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ABSTRACT

Many mathematical models exist for describing the behavior of TCP/IP under an exogenous loss process that

does not depend on the window size. The goal of this paper is to present a mathematical analysis of two

asymmetric competing TCP connections where loss probabilities are directly related to their instantaneous

window size, and occur when the sum of throughputs attains a given level. We obtain bounds for the station-

ary throughput of each connection, as well as an exact expression for symmetric connections. This allows us

to further study the fairness as a function of the di�erent round trip times. We avoid the simplifying arti�cial

synchronization assumption that has frequently been used in the past to study similar problems, according to

which whenever one connection looses a packet, the other one looses a packet as well.

2000 Mathematics Subject Classi�cation: 60K25, 68M20, 90B18, 90B22.
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1. Introduction

The mathematical analysis of the performance of TCP has been a major research area in
networking. Di�erent types of approaches have been suggested and validated. On one hand,
there have been models focusing on a single connection that is subject to some exogenous
loss process (which does not depend on that connection), see e.g. [1, 2, 3, 13]. This approach
is appealing when there is a large amount of tra�c, so that we can neglect the e�ect of the
single connection on events that cause losses. An alternative approach is necessary when
the window increase of a connection is itself a central cause for losses. This occurs typically
when a small number of connections compete over bandwidth, say, at a bottleneck link. A
main mathematical approach for studying this situation has been to study several connections
sharing a bottleneck, and then make the simplifying assumption that all connections reduce
their windows simultaneously upon congestion [9, 12]. With this approach, it has been shown
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[12] that the throughput achieved by a TCP connection is inversely proportional to RTT�

with 1 < � < 2, where RTT is the two-way propagation delay of the connection. However,
it turns out that in practice this assumption does not hold, except for drop tail bu�ers and
connections with similar Round Trip Times (RTTs) [15].
In two recent papers, [4, 7], a Markovian model with continuous state space has been

proposed to study the performance of TCP when 
ows are not synchronized. Instead of syn-
chronization, it is assumed that the connections reduce their windows upon congestion with a
probability that equals to their share of the bandwidth upon the congestion. Exact formulas
for TCP throughput in a similar setting are obtained in [6], assuming that when congestion
occurs, the probability that a given connection su�ers from it does not depend on the win-
dow sizes. However, simulation studies [4] indicate that this probability does depend on the
connection's bandwidth share. The performance measures of TCP were obtained in [4, 7],
by discretizing this Markov chain and computing numerically the steady state distribution
of the discretized model. It was then concluded in [4] (and validated through simulations)
that in that scenario, TCP is more fair than predicted by models that assume synchroniza-
tion of losses: the throughput share of each connection was observed to be approximately
proportional to RTT�0:85. This as opposed to RTT�� with � > 1 in the synchronized case.
The �rst goal of the current paper is to go one step further than the numerical results in [4]

and provide analytical expressions and provable bounds on the throughput of competing TCP
connections. Our second objective is to substantiate the qualitative conclusions that were
obtained in [4] through numerical studies and simulations on the bandwidth sharing between
the connections, and prove their validity beyond the parameter values chosen there. Indeed,
we show that TCP is more fair than predicted in the synchronized setting, a connection's
share being inversely proportional to its RTT when the latter tends to in�nity. Note that
this matches the prediction of TCP's throughput by models for a single connection [1, 13].
For moderate RTTs we provide an approximation that matches the numerical results for
the discretized Markov chain in [4] (and explains the observed approximate proportionality
between the throughput and RTT�0:85).

The remainder of the paper is organized as follows. In Section 2 we describe the mathematical
model for the throughput of two concurring TCP connections. A recursive expression for the
moments of the throughput at loss instants is derived in Section 3. When both connections
have the same RTT, this allows to compute all moments of the throughput, but in the
unsymmetric case the mean (from which all higher moments can be determined) remains
unknown. Section 4 shows how the recursion leads to an implicit equation for the distribution
of the throughput at loss instants. Determining bounds for the mean throughput at loss
instants (when the RTTs are di�erent) is the subject of Section 5. This leads to bounds for
the time average throughput when the RTTs are unequal in Section 6 (in the symmetric case
the time average throughput of both connections can be determined exactly). In Section 7 we
show that the obtained bounds match the exact order of magnitude of the throughput when
the ratio of the RTTs tends to in�nity. A surprisingly accurate approximation is derived in
Section 8. Finally, Section 9 summarizes the paper.
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Figure 1: Two TCP connections on a path of bandwidth �.

