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ABSTRACT
We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two
traffic flows are served in accordance with the Generalized Processor Sharing (GPS) dis-
cipline. GPS-based scheduling algorithms, such as Weighted Fair Queueing (WFQ), have
emerged as an important mechanism for achieving service differentiation in integrated
networks.
We derive the asymptotic workload behavior of the light-tailed traffic flow under the
assumption that its GPS weight is larger than its traffic intensity. The GPS mecha-
nism ensures that the workload is bounded above by that in an isolated system with
the light-tailed flow served in isolation at a constant rate equal to its GPS weight. We
show that the workload distribution is in fact asymptotically equivalent to that in the
isolated system, multiplied with a certain pre-factor, which accounts for the interaction
with the heavy-tailed flow. Specifically, the pre-factor represents the probability that the
heavy-tailed flow is backlogged long enough for the light-tailed flow to reach overflow.
The results provide crucial qualitative insight in the typical overflow scenario.

2000 Mathematics Subject Classification: 60K25 (primary), 68M20, 90B18, 90B22 (sec-
ondary).
Keywords and Phrases: fluid queues, Generalised Processor Sharing (GPS), heavy-
tailed traffic, large deviations, queue-length asymptotics, regular variation, Weighted
Fair Queueing (WFQ).
Note: Work carried out under the project PNA2.1 “Communication and Computer Net-
works”.
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1 Introduction

Integrated networks have important advantages over dedicated networks. In the first place,
their return on investment is less sensitive to the popularity of the individual applications.
Moreover, new applications can be introduced rapidly in integrated networks. And also,
the heterogeneity of the individual traffic flows allows for a higher level of statistical
multiplexing, such that less capacity is needed to support all applications.
However, there are intrinsic difficulties in supporting heterogeneous applications on a single
network. An important complication is that different applications need different quality
of service (QoS), usually expressed in terms of performance metrics as (packet) delay and
loss. One could decide to not differentiate and treat all traffic flows in the same way, such
that all flows receive the QoS needed by the flows with the most stringent requirements. If
the peak rates of the individual flows are small compared to the link rate, then this could
still lead to a fairly high utilization. However, in the access network, where less flows are
multiplexed, this approach will inevitably lead to inefficient use of resources.
An obvious alternative is to pursue differentiation, by defining a number of QoS classes and
treating these classes differently. One of the instruments which can be used to accomplish
QoS differentiation is the scheduling mechanism. The simplest is strict priority, which has
the disadvantage that traffic of the QoS class with the lowest priority can be completely
overwhelmed by traffic of the other QoS classes. A popular alternative is Weighted Fair
Queueing (see [18], [19]), which is the packet-based version of a fluid mechanism called
Generalized Processor Sharing (GPS). With GPS, each class (or individual traffic flow) is
assigned a positive weight. Because traffic is served according to these weights, each class
is guaranteed a minimum service rate. In addition, the excess capacity is redistributed in
proportion to the weights, meaning that GPS is work-conserving.
Besides achieving service differentiation, scheduling mechanisms also play a potential role
in controlling the performance impact of bursty traffic. Extensive traffic measurements
have shown that burstiness may extend over a wide range of time scales (see [20], [22]).
This typically manifests itself in long-range dependence and self-similarity, which can be
modeled using fluid models with heavy-tailed arrival processes. Since long-range depen-
dence and self-similarity seem to be an intrinsic feature of certain types of traffic, the issue
is not so much trying to eliminate these phenomena, but rather to minimize the impact
on the performance of other traffic classes. The FIFO discipline clearly does not accom-
plish this goal, as smooth traffic would extremely suffer from bursty traffic. It is shown
in [15, 23] that if the input exclusively consists of heavy-tailed flows, then the queue dis-
tribution ‘inherits’ the heavy-tailed characteristics. For the situation of heavy-tailed input
mixed with light-tailed input, more detailed traffic characteristics determine whether the
queue will have a heavy tail or not [6, 8, 23]. In contrast to FIFO, GPS does seem to have
the capability to reduce the performance impact of heavy-tailed traffic.
Borst, Boxma and Jelenković [2, 3, 4] analyze GPS queues with heavy-tailed traffic flows.
They show a sharp dichotomy in qualitative behavior, depending on the traffic intensities
and the relative values of the weight parameters. For certain weight combinations, an
individual flow with heavy-tailed traffic characteristics is effectively served at a constant
rate, which is only influenced by the average rates of the other flows. In particular,
the flow is essentially immune from excessive activity of flows with ‘heavier’-tailed traffic
characteristics. For other weight combinations however, a flow may be strongly affected
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by the activity of ‘heavier’-tailed flows, and may inherit their traffic characteristics. The
latter result also holds for light-tailed flows when their traffic intensity exceeds their GPS
weight. Unfortunately, the result does not indicate to what extent light-tailed flows are
affected by heavy-tailed flows in the more plausible situation when their GPS weight is
larger than their traffic intensity.
In the present paper we consider a GPS queue fed by a mixture of light-tailed and heavy-
tailed traffic. We derive the asymptotic workload behavior of the light-tailed flow under
the assumption that its GPS weight is larger than its traffic intensity. In the analysis, we
reduce the space of all possible sample paths to overflow to a single ‘most-likely’ path which
occurs with overwhelming probability, yielding valuable insight in the typical overflow
scenario. We examine how the performance experienced by the light-tailed flow is affected
by possibly badly behaving heavy-tailed input. In particular, we identify conditions under
which the performance of the light-tailed flow does not degrade under the influence of
heavy-tailed input.
In some ways, a two-queue system may provide a useful model for integrated-services
networks with two traffic classes, which deserves special attention for the following rea-
son. Because of scalability issues, it is practically infeasible to manipulate packets at the
granularity level of individual traffic flows in the backbone of any large-scale network.
To avoid these complexity problems, traffic flows may instead be aggregated into a small
number of classes with roughly similar features, with scheduling acting at the coarser level
of aggregate flows.
The remainder of the paper is organized as follows. In Section 2, we present a detailed
model description and state some important preliminary results. In Section 3, we provide
an overview of the main results of the paper, which characterize the exact asymptotic
behavior of the workload distribution of the light-tailed traffic flow.
The subsequent sections are devoted to the detailed proofs. We start in Section 4 with
deriving lower and upper bounds for the workload distribution of the light-tailed flow. In
Section 5, we proceed to prove some auxiliary results for the light-tailed flow in isolation.
Although the bounds seem quite crude by themselves, we show in Section 6 that they
asymptotically coincide, yielding the exact asymptotic behavior.
One of the asymptotic terms involves the probability that the heavy-tailed flow is back-
logged long enough for overflow to occur. In order to determine the distribution of the
backlog period, we first establish in Section 7 some preliminary results for the heavy-tailed
flow in isolation. We then compute the specific form of the distribution for various traffic
processes in Sections 8, 9 and 10.

2 Model description

We now present a detailed model description. We consider two traffic flows sharing a link
of unit rate. Traffic from the flows is served in accordance with the Generalized Processor
Sharing (GPS) discipline, which operates as follows. Flow i is assigned a weight φi, i = 1, 2,
with φ1 +φ2 = 1. As long as both flows are backlogged, flow i is served at rate φi, i = 1, 2.
If one of the flows is not backlogged, however, then the capacity is reallocated to the other
flow, which is then served at the full link rate (if backlogged). (It may occur that one of
the flows is not backlogged, while generating traffic at some rate ri < φi. In that case, only
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the excess capacity, i.e., φi − ri, is reallocated to the other flow.) Denote by Ai(s, t) the
amount of traffic generated by flow i during the time interval (s, t]. We assume that the
process Ai(s, t) is reversible and has stationary increments. Denote by Vi(t) the backlog
(workload) of flow i at time t. Let Vi be a stochastic variable with as distribution the
limiting distribution of Vi(t) for t→∞ (assuming it exists). Define Bi(s, t) as the amount
of service received by flow i during (s, t]. Then the following identity relation holds, for
all s ≤ t,

Vi(t) = Vi(s) +Ai(s, t)−Bi(s, t). (1)

For any c ≥ 0, denote by V c
i (t) := sups≤t{Ai(s, t)− c(t− s)} the workload at time t in a

queue of capacity c fed by flow i. Denote by ρi the traffic intensity of flow i (as will be
defined in detail below). For c > ρi, let Vc

i be a stochastic variable with as distribution
the limiting distribution of V c

i (t) for t → ∞. Then a similar identity relation as above
holds, for all s ≤ t,

V c
i (t) = V c

i (s) +Ai(s, t)−Bc
i (s, t). (2)

In the next two subsections we describe the traffic model that we consider. We first
introduce some additional notation. For any two real functions g(·) and h(·), we use
the notational convention g(x) ∼ h(x) to denote limx→∞ g(x)/h(x) = 1, or equivalently,
g(x) = h(x)(1+o(1)) as x→∞. We use f(x) <∼ g(x) to denote lim supx→∞ f(x)/g(x) ≤ 1.
Also, f(x) >∼ g(x) denotes lim infx→∞ f(x)/g(x) ≥ 1. For any two stochastic variables X

and Y, we write X d= Y to denote that they have the same distribution function. For any
stochastic variable X with distribution function F (·), E{X} < ∞, denote by F r(·) the
distribution function of the residual lifetime of X, i.e., F r(x) = 1

E{X}
∫ x

0 (1−F (y))dy, and
by Xr a stochastic variable with that distribution. The classes of long-tailed, subexponen-
tial, regularly varying, and intermediately regularly varying distributions are denoted with
the symbols L, S, R, and IR, respectively. The definitions of these classes can be found
in Appendix A.

2.1 Traffic model flow 1

We assume that flow 1 is light-tailed. Specifically, we make the assumption that the
input process A1(s, t) is a Markov-modulated fluid. Such a process can be described as
follows. There is an irreducible Markov chain with a finite state space {1, 2, . . . , d}. The
corresponding transition rate matrix is denoted by Λ := (λij)i,j=1,...,d, where we follow the
convention that λii := −

∑
j 6=i

λij . Since the Markov chain is irreducible, there is a unique

stationary distribution, which we denote by the vector π. When the source is in state i,
traffic is generated (as fluid) at constant rate Ri <∞. Let R be the diagonal matrix with

the coefficients Ri on the diagonal. Denote the mean rate by ρ1 :=
d∑
i=1

πiRi. Denote the

peak rate by RP := max
i=1,...,d

Ri. It is important to observe that the class of Markov fluid

input is closed under superposition, i.e., the superposition of Markov fluid sources can
again be modeled as a Markov fluid source.
Results from Kosten [14], Kesidis et al. [13], and Elwalid & Mitra [10] yield the following
standard properties.
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Property 2.1 Take ρ1 < c1 < RP . Then

• The moment generating function of traffic generated in an interval of length t is
given by, in matrix notation,

E{exp(sA1(0, t))} = π exp((Λ + sR)t)1,

with 1 the all one vector of dimension d.

• There exists a limiting moment generating function:

1
t

log E{exp(s(A1(0, t) − c1t))} →Mc1(s).

This function is continuous and differentiable. It also holds that there is a finite C
such that

E{exp(s(A1(0, t)− c1t))} ≤ CeMc1 (s)t.

• The large-buffer asymptotics of a queue with Markov fluid input are given by

lim inf
x→∞

1
x

log Pr{Vc1
1 > x} = −s∗(c1).

Here s∗(c1) is the unique positive root of Mc1(s) = 0. Moreover, M ′c1(s∗(c1)) > 0.

Although we restrict ourselves to Markov fluid input, we believe that our results are valid
for a more general class of light-tailed input. We will comment on this issue in Remark 5.1.

2.2 Traffic model flow 2

We assume that flow 2 is heavy-tailed. We make the assumption that the input process
A2(s, t) is either instantaneous or On-Off, with heavy-tailed burst sizes or On-periods,
respectively.

Instantaneous input

Here, flow 2 generates instantaneous traffic bursts according to a renewal process. The
interarrival times between bursts have distribution function U2(·) with mean 1/λ2. The
burst sizes B2 have distribution function B2(·) with mean β2 < ∞. Thus, the traffic
intensity is ρ2 := λ2β2. We assume that B2(·) is regularly varying of index −ν2, i.e.,
B2(·) ∈ R−ν2 for some ν2 > 1. The next result which is due to Pakes [17] then yields the
tail behavior of the workload distribution of flow 2 in isolation.

Theorem 2.1 If Br
2(·) ∈ S, and ρ2 < c, then

Pr{Vc
2 > x} ∼ ρ2

c− ρ2
Pr{Br

2 > x}.
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Fluid input

Here, flow 2 generates traffic according to an On-Off process, alternating between On- and
Off-periods. The Off-periods U2 have distribution function U2(·) with mean 1/λ2. The
On-periods A2 have distribution function A2(·) with mean α2 < ∞. While On, flow i
produces traffic at constant rate r2, so the mean burst size is α2r2. The fraction of time
that flow 2 is Off is

p2 =
1/λ2

1/λ2 + α2
=

1
1 + λ2α2

.

The traffic intensity is

ρ2 = (1− p2)r2 =
λ2α2r2

1 + λ2α2
.

We assume that A2(·) is regularly varying of index −ν2, i.e., A2(·) ∈ R−ν2 for some ν2 > 1.
The next result which is due to Jelenković & Lazar [12] then yields the tail behavior of
the workload distribution of flow 2 in isolation.

