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ABSTRACT

We consider a linear sequence of ‘nodes’, each of which can be in state 0 (‘off’) or 1 (‘on’). Signals from

outside are sent to the rightmost node and travel instantaneously as far as possible to the left along nodes

which are ‘on’. These nodes are immediately switched off, and become on again after a recovery time. The

recovery times are independent exponentially distributed random variables.

We present properties for finite systems and use some of these properties to construct an infinite-volume

extension, with signals ‘coming from infinity’. This construction is related to a question by D. Aldous and we

expect that it sheds some light on, and stimulates further investigation of, that question.
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1. Introduction

Let X1(t), . . . Xn(t) be 0–1-valued random processes described as follows: When Xi equals 0 it becomes
1 at rate ρi, independently of the other Xj-s. If each of Xi, Xi+1, . . . , Xn equals 1, then at rate ρ
they all become simultaneously 0. We start at time t = 0 with all X ′is equal to 0. The ρi-s and ρ are
parameters of the model, called recovery rates and the input rate, respectively.

This system can be interpreted as a simple model of a communication line, and we will frequently
use terminology motivated by this interpretation: the indices 1, 2, . . . , n correspond to nodes which
can be ‘on’ (have value 1) or ‘off’ (have value 0). Signals from outside are sent at rate ρ to the
rightmost node n and are transmitted instantaneously as far as possible to the left until they are
blocked by an off-node. The nodes passed by the signal are switched off immediately. When a node i
is ‘off’, it becomes ‘on’ after an exponentially distributed (with mean 1/ρi) recovery time. Recovery
times are completely independent.

Another interpretation is in terms of forest fires (or infections): the numbers 1, . . . , n are possible
locations of trees. At the rightmost location ignition attempts are made at rate ρ, and an attempt
succeeds if that position is occupied. When a tree is on fire, it immediately sets the tree on the
next location to its left (if that location is occupied) on fire and disappears (i.e. its position becomes
empty). If position i is empty, a new tree appears there at rate ρi. Since in a real forest the growth of
new trees is much slower than the propagation of fire, the instantaneous spread of fire (or infection)
in our model is not as unrealistic as it may seem at first sight. (The one-dimensionality is of course a
serious simplification in this context).

In the above description the incoming signals correspond to a Poisson process. More generally we
will consider signals corresponding to a renewal process. The distribution function of the intervals
between consecutive incoming signals will be denoted by F (n+1). (The reason for this notation, with
the superscript n+ 1, will become clear later).

So, more precisely, this more general model is as follows: The parameters of the model are F (n+1)

(a distribution function with F (n+1)(0) = 0), and the recovery rates ρi, i = 1, . . . , n. Introduce
i.i.d. random variables τ1, τ2, . . . with distribution function F (n+1), and call the values Ti :=

∑i
j=1 τj ,

i = 0, 1, 2, . . . input times. At the zeroth input time T0 = 0 we set each Xi, i = 1, . . . , n equal to
0. When Xi = 0 it becomes 1 at rate ρi, independent of the other Xj-s and of the τj-s. If, at time
t, Xi = Xi+1 = . . . ,= Xn = 1, then each Xj, j ≥ i becomes 0 at the smallest input time larger
than t. We call this model a (size n) on-off system with recovery rates ρ1, . . . , ρn and input interval
distribution function F (n+1). The case mentioned in the first paragraph, when the input signals arrive
according to a Poisson process of intensity ρ, corresponds to F (n+1) = Eρ, where Eρ(t) = 1 − e−ρt
denotes the exponential distribution function with expectation 1/ρ.

As said before, we will frequently use terminology inspired by the signal interpretation. Although
this terminology is practically self-explanatory, we want to define some of these terms more precisely,
to avoid confusion: we say that a signal is sent to node i at time t, if Xi+1 switches from on to off at
time t (or, in case i is the rightmost node, if t is an input time). And we say that a signal is received
by i at time t, if Xi itself switches from on to off at time t.

Finally, we will also consider the case that input signals are generated ‘permanently’. By this we
mean that the rightmost node, n, after each recovery immediately receives a signal (and hence is
switched off again). In this case we say (with some abuse of notation, since there are no proper input
intervals anymore) that F (n+1) = [0]. It is easy to see that this case is (when we only ‘observe’ the
behaviour of the nodes 1, . . . , n − 1) equivalent to the earlier mentioned case with n − 1 nodes and
with Poisson (intensity ρn) input signals, i.e., with input interval distribution function F (n) = Eρn .