2. The mathematical model

Suppose that two TCP sources (1 and 2) share a path of bandwidth � as depicted in Figure 1.
The two sources are assumed to have the same packet length. Denote the RTTs of these
connections by T1 and T2. Denote also by W1(t) and W2(t) the window sizes of the two
connections at time t. The rate of a connection at an instant t can be written as,

Xk(t) =Wk(t)=Tk with k = 1; 2:

We assume that the two sources run a TCP version able to recover from losses without
resorting to timeout and slow start. A SACK version or a New-Reno version can be used [10].
Upon detection of congestion, the TCP source divides its window by two, recovers from losses,
and then resumes increasing its window. We assume that the transfers are permanent, i.e.,
the sources always have packets to send. We further assume that the queueing delay is small
with respect to the propagation delay so that the RTT is approximately constant. This is
reasonable with active bu�ers where the queue length is maintained at small values [11]. We
consider the case when the window of TCP increases by one packet every RTT (i.e., delay
ACK mechanism [14] is disabled; the analysis of the case of delay ACKs can be handled in
exactly the same way our analysis below). The window and the rate of each source grow then
linearly as a function of time as shown in [12] where a 
uid model for the window evolution
is used. We write for k = 1; 2

dWk(t)

dt
=

dWk(t)

dackk
� dackk

dt
=

1

Wk(t)
� Wk(t)

Tk
=

1

Tk
:

This linear growth continues until a congestion occurs. Due to our assumption that queueing
time is small, it is possible to consider that congestion occurs when the sum of the rates of
the two connections reach a threshold bandwidth � (which could correspond to the capacity
of a bottleneck). We assume that a congestion event causes losses to one connection and only
this connection divides its window by two. The window growth of the other connection is not
a�ected. Given the probabilistic drop of packets at the onset of congestion, the probability
that a speci�c connection is a�ected can be approximated by its share of the bottleneck
bandwidth upon congestion.

De�nition 2.1. Denote by tn the instant at which the nth congestion event occurs. Let
W1(tn) (resp. W2(tn)) be the window size of source 1 (resp. 2) just prior to this event. We
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assume that instants tn are given by:

X1(tn) +X2(tn) =W1(tn)=T1 +W2(tn)=T2 = �: (2.1)

The probability that a source k (k=1,2) reduces its window at instant tn is equal to:

pk = Xk(tn)=� =Wk(tn)=(�Tk):

Our aim is to determine how fair the two connections share the bottleneck bandwidth �,
how well they utilize this bandwidth, and how much the network parameters a�ect the overall
performance.

The preceding description gives rise to the Markovian model from [4] which we describe
now. Given that the two processes W1(tn) and W2(tn) are related to each other by equa-
tion (2.1), we can transform the problem from a two-dimensional problem to a one dimensional-
one. The study of one of the two processes is su�cient to describe the other. In the sequel we
focus on the study of connection 1. We start by calculating the relationship between W1(tn)
and W1(tn+1) as well as the time (tn+1� tn) between two consecutive congestion events. The
window variation as a function of time and the sum of the rates at instants tn and tn+1 are
used. First we state the main results.
To simplify the expressions, we introduce some further notation: Let

a := (T1)
2; b := (T2)

2; c := (a�1 + b�1)�1; and r :=
b

a
:

Let Sn+1 := tn+1 � tn. We de�ne the instantaneous throughput of connection 1 by Xn =
W1(tn)=T1 = X1(tn). The instantaneous throughput of connection 2 at tn is then equal to
��Xn. The process Xn evolves as follows (see [4, Thm. 1]):

Theorem 2.1. If connection 1 is hurt by congestion at instant tn, the next congestion will
occur after time