Theorem 2.2 If Ar2(·) ∈ S, and ρ2 < c < r2, then

Pr{Vc
2 > x} ∼ p2

ρ2

c− ρ2
Pr{Ar

2 >
x

r2 − c
}.

3 Overview of the results

In this section we provide an overview of the main results of the paper which characterize
the exact asymptotic behavior of Pr{V1 > x} as x → ∞. At the end of this section, we
present an example. Throughout, we assume ρi < φi, i = 1, 2, which ensures stability of
both flows. In addition, we make the assumption that r2 > φ2 in case of fluid input of
flow 2. Otherwise, the workload of flow 2 would be zero, so the workload of flow 1 would
be equal to the total workload V. The tail distribution of the latter quantity has been
obtained in [6].

To put things in perspective, we first briefly review the case that ρ1 > φ1, while ρ1+ρ2 < 1.
If either (i) Br

2(·) ∈ IR (instantaneous input of flow 2), or (ii) Ar2(·) ∈ IR, r2 > φ2 (fluid
input), then from [2],

Pr{V1 > x} ∼ φ2 − ρ2

φ2

ρ2

1− ρ1 − ρ2
Pr{Pr

2 >
x

ρ1 − φ1
},

with P2 a random variable with as distribution the busy-period distribution in a queue of
constant capacity φ2 fed by flow 2.
The above result suggests that the most likely way for flow 1 to build a large queue is that
flow 2 generates a large burst, or experiences a long On-period, while flow 1 itself shows
roughly average behavior. Note that when flow 2 produces a large amount of traffic, so
it becomes backlogged for a long period of time, it receives service at rate φ2. Thus it
will experience a busy period as if it were served at constant rate φ2. During that period,
flow 1 receives service at rate φ1, while it generates traffic roughly at rate ρ1, so its queue
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will grow approximately at rate ρ1 − φ1. When flow 2 is not backlogged, its queue will
drain approximately at rate 1− ρ1.
Thus, the backlog of flow 2 behaves as that in a queue of constant capacity 1− ρ1 fed by
an On-Off source with as On- and Off-periods the busy and idle periods of flow 2 when
served at constant rate φ2, respectively. That is reflected in the above result if we use
Theorem 2.2 to interpret the right-hand side.

We now focus on the case ρ1 < φ1. Before presenting the main result, we first provide a
heuristic derivation of the asymptotic behavior of Pr{V1 > x} based on large-deviations
arguments, see for instance Anantharam [1]. The overflow scenario described above for the
case ρ1 > φ1 cannot occur, and now flow 1 too must deviate from its ‘normal’ behavior in
order for the queue to grow. Specifically, large-deviations results suggest that flow 1 must
behave as if its traffic intensity is temporarily increased from ρ1 to some larger value ρ̂1

(as will be specified below). During that time period, flow 2 is continuously backlogged,
consuming capacity φ2, thus leaving capacity φ1 for flow 1. (Notice that if flow 2 were not
permanently backlogged, then flow 1 would have to show even greater anomalous activity
in order for a given backlog level to occur.)
To summarize, the intuitive argument is as follows: a large backlog of level x of flow 1
occurs as a consequence of two rare events: (i). Flow 1 shows similar ‘abnormal’ behavior
as is the typical cause of overflow when served in isolation, thus behaving as if its traffic
intensity is increased from ρ1 to ρ̂1 for a period of time x/(ρ̂1 − φ1). (ii). During that
time period, flow 2 is constantly backlogged, demanding capacity φ2, with capacity φ1

remaining for flow 1.
These considerations lead to the following characterization of the asymptotic behavior of
Pr{V1 > x}:

Pr{V1 > x} ∼ Pr{Vφ1
1 > x}Pr{T1−ρ1

2 >
x

ρ̂1 − φ1
}. (3)

The second term represents the probability that flow 2 is continuously backlogged during
a period of time x/(ρ̂1 − φ1). Here T1−ρ1

2 is a stochastic variable with as distribution the
limiting distribution of T 1−ρ1

2 (t) for t→∞, with

T c2 (t) := inf{u ≥ 0 : V c
2 (t) +A2(t, t+ u)− φ2u = 0}

representing the drain time in a queue of capacity φ2 fed by flow 2 with initial workload
V c

2 (t).
Thus, the workload distribution is asymptotically equivalent to that in an isolated system,
multiplied with a certain pre-factor. The isolated system consists of flow 1 served in
isolation at constant rate φ1. The pre-factor represents the probability that flow 2 is
backlogged long enough for flow 1 to reach oveflow. The combination of light-tailed and
heavy-tailed large deviations is similar to that in the ‘reduced-peak equivalence’ result
derived in Borst & Zwart [6] as well as that for an M/G/2 queue with heterogeneous
servers studied in Boxma et al. [7].
Note that the general decompositional form of (3) holds irrespective of the detailed traffic
characteristics of the two flows. However, the specific form of the two individual terms
in (3) does depend on the detailed properties of the traffic processes. In particular, we
need to distinguish whether flow 2 generates instantaneous or fluid input. In the latter
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case, it also depends on whether the peak rate r2 exceeds 1− ρ1 or not.

We now state the main theorem of the paper.

Theorem 3.1 Suppose that the input process A1(s, t) satisfies Property 2.1 and that the
input process A2(s, t) is either instantaneous or On-Off, with regularly varying burst sizes
or On-periods, respectively. Assume that ρi < φi, i = 1, 2, and r2 > φ2 in case of fluid
input of flow 2. Then

Pr{V1 > x} ∼ Pr{Vφ1
1 > x}Pr{T1−ρ1

2 >
x

ρ̂1 − φ1
},

where ρ̂1 := M ′φ1
(s∗(φ1)) + φ1.

Case I: If Br
2(·) ∈ IR (instantaneous input), then

Pr{T1−ρ1
2 > x} ∼ ρ2

1− ρ1 − ρ2
Pr{Br

2 > x(φ2 − ρ2)}. (4)

Case II-A: If Ar2(·) ∈ IR with r2 < 1− ρ1 (fluid input), then

Pr{T1−ρ1
2 > x} ∼ (1− p2)Pr{Ar

2 >
x(φ2 − ρ2)
r2 − ρ2

}. (5)

Case II-B: If Ar2(·) ∈ IR with r2 > 1− ρ1 (fluid input), then

Pr{T1−ρ1
2 > x} ∼ p2

ρ2

1− ρ1 − ρ2
Pr{Ar

2 >
x(φ2 − ρ2)
r2 − ρ2

}. (6)

Noting that p2ρ2 = (1−p2)(r2−ρ2), we can observe that in the limiting regime r2 → 1−ρ1

cases II-A and II-B coincide. Also, case I can be seen as the limiting case of II-B if we use
r2A2 = B2 and let r2 →∞ so that p2 ↓ 1. In [5] a qualitatively similar result as in case I
is derived for a system with two coupled queues, one having heavy-tailed input, the other
one exhibiting light-tailed properties.

Before proceeding to the formal proof of Theorem 3.1, we first give an example. Assume
flow 1 to behave according to an On-Off process with exponentially distributed On- and
Off-periods with means 1/µ1 and 1/µ2, respectively. When the flow is in the On-state,
it generates traffic at rate R1. We assume flow 2 to generate instantaneous input with
regularly varying burst sizes of index −ν2, i.e.,

Pr{B2 > x} ∼ C2x
−ν2 l2(x),

with l2(·) some slowly varying function.
First we determine the deviant traffic intensity ρ̂1 using [16],

ρ̂1 =
R1φ2

1
µ2

φ2
1
µ2

+ (R1−φ1)2

µ1

.

Using [9], we obtain for flow 1,

Pr{Vφ1
1 > x} ∼ R1

φ1

µ2

µ1 + µ2
exp(−(

µ1

R1 − φ1
+
µ2

φ1
)x).
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For flow 2, from (4),

Pr{T1−ρ1
2 > x} ∼ ρ2

1− ρ1 − ρ2

C2

β2(ν2 − 1)
(x(φ2 − ρ2))1−ν2 l2(x(φ2 − ρ2)).

Now we have all the ingredients for Pr{V1 > x}.

The next sections are devoted to the formal proof of Theorem 3.1. We start in Section 4
by deriving lower and upper bounds for the workload distribution of flow 1. We then
proceed in Section 5 to prove some auxiliary results for flow 1 in isolation. Although the
bounds derived in Section 4 seem quite crude by themselves, we show in Section 6 that
they asymptotically coincide, yielding the exact asymptotic behavior of Pr{V1 > x}.
In order to determine the drain time distribution of flow 2 as specified in Theorem 3.1,
we first establish in Section 7 some preliminary results for flow 2 in isolation. Note that
the specific form of the drain time distribution depends on whether flow 2 generates
instantaneous or fluid input. In the latter case, we also need to distinguish whether the
peak rate r2 exceeds 1−ρ1 or not. We calculate the drain time distribution for the various
cases in Sections 8, 9 and 10.

4 Bounds

In this section we derive lower and upper bounds for the workload distribution of flow 1.
The bounds will be instrumental in obtaining the asymptotic behavior of Pr{V1 > x} as
given in Theorem 3.1.

4.1 Lower bound

We start with a lower bound for the workload distribution of flow 1.

Lemma 4.1 Suppose there exist r∗ ≤ s∗ ≤ t and y such that

A1(s∗, t)− φ1(t− s∗) > x,

A1(r∗, s∗)− (ρ1 − ε)(s∗ − r∗) ≥ −y,

inf
s∗≤u≤t

{A2(r∗, u)− (1− ρ1 + ε)(s∗ − r∗)− φ2(u− s∗)} ≥ y.

Then V1(t) > x.

Proof
From (1), for all s ≤ t,

V1(t) = V1(s) +A1(s, t)−B1(s, t).

By definition,

B1(s, t) +B2(s, t) ≤ t− s.
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Because of the GPS discipline,

B2(s, t) ≥ min{φ2(t− s), V2(s) + inf
s≤u≤t

{A2(s, u) + φ2(t− u)}}.

Substituting,

V1(t) ≥ A1(s, t)− (t− s) + min{φ2(t− s), V1(s) + V2(s) + inf
s≤u≤t

{A2(s, u) + φ2(t− u)}}

= A1(s, t)− φ1(t− s) + min{0, V1(s) + V2(s) + inf
s≤u≤t

{A2(s, u)− φ2(u− s)}}.

From (1), for all r ≤ s,

V1(s) + V2(s) = V1(r) + V2(r) +A1(r, s) +A2(r, s) −B1(r, s) −B2(r, s).

By definition,

B1(r, s) +B2(r, s) ≤ s− r.

Thus,

V1(s) + V2(s) ≥ A1(r, s) +A2(r, s)− (s− r).

Substituting,

V1(t) ≥ A1(s, t)− φ1(t− s) + min{0, A1(r, s) +A2(r, s)− (s− r) +
inf

s≤u≤t
{A2(s, u)− φ2(u− s)}}

= A1(s, t)− φ1(t− s) + min{0, A1(r, s)− (ρ1 − ε)(s− r) +
inf

s≤u≤t
{A2(r, u) − (1− ρ1 + ε)(s− r)− φ2(u− s)}}

for all r ≤ s ≤ t.
2

We now translate the above sample-path result into a probabilistic lower bound.
We first introduce some additional notation. For any c and w ≥ 0, define

Vc
i (w) := sup

0≤s≤w
{Ai(−s, 0)− cs}.

Note that, for c > ρi, Vc
i (∞) d= Vc

i as defined earlier.
For any c, v ≥ 0, and y, define

Tc
2(v, y) := inf{u ≥ 0 : sup

0≤r≤v
{A2(−r, 0) − cr}+A2(0, u) − φ2u ≤ y}.

Thus, Tc
2(v, y) represents the drain time in a queue of capacity φ2 fed by flow 2 with initial

workload sup
0≤r≤v

{A2(−r, 0) − cr} − y.

Note that, for c > ρ2,

Tc
2(y) := Tc

2(∞, y) = inf{u ≥ 0 : V c
2 (0) +A2(0, u) − φ2u ≤ y},
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and that Tc
2(0) d= Tc

2 as defined earlier.
Also, define

T2(y) := Tc
2(0, y) = inf{u ≥ 0 : A2(0, u) − φ2u ≤ y}.

(note that the latter quantity does not depend on the value of c), and denote T2 := T2(0).
Denote

P ρ1−ε(s∗, v, x, y) := Pr{ sup
s∗−v≤r≤s∗

{(ρ1 − ε)(s∗ − r)−A1(r, s∗)} ≤ y | A1(s∗, 0) + φ1s
∗ > x}.

Corollary 4.1 For any v ≥ 0 and y,

Pr{V1 > x} ≥ Pr{Vφ1
1 (

(1 + α)x
ρ̂1 − φ1

) > x}Pr{T1−ρ1+ε
2 (v, y) >

(1 + α)x
ρ̂1 − φ1

}P ρ1−ε(s∗, v, x, y).

