the concept of complete monotonicity, [18] elegantly proved that, in
this case, r(·) is positive, decreasing and convex. We further mention the survey by [20],
and interesting results by [1].
The primary aim of this paper is to explore the workload correlation function for the class
of single-server queues fed by Lévy processes. Notice that the M/G/1 queue is contained

Date: May 21, 2010.
Part of this work was carried out when MM was at Stanford, and another part when both PG and MM

were visiting the Isaac Newton Institute, Cambridge, UK.
1



2 PETER W. GLYNN AND MICHEL MANDJES

in this class; then the Lévy process under consideration is a compound Poisson process
with drift. We focus on spectrally one-sided Lévy input processes, distinguishing between
those with only positive jumps (also referred to as spectrally positive), and those with only
negative jumps (spectrally negative). For the spectrally positive case it was already shown
in [12] that r(·) is positive, decreasing, and convex; our first contribution is that we use
the results of [10, 19] to show that these properties carry over to the spectrally-negative
case. We also estimate the asymptotics of r(t) for t large. These results can be found in
Section 2.
A second contribution of the paper (Section 3) considers an intimately related problem:
the analysis of the distribution of the residual busy period τ , where the queue starts in
stationarity at time 0; the insights developed in this section will be intensively used in Sec-
tion 4, when setting up schemes to efficiently simulate r(t). For spectrally one-sided input
we first derive the Laplace transform of p(t) := P(τ > t). Then we use this transform to
estimate the tail of p(t) for the case of light-tailed Lévy input, which exhibits (essentially)
exponential decay. The fact that p(t) → 0 for t → ∞ implies that estimation through
‘naive’ simulation may take prohibitively long for large t. We develop a logarithmically
efficient importance sampling algorithm; in this scheme the Lévy input (in the interval
(0, t]) is given a constant exponential twist, but, remarkably, also the workload present at
time 0 needs to be sampled from an alternative distribution as well.
The third contribution, presented in Section 4, concerns efficient simulation schemes for
estimating r(t); these intensively rely on results that we found for the busy-period dis-
tribution p(t). Again, the fact r(t) → 0 (as t → ∞) entails that naive simulation will
be extremely time-consuming; we show it takes even roughly (r(t))−2 runs to obtain
an estimate of a given precision. Then we propose a coupling-based approach yielding
substantial variance reduction (so that the number of runs required is just of the order
(r(t))−1. For the light-tailed case (in which r(t) vanishes essentially exponentially) we
propose an importance-sampling based algorithm; if this is applied on top of the cou-
pling technique, then the resulting scheme is asymptotically efficient (i.e., the number
of replications needed grows subexponentially in t). To our best knowledge this is the
first contribution to variance reduction in the context of the estimation of (small) corre-
lations and covariances. As indicated above, developing simulation-based computation
techniques for this is substantially more challenging than for rare-event probabilities.
In Section 5 we present a number of simulation experiments, for the cases of reflected
Brownian motion and the M/M/1 queue, showing the substantial speed up achieved by
our approach. Section 6 concludes, and discusses a number of open issues.

2. MODEL AND STRUCTURAL RESULTS

In this section we find an expression for the transform ρ(·) of the correlation function,
which is used to derive a number of structural properties of r(·), as well as asymptotics.
We start this section, however, with a formal introduction of our queueing system.

2.1. Lévy Processes. Let (Xt)t≥0 be a Lévy process, with drift EX1 < 0. We consider two
cases.
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(A) (Xt)t≥0 has no negative jumps. Then the Laplace exponent is given by the function
ϕ(·) : [0,∞) 7→ [0,∞), i.e., ϕ(α) := log Ee−αX1 . It is known that ϕ(·) is increasing
and convex on [0,∞), with slopeϕ′(0) = −EX1 in the origin. Therefore the inverse
ψ(·) of ϕ(·) is well-defined on [0,∞). In the sequel we also require that Xt is not a
subordinator, i.e., a monotone process; thusX1 has probability mass on the positive
half-line, which implies that limα→−∞ ϕ(α) = ∞.

(B) (Xt)t≥0 has no positive jumps. Now we define Φ(β) := log EeβX1 , which is well-
defined for any β ≥ 0. Again ruling out that Xt is a subordinator (and recalling
that Φ′(0) = EX1 < 0), we see that Φ(β) is no bijection on [0,∞); we define the
right inverse through Ψ(q) := sup{β ≥ 0 : Φ(β) = q). Realize that Ψ(0) > 0.

Important examples of such Lévy processes are the following. (1) Brownian motion with
drift, being actually both spectrally positive and negative. We write X ∈ Bm(µ, σ2)
when ϕ(α) = −αµ + 1

2α
2σ2. (2) Compound Poisson with drift, which is spectrally posi-

tive. Non-negative jobs arrive according to a Poisson process of rate λ; the jobs B1, B2, . . .

are i.i.d. samples from a distribution with Laplace transform b(α) := Ee−αB ; the storage
system is continuously depleted at a rate 1. We write X ∈ CP(λ, b(·)); it can be verified
that ϕ(α) = α − λ + λb(α). Clearly, if the drift would be positive, and the jobs would
be i.i.d. samples from a non-positive distribution (that is, the jumps are downward), the
process is spectrally negative.

2.2. Reflected Lévy Processes; Queues. We consider the reflection of (Xt)t≥0 at 0, which
we denote by (Qt)t≥0. It is formally introduced as follows, see for instance [3, Ch. IX].
Define the decreasing process (Mt)t≥0 and the resulting reflected process (or: workload
process, queueing process) (Qt)t≥0 through

Mt = inf
0≤s≤t

Xs; Qt := Xt + max{−Mt, Q0};

observe that Qt ≥ 0 for all t ≥ 0. Then the steady-state distribution Q := limt→∞Qt,
which exists due to EX1 < 0, is known (in terms of its Laplace transform) for both the
spectrally positive and spectrally negative case. For spectrally positive input, we have
the generalized Pollaczek-Khinchine formula, usually attributed to [22]:

(1) κ(α) := Ee−αQ =
αϕ′(0)
ϕ(α)

.