Sn+1 =
c

2
Xn;

and the instantaneous throughput of connection 1 prior to that event will be equal to,

Xn+1 =
1 + 2r

2(1 + r)
Xn: (2.2)

If connection 2 is hurt by the congestion, connection 1 continues to increase its window
without reduction until the next congestion event which occurs after a time,

Sn+1 =
c(��Xn)

2
:

In this case, the instantaneous throughput of connection 1 prior to the next congestion event
will be equal to,

Xn+1 =
�r

2(1 + r)
+

2 + r

2(1 + r)
Xn: (2.3)
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The distribution of Xn+1, which can be viewed as the state of connection 1 at instant tn+1
is only a function of the state at time tn. Thus, the stochastic process Xn forms a Markov
chain. By Theorem 2.1 we have

Xn+1 =

(
1+2r
2(1+r)Xn; w.p. Xn

�
;

�� 2+r
2(1+r) (��Xn) ; w.p. 1� Xn

�
:

(2.4)

In the sequel, we shall study this Markov chain assuming it has reached stationarity.

3. Recursion for the moments of the throughput at loss instants

In this section we derive recursive equations for the moments of the throughput of both
connections. These will be the basis for the subsequent analysis, when we obtain implicit
equations for the probability distribution and its Laplace-Stieltjes transform, as well as an-
alytic bounds for the mean in case of di�erent round trip times and an exact expression for
the symmetrical case.
Assuming the process Xn is in steady state (in which case we may omit the subscript n),

we obtain

E[Xk] = E
h
E[(Xn+1)

kjXn]
i

= E

"
Xn

�

�
1 + 2r

1 + r
�
Xn

2

�k
+
��Xn

�

�
�r + (2 + r)Xn

2(1 + r)

�k#

= Z1(k) + Z2(k) (3.1)

where

Z1(k) =
2(1 + r)

�(1 + 2r)

�
1 + 2r

2(1 + r)

�k+1

E[Xk+1];

Z2(k) = �E

"
2(1 + r)

�(2 + r)

�
(2 + r)(Xn � �)

2(1 + r)

��
�r +Xn(2 + r)

2(1 + r)

�k
#

=
2(1 + r)

2 + r
E

"�
�r + (2 + r)Xn

2(1 + r)

�k
#

�
2(1 + r)

�(2 + r)
E

"�
�r + (2 + r)Xn

2(1 + r)

�k+1
#

Note that (3.1) enables us to compute recursively all moments of the distribution of X, once
we know E[X]. In particular, equation (3.1) with k = 1, k = 2 and k = 3 gives

(1� r)E[X2] = �r (�� 2E[X]); (3.2)

(1� r)E[X3] =
�r
�
�2r + �(4 + r)E[X] � (8 + 5r)E[X2]

�
3(1 + r)

; (3.3)

(1� r)E[X4] =
�r

7r2 + 13r + 7
�
�
� 2(5r2 + 15r + 12r)E[X3]

+6�(2 + r)E[X2] + 2�2r(3 + r)E[X] + �3r2
�

(3.4)

If r = 1 (the symmetric case) then the coe�cient of E[Xk+1] in (3.1) vanishes. In particular,
we directly get E[X] = �=2 from (3.2), E[X2] = 7�2=26 from (3.3) and E[X3] = 2�3=13
from (3.4).
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4. Throughput distribution at loss instants

Before focusing on the mean throughput in the remainder of the paper, we �rst employ (3.1)
to �nd an implicit expression for the distribution function of X. De�ne

� :=
1 + 2r

2(1 + r)
; u :=

�r

2(1 + r)
; v :=

2 + r

2(1 + r)
:

Then we can rewrite

Z1(k) =
E[(�X)k+1]

��
;

Z2(k) =
1

v

�
E[(u + vX)k]� ��1E[(u+ vX)k+1]

�
:

De�ne the Laplace Stieltjes transform (LST)

F (s) := E[exp(�sX)] =

1X
k=0

(�s)kE[Xk]

k!
:

Note that since X is bounded, F (s) is well de�ned for all s. Then substituting (3.1), we
obtain:

F (s) =
1

��

1X
k=0

(k + 1)(�s)kE[(�X)k+1]

(k + 1)!