Proof
Using Lemma 4.1, the independence of A1(s, t) and A2(s, t), and the fact that A1(s, t) and
A2(s, t) have stationary increments, for all v ≥ 0, w ≥ 0, and y,

Pr{V1(t) > x}
≥ Pr{∃s∗ ∈ [t− w, t], r∗ ∈ [s∗ − v, s∗] : A1(s∗, t)− φ1(t− s∗) > x,

A1(r∗, s∗)− (ρ1 − ε)(s∗ − r∗) ≥ −y,
inf

s∗≤u≤t
{A2(r∗, u)− (1− ρ1 + ε)(s∗ − r∗)− φ2(u− s∗)} ≥ y}

= Pr{∃s∗ ∈ [−w, 0], r∗ ∈ [s∗ − v, s∗] : A1(s∗, 0) + φ1s
∗ > x,

A1(r∗, s∗)− (ρ1 − ε)(s∗ − r∗) ≥ −y,
inf

s∗≤u≤0
{A2(r∗, u)− (1− ρ1 + ε)(s∗ − r∗)− φ2(u− s∗)} ≥ y}

≥ Pr{∃s∗ ∈ [−w, 0], r∗ ∈ [s∗ − v, s∗] : A1(s∗, 0) + φ1s
∗ > x,

inf
s∗−v≤r≤s∗

{A1(r, s∗)− (ρ1 − ε)(s∗ − r)} ≥ −y,

inf
s∗≤u≤s∗+w

{A2(r∗, u)− (1− ρ1 + ε)(s∗ − r∗)− φ2(u− s∗)} ≥ y}

≥ Pr{∃s∗ ∈ [−w, 0] : A1(s∗, 0) + φ1s
∗ > x, inf

s∗−v≤r≤s∗
{A1(r, s∗)− (ρ1 − ε)(s∗ − r)} ≥ −y,

∃r∗ ∈ [s∗ − v, s∗] : inf
s∗≤u≤s∗+w

{A2(r∗, u)− (1− ρ1 + ε)(s∗ − r∗)− φ2(u− s∗)} ≥ y}

≥ Pr{∃s∗ ∈ [−w, 0] : A1(s∗, 0) + φ1s
∗ > x}

Pr{ inf
s∗−v≤r≤s∗

A1(r, s∗)− (ρ1 − ε)(s∗ − r) ≥ −y | A1(s∗, 0) + φ1s
∗ > x}

Pr{∃r∗ ∈ [s∗ − v, s∗] : inf
s∗≤u≤s∗+w

{A2(r∗, u)− (1− ρ1 + ε)(s∗ − r∗)− φ2(u− s∗)} ≥ y}

≥ Pr{∃s ∈ [0, w] : A1(−s, 0)− φ1s > x}
Pr{ sup

s∗−v≤r≤s∗
{(ρ1 − ε)(s∗ − r)−A1(r, s∗)} ≤ y | A1(s∗, 0) + φ1s

∗ > x}

Pr{∃r ∈ [0, v] : inf
0≤u≤w

{A2(−r, u)− (1− ρ1 + ε)r − φ2u} ≥ y}

≥ Pr{ sup
0≤s≤w

{A1(−s, 0)− φ1s} > x}P ρ1−ε(s∗, v, x, y)

Pr{ sup
0≤r≤v

inf
0≤u≤w

{A2(−r, u)− (1− ρ1 + ε)r − φ2u} ≥ y}
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≥ Pr{Vφ1
1 (w) > x}P ρ1−ε(s∗, v, x, y)

Pr{ inf
0≤u≤w

{ sup
0≤r≤v

{A2(−r, 0) − (1− ρ1 + ε)r}+A2(0, u) − φ2u} ≥ y}

= Pr{Vφ1
1 (w) > x}Pr{T1−ρ1+ε

2 (v, y) > w}P ρ1−ε(s∗, v, x, y).

Taking w = (1+α)x
ρ̂1−φ1

completes the proof.
2

4.2 Upper bound

We proceed to derive an upper bound for the workload distribution of flow 1.

Lemma 4.2 Suppose V1(t) > x.
Then for all y there exist r∗ ≤ s∗ ≤ t such that

A1(s∗, t)− φ1(t− s∗) > x, (7)

and at least one of the three following events occurs

A1(r∗, s∗)− (ρ1 + ε)(s∗ − r∗) > y, (8)

or

V φ1
1 (t) > x+ y, (9)

or

inf
s∗≤u≤t

{A2(r∗, u)− (1− ρ1 − ε)(s∗ − r∗)− φ2(u− s∗)} > −2y. (10)

Proof
First we show that (7) is implied by V1(t) > x. Because of the GPS discipline,

V1(t) ≤ V φ1
1 (t) = sup

s≤t
{A1(s, t)− φ1(t− s)}.

Hence, there exists an s ≤ t such that A1(s, t)− φ1(t− s) > x. Define

s∗ := inf{s : A1(u, t)− φ1(t− u) ≤ x ∀u > s} = sup{s : A1(s, t)− φ1(t− s) > x}.

We now show that V1(t) > x implies that at least one of the events (8), (9) or (10) must
occur. We distinguish between the following two cases.
i. Flow 1 is continuously backlogged during the interval [s∗, t].
We first show that (a) V1(t) > x implies that either (9) holds or

∀u ∈ [s∗, t] : B2(s∗, u)− φ2(u− s∗) > −y.

Next we show that (b) the latter event implies that either (8) or (10) holds.
(a) We prove that the events

∃u∗ ∈ [s∗, t] : B2(s∗, u∗)− φ2(u∗ − s∗) ≤ −y (11)
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and

∀q ≤ s∗ ≤ t : A1(q, t)− φ1(t− q) ≤ x+ y (12)

imply V1(t) ≤ x.
Since flow 1 is continuously backlogged during [s∗, t],

V1(t) = V1(s∗) +A1(s∗, t)− (t− s∗) +B2(s∗, u∗) +B2(u∗, t)

and

B2(u∗, t) ≤ φ2(t− u∗).

Because of the GPS discipline,

V1(s∗) ≤ sup
r≤s∗
{A1(r, s∗)− φ1(s∗ − r)}.

Hence, using (12),

V1(t) ≤ sup
r≤s∗
{A1(r, s∗)− φ1(s∗ − r)}+A1(s∗, t)− (t− s∗) + φ2(t− s∗)− y

= sup
r≤s∗
{A1(r, t)− φ1(t− r)} − y ≤ x+ y − y = x,

which is in contradiction with V1(t) > x. Since (12) is the complement of (9), it remains
to be shown that (11) implies (8) or (10).
(b) By definition,

B2(s∗, u) ≤ V2(s∗) +A2(s∗, u) ≤ V (s∗) +A2(s∗, u)
= sup

r≤s∗
{A1(r, s∗) +A2(r, s∗)− (s∗ − r)}+A2(s∗, u).

Hence,

inf
s∗≤u≤t

{B2(s∗, u)− φ2(u− s∗)}

≤ inf
s∗≤u≤t

{sup
r≤s∗
{A1(r, s∗) +A2(r, s∗)− (s∗ − r)}+A2(s∗, u)− φ2(u− s∗)}

= sup
r≤s∗

inf
s∗≤u≤t

{A1(r, s∗) +A2(r, u) − (s∗ − r)− φ2(u− s∗)}

≤ sup
r≤s∗

inf
s∗≤u≤t

{A2(r, u) − (1− ρ1 − ε)(s∗ − r)− φ2(u− s∗)}

+ sup
r≤s∗
{A1(r, s∗)− (ρ1 + ε)(s∗ − r)}.

ii. Flow 1 is not continuously backlogged during the interval [s∗, t].
Thus, there exists a u ∈ [s∗, t] such that V1(u) = 0. Define u∗ := sup{u ∈ [s∗, t] : V1(u) =
0}.
Then,

V1(t) = A1(u∗, t)−B1(u∗, t),

combined with

B1(u∗, t) ≥ φ1(t− u∗)
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yields

V1(t) ≤ A1(u∗, t)− φ1(t− u∗).

In view of V1(t) > x, we have A1(u∗, t)− φ1(t− u∗) > x, which contradicts the definition
of s∗.

2

We now use the above sample-path relation to obtain a probabilistic upper bound.
Denote

Qρ1+ε(s∗, x, y) := Pr{sup
r≤s∗
{A1(r, s∗)− (ρ1 + ε)(s∗ − r)} > y | A1(s∗, 0) + φ1s

∗ > x}.

Corollary 4.2 For any y,

Pr{V1 > x} ≤ Pr{Vφ1
1 > x}Pr{T1−ρ1−ε

2 (−2y) >
(1− α)x
ρ̂1 − φ1

}

+ Pr{Vφ1
1 > x+ y}+ Pr{Vφ1

1 (
(1− α)x
ρ̂1 − φ1

) > x}+ Pr{Vφ1
1 > x}Qρ1+ε(s∗, x, y).

Proof
Using Lemma 4.2, the independence of A1(s, t) and A2(s, t), and the fact that A1(s, t) and
A2(s, t) have stationary increments, for all w ≥ 0 and y (the numbers indicate the events
in the corresponding equations in Lemma 4.2),

Pr{V1(t) > x} ≤ Pr{(7) ∧ {(8) ∨ (9) ∨ (10)}}
= Pr{(7), (8)} + Pr{(7), (9)} + Pr{(7), (10)}
≤ Pr{(7), (8)} + Pr{(9)} + Pr{(7), (10)}
= Pr{∃r∗ ≤ s∗ ≤ t : A1(s∗, t)− φ1(t− s∗) > x,A1(r∗, s∗)− (ρ1 + ε)(s∗ − r∗) > y}
+ Pr{V φ1

1 (t) > x+ y}
+ Pr{∃r∗ ≤ s∗ ≤ t : A1(s∗, t)− φ1(t− s∗) > x,

inf
s∗≤u≤t

{A2(r∗, u)− (1− ρ1 − ε)(s∗ − r∗)− φ2(u− s∗)} > −2y}

= Pr{∃r∗ ≤ s∗ ≤ 0 : A1(s∗, 0) + φ1s
∗ > x,A1(r∗, s∗)− (ρ1 + ε)(s∗ − r∗) > y}

+ Pr{V φ1
1 (0) > x+ y}

+ Pr{∃r∗ ≤ s∗ ≤ 0 : A1(s∗, 0) + φ1s
∗ > x,

inf
s∗≤u≤0

{A2(r∗, u)− (1− ρ1 − ε)(s∗ − r∗)− φ2(u− s∗)} > −2y}

≤ Pr{∃s∗ ≤ 0 : A1(s∗, 0) + φ1s
∗ > x, sup

r≤s∗
{A1(r, s∗)− (ρ1 + ε)(s∗ − r)} > y}

+ Pr{V φ1
1 (0) > x+ y}

+ Pr{∃s∗ ≤ 0 : A1(s∗, 0) + φ1s
∗ > x,

sup
r≤s∗

inf
s∗≤u≤0

{A2(r, u) − (1− ρ1 − ε)(s∗ − r)− φ2(u− s∗)} > −2y}

≤ Pr{∃s∗ ≤ 0 : A1(s∗, 0) + φ1s
∗ > x}
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Pr{sup
r≤s∗
{A1(r, s∗)− (ρ1 + ε)(s∗ − r)} > y | A1(s∗, 0) + φ1s

∗ > x}

+ Pr{V φ1
1 (0) > x+ y}+ Pr{∃s∗ ∈ [−w, 0] : A1(s∗, 0) + φ1s

∗ > x}
+ Pr{∃s∗ ≤ −w : A1(s∗, 0) + φ1s

∗ > x,

sup
r≤s∗

inf
s∗≤u≤s∗+w

{A2(r, u) − (1− ρ1 − ε)(s∗ − r)− φ2(u− s∗)} > −2y}

≤ Pr{∃s ≥ 0 : A1(−s, 0)− φ1s > x}Qρ1+ε(s∗, x, y)

+ Pr{V φ1
1 (0) > x+ y}+ Pr{∃s ∈ [0, w] : A1(−s, 0)− φ1s > x}

+ Pr{∃s∗ ≤ −w : A1(s∗, 0) + φ1s
∗ > x}

Pr{sup
r≤s∗

inf
s∗≤u≤s∗+w

{A2(r, u) − (1− ρ1 − ε)(s∗ − r)− φ2(u− s∗)} > −2y}

≤ Pr{sup
s≥0
{A1(−s, 0)− φ1s} > x}Qρ1+ε(s∗, x, y)

+ Pr{V φ1
1 (0) > x+ y}+ Pr{ sup

0≤s≤w
{A1(−s, 0)− φ1s} > x}

+ Pr{∃s ≥ 0 : A1(−s, 0)− φ1s > x}
Pr{sup

r≥0
inf

0≤u≤w
{A2(−r, u) − (1− ρ1 − ε)r − φ2u} > −2y}

≤ Pr{Vφ1
1 > x}Qρ1+ε(s∗, x, y) + Pr{V φ1

1 (0) > x+ y}+ Pr{Vφ1
1 (w) > x}

+ Pr{sup
s≥0
{A1(−s, 0)− φ1s} > x}

Pr{ inf
0≤u≤w

{sup
r≥0
{A2(−r, 0) − (1− ρ1 − ε)r}+A2(0, u) − φ2u} > −2y}

≤ Pr{Vφ1
1 > x}Pr{T1−ρ1−ε

2 (−2y) > w}
+ Pr{V φ1

1 (0) > x+ y}+ Pr{Vφ1
1 (w) > x}+ Pr{Vφ1

1 > x}Qρ1+ε(s∗, x, y).

Taking w = (1−α)x
ρ̂1−φ1

completes the proof.
2

5 Preliminary results for the light-tailed flow

In this section we prove some auxiliary results for flow 1 in isolation. The results will be
crucial in obtaining the asymptotic behavior of Pr{V1 > x} in the GPS model as given in
Theorem 3.1.

The following result is proven in [6] (for a more general class of input processes than just
Markov fluid sources).