Several interesting questions arise: Suppose the input is Poissonian, and all recovery rates are equal
(say 1), and we start with all nodes empty. What is the asymptotic behaviour (as n → ∞) of the
expectation of the first time a signal arrives at node 0. This appears to be of order logn. (Note
that this means that when the system is in equilibrium, the probability that an arbitrary incoming
signal reaches node 0, is of order 1/(logn), which is much larger than one would naively guess). This
is done in Section 2. Several arguments in that section are of key importance for Section 3, which
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deals with the question whether there are non-trivial extensions of this model to infinite systems, with
signals “coming from infinity”. The answer, as stated in Theorem 1, is positive and is related to a
question posed by D. Aldous. We hope the result sheds some more light on that question. The proof
of Theorem 1 is presented in Section 4.

2. Properties of the finite system

Consider a size n on-off system (as defined in Section 1) with input interval distribution function
F (n+1) and recovery rates ρ1, . . . , ρn. As stated before, the input signals correspond to a renewal
process. It is easy to see that the times at which signals are received by n (i.e. the times at which
Xn switches from “on” to “off”) also form a renewal process (because, whenever Xn switches from
“on” to “off”, the process, as far as node n is concerned, starts afresh). Since each signal received
by n is sent instantaneously to n − 1, we can repeat the above argument and conclude that the
reception times of signals at n− 1 also form a renewal process etc. We call the distribution function
of the difference between consecutive times at which node i receives a signal, its interreception time
distribution function.

The following lemma relates the interreception time distributions of two consecutive nodes:

Lemma 1. Let, for 1 ≤ i ≤ n, F (i) be the interreception time distribution function of node i and
F (n+1) the input interval distribution. Define:

φ(i)(s) = 1−
∫ ∞

0

e−sx dF (i)(x), i = 1, 2, . . . , n+ 1

Then:

φ(i)(s) =
φ(i+1)(s)

φ(i+1)(s+ ρi)
, i = 1, . . . , n.

Proof. Let τ be the first time node i switches from ‘off’ to ‘on’, and let Y be the first time it receives
a signal. Further, let Zk be the k-th time node i + 1 receives a signal, and let ξk = Zk − Zk−1,
k = 1, 2, . . . . The random variable τ is exponentially distributed with parameter ρi. Furthermore, the
random variables ξk, k = 1, 2, . . . are i.i.d. and also independent of τ . So we have:

φ(i)(s) = 1−E
(
e−sY

)
= 1−

∞∑
k=0

E
(
e−sZk+111{τ∈[Zk,Zk+1)}

)
= 1−

∞∑
k=0

E
(
e−sZk+1

(
e−ρiZk − e−ρiZk+1

))
= 1−

∞∑
k=0

E
(
e−(s+ρi)Zk

(
e−sξk+1 − e−(s+ρi)ξk+1

))
= 1−

E
(
e−sξ1

)
−E

(
e−(s+ρi)ξ1

)
1− E

(
e−(s+ρi)ξ1

)
=

φ(i+1)(s)
φ(i+1)(ρi + s)

. (2.1)

By repeated application of the above Lemma 1, and using induction, we get

Lemma 2. For 1 ≤ i ≤ j ≤ n+ 1:

φ(i)(s) =

∏
A⊂{i,... ,j−1} : |A| even φ

(j)(s+
∑
k∈A ρk)∏

A⊂{i,... ,j−1} : |A| odd φ
(j)(s+

∑
k∈A ρk)

, (2.2)

where |A| denotes the number of elements of A.
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This immediately gives the following result:

Lemma 3. The interreception time distribution of node i, F (i), is invariant under permutations of
the sequence of recovery rates ρi, ρi+1, . . . , ρn.

Remark: In spite of its apparent simplicity, this observation is rather surprising: it easily follows from
identity (2.2) but we do not see any simple direct ‘pathwise’ argument for its proof.

Lemma 3 is important in the construction of an infinite-volume system in the next section. We will
illustrate its strength in the remainder of the present section. We consider the special case when all
ρi-s are equal, say 1, and the inputs come permanently (that is, F (n+1) = [0]). As already mentioned,
this is equivalent to a system of n− 1 nodes with recovery rates 1 and Poissonian input with rate 1,
so that φ(n)(s) = s/(1 + s). Using the identity

(
n−1
l−1

)
+
(
n−1
l

)
=
(
n
l

)
, from (2.2) we get

φ(1)(s) =

∏
0≤k≤n : k even(s+ k)(

n
k)∏

0≤k≤n : k odd(s+ k)(
n
k)
.