This result evidently enable the computation of all moments of the steady-state queue Q
(by repeated differentiation and inserting 0). From now one we assume EQ2 to be finite,
so that v := VarQ is well-defined.
For spectrally negative input, realize that Eeβ0Xt is a martingale, with β0 := Ψ(0) > 0.
‘Optional sampling’ [21, Ch. A14] thus gives, for any positive x,

P(∃t ≥ 0 : Xt > x)eβ0x = 1,

and as Q is distributed as the supremum over t ≥ 0 of Xt (‘Reich’s identity’), we obtain Q
is exponentially distributed with mean 1/β0. It follows that v = 1/β2

0 .
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2.3. Correlation Structure of the Queue. In this paper we are interested in the correla-
tion structure of the queue process (Qt)t≥0. For the spectrally-positive case, structural
results were already found in [12]. Relying on the transform of QT (where T is exponen-
tially distributed with mean ϑ−1) given that Q0 = x, see e.g. [3, Section IX.3] and [14], it
was derived that

ρ(ϑ) :=
∫ ∞

0
r(t) e−ϑtdt =

1
ϑ
− ϕ′′(0)

2vϑ2
+
ϕ′(0)
vϑ2

[
1

ϑψ′(ϑ)
− 1
ψ(ϑ)

]
.

Then the machinery of completely monotone functions [6, 18] was used to prove that r(·)
is a positive, decreasing, and convex function. We now do the same for the spectrally-
negative case.
Following the setup of [15, Chapter 8], we first introduce, for spectrally negative Lévy
processes, families of functions W (q)(·) and Z(q)(·) as follows. Let W (q)(x) be a strictly
increasing and continuous function whose Laplace transform satisfies

(2)
∫ ∞

0
e−βxW (q)(x)dx =

1
Φ(β)− q

, β > Ψ(q).

In addition,

(3) Z(q)(x) := 1 + q

∫ x

0
W (q)(y)dy.

W (q)(·) and Z(q)(·) are usually referred to as the q-scale functions. Then the results of [19],
in conjunction with Exercise 8.5 (both parts (i) and (ii)) of [15] lead, with some abuse of
notation, to the following transform (with respect to t) of the density of Qt, given that
Q0 = x: ∫ ∞

0
e−qtPx(Qt = y)dt = e−Ψ(q)yΨ(q)

q
Z(q)(x)−W (q)(x− y).

It is now a matter of straightforward calculus to show that the previous display leads to,
with T denoting an exponential random variable with mean q−1,∫ ∞

0
e−βxExe−αQT dx = I1 − I2;

where

I1 :=
∫ ∞

0

∫ ∞

0
qe−βxe−αye−Ψ(q)yΨ(q)

q
Z(q)(x)dxdy,

I2 :=
∫ ∞

0

∫ ∞

0
qe−βxe−αyW (q)(x− y)dxdy.

We now compute I1 ≡ I1(α, β, q) and I2 ≡ I2(α, β, q) explicitly. Let us first consider the
integral I1; using (2) and (3), we obtain

I1(α, β, q) =
Ψ(q)

Ψ(q) + α

∫ ∞

0
e−βxZ(q)(x)dx

=
Ψ(q)

Ψ(q) + α

(
1
β

+
∫ ∞

0

∫ ∞

y
qW (q)(y)e−βxdxdy

)
=

Ψ(q)
Ψ(q) + α

1
β

(
1 +

q

Φ(β)− q

)
.
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Likewise,

I2(α, β, q) =
∫ ∞

0
qe−(α+β)y 1

Φ(β)− q
dy =

q

α+ β

1
Φ(β)− q

.

Let us perform a few checks; it is readily verified that

• plugging in α = 0 in I1(α, β, q)− I2(α, β, q) indeed yields 1/β;
• plugging in β = β0 into the expression for

∫∞
0 βe−βxExe−αQT dx indeed yields

the steady-state transform β0/(β0 + α): when starting in the queue’s equilibrium
distribution at time 0, the workload is still in stationarity after an exponentially
distributed time (irrespectively of q).

Now observe that, recalling that T has an exponential distribution with mean q−1,∫ ∞

0
qe−qtE(Q0Qt)dt =

∫ ∞

0
β0xe

−β0xExQT dx(4)

= lim
α↓0

d
dα

[
β · d

dβ

∫ ∞

0
e−βxExe−αQT dx

∣∣∣∣
β=β0

]
.

Upon combining the explicit expression for I1(α, β, q)− I2(α, β, q) with (4), and recalling
that v = 1/β2

0 (in the spectrally-negative case), we eventually find, after considerable
calculus, the following result.

Theorem 2.1. For the spectrally-negative case,

ρ(q) :=
∫ ∞

0
r(t) e−qtdt =

1
q

+
β2

0

q2
Φ′(β0)

(
1

Ψ(q)
− 1
β0

)
.

The following corollary follows from applying ‘L’Hôpital’ twice. It implies that in the
spectrally-negative case the workload process is necessarily short-range dependent. Use
that Ψ′(0)Φ′(β0) = 1 and Φ′′(β0)+ (Φ′(β0))3Ψ′′(0) = 0, which follow from repeated differ-
entiation of the relation Φ(Ψ(q)) = q.

Corollary 2.2. For the spectrally-negative case,

ρ(0) :=
∫ ∞

0
r(t)dt =

1
β0Φ′(β0)

+
Φ′′(β0)

2(Φ′(β0))3
<∞.