Proposition 5.1 If Property 2.1 holds with c1 = φ1, then, for any α > 0,

lim inf
x→∞

Pr{Vφ1
1 ( (1+α)x

ρ̂1−φ1
) > x}

Pr{Vφ1
1 > x}

= 1, (13)

where ρ̂1 := M ′φ1
(s∗(φ1)) + φ1.
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Lemma 5.1 For any γ > 0, ε > 0, t∗ < 0,

lim
x→∞

Pr{sup
r≤t∗
{(ρ1 − ε)(t∗ − r)−A1(r, t∗)} ≤ γx | A1(t∗, 0) + φ1t

∗ > x} = 1.

Proof
Recall that flow 1 is a Markov fluid source. We condition on the state of the underlying
Markov chain at time t∗. Let Ej(t∗) be the event that the state at time t∗ is j, j = 1, . . . , d,
and πj(t∗) := Pr{Ej(t∗) | A1(t∗, 0) + φ1t

∗ > x}. Then,

Pr{sup
r≤t∗
{(ρ1 − ε)(t∗ − r)−A1(r, t∗)} ≤ γx | A1(t∗, 0) + φ1t

∗ > x}

=
d∑
j=1

Pr{sup
r≤t∗
{(ρ1 − ε)(t∗ − r)−A1(r, t∗)} ≤ γx | A1(t∗, 0) + φ1t

∗ > x,Ej(t∗)}πj(t∗)

=
d∑
j=1

Pr{sup
r≤t∗
{(ρ1 − ε)(t∗ − r)−A1(r, t∗)} ≤ γx | Ej(t∗)}πj(t∗).

The statement of the lemma then follows by observing that

lim
x→∞

Pr{sup
r≤t∗
{(ρ1 − ε)(t∗ − r)−A1(r, t∗)} ≤ γx | Ej(t∗)} = 1

for all j = 1, . . . , d, since E{A1(−t, 0)} = ρ1t.
2

Lemma 5.2 For any γ > 0, ε > 0, µ > 0, t∗ < 0,

lim
x→∞

xµPr{sup
r≤t∗
{A1(r, t∗)− (ρ1 + ε)(t∗ − r)} > γx | A1(t∗, 0) + φ1t

∗ > x} = 0.

Proof
As in the proof of Lemma 5.1, let Ej(t∗) be the event that the state at time t∗ is j,
j = 1, . . . , d, and πj(t∗) := Pr{Ej(t∗) | A1(t∗, 0) + φ1t

∗ > x}. Then,

Pr{sup
r≤t∗
{A1(r, t∗)− (ρ1 + ε)(t∗ − r)} > γx | A1(t∗, 0) + φ1t

∗ > x}

=
d∑
j=1

Pr{sup
r≤t∗
{A1(r, t∗)− (ρ1 + ε)(t∗ − r)} > γx | A1(t∗, 0) + φ1t

∗ > x,Ej(t∗)}πj(t∗)

=
d∑
j=1

Pr{sup
r≤t∗
{A1(r, t∗)− (ρ1 + ε)(t∗ − r)} > γx | Ej(t∗)}πj(t∗).

The statement of the lemma then follows by observing that there exist constants C, s∗∗

(independent of j) such that

Pr{sup
r≤t∗
{A1(r, t∗)− (ρ1 + ε)(t∗ − r)} > γx | Ej(t∗)} ≤ Ce−s

∗∗x,

where s∗∗ > 0 is the solution of Mρ1+ε(s) = 0. In [16, Section 4] it is shown that C
can be expressed in terms of the dominant eigenvalue of the matrix Λ + s∗∗R and the
corresponding (component-wise positive) eigenvalue.

2
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Lemma 5.3 For any γ > 0, µ > 0,

lim sup
x→∞

xµPr{Vφ1
1 > (1 + γ)x}

Pr{Vφ1
1 > x}

= 0.

Proof
The proof follows immediately from the fact that Pr{Vφ1

1 > x} decays exponentially at
rate s∗, where s∗ > 0 is the solution of Mφ1(s) = 0 [14].

2

Lemma 5.4 For any α > 0, µ > 0,

lim sup
x→∞

xµPr{Vφ1
1 ( (1−α)x

ρ̂1−φ1
) > x}

Pr{Vφ1
1 > x}

= 0.

Proof
The proof consists of three steps. First we give a sufficient condition for the lemma to hold,
explicitly using the fact that the Markov fluid source has a bounded peak rate RP . Then
we estimate the decay rate of the event that a queue of capacity φ1 fed by a Markov fluid
source reaches overflow at time t. Finally we identify the most likely epoch of overflow,
and show that this implies the required property.

• Obviously,

Pr{Vφ1
1 (

(1− α)x
ρ̂1 − φ1

) > x} ≤ Pr{∃t ≤ Tx(α) : A1(0, t)− φ1t > x}

≤
Tx(α)∑
t=0

Pr{A1(0, t) − φ1t > x− (RP − φ1)},

with

Tx(α) :=
⌈

(1− α)x
ρ̂1 − φ1

⌉
.

From

max
t=0,...,Tx(α)

Pr{A1(0, t) − φ1t > x− (RP − φ1)}

≤
Tx(α)∑
t=0

Pr{A1(0, t) − φ1t > x− (RP − φ1)}

≤ (Tx(α) + 1) max
t=0,...,Tx(α)

Pr{A1(0, t)− φ1t > x− (RP − φ1)}

and

lim
x→∞

1
x

log(Tx(α) + 1) = 0,
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we find that

lim sup
x→∞

1
x

log
Tx(α)∑
t=0

Pr{A1(0, t) − φ1t > x− (RP − φ1)}

= lim sup
x→∞

1
x

log max
t=0,...,Tx(α)

Pr{A1(0, t) − φ1t > x− (RP − φ1)}

≤ lim sup
x→∞

1
x

log sup
t∈[0,Tx(α)]

Pr{A1(0, t) − φ1t > x− (RP − φ1)}

≤ lim sup
x→∞

1
x

log sup
t∈[Sx,Tx(α)]

Pr{A1(0, t)− φ1t > x− (RP − φ1)}. (14)

with Sx := (x−RP )/(RP −φ1). Notice that we can indeed exclude all t smaller than
Sx from the optimization, because in that range no overflow is possible. Clearly, we
have proven the stated if we show that the latter decay rate is strictly smaller than s∗

for all α > 0.

• For x large enough, and all t between Sx and Tx(α), due to Chebychev’s inequality,
and Property 2.1,

Pr{A1(0, t) − φ1t > x− (rP − φ1)} ≤ inf
s>0

E{es(A1(0,t)−φ1t)}
es(x−(rP−φ1))

≤ C inf
s>0

eMφ1
(s)t

es(x−(rP−φ1))
.

Now replace t in (14) by

tx(β) =
(1− β)x
ρ̂1 − φ1

,

then the supremum is over β ∈ [α, 1]. The infimum over s > 0 is calculated by
differentiation. We get the first-order condition

M ′φ1
(s) =

(x− (RP − φ1))(ρ̂1 − φ1)
(1− β)x

.

It is easily verified that the right-hand side of the previous display equals (ρ̂1 −
φ1)(1 + β) for x large and β small. Call the solution s∗(β).

Now recall that s∗ solves Mφ1(s) = 0, and that M ′φ1
(s∗) = ρ̂1 − φ1 > 0, see Prop-

erty 2.1. Using

M ′φ1
(s) = M ′φ1

(s∗) +M ′′φ1
(s∗)(s− s∗) + O((s− s∗)2) =

ρ̂1 − φ1 +M ′′φ1
(s∗)(s− s∗) + O((s− s∗)2),

it is elementary to show that

s∗(β) = s∗ + δβ + O(β2), where δ :=
ρ̂1 − φ1

M ′′φ1
(s∗)

;
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the convexity of Mφ1(·) implies that δ is positive. We also get that

Mφ1(s∗(β)) = Mφ1(s∗) +M ′φ1
(s∗)δβ + O(β2) = M ′φ1

(s∗)δβ + O(β2)

and

lim
x→∞

1
x

log inf
s>0

etx(β)Mφ1
(s)

es(x−(rP−φ1))
= lim

x→∞
1
x

(tx(β)Mφ1(s∗(β))− s∗(β)x) =

(
1− β
ρ̂1 − φ1

M ′φ1
(s∗)− 1

)
δβ − s∗ = −δ

(
M ′φ1

(s∗)
ρ̂1 − φ1

)
β2 − s∗ = −δβ2 − s∗.

• Recall that we have to perform the optimization over β ∈ [α, 1]. The supremum
over β is clearly attained at β = α > 0. Now the stated follows from the fact that
Pr{Vφ1

1 > x} decays at rate s∗, as explained in the first step of the proof.

2

Remark 5.1 The results of Glynn & Whitt [11] suggest that the derived properties hold
for a more general class of arrival processes than just Markov fluid. Upon inspection of the
proofs in the present section, we see that two properties were explicitly exploited. In the
first place it was repeatedly used that the source has a bounded peak rate. Secondly, it is
required that the dependence between A1(r, t∗) and A1(t∗, 0) is rather mild. This leads us
to believe that the lemmas still hold if the exponential sojourn times of the Markov fluid
source are replaced by other light-tailed random variables.

6 Asymptotic analysis

We now use the results from the previous section to show that the lower and upper bounds
for Pr{V1 > x} of Section 4 asymptotically coincide, resulting in the decompositional form
of (3). For the proof, we need to make certain assumptions on the behavior of the drain
time distribution Pr{T1−ρ1

2 > x
ρ̂1−φ1

}. In later sections, we will determine the specific form
of the drain time distribution, and find that flow 2 indeed satisfies these assumptions. For
notational convenience, we frequently switch to a variable x̂, which should be thought of
as playing the role of x

ρ̂1−φ1
.

Lemma 6.1 Suppose that the input process A1(s, t) satisfies Property 2.1 with c1 = φ1

and that flow 2 satisfies Assumptions 6.1-6.3 listed below with c = 1 − ρ1. Assume that
ρi < φi, i = 1, 2, and r2 > φ2 in case of fluid input of flow 2. Then

Pr{V1 > x} ∼ Pr{Vφ1
1 > x}Pr{T1−ρ1

2 >
x

ρ̂1 − φ1
}.

Assumption 6.1 For any α > 0, γ > 0, ε > 0, either (a)

lim inf
x̂→∞

Pr{Tc+ε
2 (γx̂) > (1 + α)x̂}

Pr{Tc
2 > x̂} = F c(α, γ, ε),
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with lim
α,γ,ε↓0

F c(α, γ, ε) = 1, or (b)

lim inf
x̂→∞

Pr{T2 > (1 + α)x̂}
Pr{Tc

2 > x̂} = F (α),

with lim
α↓0

F (α) = 1.

Assumption 6.2 For any α > 0, γ > 0, ε > 0,

lim sup
x̂→∞

Pr{Tc−ε
2 (−γx̂) > (1− α)x̂}

Pr{Tc
2 > x̂} = Gc(α, γ, ε),

with lim
α,γ,ε↓0

Gc(α, γ, ε) = 1.

Assumption 6.3 For some µ > 0,

lim inf
x→∞

x̂µPr{Tc
2 > x̂} ≥ 1.

Proof of Lemma 6.1
The proof consists of a lower bound and an upper bound which asymptotically coincide.
We start with the lower bound. We distinguish between two cases: Assumption 6.1 (a);
Assumption 6.1 (b).
(a) Using Corollary 4.1 with v =∞, y = γx

ρ̂1−φ1
, Proposition 5.1, and Lemma 5.1,

lim inf
x→∞

Pr{V1 > x}
Pr{Vφ1

1 > x}Pr{T1−ρ1
2 > x

ρ̂1−φ1
}
≥

lim inf
x→∞

Pr{Vφ1
1 ( (1+α)x

ρ̂1−φ1
) > x}

Pr{Vφ1
1 > x}

lim inf
x→∞

Pr{T1−ρ1+ε
2 ( γx

ρ̂1−φ1
) > (1+α)x

ρ̂1−φ1
}

Pr{T1−ρ1
2 > x

ρ̂1−φ1
}

lim inf
x→∞

Pr{sup
r≤s∗
{(ρ1 − ε)(s∗ − r)−A1(r, s∗)} ≤ γx

ρ̂1 − φ1
| A1(s∗, 0) + φ1s

∗ > x} =

F 1−ρ1(α, γ, ε).

Letting α, γ, ε ↓ 0 completes the proof.
(b) Using Corollary 4.1 with v = 0, y = 0, and Proposition 5.1, noting that P ρ1−ε(s∗, 0, x, 0) =
1,

lim inf
x→∞

Pr{V1 > x}
Pr{Vφ1

1 > x}Pr{T1−ρ1
2 > x

ρ̂1−φ1
}
≥

lim inf
x→∞

Pr{Vφ1
1 ( (1+α)x

ρ̂1−φ1
) > x}

Pr{Vφ1
1 > x}

lim inf
x→∞

Pr{T2 >
(1+α)x
ρ̂1−φ1

}
Pr{T1−ρ1

2 > x
ρ̂1−φ1

}
= F (α).