+
1

v

1X
k=0

(�s)kE[(u+ vX)k]

k!

� 1

v�

1X
k=0

(k + 1)(�s)kE[(u+ vX)k+1]

(k + 1)!

= � 1

�
F 0(�s) +

1

v
exp(�us)F (vs)

+
1

�
exp(�us)F 0(vs)� u

v�
e�usF (vs):

To invert the above transforms, we use the relations between a probability distribution density
f(x) and its LST F (s) =

R1
0 exp(�sx)f(x)dx:

L�1F (s=�) = �f(�x); L�1(exp(�sr)F (s)) = f(x� r);

L�1F (�s)0 = � x

�2
f
�x
�

�
:

We get the following relation for the probability density function f(x) of X:

f(x) =
1

�2�
xf

�
x

�

�
+

1

v2
f

�
x� u

v

�

� 1

�v2
(x� u)f

�
x� u

v

�
� u

v2�
f
�x� u

v

�
:
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5. Mean throughput at loss instants

We already observed in Section 3 that if r = 1 then all moments of X, i.e., the rate of
connection 1 at instants of losses, can be obtained, starting with the mean E[X] = �=2. We
now derive bounds on E[X] when r 6= 1. Equation (3.2) may alternatively be written as

E[X2] = r E[(��X)2]: (5.1)

If r � 1, i.e., connection 1 is the one with the largest round trip time, then

E[X]2 = (1� r)E[X]2 + rE[X]2

� (1� r)E[X2] + rE[X]2

= rE[(��X)2 �X2] + rE[X]2

= r (��E[X])2 :

Therefore, we have the following bound on the ratio of the expected throughputs of the
connections just before loss instants, when r � 1:

E[X]

��E[X]
� p

r =
RTT2
RTT1

:

By symmetry we may write when r � 1

��E[X]

E[X]
� 1p

r
:

Together this gives a direct bound on the expected throughput of a connection just before a
loss instant

E[X]

(
� �

p
r

1+
p
r

if r � 1;

� �
p
r

1+
p
r

if r � 1:
(5.2)

(Note that indeed E[X] = ��E[X] = �=2 when r = 1.)
We also obtain complementary bounds for E[X], i.e., a lower bound when r � 1 and an

upperbound when r � 1. Using E[X2] < �2 we have from (5.1)

�=2�E[X]

1� r
=

E[X2]

2�r
� �

2r
:

We may write this as����
2
�E[X]

��� � j1� rj �
2r
:

Combining this with (5.2) gives for r < 1

�

2(1 +
p
r)2

<
�=2�E[X]

1� r
� �

2r

and the symmetric expression for r > 1.
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6. Time average throughput

We denote the mean rate of connection k = 1; 2; at arbitrary time instants by Xk. We shall
now employ (5.2) to derive bounds for Xk and for X1=X2, as well as exact expressions for Xk

for the symmetric case r = 1. This ratio is a measure for the fairness of bandwidth sharing
between the two connections. By Theorem 2.1 we have, using the inversion formula [5, Ch.

1, Sec. 4] X1 = E
hR tn

tn�1
X1(t)dt

i
=E [Sn],

X1 =
E
h
cX2

2�

�
X
2 + cX

4a

�
+ c(��X)2

2�

�
X + c(��X)

4a

�i
E
h
cX2

2� + c(��X)2

2�

i

=
E
h
cX2

�
X
2 + cX

4a

�
+ (��X)2

�
X + c(��X)

4a

�i
E [X2 + (��X)2]

=
E
h
3
2X

3 � �(2 + 3r
4(1+r) )X

2 + �2(1 + 3r
4(1+r) )X + �3 r

4(1+r)

i
E [2X2 � 2�X + �2]

(6.1)

Substituting E[X] = �=2, E[X2] = 7�=26 and E[X3] = 2�=13 into (6.1) we obtain for r = 1

X1 = X2 =
3

7
�;

implying a utilization of 86% in the symmetric case. We note that this gives an excellent
correspondence with previously obtained numerical results: the di�erence between our com-
puted throughput and the one obtained numerically in [4, Fig. 2] is 0.4%.