We denote here by Tn the first time a signal is received by node 1. (As we are interested in the
asymptotics for long chains of nodes, we denote explicitly by the subscript n the length of the string
of identical nodes considered). Thus φ(1)(s) = 1−E

(
exp(−sTn)

)
. By evaluating the derivative of the

above expression at s = 0, we get

E
(
Tn
)

=

∏
1≤k≤n : k even k

(nk)∏
1≤k≤n : k odd k

(nk)
. (2.3)

András Lukács, [5], drew our attention to the survey-article [3] by Flajolet and Sedgewick, about
the use of contour integrals (and Melling transforms) to study the asymptotic behaviour as n→∞ of
expressions of the form

∑n
k=1(−1)k

(
n
k

)
f(k) for a wide range of functions f . The case f(k) = log k is

one of the examples they handle (see their Theorem 4), and according to their paper the expression
in the r.h.s. of (2.3) is asymptotic to eγ logn. So

lim
n→∞

E
(
Tn
)

logn
= eγ , (2.4)

where γ = 0.577 . . . is Euler’s constant. Although the following quite elementary probabilistic argu-
ment, based on Lemma 3 above, does not give the precise value of the limit in (2.4), it does give the
correct order of magnitude of E

(
Tn
)

One of our reasons for working this out here is that a similar
argument is used in the construction of the infinite-volume system in Section 4. Another reason is
that from the paper by Flajolet and Sedgewick, [3], one gets the impression that no elementary way
is known to obtain the order of magnitude of E

(
Tn
)
.

Proposition 1. Consider, for each n, a finite on-off system with nodes {1, . . . , n}, where all recovery
rates are 1, and with permanent input signals. Let Tn denote the first time node 1 receives a signal.
Then there exist constants C1, C2 > 0 such that for all n

C1 <
E
(
Tn
)

logn
< C2 (2.5)

Proof. We use stochastic domination in proving both bounds.
The lower bound is easy: Note that before the first receival time at node 1 all nodes 1, 2, . . . n must

recover at least once. So Tn stochastically dominates max{τi : 1 ≤ i ≤ n}, where τ1, τ2, . . . , τn are
i.i.d. exponentially distributed random variables with mean 1. It follows that

E
(
Tn
)
≥ E

(
max{τi : 1 ≤ i ≤ n}

)
=

n∑
i=1

1
i

= logn+O(1),
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which proves the lower bound.
The upper bound uses a little trick: Suppose we add an extra node 0 at the left of node 1, with

recovery rate 1/ logn. Denote this new system by II and the old system by I. Let T̃ be the first time
in system II that node 0 receives a signal. It is clear that system II is an extension of the old one, in
the sense that the nodes 1, . . . , n ‘do not feel the change’, so that obviously Tn ≤ T̃ . Finally consider
the system, denoted III, obtained from system I by putting an extra node n + 1 at the right of n,
with recovery rate ρn+1 = 1/(logn). (So, in system III the input signals are sent to n+ 1 which, if it
is ‘on’, sends them to n, etc). Let T̂ denote the first time node 1 receives a signal in system III. By
Lemma 2, T̂ has the same distribution as T̃ . So we have

E(Tn) ≤ E(T̃ ) = E(T̂ ).

The following computation is for system III. Let k be a non-negative integer. Let A be the event that
an input signal is sent in the time interval (4k logn, (4k + 1) logn), B the event that node n+ 1 has
no recovery in the interval (4k logn, (4k + 2) logn), but does have a recovery in ((4k + 2) logn, (4k +
3) logn)), C the event that each of the nodes 1, . . . , n which is off at time (4k+1) logn has a recovery
before time (4k + 2) logn, and D the event that an input signal is sent to n + 1 in the interval
((4k+ 3) logn, (4k+ 4) logn). It is easy to see that the conditional probability of A∩B ∩C ∩D given
all information up to time 4k logn is at least

(1− e− logn) e−2 (1− e−1) (1− e− logn)n (1− e− logn),

which is larger than α := e−3(1− e−1)/2 > 0, uniformly in k, for sufficiently large n. Moreover, if all
the events A-D happen, node 1 will receive a signal in the interval ((4k+ 3) logn, (4k+ 4) logn) (and
hence in (4k logn, 4(k + 1) logn)). So, for each integer k ≥ 1, we have P (T̂ > 4k logn) ≤ αk, from
which the required result follows.

3. Infinite-volume models

Note that a finite on-off system, as introduced in Section 1, could be described as a collection
X1(t), . . . , Xn(t) of 0–1 valued processes with the property that the time intervals during which a
process has value 0 are independent, exponentially distributed (those for Xi with mean 1/ρi), and
that, after independent time intervals with distribution F (n+1), the string of 1-s connected to node n is
turned into 0-s. In this section we investigate the question whether there are suitable infinite-volume
systems with such properties. There are several cases to distinguish, depending on the asymptotic
behaviour of the ρi-s and the nature of the input signal ‘at infinity’ (which will be made precise later).
The most interesting appears to be the case where

∞∑
i=1

e−tρi <∞, ∀t > 0, (3.1)

and with ‘permanent input signals at infinity’. In the present paper we consider only this case in
detail. However, see Remark (iii) after Theorem 1 stated below for a concise description of the other
possibilities.