Then let α ↓ 0.
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We now turn to the upper bound. Using Corollary 4.2 with v = ∞, y = γx
2(ρ̂1−φ1) , Lem-

mas 5.2-5.4, and Assumptions 6.2, 6.3, for some µ > 0,

lim sup
x→∞

Pr{V1 > x}
Pr{Vφ1

1 > x}Pr{T1−ρ1
2 > x

ρ̂1−φ1
}

≤ lim sup
x→∞

Pr{T1−ρ1−ε
2 ( −γxρ̂1−φ1

) > (1−α)x
ρ̂1−φ1

}
Pr{T1−ρ1

2 > x
ρ̂1−φ1

}
+ lim sup

x→∞

xµPr{Vφ1
1 > (1 + γ

2(ρ̂1−φ1))x}

Pr{Vφ1
1 > x}

+ lim sup
x→∞

xµPr{Vφ1
1 ( (1−α)x

ρ̂1−φ1
) > x}

Pr{Vφ1
1 > x}

+ lim sup
x→∞

xµPr{sup
r≤s∗
{A1(r, s∗)− (ρ1 + ε)(s∗ − r)} > γx

2(ρ̂1 − φ1)
| A1(s∗, 0) + φ1s

∗ > x}

= G1−ρ1(α, γ, ε).

Letting α, γ, ε ↓ 0 completes the proof.
2

In order to complete the proof of Theorem 3.1, it remains to be shown that flow 2 satisfies
Assumptions 6.1-6.3 above, with Pr{T1−ρ1

2 > x
ρ̂1−φ1

} as in (4)-(6). This is done in the
next four sections.

7 Preliminary results for the heavy-tailed flow

To determine the behavior of Pr{T1−ρ1
2 > x

ρ̂1−φ1
} as x → ∞, we will reduce the space of

all relevant sample paths to a single most-likely scenario, which occurs with overwhelming
probability. In this section, we establish some preliminary results which we will use to
neglect the contribution of all non-dominant scenarios.
Large-deviations arguments for heavy-tailed distributions suggest that a persistent backlog
as associated with the event T1−ρ1

2 > x
ρ̂1−φ1

, for large x, is most likely due to just a single
large burst or long On-period. To formalize this idea, we first introduce some additional
notation. A burst is called large if the size exceeds κx̂, with κ > 0 some small constant,
independent of x̂. Also, an On-period is called long if the length exceeds κx̂. In case of
instantaneous input, we denote by Nκx̂[l, r] the number of large bursts of flow 2 arriving
in the time interval [l, r]. In case of an On-Off process, we define Nκx̂[l, r] as the number
of long On-periods overlapping with the time interval [l, r], including the On-period which
may be in progress at time l.
Depending on the traffic scenario, we denote by N(t) either the number of bursts or the
number of On-periods of flow 2 in the time interval [0, t]. An upper bound for this process
is given by

N(t) ≤ NU (t) := {n :
n∑
i=1

U2i ≤ t}+ 1,

with U2i i.i.d. random variables representing either interarrival times or Off-periods of
flow 2, depending on the traffic scenario.
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We now state a crucial lemma which will allow us to limit the attention to large bursts
and long On-periods, and replace all remaining traffic activity by its average rate. The
lemma is a minor modification of Lemma 3 in Resnick & Samorodnitsky [21].

Lemma 7.1 Let Sn = X1 + . . . + Xn be a random walk with i.i.d. step sizes such that
E{X1} < 0 and E{Xp

1} <∞ for some p > 1. Then, for any µ <∞, there exists a κ∗ > 0
and a function φ(·) ∈ R−µ such that for all κ ∈ (0, κ∗],

Pr{Sn > x̂|Xi ≤ κx̂, i = 1, . . . , n} ≤ φ(x̂)

for all n and x̂.

Note that if Xi can be represented as the difference of two non-negative independent
random variables X1

i and X2
i , then the lemma remains valid if the Xi’s are replaced by

the X1
i ’s.

We now use the above lemma to show that the workload of flow 2 cannot significantly
deviate from the normal drift over intervals of the order x̂ when there are no large bursts.

Lemma 7.2 If B2(·) ∈ R−ν2, then for any η > 0, θ > 0, there exists a κ∗ > 0 such that
for all κ ∈ (0, κ∗],

Pr{T2((θ − (φ2 − ρ2)η)x̂) > ηx̂,Nκx̂[0, ηx̂] = 0} = o(Pr{Br
2 > x̂(φ2 − ρ2)})

as x̂→∞.

Proof
The event T2((θ − (φ2 − ρ2)η)x̂) > ηx̂ means that

inf
0≤u≤ηx̂

{A2(0, u) − φ2u} > (θ − (φ2 − ρ2)η)x̂,

which in particular implies that

A2(0, ηx̂)− φ2ηx̂ > (θ − (φ2 − ρ2)η)x̂,

or equivalently,

A2(0, ηx̂)− (ρ2 + θ/2η)ηx̂ > θx̂/2,

so that also

sup
0≤u≤ηx̂

{A2(0, u) − (ρ2 + θ/2η)u} > θx̂/2.

Now let Sn := X1 + . . .+Xn be a random walk with step sizes Xi := B2i−(ρ2 +θ/2η)U2i,
with U2i and B2i i.i.d. random variables representing the interarrival times and burst sizes
of flow 2, respectively. Note that Xi represents the net increase in the workload in a queue
of capacity ρ2 + θ/2η between two consecutive bursts, and that E{Xi} < 0.
Because of the saw-tooth nature of the process {A2(0, u) − (ρ2 + θ/2η)u}, we have

sup
0≤u≤t

{A2(0, u) − (ρ2 + θ/2η)u} ≤ B20 + sup
1≤n≤N(t)

Sn.
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Thus,

Pr{T2((θ − (φ2 − ρ2)η)x̂) > ηx̂,Nκx̂[0, ηx̂] = 0}
≤ Pr{B20 + sup

1≤n≤N(ηx̂)
Sn ≥ θx̂/2,Nκx̂[0, ηx̂] = 0}

≤ Pr{B20 + sup
1≤n≤N(ηx̂)

Sn ≥ θx̂/2 | Nκx̂[0, ηx̂] = 0}

≤ Pr{B20 + sup
1≤n≤N(ηx̂)

Sn ≥ θx̂/2 | B2i ≤ κx̂, i ≥ 0}

≤ Pr{ sup
1≤n≤N(ηx̂)

Sn ≥ (θ/2− κ)x̂ | B2i ≤ κx̂, i ≥ 1}

≤ Pr{ sup
1≤n≤(λ2+ε)ηx̂

Sn ≥ (θ/2− κ)x̂ | B2i ≤ κx̂, i ≥ 1}+ Pr{N(ηx̂) > (λ2 + ε)ηx̂}

≤
(λ2+ε)ηx̂∑
i=1

Pr{Sn ≥ (θ/2− κ)x̂ | B2i ≤ κx̂, i = 1, . . . , n}+ Pr{N(ηx̂) > (λ2 + ε)ηx̂}.

The second term decays exponentially fast as x̂ → ∞. According to Lemma 7.1, there
exists a κ∗ > 0 and a function φ(·) ∈ R−µ, µ > ν2, such that for all κ ∈ (0, κ∗], each of
the probabilities in the first term is upper bounded by φ(x̂). The statement then follows.

2

We now formulate the counterpart of the above lemma for On-Off processes, meaning that
the workload of flow 2 closely follows the drift over intervals of the order x̂ when there are
no long On-periods.

Lemma 7.3 If A2(·) ∈ R−ν2 , then for any η > 0, θ > 0, there exists a κ∗ > 0 such that
for all κ ∈ (0, κ∗],

Pr{T2((θ − (φ2 − ρ2)η)x̂) > ηx̂,Nκx̂[0, ηx̂] = 0} = o(Pr{Ar
2 >

x̂(φ2 − ρ2)
r2 − ρ2

})

as x̂→∞.

Proof
Let Sn := X1 + . . .+Xn be a random walk with step sizes Xi := (r2−ρ2−θ/2η)A2i−(ρ2 +
θ/2η)U2i, with A2i and U2i i.i.d. random variables representing the On-periods and Off-
periods of flow 2, respectively. Note that Xi represents the net increase in the workload in
a queue of capacity ρ2 + θ/2η during an Off-period and consecutive On-period, and that
E{Xi} < 0.
Because of the saw-tooth nature of the process {A2(0, u) − (ρ2 + θ/2η)u}, we have

sup
0≤u≤t

{A2(0, u) − (ρ2 + θ/2η)u} ≤ (r2 − ρ2)A20 + sup
1≤n≤N(t)

Sn ≤

(r2 − ρ2)A20 + sup
1≤n≤NU (t)

Sn.

The remainder of the proof is similar to that of Lemma 7.2.
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2

We now prove that it is relatively unlikely for flow 2 to generate two large bursts in an
interval of order x̂.

Lemma 7.4 If B2(·) ∈ R−ν2, then for any α < 1, κ > 0,

Pr{Nκx̂[0, (1 − α)x̂] ≥ 2} = o(Pr{Br
2 > x̂(φ2 − ρ2)})

as x̂→∞.

Proof
By definition,

Pr{Nκx̂[0, (1 − α)x̂] ≥ 2} = Pr{#{j ∈ {1, . . . ,N((1− α)x̂)} : B2j ≥ κx̂} ≥ 2}

≤ Pr{#{j ∈ {1, . . . ,NU ((1− α)x̂)} : B2j ≥ κx̂} ≥ 2}.

Now condition on NU ((1− α)x̂). This yields the following upper bound

E{NU ((1− α)x̂)2}Pr{B2 ≥ κx̂}2.

Finally, observe that E{NU ((1− α)x̂)2} is quadratic in x̂ for x̂→∞.
2

We now state the counterpart of the above lemma for On-Off processes, meaning that the
probability that flow 2 experiences two long On-periods during an interval of order x̂ is
negligibly small.

Lemma 7.5 If A2(·) ∈ R−ν2, then for any α < 1, κ > 0,

Pr{Nκx̂[0, (1 − α)x̂] ≥ 2} = o(Pr{Ar
2 >

x̂(φ2 − ρ2)
r2 − ρ2

})

as x̂→∞.

Proof
This lemma is a variant of Proposition 6.3 of [23]. Note that

Pr{Nκx̂[0, (1 − α)x̂] ≥ 2} ≤

(1− p2)Pr{Ar
2 ≥ κx̂}Pr{#{j ∈ {1, . . . ,NU ((1− α)x̂)} : A2j ≥ κx̂} ≥ 1}+

Pr{Nκx̂[0, (1 − α)x̂] ≥ 2,flow 2 is Off at time 0}.

By conditioning upon NU ((1 − α)x̂), one can bound the second probability in the first
term by E{NU ((1−α)x̂)}Pr{A2 ≥ κx̂}. The first factor is linear in x̂ for x̂→∞, whereas
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the second is in R−ν2. Hence, the first term is in R2(1−ν2). To bound the second term,
condition (again) on NU ((1− α)x̂). This yields

Pr{Nκx̂[0, (1 − α)x̂] ≥ 2,flow 2 is Off at time 0} ≤ E{NU ((1− α)x̂)2}Pr{A2 ≥ κx̂}2.

Finally, note that, as in Lemma 7.4, E{NU ((1− α)x̂)2} is quadratic in x̂ for x̂→∞.
2

We now prove that the amount of traffic generated by flow 2 after turning Off is not below
average by any significant margin.

Lemma 7.6 Suppose that flow 2 turns Off at time v. Then for any δ > 0, θ > 0,

lim
x̂→∞

Pr{sup
u≥v
{(ρ2 − δ)(u− v)−A2(v, u)} ≤ θx̂} = 1.

Proof
Let Sn := X1+. . .+Xn be a random walk with step sizes Xi := (ρ2−δ−r2)A2i+(ρ2−δ)U2i,
with A2i and U2i i.i.d. random variables representing the On-periods and Off-periods of
flow 2, respectively. Note that Xi represents the net decrease in the workload in a queue
of capacity ρ2− δ fed by flow 2 during an On-period and consecutive Off-period, and that
E{Xi} < 0.
Now observe that

sup
u≥v
{(ρ2 − δ)(u− v)−A2(v, u)} ≤ (ρ2 − δ)U20 + sup

n≥1
Sn,

so that

Pr{sup
u≥v
{(ρ2 − δ)(u − v)−A2(v, u)} ≤ θx̂}

= 1− Pr{sup
u≥v
{(ρ2 − δ)(u − v)−A2(v, u)} > θx̂}

≥ 1− Pr{(ρ2 − δ)U20 + sup
n≥1

Sn > θx̂}.

The probability in the last term goes to 0 as x̂→∞ for any θ > 0, since the maximum of
a random walk with negative drift is finite with probability 1.

2

Lemma 7.7 If B2(·) ∈ R−ν2, then for any 0 < ξ < 1− α, ζ > 0, κ > 0,

Pr{Nκx̂[ξx̂, (1− α)x̂] ≥ 1, V c
2 (0) > ζx̂} = o(Pr{Br

2 > x̂(φ2 − ρ2)})

as x̂→∞.

Proof
Because of independence, the probability equals

Pr{Nκx̂[ξx̂, (1− α)x̂] ≥ 1}Pr{V c
2 (0) > ζx̂}.
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By conditioning upon NU ((1− α− ξ)x̂), we have

Pr{Nκx̂[ξx̂, (1− α)x̂] ≥ 1} ≤ E{NU ((1− α− ξ)x̂)}Pr{B2 > κx̂}.

As before the first term is linear in x̂ for x̂ → ∞. The statement then follows from the
fact that B2(·) ∈ R−ν2 in combination with Theorem 2.1.

2

Lemma 7.8 If Ar2(·) ∈ R−ν2, then for any c ∈ (ρ2, r2), 0 < ξ < 1− α, ζ > 0, κ > 0,

Pr{Nκx̂[0, (1 − α)x̂] = 1,Nκx̂[0, ξx̂] = 0, V c
2 (0) ≥ ζx̂} = o(Pr{Ar

2 >
x̂(φ2 − ρ2)
r2 − ρ2

})

as x̂→∞.