We can now use the transform ρ(q) to establish a number of key structural properties of
r(·).

Theorem 2.3. r(·) is positive, decreasing, and convex.

Proof: We mimic the proof that was developed in [12] for the spectrally-positive case.
Using integration by parts, we find that

ρ(1)(q) :=
∫ ∞

0
r′(t)e−qtdt =

β2
0

q
Φ′(β0)

(
1

Ψ(q)
− 1
β0

)
,

which also entails that r′(0) = −β0Φ′(β0). Analogously,

(5) ρ(2)(q) :=
∫ ∞

0
r′′(t)e−qtdt = −r′(0) + β2

0Φ′(β0)
(

1
Ψ(q)

− 1
β0

)
= β2

0

Φ′(β0)
Ψ(q)

.
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In the proof of Prop. 3.2 we will show that Ψ(0)/Ψ(q) ∈ C , where C is the class of com-
pletely monotone functions [6, 13]; completely monotone functions are functions that can,
up to some positive multiplicative constant, be considered as Laplace transforms of non-
negative random variables. We conclude from (5) that ρ(2)(q) is in C , and hence r′′(·) is
positive, i.e., r(·) is convex.
We know that f(q) ∈ C implies that, with g(q) := (f(0) − f(q))/q, also g(q) ∈ C . Taking
f(q) = ρ(2)(q), we obtain that −ρ(1)(q) is in C , and hence r′(·) is negative, i.e., r(·) is
decreasing. Applying the same procedure again, we find that ρ(q) is in C , and hence r(·)
is positive. 2

In [12] the asymptotics of r(t) (for t large) in the spectrally-positive case were addressed.
It turned out that the heavy-tailed regime (leading to r(t) decaying essentially polynomi-
ally) and the light-tailed regime (leading to r(t) decaying essentially exponentially) had
to be treated separately. In the light-tailed regime (where we assume that the equation
ϕ(α) = 0 has a negative root) it turned out that the exact asymptotics were, up to a multi-
plicative constant, of the form t−3/2eϑ

?t, where ϑ? < 0 is the branching point of ψ(·). This
means that, with ζ < 0 being the minimizer of ϕ(·), ϕ(ζ) = ϑ?.

Let us now consider the counterpart of these findings for the spectrally-negative case. We
will argue that r(t) necessarily decays exponentially, relying on the Heaviside operational
principle. Let ζ > 0 denote the minimizer of Φ(·), so that Φ(ζ) = q? < 0; hence q? < 0 is
the branching point of Ψ(·). Around q? we have that Ψ(q) looks like ζ +

√
2/vΦ ·

√
q − q?,

with vΦ := Φ′′(ζ) > 0. After some calculus we obtain that this entails that, for some
(irrelevant) constant κ,

ρ(q) ∼ κ+BΦ

√
q − q?; BΦ := −β

2
0Φ′(β0)
(q?)2ζ2

√
2
vΦ

< 0,

so that application of Heaviside heuristics [2] yields, with f(t) ∼ g(t) denoting f(t)/g(t) →
1 as t→∞,

r(t) ∼ BΦ

Γ(−1
2)
· e

q?t

t
√
t
.

3. AN INTERMEZZO: EFFICIENT ESTIMATION OF

THE BUSY PERIOD TAIL DISTRIBUTION

In this section we address the estimation of the tail distribution of the busy period in a
Lévy-driven queue by applying an importance-sampling based simulation procedure. In
the next section it will turn out that the insights developed here are useful when setting
up an efficient simulation scheme for estimating the workload correlation r(t). We let τ
denote the busy-period duration, starting from steady-state at time 0: τ := inf{t ≥ 0 :
Qt = 0}, where Q0 is distributed according to the stationary distribution. Throughout
this section we write p(t) := P(τ > t). In this section we first derive the Laplace transform
of the probability p(·), then we consider the corresponding asymptotics, and finally we
set up a logarithmically efficient simulation scheme.
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3.1. Transforms. Let us start by considering the spectrally-positive case. We have, with
τ(x) := inf{t ≥ 0 : Xt = −x}∫ ∞

0
e−ϑtp(t)dt =

∫ ∞

0

(∫ ∞

0
e−ϑtP(τ(x) > t)dt

)
dP(Q0 < x)

=
1
ϑ

∫ ∞

0

(
1− e−ψ(ϑ)x

)
dP(Q0 < x).

Application of ‘Pollaczek-Khinchine’ now leads to the following result.

Proposition 3.1. In the spectrally-positive case, the Laplace transform of p(t) is given by∫ ∞

0
e−ϑtp(t)dt =

1
ϑ
− ϕ′(0)

ψ(ϑ)
ϑ2

.

The spectrally-negative case can be dealt with similarly. First recall that∫ ∞

0
e−qtP(τ > t)dt = q−1

(
1− Ee−qτ

)
.

Then, using part (ii) of [15, Exercise 6.7], we have

Ee−qτ =
∫ ∞

0
β0e

−β0xEe−qτ(x)dx = β0 ·
κ̂(q, β0)− κ̂(q, 0)

β0κ̂(q, β0)
;

here κ̂(q, β) relates to the transform of the so-called descending ladder process, and is given,
in this spectrally-negative case, by κ̂(q, β) = (q − Φ(β))/(Ψ(q)− β).Using that Φ(β0) = 0,
we find that Ee−qτ = Ψ(0)/Ψ(q), and in addition the following result is obtained.

Proposition 3.2. In the spectrally-negative case, the Laplace transform of p(t) is given by∫ ∞

0
e−qtp(t)dt =

1
q

(
1− Ψ(0)

Ψ(q)

)
.