The above condition (3.1) on the ρi-s means, by Borel-Cantelli, that if we start with all nodes
in state 0, and there would be NO input signals, there is an infinite connected string of 1-s at any
positive time t > 0. So, when we do take into account permanent input signals at infinity we expect,
intuitively, that in every time interval, no matter how small, infinite connected strings of 1’s are
formed and immediately destroyed (i.e. turned into 0-s). It is not at all clear at this stage that
a dynamics with such kind of behaviour exists; see Remark (i) below about existence problems for
so-called frozen-percolation models, and Remark (ii).

The main result of the present paper is a proof that such a system does indeed exist. More precisely,
we prove the following theorem.
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Theorem 1. Let ρi, i = 1, 2, . . . be positive numbers satisfying (3.1) There exist 0–1-valued processes
Xi : R+ 7→ {0, 1}, i ∈ N, defined jointly on the same probability space, with the following properties:

(a) Almost surely, for all i ∈ N, Xi(0) = 0.

(b) Almost surely, for all i ∈ N, t 7→ Xi(t) is continuous from the right having left limits (c.a.d.l.a.g.).

(c) Let T ik denote the length of the kth interval during which Xi(·) equals 0. Then each T ik is expo-
nentially distributed with mean 1/ρi, and the random variables

(
T ik
)
i,k∈N are independent.

(d) Almost surely, for all t ∈ R+ and k ∈ N with Xk(t−) = 1: if for all l ≥ k Xl(t−) = 1 then
Xk(t) = 0, else Xk(t) = 1.

Moreover, the collection of processes t 7→ Xi(t) , i = 1, 2, . . . has the following additional properties:

(e) Almost surely, there are no t and k such that Xl(t) = 1 for all l ≥ k.

(f) Almost surely, the reception times of signals are dense. That is, for all t ≥ 0 and ε > 0 there exist
i ∈ N and s ∈ (t, t+ ε), such that for all j ≥ i Xj(s−) = 1 and Xj(s) = 0.

Remarks:
(i) The following remark illustrates why the existence of such a process is not obvious: D. Aldous , [1],
has introduced a percolation model in which infinite clusters are ‘frozen’ (we will refer to this model
as ‘frozen-percolation’). Informally, that model is as follows. Each vertex (or, for bond percolation,
each edge) of a countably infinite, locally finite connected graph G can have state 0 or 1. At time 0
they are all in state 0. Now, assign to each vertex i a time τi. The (τi) are iid random variables with
a continuous distribution. Each vertex i remains 0 until time τi. Then it switches to 1 (and stays
1 forever), unless some neighbour of i already belongs to an infinite cluster of 1-s, in which case i
remains 0 forever. Aldous constructed such a process for the case where G is the regular binary tree,
and posed the question whether it exists for Zd. Benjamini and Schramm, [2], have pointed out that
it does not exist for Z2. The following simple, deterministic, 1-dimensional example, due to Antal
Járai, [4], shows very clearly the essence of the difficulty:

Proposition 2 (A. Járai, [4]). Let t1, t2, . . . be a sequence of distinct,
strictly positive numbers which tends to 0. There is no sequence of functions ωi : R+ 7→ {0, 1},
i = 1, 2, . . . with the following properties:

ωi(t) :=
{

0 if t < ti or ωj(t−i ) = 1 for all j > i
1 otherwise

Proof. Suppose such a sequence does exist. There are two possibilities: either there exist t and i with
ωj(t) = 1 for all j ≥ i or there exist no such t and i. In the latter case we have (by the rules above)
that ωj(t) = 1 for all j and all t ≥ tj . Since all tj are smaller than some number tmax, every ωj
equals 1 at time tmax, a contradiction. As to the former case, let t and i be as stated there. Let j
be the smallest number larger than i with tk < ti for all k ≥ j. From the rules given above (and the
assumption for this case) it follows that ωk(t−j−1) = 1 for all k ≥ j and so ωj−1 = 0 at every time, in
particular at time t: again a contradiction. Since both cases lead to a contradiction, the proposition
has been proved.