Proof
The event Nκx̂[0, ξx̂] = 0 in conjunction with Nκx̂[0, (1− α)x̂] = 1 implies that flow 2 has
switched On at some time t in the interval [ξx̂, (1 − α)x̂]. Therefore, an upper bound is
given by

Pr{Nκx̂[ξx̂, (1− α)x̂] = 1, long On-period started after time ξx̂, V c
2 (0) ≥ ζx̂} =

Pr{#{j ∈ {1, . . . ,NU ((1− α− ξ)x̂)} : A2j > κx̂} = 1}Pr{V c
2 (0) ≥ ζx̂}.

By conditioning upon NU ((1− α− ξ)x̂), the first term can be bounded by

E{NU ((1− α− ξ)x̂)}Pr{A2 > κx̂}.

Combining the fact that A2(·) ∈ R−ν2 with Theorem 2.2 then completes the proof.
2

8 Case I: instantaneous input

In this section we consider the case where flow 2 generates instantaneous traffic bursts of
regularly varying size. The next theorem shows that flow 2 then satisfies Assumptions 6.1-
6.3 and that (4) holds.

Theorem 8.1 If B2(·) ∈ R−ν2, then for any c > ρ2, α > 0, γ > 0,

Pr{Tc
2(γx̂) > (1 + α)x̂} >∼ ρ2

c− ρ2
Pr{Br

2 > ((φ2 − ρ2)(1 + α) + γ)x̂}, (15)

Pr{Tc
2(−γx̂) > (1−α)x̂} <∼ ρ2

c− ρ2
Pr{Br

2 > ((φ2−ρ2)(1−α)−γ c + φ2 − 2ρ2

φ2 − ρ2
)x̂},(16)

and

Pr{Tc
2 > x̂} ∼ ρ2

c− ρ2
Pr{Br

2 > x̂(φ2 − ρ2)}. (17)
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Before giving the formal proof of the above theorem, we first provide an intuitive argument.
Consider a queue of capacity φ2 fed by the arrival process of flow 2. In order for the event
Tc

2 > x̂ to occur, the workload must remain positive throughout the interval [0, x̂], given
that the initial workload is V c

2 (0). Note that the normal drift in the workload is ρ2−φ2 < 0.
Thus, there is a ‘deficit’ (φ2−ρ2)x̂, which must be compensated for by the initial workload
V c

2 (0) plus possibly flow 2 showing above-average activity during the interval [0, x̂].
We claim that the most likely way for the gap to be filled is by a large initial workload
only, i.e., V c

2 (0) > (φ2 − ρ2)x̂. This in turn is most probably due to an extremely large
burst of flow 2 somewhere before time 0, which is consistent with the usual situation for
heavy-tailed distributions that a large deviation is caused by just a single exceptional
event. Using Theorem 2.1, we see that the probability of this event is indeed exactly the
right-hand side of (17).
Note that it is unlikely for the gap to be filled by flow 2 producing extra traffic during
the interval [0, x̂], because this would require a large burst arriving almost immediately
after time 0. The probability of this event is negligibly small compared to that of V c

2 (0) >
(φ2 − ρ2)x̂. A combination of both is even less likely, since this would amount to two rare
events occurring simultaneously.
The above arguments will be formalized in the proof below. We first prove that the
event V c

2 (0) > (φ2 − ρ2)x̂ indeed implies that Tc
2 > x̂ for large x̂, thus obtaining a lower

bound for the probability of the latter event. Next we show that for large x̂ the event
V c

2 (0) > (φ2 − ρ2)x̂ is also necessary for Tc
2 > x̂ to occur, by proving that the probability

of all other possible scenarios is negligibly small.

Proof of Theorem 8.1
We start with the proof of (15). We first prove that for any α > 0, γ > 0, δ > 0, θ > 0,
the event

Tc
2(γx̂) > (1 + α)x̂ (18)

is implied by the events

V c
2 (0) > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂,

and

sup
0≤u≤(1+α)x̂

{(ρ2 − δ)u−A2(0, u)} ≤ θx̂.

The second event means that for all u ∈ [0, (1 + α)x̂],

A2(0, u) ≥ (ρ2 − δ)u− θx̂.

Thus, for all u ∈ [0, (1 + α)x̂],

V c
2 (0) +A2(0, u) − φ2u > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂+ (ρ2 − δ)u − θx̂− φ2u

= (φ2 − ρ2 + δ)((1 + α)x̂− u) + γx̂

≥ γx̂,

so that

inf{u ≥ 0 : V c
2 (0) +A2(0, u) − φ2u ≤ γx̂} > (1 + α)x̂,
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which gives (18).
Hence, using independence of V c

2 (0) and A2(0, u),

Pr{Tc
2(γx̂) > (1 + α)x̂} ≥

Pr{V c
2 (0) > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂}Pr{ sup

0≤u≤(1+α)x̂
{(ρ2 − δ)u −A2(0, u)} ≤ θx̂}.

Using Theorem 2.1,

Pr{V c
2 (0) > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂} ∼

ρ2

c− ρ2
Pr{Br

2 > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂)}.

Also, for all α > 0, δ > 0, θ > 0,

Pr{ sup
0≤u≤(1+α)x̂

{(ρ2 − δ)u−A2(0, u)} ≤ θx̂} ≥ Pr{sup
u≥0
{(ρ2 − δ)u−A2(0, u)} ≤ θx̂} → 1,

as x̂→∞, since E{A2(0, u)} = ρ2u.
Thus, for all α > 0, γ > 0, δ > 0, θ > 0,

Pr{Tc
2(γx̂) > (1 + α)x̂} >∼ ρ2

c− ρ2
Pr{Br

2 > ((φ2 − ρ2 + δ)(1 + α) + γ + θ)x̂}.

Letting δ ↓ 0, θ ↓ 0, using the fact that Br
2(·) ∈ IR, (15) follows.

We now turn to the proof of (16).
By partitioning, we obtain for any α > 0, γ > 0, ζ > 0, θ > 0, κ > 0, w ≥ 0,

Pr{Tc
2(−γx̂) > (1− α)x̂}

= Pr{Tc
2(−γx̂) > (1− α)x̂, V c

2 (w) > ((φ2 − ρ2)(1− α)− γ − θ)x̂− cw}
+ Pr{Tc

2(−γx̂) > (1− α)x̂, V c
2 (w) ≤ ((φ2 − ρ2)(1− α)− γ − θ)x̂− cw,

Nκx̂[0, w] ≤ 1,Nκx̂[w, (1 − α)x̂] = 0}
+ Pr{Tc

2(−γx̂) > (1− α)x̂, V c
2 (w) ≤ ((φ2 − ρ2)(1− α)− γ − θ)x̂− cw,

Nκx̂[0, w] = 0,Nκx̂[w, (1 − α)x̂] = 1, V c
2 (0) ≤ ζx}

+ Pr{Tc
2(−γx̂) > (1− α)x̂, V c

2 (w) ≤ ((φ2 − ρ2)(1− α)− γ − θ)x̂− cw,
Nκx̂[0, w] = 0,Nκx̂[w, (1 − α)x̂] = 1, V c

2 (0) > ζx}
+ Pr{Tc

2(−γx̂) > (1− α)x̂, V c
2 (w) ≤ ((φ2 − ρ2)(1− α)− γ − θ)x̂− cw,

Nκx̂[0, (1 − α)x̂] ≥ 2},

which is obviously upper bounded by

Pr{V c
2 (w) > ((φ2 − ρ2)(1− α)− γ − θ)x̂− cw}

+ Pr{Tc
2(−γx̂) > (1− α)x̂, V c

2 (w) ≤ ((φ2 − ρ2)(1− α)− γ − θ)x̂− cw,
Nκx̂[w, (1 − α)x̂] = 0}

+ Pr{Tc
2(−γx̂) > (1− α)x̂,Nκx̂[0, w] = 0, V c

2 (0) ≤ ζx}
+ Pr{Nκx̂[w, (1 − α)x̂] ≤ 1, V c

2 (0) > ζx}
+ Pr{Nκx̂[0, (1 − α)x̂] ≥ 2}
= (A) + (B) + (C) + (D) + (E).
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Take w = ξx, with

ξ :=
γ + ζ + θ

φ2 − ρ2
< 1− α.

Now consider term (A). Using Theorem 2.1,

(A) = Pr{Vc
2 > ((φ2 − ρ2)(1− α)− γ − θ − (c− ρ2)ξ)x̂}

∼ ρ2

c− ρ2
Pr{Br

2 > ((φ2 − ρ2)(1− α)− γ − θ − (c− ρ2)ξ)x̂}

=
ρ2

c− ρ2
Pr{Br

2 > ((φ2 − ρ2)(1− α)− γ − θ − (c− ρ2)(γ + ζ + θ)
φ2 − ρ2

)x̂}.

Next, consider term (B). The event Tc
2(−γx̂) > (1− α)x̂ means that

inf
0≤u≤(1−α)x̂

{V c
2 (0) +A2(0, u) − φ2u} > −γx̂.

Now observe that

inf
0≤u≤(1−α)x̂

{V c
2 (0) +A2(0, u) − φ2u}

≤ V c
2 (0) + inf

w≤u≤(1−α)x̂
{A2(0, u)− φ2u}

≤ V c
2 (0) + inf

w≤u≤(1−α)x̂
{A2(0, w) − φ2w +A2(w, u) − φ2(u− w)}

≤ V c
2 (0) +A2(0, w) − φ2w + inf

w≤u≤(1−α)x̂
{A2(w, u) − φ2(u− w)}

≤ V c
2 (w) + (c− φ2)w + inf

w≤u≤(1−α)x̂
{A2(w, u) − φ2(u− w)}.

Thus, the event Tc
2(−γx̂) > (1− α)x̂ implies

inf
w≤u≤(1−α)x̂

{A2(0, u)− φ2u} > −V c
2 (w) − (c− φ2)w − γx̂,

so that

(B) ≤ Pr{ inf
w≤u≤(1−α)x̂

{A2(w, u)− φ2(u−w)} > −V c
2 (w)− (c− φ2)w − γx̂,

V c
2 (w) ≤ ((φ2 − ρ2)(1− α)− γ − θ)x̂− (c− ρ2)w,Nκx̂[w, (1 − α)x̂] = 0}

≤ Pr{ inf
w≤u≤(1−α)x̂

{A2(w, u)− φ2(u−w)} > θx̂− (φ2 − ρ2)((1− α)x̂− w),

Nκx̂[w, (1 − α)x̂] = 0}
= Pr{ inf

0≤u≤(1−α)x̂−w
{A2(0, u) − φ2u} > θx̂− (φ2 − ρ2)((1− α)x̂− w),

Nκx̂[0, (1 − α)x̂− w] = 0}
= Pr{ inf

0≤u≤(1−α−ξ)x̂
{A2(0, u) − φ2u} > (θ − (φ2 − ρ2)(1− α− ξ))x̂,

Nκx̂[0, (1 − α− ξ)x̂] = 0}
= Pr{T2(θ − (φ2 − ρ2)(1− α− ξ))x̂) > (1− α− ξ)x̂,Nκx̂[0, (1 − α− ξ)x̂] = 0}.

Finally, consider term (C). The event Tc
2(−γx̂) > (1− α)x̂ means that

inf
0≤u≤(1−α)x̂

{V c
2 (0) +A2(0, u) − φ2u} > −γx̂.
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Now observe that

inf
0≤u≤(1−α)x̂

{V c
2 (0) +A2(0, u) − φ2u} ≤ V c

2 (0) + inf
0≤u≤w

{A2(0, u) − φ2u}.

Thus, the event Tc
2(−γx̂) > (1− α)x̂ implies

inf
0≤u≤w

{A2(0, u) − φ2u} > −V c
2 (0) − γx̂,

so that

(C) ≤ Pr{ inf
0≤u≤w

{A2(0, u)− φ2u} > −V c
2 (0) − γx̂,Nκx̂[0, w] = 0, V c

2 (0) ≤ ζx̂}

≤ Pr{ inf
0≤u≤w

{A2(0, u)− φ2u} > −(γ + ζ)x̂,Nκx̂[0, w] = 0}

= Pr{ inf
0≤u≤ξx̂

{A2(0, u)− φ2u} > −(θ + (φ2 − ρ2)ξ)x̂,Nκx̂[0, ξx̂] = 0}

= Pr{T2((θ − (φ2 − ρ2)ξ)x̂) > ξx̂,Nκx̂[0, ξx̂] = 0}.

Thus, taking η = ξ and η = 1− α− ξ in Lemma 7.2, and using Lemma 7.4, we obtain

Pr{Tc
2(−γx̂) > (1− α)x̂} <∼ ρ2

c− ρ2
Pr{Br

2 > ((φ2 − ρ2)(1− α)− γ − θ − (c− ρ2)(γ + ζ + θ)
φ2 − ρ2

)x̂}.

Letting ζ ↓ 0, θ ↓ 0, using the fact that Br
2(·) ∈ IR, (16) follows.

Finally, note that (17) follows from (15) and (16) by letting α ↓ 0, γ ↓ 0, and using the
fact that Br

2(·) ∈ IR.
2

9 Case II-A: fluid heavy-tailed input with r2 < 1− ρ1

We now consider the case where flow 2 generates traffic according to an On-Off process
with peak rate r2 < 1−ρ1. The next theorem shows that flow 2 satisfies Assumptions 6.1-
6.3 and that (5) holds.