3.2. Asymptotics. . We again use the Heaviside operational principle [2] to (heuristi-
cally) estimate the decay of p(t) for t large. We focus on the situation that the Lévy process
is (in the upward direction) light-tailed; precise definitions follow below. The most impor-
tant conclusion is that in this light-tailed case p(t) decays to 0 essentially exponentially;
up to a multiplicative constant, the exact asymptotics coincide with those of the workload
correlation function r(t).
We again start by considering the spectrally-positive case. As before, we assume that
the equation ϕ(α) = 0 has a negative root. Observe that then Prop. 3.1 holds for any
positive ϑ, but we can consider the analytic continuation up to the branching point ϑ? < 0
of ψ(·); let in the sequel ζ < 0 denote the minimizer of ϕ(·), so that ϕ(ζ) = ϑ? < 0
(where it is noticed that vϕ := ϕ′′(ζ) > 0). Then the idea is to write, for ϑ ↓ ϑ? we have
that ψ(ϑ) − ζ ∼

√
2/vϕ ·

√
ϑ− ϑ?. Hence, around ϑ?, we have that, for some (irrelevant)

constant κ,∫ ∞

0
e−ϑtp(t)dt =

1
ϑ
− ϕ′(0)

ψ(ϑ)
ϑ2

∼ κ+Aϕ
√
ϑ− ϑ?; Aϕ := −ϕ

′(0)
(ϑ?)2

√
2
vϕ

< 0,



8 PETER W. GLYNN AND MICHEL MANDJES

and hence, applying ‘Heaviside’, we estimate the tail distribution of the busy period by

(6) p(t) ∼ Aϕ

Γ(−1
2)
· e

ϑ?t

t
√
t
.

We now turn to the spectrally-negative case. Prop. 3.2 holds for any positive q, but we
can consider the analytic continuation up to the branching point q? < 0 of Ψ(·). Let ζ > 0
denote the minimizer of Φ(·), so that Φ(ζ) = q? < 0. Similarly to the spectrally-negative
case, we obtain, with vΦ := Φ′′(ζ) > 0 and κ being some (irrelevant) number,∫ ∞

0
e−qtp(t)dt =

1
q

(
1− Ψ(0)

Ψ(q)

)
∼ κ+AΦ

√
ϑ− ϑ?; AΦ :=

Ψ(0)
q?ζ2

√
2
vϕ

< 0,

and hence ‘Heaviside’ estimates the tail of the busy-period distribution by

(7) p(t) ∼ AΦ

Γ(−1
2)
· e

q?t

t
√
t
.

3.3. Importance-Sampling Based Simulation. As p(t) vanishes exponentially fast in the
light-tailed case considered above, estimating P(τ > t) from naive Monte Carlo simula-
tion would be extremely time consuming. It is known that the number of replications
needed (to obtain an estimate of a certain predefined precision) is roughly of the order
(p(t))−1. This motivates the search for more efficient simulation algorithms. We conclude
this section by an algorithm for estimating this probability in an logarithmically efficient
way; this algorithm is based on importance sampling, see e.g. [4, pp. 127-128], with an
exponential twist of the Lévy process Xt.
We first explain what ‘exponentially twisting’ means in our Lévy setting; we focus here
on the spectrally-positive case, but the spectrally-negative case works analogously. Ev-
idently, the queue is stable under the probability measure P, as we assumed EX1 < 0.
Below we will propose a change of measure, with which we associate Q, under which
{τ > t} occurs with substantially higher probability, by application of an exponential
twist −ζ > 0 (where ζ was defined in Section 3.2). We have that the Laplace exponent
ϕ(α) of Xt reads, with d, σ2 > 0 and a measure Πϕ(·) such that

∫
(0,∞) min{1, x2}Πϕ(dx) <

∞,

ϕ(α) = −α · d+
1
2
α2σ2 +

∫
(0,∞)

(e−αx − 1 + αx1(0,1))Πϕ(dx).

It is now a matter of straightforward calculations to show that ϕ̄(α) := ϕ(α + ζ) − ϕ(ζ)
is a Laplace exponent as well; let this be Laplace exponent of the Lévy process under Q;
it is readily checked that (in self-evident notation) EQX1 = −ϕ̄′(0) = −ϕ′(ζ) = 0, so that
the system under the new measure has drift 0. (One can check that under Q the drift d
has increased to d − ζσ2, the Brownian term remains unchanged, whereas the measure
Πϕ̄(dx) is given through its exponentially twisted counterpart (with ‘twist’ −ζ).

In importance sampling one simulates under a different measure than the original one,
where unbiasedness is recovered by weighing the simulation output by appropriate like-
lihood ratios. We propose the following alternative measure.
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• Let, in the interval (0, t], the Lévy process be twisted with −ζ = −ψ(ϑ?) > 0, as
described above; ϑ? is as defined before.

• We in addition twist the workload at time 0, Q0; we do so by a factor κ ≥ 0, for
which we identify a suitable value later on. This effectively means that we sample
Q0 from a distribution with Laplace transform Ee−(α−κ)Q0/EeκQ0 .

We denote from now on by Qκ this new measure, consisting of twisting Q0 (with κ) as
well as a twisting (Xs)s∈(0,t] (with ζ).
In each run we simulate the process under Qκ till time t, so that we can check whether
τ > t or not. In this way, we perform n independent runs. Then the estimator, based on
these n runs, reads n−1

∑n
i=1 Li1{τi > t}, where Li is the likelihood ratio of run i. Let us

write down this likelihood ratio more explicitly. First there is the contribution due to the
twisted queue at time 0; using ‘Pollaczek-Khinchine’ we obtain

L1 := e−κQ0 · EeκQ0 = e−κQ0 · −κϕ
′(0)

ϕ(−κ)
.

Then there is the contribution due to the twisted Lévy process between 0 and t:

L2 := eψ(ϑ?)Xt · Ee−ψ(ϑ?)Xt = eψ(ϑ?)Xt · eϑ?t.