For r 6= 1, we can write

X1 = �h1(E[X]); (6.2)

with

h1(x) :=
(1 + r)(4 + 9r)x� �r(7 + 6r)

4(1� r)(1 + r)(�� 2x)
:

Note that if r 6= 1 then h1(x) is increasing in x for all values of x except at the point x = 1
2�

where h1(x) switches from +1 to �1. Substituting (5.2) into (6.2) gives

X1

(
� �

p
r 4�3

p
r+3r�3rpr

4(1�r)(1+r) ; if r < 1;

� �
p
r 4�3

p
r+3r�3rpr

4(1�r)(1+r) ; if r > 1:
(6.3)

By symmetry, replacing E[X] and r in (6.2) with ��E[X] and 1=r, resp., we also have

X2 = �
(1 + r)(4r + 9)(��E[X]) � �(7r + 6)

4(1 � r)(1 + r)(�� 2E[X])
: (6.4)

We note that the above bounds do not perform well for r in the neighborhood of 1.
From (6.3) we have that, when r ! 0, then X1=(�

p
r) � 1. In Section 7 we show that the

order of this upper bound is exact, i.e., X1 tends to zero as
p
r (and not faster) when r ! 0.
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Note also that X2 ! 3
4� when r ! 0, which indeed corresponds to the throughput of a single

connection.
For r 6= 1, (6.2) and (6.4) give

X1

X2

= h(E[X]) (6.5)

where

h(x) :=
(1 + r)(4 + 9r)x� �r(7 + 6r)

(1 + r)(4r + 9)(�� x)� �(7r + 6)
:

If r 6= 1, then h is increasing in x for all values of x except at

x = �
3 + 6r + 4r2

(1 + r)(4r + 9)
;

at which point h(x) switches from +1 to �1. Substituting (5.2) into (6.5) gives

X1

X2

8>><
>>:
� p

r
�
4�3pr+3r�3rpr
3�3pr+3r�4rpr

�
; if r < r0;

� p
r
�
4�3pr+3r�3rpr
3�3pr+3r�4rpr

�
; if r > 1=r0;

(6.6)

where x = r0 � 0:32 is the unique root in (0; 1) of �3 + 7
p
x � 6x + 7x

p
x � 3x2. We shall

show that these bounds give the right order of magnitude when r ! 0 (or, by symmetry,
when r !1). More speci�cally, we show that

lim inf
r!0

1p
r
� X1

X2

� 2

3
: (6.7)

Note that from (6.6) we also have

lim sup
r!0

1p
r
� X1

X2

� 4

3
: (6.8)

This proves that the bounds have the correct order of magnitude in the regime r ! 0:
X1 �

p
r = RTT2=RTT1. We shall prove (6.7) by showing the equivalent asymptotic behavior

for E[X] (the mean rate of connection 1 at loss instants). This is done in Section 7. Note
that (6.6) is only informative for r < r0 < 1 and r > 1=r0 > 1. However, in Section 8 we
derive an approximation for X1=X2 which performs well for all values of r (and also has the
right asymptotics for small and large values of r).

7. Asymptotic bound at loss instants

From (2.4) it is straightforward to see that if Xn = x then the drift is positive if x < x0,
negative if x > x0 and zero if x = x0, where x0 := �

p
r= (1 +

p
r). This feeds the intuition

that the process Xn \tends to be in the neighborhood of x0". Note that for r ! 0 we have
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x0 � �
p
r. We shall now construct a process Yn that mimics this behavior of Xn, but is

easier to analyze. More speci�cally, the Markov chain Yn evolves according to

Yn+1 =

8>><
>>:

(1+2r)Yn
2(1+r) ; w.p.

�
t=�; if Yn � t;
1; if Yn > t;

(2+r)Yn+r�
2(1+r) ; w.p.