Theorem 9.1 If A2(·) ∈ R−ν2 , then for any α > 0, γ > 0,

Pr{T2 > (1 + α)x̂} >∼ (1− p2)Pr{Ar
2 >

φ2 − ρ2

r2 − ρ2
(1 + α)x̂}, (19)

Pr{T2(−γx̂) > (1−α)x̂} <∼ (1−p2)Pr{Ar
2 > (

(φ2 − ρ2)(1− α)− γ
r2 − ρ2

− γ

φ2 − ρ2
)x̂},(20)

and

Pr{T2 > x̂} ∼ (1− p2)Pr{Ar
2 >

φ2 − ρ2

r2 − ρ2
x̂}. (21)
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Before giving the formal proof of the above theorem, we first provide an intuitive argument.
Consider a queue of capactity φ2 fed by the arrival process of flow 2. In order for the event
Tc

2 > x̂ to occur, the workload must remain positive throughout the interval [0, x̂], given
that the initial workload is 0. Note that the normal drift in the workload is ρ2 − φ2 < 0.
Thus, there is a ‘deficit’ (φ2 − ρ2)x̂, which must be made up for by flow 2 showing above-
average activity during the interval [0, x̂].
We claim that the most likely way for the gap to be filled is by a single long On-period of
flow 2 covering the entire interval [0, v], with v := (φ2−ρ2)x̂

r2−ρ2
. (When On, flow 2 generates

above-average traffic at rate r2−ρ2 > 0, so this event (call it E(x̂)) makes up for the entire
deficit.) This is consistent with the usual situation for heavy-tailed distributions that a
large deviation is caused by just a single exceptional event. Observe that the probability
of this event is indeed exactly the right-hand side of (21). Note that it is unlikely for the
gap to be filled by several long On-periods, since the probability of this happening is an
order of magnitude smaller.
The above arguments will be formalized in the proof below. We first prove that the event
E(x̂) indeed implies that Tc

2 > x̂ for large x̂, thus obtaining a lower bound for the proba-
bility of the latter event. Next we show that for large x̂ the event E(x̂) is also necessary
for Tc

2 > x̂ to occur, by proving that the probability of all other possible scenarios is
negligibly small.

Proof
We first prove that for any α > 0, δ > 0, θ > 0, the event

T2 > (1 + α)x̂ (22)

is implied by the event E(x̂) that flow 2 is On at time 0 and turns Off again at time
v > τx̂, with

τ :=
(φ2 − ρ2 + δ)(1 + α) + θ

r2 − ρ2 + δ
,

combined with

sup
v≤u≤(1+α)x̂

{(ρ2 − δ)(u − v)−A2(v, u)} ≤ θx̂.

The second event means that for all u ∈ [v, (1 + α)x̂],

A2(v, u) ≥ (ρ2 − δ)(u− v)− θx̂.

We distinguish between two cases.
i. 0 ≤ u ≤ v.
Then

A2(0, u) − φ2u = r2u− φ2u ≥ 0.

ii. v ≤ u ≤ (1 + α)x̂.
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Then

A2(0, u) − φ2u = A2(0, v) +A2(v, u) − φ2u

≥ r2v + (ρ2 − δ)(u − v)− θx̂− φ2u

= (r2 − ρ2 + δ)v − (φ2 − ρ2 + δ)u− θx̂
> ((φ2 − ρ2 + δ)(1 + α) + θ)x̂− (φ2 − ρ2 + δ)u − θx̂
≥ (φ2 − ρ2 + δ)(1 + α)x̂− (φ2 − ρ2 + δ)(1 + α)x̂
= 0.

So,

inf{u ≥ 0 : A2(0, u)− φ2u ≤ 0} > (1 + α)x̂,

which gives (22).
Hence, because of independence, using Lemma 7.6, for any α > 0, δ > 0, θ > 0,

Pr{T2 > (1 + α)x̂ ≥ 0} ≥ Pr{E(x̂)}Pr{ sup
v≤u≤(1+α)x̂

{(ρ2 − δ)(u − v)−A2(v, u)} ≤ θx̂}

>∼ Pr{E(x̂)}

= (1− p2)Pr{Ar
2 >

(φ2 − ρ2 + δ)(1 + α) + θ

r2 − ρ2 + δ
x̂}.

Letting δ ↓ 0, θ ↓ 0, using the fact that Ar2(·) ∈ IR, (19) follows.
We now turn to the proof of (20).
By partitioning, we obtain for any α > 0, γ > 0, θ > 0, κ > 0, v ≥ w ≥ 0,

Pr{T2(−γx̂) > (1− α)x̂}
= Pr{T2(−γx̂) > (1− α)x̂,Nκx̂[0, (1 − α)x̂] ≤ 1,Nκx̂[0, w] ≥ 1,

Nκx̂v, (1− α)x̂] ≥ 1}
+ Pr{T2(−γx̂) > (1− α)x̂,Nκx̂[0, (1 − α)x̂] ≤ 1,Nκx̂[0, w] ≥ 1,

Nκx̂[v, (1 − α)x̂] = 0}
+ Pr{T2(−γx̂) > (1− α)x̂,Nκx̂[0, (1 − α)x̂] ≤ 1,Nκx̂[0, w] = 0}
+ Pr{T2(−γx̂) > (1− α)x̂,Nκx̂[0, (1 − α)x̂] ≥ 2},

which is clearly upper bounded by

Pr{Nκx̂[0, (1 − α)x̂] ≤ 1,Nκx̂[0, w] ≥ 1,Nκx̂[v, (1 − α)x̂] ≥ 1}
+ Pr{T2(−γx̂) > (1− α)x̂,Nκx̂[v, (1 − α)x̂] = 0}
+ Pr{T2(−γx̂) > (1− α)x̂,Nκx̂[0, w] = 0}
+ Pr{Nκx̂[0, (1 − α)x̂] ≥ 2}
= (A) + (B) + (C) + (D).

Take v = τ x̂ and w = ξx̂, with

τ :=
(φ2 − ρ2)(1− α)− γ − θ

r2 − ρ2
< 1− α,
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and

ξ :=
γ + θ

φ2 − ρ2
< τ.

Now consider term (A). For the relevant events to occur, flow 2 must be On during the
entire interval [w, v], so that

(A) ≤ (1− p2)Pr{Ar
2 > v − w}

= (1− p2)Pr{Ar
2 > (

(φ2 − ρ2)(1− α)− γ − θ
r2 − ρ2

− γ + θ

φ2 − ρ2
)x̂}.

Next, consider term (B). The event T2(−γx̂) > (1− α)x̂ means that

inf
0≤u≤(1−α)x̂

{A2(0, u) − φ2u} > −γx̂.

Now observe that

inf
0≤u≤(1−α)x̂

{A2(0, u) − φ2u}

≤ inf
v≤u≤(1−α)x̂

{A2(0, u) − φ2u}

≤ inf
v≤u≤(1−α)x̂

{A2(0, v) − φ2v +A2(v, u) − φ2(u− v)}

= A2(0, v) − φ2v + inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)}

≤ (r2 − φ2)v + inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)}.

Thus, the event T2(−γx̂) > (1− α)x̂ implies

inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)} > −(r2 − φ2)v − γx̂,

so that

(B) ≤ Pr{ inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)} > −(r2 − φ2)v − γx̂,Nκx̂[v, (1 − α)x̂] = 0}

= Pr{ inf
0≤u≤(1−α)x̂−v

{A2(0, u) − φ2u} > −(r2 − φ2)v − γx̂,Nκx̂[0, (1 − α)x̂− v] = 0}

= Pr{ inf
0≤u≤(1−α−τ)x̂

{A2(0, u) − φ2u} > (θ − (φ2 − ρ2)(1− α− τ))x̂,

Nκx̂[0, (1 − α− τ)x̂] = 0}
= Pr{T2((θ − (φ2 − ρ2)(1− α− τ))x̂) > (1− α− τ)x̂,Nκx̂[0, (1 − α− τ)x̂] = 0}.

Finally, consider term (C).

(C) ≤ Pr{T2(−γx̂) > w,Nκx̂[0, w] = 0}
= Pr{T2((θ + (φ2 − ρ2)ξ)x̂) > ξx̂,Nκx̂[0, ξx̂] = 0}.

Thus, taking η = ξ and η = 1− α− τ in Lemma 7.3, and using Lemma 7.5, we obtain

Pr{T2(−γx̂) > (1− α)x̂} <∼ (1− p2)Pr{Ar
2 > (

(φ2 − ρ2)(1− α)− γ − θ
r2 − ρ2

− γ + θ

φ2 − ρ2
)x̂}.

Letting θ ↓ 0, using the fact that Ar2(·) ∈ IR, (20) follows.
2
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10 Case II-B: fluid heavy-tailed input with r2 > 1− ρ1

We now consider the case where flow 2 generates traffic according to an On-Off process
with peak rate r2 > 1−ρ1. The next theorem shows that flow 2 satisfies Assumptions 6.1-
6.3 and that (6) holds.

Theorem 10.1 If A2(·) ∈ R−ν2, then for any c ∈ (ρ2, r2), α > 0, γ > 0,

Pr{Tc
2(−γx̂) > (1− α)x̂} >∼ p2

ρ2

c− ρ2
Pr{Ar

2 > (
(φ2 − ρ2)(1 + α)

r2 − ρ2
+

γ

r2 − c
)x̂}, (23)

Pr{Tc
2(−γx̂) > (1− α)x̂} <∼ p2

ρ2

c− ρ2
Pr{Ar

2 >
(φ2 − ρ2)(1− α)

r2 − ρ2
x̂}, (24)

and

Pr{Tc
2 > x̂} ∼ p2

ρ2

c− ρ2
Pr{Ar

2 >
φ2 − ρ2

r2 − ρ2
x̂}. (25)

Before giving the formal proof of the above theorem, we first provide an intuitive argument.
Consider a queue of capactity φ2 fed by the arrival process of flow 2. In order for the event
Tc

2 > x̂ to occur, the workload must remain positive throughout the interval [0, x̂], given
that the initial workload is V c

2 (0). Note that the normal drift in the workload is ρ2−φ2 < 0.
Thus, there is a ‘deficit’ (φ2−ρ2)x̂, which must be compensated for by the initial workload
V c

2 (0) plus possibly flow 2 showing above-average activity during the interval [0, x̂].
As before, we claim that the most likely way for the gap to be filled is by an extremely long
On-period of flow 2 which started somewhere before time 0. Unfortunately, it is harder to
pin down exactly how long that On-period must last, since it depends on when it started.
No matter when the On-period started however, it turns out that we must always have
V c

2 (v) > (r2 − c)v, with v := (φ2−ρ2)x̂
r2−ρ2

. Using Theorem 2.2, we see that the probability of
this event is indeed exactly the right-hand side of (25).
The above arguments will be formalized in the proof below. We first prove that the
event V c

2 (v) > (r2 − c)v indeed implies that Tc
2 > x̂ for large x̂, thus obtaining a lower

bound for the probability of the latter event. Next we show that for large x̂ the event
V c

2 (v) > (r2 − c)v is also necessary for Tc
2 > x̂ to occur, by proving that the probability

of all other possible scenarios is negligibly small.

Proof of Theorem 10.1
We start with the proof of (23). For compactness, denote v = τ x̂, with

τ :=
(φ2 − ρ2 + δ)(1 + α) + θ

r2 − ρ2 + δ
.

We first prove that for any α > 0, γ > 0, δ > 0, θ > 0, the event

Tc
2(γx̂) > (1 + α)x̂ (26)

is implied by the events

V c
2 (v) > (r2 − c)v + γx̂,
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and

sup
v≤u≤(1+α)x̂

{(ρ2 − δ)(u − v)−A2(v, u)} ≤ θx̂.

The first event implies that there is an −r ≤ v such that

A2(−r, v) − c(r + v) > (r2 − c)v + γx̂,

so

A2(−r, v) > cr + r2v + γx̂.

Because A2(−r, v) ≤ r2(r + v), we then find cr < r2r, which gives r > 0 since c < r2.
Thus, V c

2 (0) ≥ A2(−r, 0) − cr.
As A2(u, v) ≤ r2(v − u) for all u ∈ [0, v], we have

V c
2 (0) +A2(0, u) ≥ A2(−r, 0) − cr +A2(0, u)

= A2(−r, u) − cr
= A2(−r, v) −A2(u, v)− cr
> cr + r2v + γx̂− r2(v − u)− cr
= r2u+ γx̂.

The second event means that for all u ∈ [v, (1 + α)x̂],

A2(v, u) > (ρ2 − δ)(u− v)− θx̂.

We distinguish between two cases.
i. 0 ≤ u ≤ v.
Then

V c
2 (0) +A2(0, u) − φ2u ≥ r2u+ γx̂− φ2u

= (r2 − φ2)u+ γx̂

≥ γx̂.

ii. v ≤ u ≤ (1 + α)x̂).
Then

V c
2 (0) +A2(0, u) − φ2u = V c

2 (0) +A2(0, v) +A2(v, u)− φ2u

> r2v + γx̂+ (ρ2 − δ)(u − v)− θx̂− φ2u

= (r2 − ρ2 + δ)v − (φ2 − ρ2 + δ)u+ (γ − θ)x̂
= ((φ2 − ρ2 + δ)(1 + α) + θ)x̂− (φ2 − ρ2 + δ)u+ (γ − θ)x̂
≥ (φ2 − ρ2 + δ)(1 + α)x̂− (φ2 − ρ2 + δ)(1 + α)x̂+ γx̂

= γx̂.