The ‘total likelihood ratio’ is thus L := L1 ×L2. It is standard that the resulting estimator
is unbiased as EQκ equals the probability of our interest, i.e., E1.
As VarQκ L1{τ > t} ≥ 0, we see that EQκL

21{τ > t} ≥ (EQκL1{τ > t})2. In this sense,
we could call our change of measure logarithmically efficient if

lim
t→∞

1
t

log EQκL
21{τ > t} ≤ lim

t→∞

1
t

log(EQκL1{τ > t})2 = 2ϑ?.

Logarithmic efficiency essentially means that the number of replications needed to obtain
an estimate with a certain fixed precision grows subexponentially in the ‘rarity parame-
ter’ t, cf. [4, Ch. VI]. We now address the issue of appropriately choosing κ; we do this in
three steps.

(i) κ = 0 does not necessarily lead to logarithmic efficiency. A first important observation is
that not twisting Q0 at all (i.e., choosing κ = 0) does not necessarily yield logarithmic
efficiency: recalling that a necessary condition for {τ > t} is {Q0 +Xt > 0}, we find

(8) EQκL
21{τ > t} ≤

(
−κϕ

′(0)
ϕ(−κ)

)2

e2ϑ
?tEQκe

−2κQ0e−2ψ(ϑ?)Q0 .

For logarithmic efficiency we should have that lim supt→∞ t−1 log EQκL
21{τ > t} ≤ 2ϑ?.

In other words, when picking κ = 0 we need to have EQ0e
−2ψ(ϑ?)Q0 < ∞ for logarithmic

efficiency, and this is not a priori clear.

(ii) κ = −ζ leads to logarithmic efficiency. But let us now check whether with another choice
for κ logarithmic efficiency can be guaranteed. To this end, note that ϕ(ψ(ϑ?)) is finite (to
see this, use that ζ is larger than the pole of ϕ(·)). Hence, picking κ := −ψ(ϑ?) = −ζ does
yield logarithmic efficiency! In other words: we have to exponentially twist Q0 as well to
obtain a provably logarithmically efficient procedure, and κ = −ζ > 0 is a suitable choice.
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(iii) κ = −ζ is optimal. The next question is: it is clear that for the (Xs)s∈(0,t]-part, a twist by
−ζ is optimal, but for the Q0-part, can we do better than twisting with −ζ? Interestingly,
using

EQκe
−αQ0 =

α− κ

ϕ(α− κ)
· ϕ(−κ)

−κ
,

the right-hand side of (8) can be rewritten to

(9) (ϕ′(0))2
(

−κ
ϕ(−κ)

)(
2ζ + κ

ϕ(2ζ + κ)

)
e2ϑ

?t.

Observe that it consists of two factors that depend on κ, the first of which increases in κ,
the second decreases in κ, so that there is a trade-off. It is a straightforward exercise to
show that the minimum is achieved for κ = −ζ (this can be seen by equating the deriva-
tive to 0, but it also follows using an elementary symmetry-argument). We conclude that
the proposed change of measure is the best possible within the class of exponential twists
of Q0, in the sense that it minimizes (9).

4. SIMULATION-BASED COMPUTATION OF THE CORRELATION FUNCTION

As recalled in the previous section, if a probability tends to 0 as some ‘rarity parameter’ t
grows large, then the number of runs needed to estimate the probability by naive simula-
tion, for a given relative precision, is roughly inversely proportional to the probability. At
the end of Section 2 we observed that the correlation r(t) also tends to 0 as t→∞, which
raises the question how many runs would be roughly needed to estimate r(t) by naive
simulation. We first answer this question, and then propose a coupling-based alternative
that performs substantially better. This section concludes with a logarithmically efficient
algorithm, that combines the coupling idea with importance sampling. In this section we
concentrate on the spectrally-positive case; in the spectrally-negative case, the decay rates
ϑ? must be replaced by q? (while the proofs are very similar).

4.1. Naive Simulation. In the remainder of this section, we concentrate on estimating
r̄(t) := Cov(Q0, Qt), as v = VarQ is known. The naive estimator of r̄(t) is, in self-evident
notation, and recalling that EQ is known,

T (NS)
n (t) :=

1
n

n∑
i=1

Q
(i)
0 Q

(i)
t − (EQ)2,

based on n independent runs. The variance of this estimator reads (n−1) · Var(Q0Qt).
Now note that, as t→∞,

Var(Q0Qt) = E(Q2
0Q

2
t )− (EQ0Qt)2 → (EQ2)2 − (EQ)4,

which is positive due to the fact that EQ2 > (EQ)2. Suppose our goal is to simulate until
our estimate has a certain given relative precision ε (defined as the ratio between the
width of the confidence interval and the estimate) and confidence α. The number of runs
needed, say n(NS)(t), is roughly equal to the smallest n satisfying

2δα

√
VarT (NS)

n (t)
r(t)

< ε,
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for an appropriately chosen percentile of the standard Normal distribution δα. We ob-
tain the following remarkable result for the naive estimator: it says that the number of
runs required blows up exponentially, but it is quadratically inversely proportional to r(t),
rather than just inversely proportional. This result underscores that efficient (simulation-
based) computation of the workload correlation r(t) poses fundamentally new questions,
despite the fact that its decay matches that of the busy-period asymptotics p(t).

Proposition 4.1. limt→∞ t−1 · log n(NS)(t) = −2ϑ? > 0.