Note that, when the ti are not deterministic but independent, exponentially distributed random
variables with mean 1/ρi, i = 1, 2, . . . , with the (ρi) as in Theorem 1 (i.e., in our terminology, when
they are the first recovery times of the nodes in the system Theorem 1 deals with) the condition in
Járai’s example is satisfied with probability 1. This shows that the frozen percolation model does not
exist for the half-line with ρi-s as in Theorem 1.
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Although the situation for Z2 looks more complicated than for the half-line, the reason why frozen
percolation does not exist is essentially the same: Consider frozen percolation on Z2, with identically
(say: exponentially) distributed holding times τi, i ∈ Z2. At the critical time (just before an infinite
cluster is formed), there are infinitely many separate (not connected with each other) open circuits
around the origin. If we then consider the sequence (ti), i = 1, 2, . . . of (random) times needed to
connect consecutive circuits, we are exactly in the situation of Járai’s example. This illustrates how
study of the half-line can give more insight on what happens on Z2.
(ii) In Section 5 of his paper, D. Aldous poses some open questions related to the frozen-percolation
model. One of them is whether a dynamics exists where vertices (or, for bond percolation, edges)
become open (in state 1) at rate 1 and where infinite clusters of 1-s are destroyed (i.e. turned into
0’s) immediately. Although this question was formulated for graphs which have critical percolation
probability less than 1, like the binary tree or Zd, d ≥ 2, we think, based on the previous Remark,
that results for analogous problems on the half-line, like our Theorem 1, can help to better understand
these problems.

(iii) Now, returning to the setup of the present paper: given the recovery rates ρi, i = 1, 2, . . . define

θ := sup{t ∈ R+ :
∞∑
i=1

e−ρit =∞} = inf{t ∈ R+ :
∞∑
i=1

e−ρit <∞}.

There are four essentially different cases with essentially different behaviour of the infinitely extended
system. Theorem 1 refers to Case 4, the only really interesting one. The claims below for Cases 1,2
and 3, which are formulated in a quite informal way, can be stated more precisely, and proved by
straightforward applications of Borel-Cantelli lemmas.
Case 1: If θ = ∞, then by a simple Borel-Cantelli argument one can see, that in the infinitely
extended system no signals coming from infinity will penetrate the system. This is the case when
ρk � log k, as k →∞. The system with constant recovery rates, ρi = 1, belongs to this case.
Case 2: If θ < ∞ and

∑∞
i=1 e

−ρiθ = ∞ then one can construct an infinite dynamics which satisfies
properties (a-c) stated in Theorem 1, but not properties (d-f) (inclusion of property d in this case
leads to the same kind of problems as in Jarai’s example (see Remark (i) above)). In particular, there
will be nonempty time intervals during which infinite connected strings of 1s are present in the system.
This makes the dynamics uninteresting for us. Typical example is ρk = θ−1 log k.
Case 3: If θ <∞ and

∑∞
i=1 e

−ρiθ <∞ then one can construct an infinitely extended dynamics with
moderately interesting behaviour. Namely: in this case, if at some time t0 all but finitely many nodes
are in state 0, then exactly at time t0 + θ an infinite connected string of 1-s emerges (Borel-Cantelli),
which is instantaneously erased by a signal penetrating from infinity and sweeping through the system,
down to the rightmost node in state 0. So, one can construct with ‘bare hands’ a dynamics where
periodically, with period θ, signals penetrate from infinity and erase an infinite connected string of 1s,
just emerging. Typical example is ρk = θ−1 log k + α log log k, with α > 1.
Case 4: The only really interesting case is θ = 0. In this case infinite connected strings of 1-s try
to emerge ‘in no time’ and are immediately swept away by signals penetrating from infinity. So the
constructed system is in a permanent state of excitation. This behaviour is intuitively somewhat
related to the so-called self-organized criticality phenomenon which receives a lot of attention in the
physics literature. This case is the subject of Theorem 1.

(iv) A very natural question to ask is whether properties (a)-(d) listed in Theorem 1 determine uniquely
the process. Under the extra condition that the signal reception times at each node form a renewal
process, we can prove uniqueness. This uses very similar ideas to the ones presented in the proof of
Theorem 1 in the next section. We do not include this proof in the present note. We can not anwer
this question in full generality, without the extra assumption mentioned above.
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4. Proof of Theorem 1

To prove the main theorem we will first revisit the finite case studied in Sections 1 and 2, and introduce
some more terminology and notation. So consider a finite on-off system with nodes {1, · · · , n}, recovery
rates ρ1, · · · , ρn, and input interval distribution function F (n+1). Suppose at time 0 all nodes are off.
Let, for 1 ≤ i ≤ n and k = 1, 2, . . . , Rik denote the kth recovery time at node i, i.e., the kth time it
switches from ‘off’ to ‘on’. Also, let Sik be the kth time a signal is received by node i. For convenience,
we will define Si0 = 0. Let µ(F (n+1); ρn, ρn−1, · · · , ρ1) denote the joint distribution of the collection(
(Rik, S

i
k), 1 ≤ i ≤ n, k = 1, 2, . . .