�
�� t=�; if Yn � t;
0; if Yn > t;

(7.1)

where t 2 (0; �) is an arbitrary threshold. (We shall later choose t = 2�
p
r to obtain the

sharpest bound possible using this construction.) By a simple coupling argument it can be
shown that if P (X0 � x) � P (Y0 � x) for all 0 � x � �, then also P (Xn � x) � P (Yn � x)
for all 0 � x � � and n � 1. Therefore E[X] � E[Y ] where Y has the stationary distribution
of the process Yn.

From (7.1) we get

E[Y ] =
(1� t=�)

�
r�� (1� r)E[Y 1(Y > t)]

�
r + (1� r)t=�

; (7.2)

where 1(�) is the indicator function. Note that

E[Y 1(Y > t)] �
�
(r + 2)t

2(r + 1)
+

r�

2(r + 1)

�
P (Y > t)

=

�
t+

r(�� t)

2(r + 1)

�
P (Y > t): (7.3)

Next, we shall bound the probability P (Y > t) from above. To this end we �rst write
P (Y > t) = 1=(1 + �t), where �t is the return time to the set fY > tg. This is justi�ed
because if Yn > t then Yn+1 < t. Of course, such a return time could start from di�erent
points above t, but when the starting point makes a di�erence we shall take the \worst case"
so as to obtain a lower bound for �t and, hence, an upper bound for P (Y > t). We shall
prove (for later explanation these formulas have not been compressed)

�t � �̂t := K +
t

�

KX
k=1

ak; (7.4)

K :=
t� 2r+1

2(r+1)

�
t+ r(��t)

2(r+1)

�
r�=(2(r + 1))

;

ak :=

�
2r + 1

2(r + 1)

�
t+

r(�� t)

2(r + 1)

�
+

kr�

2(r + 1)

�
� (2r + 1)=(2(r + 1))

r�=(2(r + 1))
:

K is the minimum number of steps for the process Yn to get back above level t after it has
dropped below. To see this, note that after dropping below t the process is surely below level
2r+1
2(r+1)

�
t+ r(��t)

2(r+1)

�
. Since

E[Yn+1 � Yn] � r�=(2(r + 1));
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it takes at least K steps to be above level t again.
At each of theseK steps a new reduction can take place with probability t=�. If a reduction

takes place at the k-th step, it takes at least ak additional steps to \recover" from this
reduction (more if there are new intermediate reductions, but we shall neglect those). The
expression for ak is constructed in the same way as that for K.
Since E[X] � E[Y ] we have from (7.2), (7.3) and (7.4), for any choice of t

E[X] � r(�� t)

r�+ (1� r)t

0
@�� r�+ (1� r)

�
t+ r(��t)

2(r+1)

�
r(1 + �̂t)

1
A :

Now choose t = t(r) = c
p
r for some constant c > 0 independent of r. Note that

lim
r!0

r�̂t(r)

t(r)
=

1

�

�
1 +

c2

4�2

�
;

and, hence,

lim inf
r!0

1p
r
E[X] � c�2

4�2 + c2
=

1

2
�;

where we set c = 2�, for which the bound is the sharpest. Together with (6.2) this proves
(6.7).

8. Approximation

We can derive a surprisingly accurate approximation for X1=X2 if we approximate X1 and
X2 by the average throughputs in between two consecutive losses:

X1 � 1

2
E[X] +

1

2

�
E[X] � 1

2�
E[X2]

�

=
2� r

2(1� r)
E[X] � r�

4(1 � r)
;

and the symmetrical expression for X2. This gives

X1

X2

� (2� r)E[X]� 1
2�r

(2r � 1)E[X] + 1
2� (3� 4r)

: (8.1)

Using (5.2) as an approximation for E[X] gives

X1

X2

�
p
r (4 + 3

p
r)

3 + 4
p
r

: (8.2)

Comparing this with the numerical results from [4] shows that it provides a good approxi-
mation of the true ratio (the error being in the order of a few percent). This approximation
being close to the true ratio, it also \explains" the observation in [4] that the ratio of the
throughputs is well approximated by (RTT2=RTT1)

0:85 = (
p
r)