4.2. A Coupling-based Algorithm. In this subsection we develop a coupling-based sim-
ulation procedure that reduces the number of runs needed from quadratically inversely
proportional to r̄(t), to just inversely proportional.
We write

r̄(t) = E(Q0 · (Qt −Q?t )),

where both Q and Q? are stationary versions of the workload, and Q?t is independent of
Q0. We construct such a coupling as follows: generateQ0 andQ?0 independently, sampled
from the stationary distribution of the workload. Now use exactly the same incoming
Lévy process Xt over (0, t] to drive both (Qs)s∈(0,t] and (Q?s)s∈(0,t] from their two inde-
pendently generated initial conditions. This makes Qt and Q0 correlated but Q?t and Q0

independent. The new estimator becomes, in self-evident notation,

T (CS)
n (t) :=

1
n

n∑
i=1

Q
(i)
0

(
Q

(i)
t −Q

? (i)
t

)
,

based on n independent runs. The key observation is that |Qt − Q?t | ≤ |Q0 − Q?0|: the
distance between both processes decreases in time. In particular, after the first epoch that
both queues have been empty, the queueing processes coincide.
We split E(Q0 · (Qt − Q?t )) into four terms, as follows. Recall that we defined Mt :=
inf0≤s≤tXs. We write τ > t iff Q0 + Mt > 0 (i.e., busy period has not ended at t) and
τ? > t iff Q?0 +Mt > 0. Then r̄(t) = r++(t) + r+−(t) + r−+(t) + r−−(t), where

r++(t) := E(Q0 · (Qt −Q?t ) · 1{τ > t, τ? > t}),
r+−(t) := E(Q0 · (Qt −Q?t ) · 1{τ > t, τ? ≤ t}),
r−+(t) := E(Q0 · (Qt −Q?t ) · 1{τ ≤ t, τ? > t}),
r−−(t) := E(Q0 · (Qt −Q?t ) · 1{τ ≤ t, τ? ≤ t}).

It is evident that r−−(t) = 0, as both queues have been empty and are identical from
some time s (smaller than t) on. We estimate the other three terms separately. Due to
|Qt −Q?t | ≤ |Q0 −Q?0|, we thus have that

Var(Q0 · (Qt −Q?t )) ≤ EQ2
0 · (Qt −Q?t )

2

≤ E(Q2
0 · (Q0 −Q?0)

2 · 1{τ > t, τ? > t})
+ E(Q2

0 · (Q0 −Q?0)
2 · 1{τ > t, τ? ≤ t})

+ E(Q2
0 · (Q0 −Q?0)

2 · 1{τ ≤ t, τ? > t}).
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With mk(t) := E(Qk01{τ > t}), both the first and third term can be bounded from above
by E(Q4

0)P(τ > t)+ E(Q2
0)m2(t), whereas the second is majorized by m4(t)+ E(Q2

0)m2(t).
The claim of Prop. 4.3 now follows directly from the following lemma (which is proven in
the appendix). The number of runs needed, n(CS)(t), is defined analogously to n(NS)(t).

Lemma 4.2. For any k ≥ 0, we have that lim supt→∞ t−1 logmk(t) ≤ ϑ?.

Proposition 4.3. lim supt→∞ t−1 · log n(CS)(t) ≤ −ϑ?.

4.3. Importance-Sampling Based Algorithm. We now apply importance sampling on
top of the coupling idea presented in the previous subsection. As we are dealing with the
light-tailed case, an importance sampling measure Q is logarithmically efficient if

lim
t→∞

1
t

log EQ(L2Q2
0(Qt −Q?t )

2) ≤ 2ϑ?.

We again consider four scenarios by comparing τ and τ? with t; the idea is to estimate
r++(t), r+−(t), and r−+(t) separately (recall that r−−(t) = 0).

• First focus on r++(t). We define

T
(IS)
n,++(t) :=

1
n

n∑
i=1

L2
iQ

(i)
0

(
Q

(i)
t −Q

? (i)
t

)
1{τi > t, τ?i > t},

as an (unbiased) estimator of r++(t). Notice that in this case Qt − Q?t = Q0 − Q?0. Let,
as in Section 3.3, the Lévy process on (0, t] be twisted with −ζ = −ψ(ϑ?) > 0, with ϑ?

as defined before. Also Q0 is twisted by a factor κ and Q?0 by a factor κ?, for which we
identify suitable values below. In each run we simulate the process till time t. Let us
write down the likelihood ratio at time t; we call the new measure Q~κ, with ~κ denoting
the vector (κ, κ?). We find that the likelihood equals

L =
(
e−κQ0 · −κϕ

′(0)
ϕ(−κ)

)
×
(
e−κ

?Q?
0 · −κ

?ϕ′(0)
ϕ(−κ?)

)
×
(
eζXt · eϑ?t

)
.

We conclude that the second moment of the estimator reads

EQ~κ

(
L2Q2

0(Q0 −Q?0)
2 · 1{τ > t, τ? > t}

)
.

It is clear that 1{τ > t, τ? > t} ≤ 1{τ > t}, and on {τ > t} we have that −Xt < Q0. We
thus find the upper bound

EQ~κ

((
e−κQ0 · −κϕ

′(0)
ϕ(−κ)

)2(
e−κ

?Q?
0 · −κ

?ϕ′(0)
ϕ(−κ?)

)2 (
e−ζQ0 · eϑ?t

)2
Q2

0(Q0 −Q?0)
2

)

≤
(
−κϕ′(0)
ϕ(−κ)

)2(−κ?ϕ′(0)
ϕ(−κ?)

)2

e2ϑ
?t ×(

EQ~κ

(
Q4

0e
−2(κ+ζ)Q0

)
EQ~κ

(
e−2κ?Q0

)
+

EQ~κ

(
Q2

0e
−2(κ+ζ)Q0

)
EQ~κ

(
(Q?0)

2e−2κ?Q?
0

))
.