)
.

Lemma 4. Let F and Fm, m = 1, 2, . . . be probability distribution functions with F (0) = 0 and
Fm(0) = 0 for all m = 1, 2, . . . . If Fm converges weakly to F then µ(Fm; ρn, . . . , ρ1) also converges
weakly to µ(F ; ρn, . . . , ρ1), as m→∞,

Sketch of proof. The most natural (and rather standard) way to see this is by use of a space-time
diagram. This enables us to couple two on-off systems with the same recovery rates but different input
interval distributions, say F and F ′. We give a short outline of the argument: Let 0 < I1 < I2 < I3, . . .
denote the points of a renewal process with interval distribution F . (That is, (Ik+1 − Ik)k=1,2,... are
i.i.d. random variables with distribution function F ). Now assign to each node i, independently of
the other nodes and of the above renewal process, a Poisson point process with intensity ρi. These
Poisson points are interpreted as potential recovery points. This means that if t is such a point for
node i, and node i is in state 0 just before time t, it switches to state 1 at time t (otherwise the point
is ignored). The Rik and Sik can be defined in a natural way in terms of the above Poisson processes
and the renewal process. If we now replace F by F ′, we can compare the new situation with the old
one with the help of a suitable natural coupling: use the same realization of the above mentioned
Poisson point processes and take an obvious coupling of F and F ′. Details are left to the reader.

We will need the following notation: If F is the input interval distribution function at node n,
then let, for i ≤ n, F(ρn,··· ,ρi) denote the probability distribution function of the intervals between
successive signals received at node i, i.e. the distribution of Si1. It is clear from the description of the
system that for i ≤ k ≤ n (

F(ρn,...,ρk)

)
(ρk−1,... ,ρi)

= F(ρn,... ,ρi).

If F and G are two probability distribution functions, we write F � G (or G � F ) if for any x we
have F (x) ≥ G(x), i.e., if the distribution G stochastically dominates the distribution F . We have
the following lemma:

Lemma 5. For any ρk, . . . , ρn, ρn+1 > 0 and any probability distribution function F ,

F(ρn+1,ρn,... ,ρk) � F(ρn,... ,ρk).

Proof. Using Lemma 3 we have F(ρn+1,ρn,... ,ρk) = F(ρn,... ,ρk,ρn+1) =(
F(ρn,... ,ρk)

)
(ρn+1)

, which obviously stochastically dominates F(ρn,... ,ρk).

Remarks: (i) This lemma is not as obvious as it looks. For instance, it is not true in general that if
F � G, then F(ρ) � G(ρ). The above argument essentially relies on Lemma 3.
(ii) Although, strictly speaking, Lemma 3 has not been proved for the case with permanent input (i.e.
the case where the input interval distribution function is [0]), its analog for that case follows easily
from the fact that, as remarked earlier, for such input signals the sequence of signals received at node
n (and sent to node n− 1) corresponds to a Poisson process with rate ρn, so that formally

[0](ρn,... ,ρk) = Eρn(ρn−1,... ,ρk), (4.1)
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with Eρn the exponential distribution with mean 1/ρn. In the sequel we shall use this notation for the
exponential distribution. Using (4.1), and the (easy to check) fact that, if Eρ and Eρ

′
are exponential

distributions with parameter ρ and ρ′, respectively, then(
Eρ
)

(ρ′)
= Eρ ∗Eρ′ =

(
Eρ
′
)(ρ),

one can easily extend Lemma 3 to the case F = [0].
The following lemma is a deterministic statement. First we give some more definitions and termi-

nology.
A collection of non-negative numbers sik−1, r

i
k, 1 ≤ i ≤ n, k = 1, 2, . . . is called a (volume-n)

signal/recovery sequence if the following hold:

(i) For each i, 0 = si0 < ri1 < si1 < ri2 < si2 < . . . .

(ii) For each i the set {sik−1, r
i
k : k = 1, 2, . . .} is discrete.

(iii) For each i < n, and k ≥ 1
sik = min{si+1

l : si+1
l > rik}.

The motivation for this definition is that the rik-s and sik-s can be interpreted as a realization of the
recovery and reception times in an on-off system.

We denote Si := {sik : k ≥ 0}. Property (iii) above is clearly equivalent to saying that (iiia) and
(iiib) below hold for all i < n.

(iiia) Si ⊂ Si+1

(iiib) Si+1 \ Si ⊂ ∪∞k=1(sik−1, r
i
k].