So,

inf{u ≥ 0 : V c
2 (0) +A2(0, u) − φ2u} > (1 + α)x̂,

which gives (26).
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Hence, because of independence, using Lemma 7.6, for any α > 0, γ > 0, δ > 0, θ > 0,

Pr{Tc
2(γx̂) ≥ (1 + α)x̂} ≥ Pr{V c

2 (v) ≥ (r2 − c)v + γx̂}
Pr{ sup

v≤u≤(1+α)x̂
{(ρ2 − δ)(u− v)−A2(v, u)} ≤ θx̂}

>∼ Pr{V c
2 (v) ≥ (r2 − c)v + γx̂}

= Pr{Vc
2 ≥ ((r2 − c)τ + γ)x̂}

∼ p2
ρ2

c− ρ2
Pr{Ar

2 > (τ +
γ

r2 − c
)x̂}

= p2
ρ2

c− ρ2
Pr{Ar

2 > (
(φ2 − ρ2 + δ)(1 + α) + θ

r2 − ρ2 + δ
+

γ

r2 − c
)x̂}.

Letting δ ↓ 0, θ ↓ 0, using the fact that Ar2(·) ∈ IR, (24) follows.
We now turn to the proof of (24).
By partitioning, we obtain for all α > 0, γ > 0, θ > 0, κ > 0, v ≥ w ≥ 0,

Pr{Tc
2(−γx̂) ≥ (1− α)x̂}

= Pr{Tc
2(−γx̂) ≥ (1− α)x̂,Nκx̂[0, (1 − α)x̂] ≤ 1, V c

2 (v) > (r2 − c)(v − w)}
+ Pr{Tc

2(−γx̂) ≥ (1− α)x̂,Nκx̂[0, (1 − α)x̂] ≤ 1,
V c

2 (v) ≤ (r2 − c)(v − w),Nκx̂[v, (1 − α)x̂] = 0}
+ Pr{Tc

2(−γx̂) ≥ (1− α)x̂,Nκx̂[0, (1 − α)x̂] ≤ 1,
V c

2 (v) ≤ (r2 − c)(v − w),Nκx̂[v, (1 − α)x̂] = 1}
+ Pr{Tc

2(−γx̂) ≥ (1− α)x̂,Nκx̂[0, (1 − α)x̂] ≥ 2}.

Now consider the third term. Suppose that Nκx̂[0, w] ≥ 1, i.e., there is a long On-period
in the interval [0, w]. Since Nκx̂[v, (1 − α)x̂] = 1, Nκx̂[0, (1 − α)x̂] ≤ 1, this long On-
period must then last till at least time v. However, this contradicts the fact that V c

2 (v) ≤
(r2 − c)(v − w).
Hence, the third term may be rewritten as

Pr{Tc
2(−γx̂) > (1− α)x̂,Nκx̂[0, (1 − α)x̂] ≤ 1,

V c
2 (v) ≤ (r2 − c)(v − w),Nκx̂[v, (1 − α)x̂] = 1}

= Pr{Tc
2(−γx̂) > (1− α)x̂,Nκx̂[0, (1 − α)x̂] = 1,

V c
2 (v) ≤ (r2 − c)(v − w),Nκx̂[v, (1 − α)x̂] = 1,Nκx̂[0, w] = 0}

= Pr{Tc
2(−γx̂) > (1− α)x̂,Nκx̂[0, (1 − α)x̂] = 1,

V c
2 (v) ≤ (r2 − c)(v − w),Nκx̂[v, (1 − α)x̂] = 1,Nκx̂[0, w] = 0, V c

2 (0) ≤ ζx̂}
+ Pr{Tc

2(−γx̂) > (1− α)x̂,Nκx̂[0, (1 − α)x̂] = 1,
V c

2 (v) ≤ (r2 − c)(v − w),Nκx̂[v, (1 − α)x̂] = 1,Nκx̂[0, w] = 0, V c
2 (0) > ζx̂}.

We thus arrive at the upper bound, for all ζ > 0,

Pr{Tc
2(−γx̂) > (1− α)x̂}

≤ Pr{V c
2 (v) > (r2 − c)(v − w)}

+ Pr{Tc
2(−γx̂) > (1− α)x̂, V c

2 (v) ≤ (r2 − c)(v − w),Nκx̂[v, (1 − α)x̂] = 0}
+ Pr{Tc

2(−γx̂) > (1− α)x̂,Nκx̂[0, w] = 0, V c
2 (0) ≤ ζx̂}
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+ Pr{Nκx̂[0, (1 − α)x̂] = 1,Nκx̂[0, w] = 0, V c
2 (0) > ζx̂}

+ Pr{Nκx̂[0, (1 − α)x̂] ≥ 2}
= (A) + (B) + (C) + (D) + (E).

Take v = τ x̂ and w = ξx̂, with

τ :=
(φ2 − ρ2)(1− α)

r2 − ρ2
+

γ + θ

φ2 − ρ2
+

(r2 − φ2)ζ
(φ2 − ρ2)(r2 − ρ2)

< 1− α,

and

ξ :=
γ + ζ + θ

φ2 − ρ2
< τ.

Now consider term (A). Using Theorem 2.2,

(A) = Pr{Vc
2 > (r2 − c)(τ − ξ)x̂}

∼ p2
ρ2

c− ρ2
Pr{Ar

2 > (τ − ξ)x̂}

= p2
ρ2

c− ρ2
Pr{Ar

2 >
(φ2 − ρ2)(1− α)− ζ

r2 − ρ2
x̂}.

Next, consider term (B). The event Tc
2(−γx̂) > (1− α)x̂ means that

inf
0≤u≤(1−α)x̂

{V c
2 (0) +A2(0, u) − φ2u} > −γx̂.

Now observe that

inf
0≤u≤(1−α)x̂

{V c
2 (0) +A2(0, u) − φ2u}

≤ inf
v≤u≤(1−α)x̂

{V c
2 (0) +A2(0, u) − φ2u}

≤ inf
v≤u≤(1−α)x̂

{A2(0, v) − φ2v +A2(v, u) − φ2(u− v)}

= A2(0, v) − φ2v + inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)}

= A2(0, v) − cv + (c− φ2)v + inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)}

≤ V c
2 (v) + (c− φ2)v + inf

v≤u≤(1−α)x̂
{A2(v, u) − φ2(u− v)}.

Thus, the event T2(−γx̂) > (1− α)x̂ implies

inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)} > −V c
2 (v)− (c− φ2)v − γx̂,

so that

(B) ≤ Pr{ inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)} > −V c
2 (v)− (c− φ2)v − γx̂,

V c
2 (v) ≤ (r2 − c)(v − w),Nκx̂[v, (1 − α)x̂] = 0}

≤ Pr{ inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)} > −(r2 − c)(v − w)− (c− φ2)v − γx̂,

Nκx̂[v, (1 − α)x̂] = 0}
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= Pr{ inf
v≤u≤(1−α)x̂

{A2(v, u) − φ2(u− v)} > −(r2 − φ2)v + (r2 − c)w − γx̂,

Nκx̂[v, (1 − α)x̂] = 0}
= Pr{ inf

0≤u≤(1−α)x̂−v
{A2(0, u) − φ2u} > −(r2 − φ2)v − γx̂,Nκx̂[0, (1 − α)x̂− v] = 0}

= Pr{ inf
0≤u≤(1−α−τ)x̂

{A2(0, u) − φ2u} > (θ − (φ2 − ρ2)(1− α− τ))x̂,

Nκx̂[0, (1 − α− τ)x̂] = 0}
= Pr{Tc

2((θ − (φ2 − ρ2)(1− α− τ))x̂) > (1− α− τ)x̂,Nκx̂[0, (1 − α− τ)x̂] = 0}.

Finally, consider term (C). The event Tc
2(−γx̂) > (1− α)x̂ means that

inf
0≤u≤(1−α)x̂

{V c
2 (0) +A2(0, u) − φ2u} > −γx̂.

Now observe that

inf
0≤u≤(1−α)x̂

{V c
2 (0) +A2(0, u) − φ2u} ≤ V c

2 (0) + inf
0≤u≤w

{A2(0, u) − φ2u}.

Thus, the event T2(−γx̂) > (1− α)x̂ implies

inf
0≤u≤w

{A2(0, u) − φ2u} > −V c
2 (0) − γx̂,

so that

(C) ≤ Pr{ inf
0≤u≤w

{A2(0, u)− φ2u} > −V c
2 (0) − γx̂, V c

2 (0) ≤ ζx̂,Nκx̂[0, w] = 0}

≤ Pr{ inf
0≤u≤w

{A2(0, u)− φ2u} > −(γ + ζ)x̂,Nκx̂[0, w] = 0}

= Pr{ inf
0≤u≤ξx̂

{A2(0, u)− φ2u} > (θ − (φ2 − ρ2)ξ)x̂,Nκx̂[0, ξx̂] = 0}

= Pr{T2((θ − (φ2 − ρ2)ξ)x̂) > ξx̂,Nκx̂[0, ξx̂] = 0}.

Thus, taking η = ξ and η = 1− α− τ in Lemma 7.3, and using Lemma 7.5, we obtain

Pr{Tc
2(−γx̂) ≥ (1− α)x̂} <∼ p2

ρ2

c− ρ2
Pr{Ar

2 >
(φ2 − ρ2)(1− α)− ζ

r2 − ρ2
x̂}.

Letting ζ ↓ 0, using the fact that Ar2(·) ∈ IR, (24) follows.
2

11 Conclusion

We analyzed a GPS queue with two flows, one having light-tailed characteristics, the
other one exhibiting heavy-tailed properties. We showed that the workload distribution
of the light-tailed flow is asymptotically equivalent to that when served in isolation at
its minimum guaranteed rate, multiplied with a certain pre-factor. The pre-factor may
be interpreted as the probability that the heavy-tailed flow is backlogged long enough for
the light-tailed flow to reach overflow. We did not consider the case where the traffic
intensity of the heavy-tailed flow exceeds its minimum guaranteed rate. In this case, the
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pre-factor – representing again the probability that the heavy-tailed flow is continuously
backlogged during the period to overflow of the light-tailed flow – is likely to be some
constant. Determining the exact value of the constant seems however a rather challenging
task.
In the present paper we have focused on a scenario with two flows. Observe however
that the light-tailed flow may be thought of as an aggregate flow, given that the class of
Markov-modulated fluid input is closed under superposition of independent processes. In
case of instantaneous input, the heavy-tailed flow too may actually represent an aggregate
flow, since the superposition of independent Poisson streams with regularly varying bursts
produces again a Poisson stream with regularly varying bursts. Unfortunately, the class of
On-Off sources is clearly not closed under superposition. In fact, the superposition exhibits
a fundamentally more complex structure than a single On-Off-source, which drastically
complicates the analysis of the queueing behavior, see [23].
Despite the above and earlier observations, it would still be interesting to extend the
analysis to general scenarios with several light-tailed flows, let’s say N1 ≥ 1, and N2 ≥ 1
heavy-tailed flows.
In case N1 = 1, N2 > 1, we expect that the workload distribution of the light-tailed flow
is equivalent to that when served in isolation at its minimum guaranteed rate, multiplied
with a certain pre-factor, exactly as before. In this case however, the pre-factor represents
the probability that each of the heavy-tailed flows is constantly backlogged during the
period to overflow of the light-tailed flow. Calculating this probability seems a demanding
task, since the most likely scenario cannot be easily pinned down due to the complicated
interaction of the heavy-tailed flows prior to the overflow period.
In case N1 > 1, N2 = 1, we conjecture that the workload distribution of the light-tailed
flows is equivalent to that in an isolated GPS queue consisting of the light-tailed flows
only, multiplied again with a pre-factor. The pre-factor reflects the probability that the
heavy-tailed flow is constantly backlogged during the time to overflow of the light-tailed
flows. Unfortunately however, there are only logarithmic asymptotics known for a GPS
queue with several light-tailed flows.
Not surprisingly, the two above-described complicating circumstances conspire in scenarios
with N1 > 1, N2 > 1.
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A Definitions

Definition A.1 A distribution function F (·) on [0,∞) is called long-tailed (F (·) ∈ L) if

lim
x→∞

1− F (x− y)
1− F (x)

= 1, for all real y.

Definition A.2 A distribution function F (·) on [0,∞) is called subexponential (F (·) ∈ S)
if

lim
x→∞

1− F 2∗(x)
1− F (x)

= 2,

where F 2∗(·) is the 2-fold convolution of F (·) with itself, i.e., F 2∗(x) =
∫ x

0 F (x− y)F (dy).

A useful subclass of S is the class R of regularly-varying distributions (which contains the
Pareto distribution):

Definition A.3 A distribution function F (·) on [0,∞) is called regularly varying of index
−ν (F (·) ∈ R−ν) if

F (x) = 1− l(x)
xν

, ν ≥ 0,

where l : R+ → R+ is a slowly-varying function, i.e., limx→∞ l(ηx)/l(x) = 1, η > 1.

Examples of subexponential distributions which do not belong to R include the Weibull,
lognormal, and Benktander distributions. A technical extension of R is the class IRV of
intermediately regularly-varying distributions:
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Definition A.4 A distribution function F (·) on [0,∞) is called intermediately regularly
varying (F (·) ∈ IRV) if

lim
η↑1

lim sup
x→∞

1− F (ηx)
1− F (x)

= 1.

42