Now we use our findings from Section 3.3. It is readily seen that the choice κ = −ζ
and κ? = 0 yields logarithmic efficiency, as the above display reduces to a finite number
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multiplied with e2ϑ
?t. We here use, in the same way as in Section 3, that ζ is larger than

the pole of ϕ(·), so that twisting with −ζ keeps all means finite, that is, EQ~κ
Q4

0 < ∞,
EQ~κ

Q2
0 <∞, and EQ~κ

((Q?0)
2) = EQ2

0 <∞

• Now consider the second term: r+−(t). The estimator T (IS)
n,+−(t) is defined as T (IS)

n,++(t).
Apparently Q0 > Q?0, and therefore also Qt ≥ Q?t for all t ≥ 0. We also have Qt − Q?t ≤
Q0 −Q?0 for all t ≥ 0. With 1{τ > t, τ? > t} ≤ 1{τ > t}, we can use the bounds above. We
again obtain that κ = −ζ and κ? = 0 yields logarithmic efficiency.

• Finally, the case r−+(t) is essentially identical, but now we should pick κ? = −ζ and
κ = 0.

As we can now estimate r++(t), r+−(t), and r−+(t) logarithmically efficiently, we arrive
at the following result. Here n(IS)(t) denotes the number of runs needed to estimate r(t)
with a predefined precision, for a given confidence. The result states that the number of
runs needed increases only subexponentially fast in the ‘rarity parameter’ t, and hence we
have achieved a huge improvement over the naive scheme, and a still quite substantial
improvement over the coupling-based algorithm (without importance sampling).

Theorem 4.4. limt→∞ t−1 · log n(IS)(t) = 0.

5. EXPERIMENTAL RESULTS

In this section we discuss a number of implementation issues, and demonstrate the effi-
ciency gain. We do this by considering two important special cases: reflected Brownian
motion and the M/M/1 queue.

5.1. Reflected Brownian motion. We consider standard Brownian motion with drift −1,
such that ϕ(α) = α + 1

2α
2. We now provide some details regarding the implementation

of the three simulation schemes.

• Naive simulation. It is readily checked that ζ = −1. Remember that

Qt = Xt + max
{
− inf

0≤s≤t
Xs, Q0

}
.

It is a matter of straightforward verification that Q0 is exp(2)-distributed, i.e., has
an exponential distrbution with mean 1

2 . Then we sample Xt from a normal dis-
tribution with mean −t and variance t; say it has value z. Using known results for
the Brownian Bridge, it is immediate that

P
(
− inf

0≤s≤t
Xs ≤ x

∣∣∣∣ Xt = z

)
= exp

(
−2

x

t
(x+ z)

)
.

Then it can be verified that

Yz :=
(
− inf

0≤s≤t
Xs

∣∣∣∣ Xt = z

)
d= −z

2
+

1
2

√
z2 − 2t logU,
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Naive Coupling IS

t = 10 7.91 · 10−4 35% 0.85% 0.038%

t = 12 2.21 · 10−4 75% 1.50% 0.042%

t = 14 6.75 · 10−5 133% 2.82% 0.045%

t = 16 2.17 · 10−5 151% 4.99% 0.049%

t = 18 6.83 · 10−6 160% 8.4% 0.054%

t = 20 2.27 · 10−6 188% 11.9% 0.057%

TABLE 1. Numerical results, reflected Brownian motion.

whereU has a uniform distribution over (0, 1]. The above observations enable easy
simulation of Qt, requiring just three random numbers, which can be sampled in
a standard manner.

• Coupling-based algorithm. In this variant we sample Q0 and Q?0 independently of
each other, both from an exp(2)-distribution. In each simulation run, we simulate
Qt and Q?t by using the same samples for Xt and U .

• Importance Sampling. In the importance sampling variant, we let when simulating
r++(t) and r+−(t) the initial workload Q?0 be sampled from exp(2), and Q0 from
exp(1), leading to the likelihood ratio L1 := 2e−Q0 ; when simulating r−+(t) we
do this vice versa, resulting in L1 := 2e−Q

?
0 . Then we simulate Xt from a normal

distribution with mean 0 and variance t. Supposing Xt has value z, we sample Yz
as explained above. This yields likelihood ratio

L2 := e−Xt−t/2.

Then in each run the simulation output Q0(Qt − Q?t ) needs to be multiplied with
L1L2.

Table 1 (in which per experiment 108 runs were performed) convincingly shows the enor-
mous efficiency gain achieved, both when comparing the naive approach with the cou-
pling approach, and when comparing the coupling approach with importance sampling.
The second column of the table gives, for various values of t, the estimate of r(t), obtained
by the most efficient of the three methods, viz. importance sampling. Then the table gives,
for the three methods, the relative error, i.e., the ratio of the width of the confidence inter-
val (at a confidence level of 95%) and the estimate. Strikingly, under importance sampling
the relative error is more or less constant, underscoring the superior performance of this
method.

5.2. M/M/1 queue. We now take

ϕ(α) = α− λ+
λµ

µ+ α
,

i.e., arrivals occur according to a Poisson process with rate λ, and service times are exp(µ).
It is readily checked that ζ = −µ+

√
λµ. From

EeαQ0 = (1− %)
/(

1− %µ

µ− α

)
= (1− %)

∞∑
n=0

%n
(

µ

µ− α

)n
,
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Naive Coupling IS

t = 50 6.25 · 10−3 18% 7.0% 0.53%

t = 60 2.26 · 10−3 41% 12.6% 0.52%

t = 70 8.20 · 10−4 65% 18.7% 0.54%

t = 80 3.01 · 10−4 76% 31.8% 0.59%

t = 90 1.15 · 10−4 87% 46.4% 0.61%

t = 100 4.20 · 10−5 101% 69.1% 0.62%

TABLE 2. Numerical results, M/M/1.

we retrieve the known fact that Q0 is distributed as a Geometric number (with parameter
1− %) of i.i.d. exp(µ) random variables. Likewise,

Ee(α−ζ)Q0

Ee−ζQ0
= (1−√

%)
∞∑
n=0

√
%n
( √

λµ√
λµ− α

)n
.