We now give a natural infinite version of this definition: A collection of non-negative numbers
sik−1, r

i
k, i = 1, 2, . . . , k = 1, 2, . . . is called an infinite signal/recovery sequence if for each n the

collection sik−1, r
i
k, i = 1, 2 . . . , n, k = 1, 2, . . . is a volume-n signal/recovery sequence. We say that

the sequence has dense signals if for every interval V ⊂ R+ there exist i, k s.t. sik ∈ V . When
(sik−1, r

i
k) is a, finite or infinite, signal/recovery sequence, we define its corresponding on-off sequence

as the following sequence of functions ωi : R+ 7→ {0, 1}, i ∈ N.

ωi(t) :=

{
0 if t ∈ ∪∞k=1[sik−1, r

i
k),

1 if t ∈ ∪∞k=1[rik, s
i
k)

Lemma 6. Let sik−1, r
i
k, i = 1, 2, . . . , k = 1, 2, . . . be an infinite signal/recovery sequence with dense

signals. Let ωi(·), i = 1, 2 . . . be the corresponding on-off sequence. Then:

(a) For each i = 1, 2 . . . , the function t 7→ ωi(t) is c.a.d.l.a.g.

(b) There are no t and k for which ωl(t) = 1, for all l ≥ k.

(c) For each t and k with ωl(t−) = 1 for all l ≥ k, we have ωk(t) = 0.

(d) For every k, l > k and t > 0 with ωk(t−) = 1 and ωl(t−) = 0, we have ωk(t) = 1.

Proof. (a) The c.a.d.l.a.g. property follows immediatley from the definition of the functions ωi.
(b) Suppose that for some k and t ≥ 0 ωl(t) = 1 for all l ≥ k. Then, because of (a), there is an

ε > 0 such that ωk(s) = 1 for all s ∈ (t, t+ ε). Hence, by definition of ωk, Sk ∩ (t, t+ ε) = ∅. However,
because signals are dense, there is a j > k with Sj ∩ (t, t+ ε) 6= ∅. Let j̃ be the smallest of such j > k.
So we have ωj̃−1(t) = 1, S j̃−1 ∩ (t, t+ ε) = ∅ and S j̃ ∩ (t, t+ ε) 6= ∅, which contradicts property (iiib)
of a signal/recovery sequence.

(c) Suppose that for some t > 0 and some k ωl(t−) = 1 for all l ≥ k, and ωk(t) = 1. By (b)
there is an l > k with ωl(t) = 0. Let m be the smallest. So we have: ωm−1(t−) = ωm−1(t) = 1 and
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ωm(t−) = 1, ωm(t) = 0. This clearly implies that t ∈ Sm but at the same time t is in the interior of
the set ∪k[rm−1

k , sm−1
k ). This contradicts property (iiib) of signal/recovery systems.

(d) Suppose ωk(t−) = 1 and ωl(t−) = 0 for some l > k and ωk(t) = 0. So t ∈ Sk. But then (by
property (iii) of a signal/recovery system) t ∈ Sl, which is in conflict with the above mentioned fact
that ωl(t−) = 0.

We continue our proof of Theorem 1. Let the ρi, i = 1, 2, . . . be as in the statement of the theorem,
i.e., for all t > 0,

∑
i e
−ρit <∞. Let, for k ≤ l, F (k,l) = [0](ρl,... ,ρk) (see earlier in this section). Using

Lemma 5 we have
F (k,l+1) = [0](ρl+1,ρl,... ,ρk) � [0](ρl,... ,ρk) = F (k,l).

Hence, keeping k fixed, the sequence of distributions F (k,l), l ≥ k, converges weakly, as l → ∞. The
following lemma shows that it converges to a probability distribution:

Lemma 7. For each k, F (k,l)(t)→ 1 as t→∞, uniformly in l.

Proof. As before, let Eρ denote the exponential distribution with mean 1/ρ. For each ρ > 0 and t > 0
we have (using Lemma 5 again)

F (k,l)(t) = [0](ρl,... ,ρk)(t) � [0](ρ,ρl,... ,ρk)(t) = Eρ(ρl,... ,ρk)(t). (4.2)

Note that this last expression is the probability that in a finite on-off system with l−k+ 1 nodes with
recovery rates ρl, . . . , ρk, and where the input signals are generated according to a Poisson process
with intensity ρ, the last node receives a signal before time t. This probability is clearly larger than
or equal to the probability that each of (a)-(c) below happens:
(a) No input signal is sent in the interval (0,

√
t).

(b) Every node is in state 1 at time
√
t.

(c) An input signal is sent in the interval (
√
t, t).