0:85
: for moderate values of r

this function is close to the approximation (for r = 0:1; 0:5; 0:8 the relative error is 8%, 2%
and 0.6%, resp.). Moreover, the approximation matches the correct order of magnitude when
r ! 0 (or when r !1).
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9. Conclusions

We have studied the throughput of two TCP connections that share a bandwidth � without
assuming that losses occur simultaneously to both connections. The transmission rates at
loss instants were modeled as a Markov chain. By deriving a recursion on the moments of the
transmission rates, we showed that all moments and, hence, the distribution can be deter-
mined once the means are known. For the mean transmission rates and their ratio we obtained
bounds that proved to be very close to the numerical computations in [4]. Regarding fairness
in bandwidth sharing we obtained the approximation (8.2), where

p
r = R := RTT2=RTT1

is the ratio of the round trip times. We proved that for R ! 0 this approximation has the
right order of magnitude, i.e., X1=X2 is of the order R when r ! 0; this is formalized in
(6.7) and (6.8). This contradicts the order R� with 1 < � � 2 predicted by models assuming
synchronized losses. The same order, however, is predicted by models for many competing
TCP connections where the loss process for one connection is independent of its transmission
rate. This suggests that the order of magnitude R is valid throughout the whole spectrum:
for many and for few competing connections. However, it remains to verify this assertion for
few, but more than two, connections.



13

References

1. E. Altman, K. Avratchenkov and C. Barakat, \A stochastic model of TCP/IP with
stationary random losses", ACM SIGCOMM 2000.

2. E. Altman, K. Avratchenkov, C.Barakat, and R. N�u~nez-Queija, \State-dependent M/G/1
type queueing analysis for congestion control in data networks", IEEE INFOCOM 2001.

3. E. Altman, K. Avratchenkov, C. Barakat and R. Nunez Queija, "TCP modeling in the
presence of nonlinear window growth", Proceedings of the 17th International Teletra�c
Congress, Salvador da Bahia, Brazil, September 24-28, 2001.

4. E. Altman, C. Barakat, E. Laborde, P. Brown and D. Collange, "Fairness Analysis of
TCP/IP", Proceedings of IEEE Conference on Decision and Control (CDC'00), Sydney,
Australia, December 2000.

5. F. Baccelli, P. Br�emaud. Palm probabilities and stationary queues. Lecture Notes in
Statistics, 41. Springer-Verlag, 1987.

6. F. Baccelli and D. Hong, "A.I.M.D, Fairness and Fractal Scaling of TCP Tra�c" Tech-
nical Report, April 2001, RR-4155, INRIA Rocquencourt, France, 2001.

7. C. Barakat and E. Altman, "A Markovian Model for TCP Analysis in a Di�erentiated
Services Network", Workshop on Quality of future Internet Services, Sep 2000.

8. B. Braden, et al.,\Recommendations on Queue Management and Congestion Avoidance
in the Internet", RFC 2309, Apr 1998.

9. P. Brown, "Resource sharing of TCP connections with di�erent round trip times", IEEE
Infocom, Mar 2000.

10. K. Fall and S. Floyd, \Simulation-based Comparisons of Tahoe, Reno, and SACK TCP",
Computer Communication Review, Jul 1996.

11. S. Floyd and V. Jacobson, \Random Early Detection gateways for Congestion Avoid-
ance", IEEE/ACM Transactions on Networking, Aug 1993.

12. T.V. Lakshman and U. Madhow, \The performance of TCP/IP for networks with high



References 14

bandwidth-delay products and random loss", IEEE/ACM Transactions on Networking,
Jun 1997.

13. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, \Modeling TCP Throughput: a Simple
Model and its Empirical Validation", ACM SIGCOMM, Aug. 1998.

14. W. Stevens, \TCP Slow-Start, Congestion Avoidance, Fast Retransmit, and Fast Recov-
ery Algorithms", RFC 2001, Jan 1997.

15. L. Zhang, S. Shenker, and D.D. Clark, \Observations on the Dynamics of a Congestion
Control Algorithm: The E�ects of Two-Way Tra�c", ACM SIGCOMM, Sep 1991.