We conclude that, in order to estimate r++(t) and r+−(t), Q0 is, under the importance
sampling measure, distributed as a Geometric number (with parameter 1 − √

%) of i.i.d.
exp(

√
λµ) random variables; in order to estimate r−+(t), we let Q?0 have this distribution.

In this importance sampling, during the interval (0, t] jobs arrive according to a Poisson
process with rate

√
λµ, whereas their service times are i.i.d. samples from an exp(

√
λµ)

distribution.
In our experiments we chose µ = 1, and λ = % = 1

2 . Table 2 should be read as Table 1; the
number of runs per experiment is now 107. The conclusions are very much in line with
those of the Brownian case.

6. PRACTICAL ASPECTS AND DISCUSSION

Application of the simulation algorithms proposed in the previous sections, requires the
ability to sample Lévy processes. Guidelines on this issue are presented in [4, Ch. XII].
In addition, one should be able to draw variates from exponentially twisted versions of
the stationary workloads. In the spectrally-negative case this is straightforward, asQ0 has
an exponential distribution. In the spectrally-positive case, the Laplace transform ofQ0 is
known (by ‘Pollaczek-Khinchine’), and one could use methods as those described in [9]
to generate samples. An alternative, only useful in the case of compound Poisson input,
is to recognize that then the steady state workload is distributed as a geometric sum of
residual job sizes, and hence so is its exponentially twisted version; in this situation one
could also use the exact sampling technique proposed in [11].
Observe, however, that spectrally-positive light-tailed Lévy inputs are always just the
sum of (i) Brownian motions, (ii) compound Poisson processes with light-tailed jobs, (iii)
a negative drift. Restricting ourselves to phase-type jobs, it is readily seen from the gener-
alized Pollaczek-Khinchine formula that also the steady-state workload is phase-type as
well, and hence easy to generate variates from. In addition, the phase-type property is
closed under exponential twisting, so it is straightforward to sample from this exponen-
tially twisted workload.
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In this paper we presented efficient algorithms for estimating the tail of the busy pe-
riod p(t) and the workload correlation function r(t). In the spectrally one-sided cases
Laplace transforms are known in closed-form, so the obvious alternative to simulation
is to perform numerical inversion of these transforms. It should be noted, however, that
the importance-sampling based simulation method can also be applied (and has good
variance properties) if the driving Lévy process has both positive and negative jumps.
Potential subjects for future research are the following. (i) One could try to apply the
coupling idea in settings in which the queue’s input process does not have stationary
independent increments. Can we for instance develop an algorithm of this kind for a
queue fed by on-off sources with generally distributed on- and off times, or for queues
with Gaussian input [16]? (ii) Is it possible to develop a simulation scheme with bounded
relative error [4, p. 159]. Is it, perhaps for special cases such as reflected Brownian motion,
possible to compute a zero-variance change of measure?

APPENDIX A. APPENDIX

We here present the proof of Lemma 4.2. Take ε > 0 arbitrary. Let m denote −EX1 > 0,
and mε := bm/εc. By splitting the interval [0,∞) into intervals of the form [iεt, (i+ 1)εt),
for i = 0, 1, . . ., we obtain, using that P(τ(x) > t) increases monotonically in x,

mk(t) =
∫ ∞

0
xkP(τ(x) > t)dP(Q0 ≤ x)

≤
∞∑
i=0

((i+ 1)εt)kP(τ((i+ 1)εt) > t)P(Q0 > iεt)

≤
mε∑
i=0

((i+ 1)εt)kP(τ((i+ 1)εt) > t)P(Q0 > iεt)

+
∞∑

i=mε+1

((i+ 1)εt)kP(Q0 > iεt).

With I(a) := supθ(θa− log E exp(θX1)), the Chernoff bound immediately gives

P(τ(x) > t) ≤ P(X(t) > −x) ≤ e−tI(−x/t)

for all x < mt. In addition, [7, Remark 5.3] yields that P(Q0 > x) ≤ exp(−ξx), where
ξ := infx>0 I(x)/x. Hence, mk(t) is bounded from above by

mε∑
i=0

hi(t) + g(t),

where

hi(t) := ((i+ 1)εt)ke−tI(−(i+1)ε)e−ξiεt, g(t) :=
∞∑

i=mε+1

((i+ 1)εt)ke−ξiεt.

It is readily checked that limt→∞ t−1 log hi(t) = −I(−(i+ 1)ε)− ξiε. Also∫ ∞

a
xke−xtdx ∼ s(t)e−at,
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for some subexponential function s(·) (as t→∞), which leads to

lim
t→∞

t−1 log g(t) ≤ ξε− (mε + 1)ξε.

Now [8, Lemma 1.2.15], stating that the decay rate of a finite sum equals the maximum of
the decay rates, yields that

lim sup
t→∞

1
t

logmk(t) ≤ max
{

max
i=0,...,mε

{−I(−(i+ 1)ε)− ξiε}, ξε− (mε + 1)ξε
}
.

Note that ki := −I(−(i + 1)ε) − ξiε is concave in i, and hence k0 > k1 would imply that
maxi∈{0,1,...} ki = k0. It is seen that k0 > k1 is equivalent to

ε−1 · (I(−ε)− I(−2ε)) < ξ.

Observing that the convexity of I(·) implies that

ξ := inf
x>0

I(x)
x

≥ inf
x>0

I(0) + xI ′(0)
x

> I ′(0),

we have that for ε sufficiently small it indeed holds that k0 > k1, and hence

lim sup
t→∞

t−1 · logmk(t) ≤ k0 = −I(−ε).

Now letting ε→ 0, and realizing that I(0) = −ϑ?, we have shown the stated. 2.
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