This probability is

e−ρ
√
t

l∏
j=k

(1− e−ρjt)(1− e−ρ(t−
√
t)) ≤ e−ρ

√
t(1−

∞∑
j=1

e−ρj
√
t)(1− e−ρ(t−

√
t)).

For every ρ this is a lower bound for F (k,l)(t). Now use (3.1) and take ρ = t−2/3 to complete the proof
of Lemma 7.

We go on with the proof of Theorem 1. We have seen that F (k,l) converges to a probability
distribution function as l→∞. Denote the limit by F (k), and let

µk := µ(F (k); ρk−1, . . . , ρ1),

where we use the notation introduced at the beginning of this section. In this way we get a se-
quence (µk) of probability measures on Σk−1, where Σ is the set of all sequences (si−1, ri)∞i=1 with
0 = s0 < r1 < s1 < r2 < . . . . From the definitions it is clear that for each l, the projection of
µ(F (k+1,l); ρk, . . . , ρ1) on Σk−1 equals µ(F (k,l); ρk−1, . . . , ρ1). By Lemma 4 it follows that the pro-
jection of µk+1 on Σk−1 is µk. Hence, by standard extension theorems, there is a measure ν on ΣN

whose marginal on Σk is µk+1, k = 1, 2, . . . . It is clear that for each k a random element of Σk is
µk+1-a.s. a (volume k) signal/recovery sequence. Hence, a random element of ΣN is ν-a.s. an infinite
signal/recovery sequence. The theorem now follows from Lemma 6 if we can show that ν-a.s. the
system has dense signals. By standard countability arguments this is equivalent to showing that for
every open interval I ⊂ R+,

ν
{
∃k : Sk ∩ I 6= ∅

}
= 1. (4.3)
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Due to property (iiia) of signal/recovery systems, the l.h.s. of (4.3) equals limk→∞ ν
{
Sk ∩ I 6= ∅

}
which, by the construction of ν above, equals

lim
k→∞

lim
l→∞

µ([0]; ρl, . . . , ρk)
{
Sk ∩ I 6= ∅

}
.

The required result now follows from the following Lemma:

Lemma 8. For every open interval I ⊂ R+ and for every ε > 0 there exists a finite K such that for
all k ≥ K and l ≥ k

µ([0]; ρl, . . . , ρk)
{
Sk ∩ I 6= ∅

}
> 1− ε.

Proof. We have, for any ρ > 0,

µ([0]; ρl, . . . , ρk)
{
Sk ∩ I 6= ∅

}
≥ µ([0]; ρl, . . . , ρk, ρ)

{
Sk−1 ∩ I 6= ∅

}
= µ([0]; ρ, ρl, . . . , ρk)

{
Sk ∩ I 6= ∅

}
= µ(Eρ; ρl, . . . , ρk)

{
Sk ∩ I 6= ∅

}
, (4.4)

where the first two expressions in the r.h.s. refer to a system with leftmost and rightmost nodes k− 1
and l, and k and l + 1, respectively. The inequality is obvious from the definition, the first equality
follows from Lemma 3. Remind that Eρ denotes the exponential distribution function with mean
1/ρ. Note that the last expression in the r.h.s. of (4.4) is the probability that in a (size l − k + 1)
on-off system to which input signals are sent according to a Poisson process with intensity ρ, and with
recovery rates ρl, . . . , ρk, the last node receives a signal in the time interval I, and the computations
below refer to that system. We will choose ρ appropriately, depending on k. First of all, it follows
from (3.1) that there exists a sequence (τi) with the properties that limi→∞ τi = 0, τi < |I|/2 for all
i, and limi→∞

∑
j≥i e

−ρjτi = 0. Now take ρ = 1/
√
τk. Let t and t+ s be the infimum and supremum

of the interval I. It is clear that the last expression in (4.4) is larger than or equal to the probability
that each of the following events (a)-(c) occur:

(a) No input signal is sent in (t, t+ τk).

(b) Each node in the system which had value 0 at time t, has recovered before time t+ τk.

(c) An input signal is sent in the interval (t+ s/2, t+ s).

This probability is

e−
√
τk

l∏
j=k

(
1− e−ρjτk

)(
1− e−

s
2√τk

)
≥ e−

√
τk
(
1−

∑
j≥k

e−ρjτk
)(

1− e−
s

2√τk
)
.

The right hand side in the last inequality does not depend on l and goes to 1 as k → ∞. This
completes the proof of Lemma 8 and of Theorem 1.

Acknowledgments The cooperation between the authors, which led to this paper, was financially
supported by a Netherlands-Hungarian cooperation grant from the respective national research foun-
dations NWO and OTKA.
JvdB had interesting discussions with R. Meester and A. Lukács. The latter also drew our attention
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