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ABSTRACT

We consider networks where tra�c is served according to the Generalised Processor Sharing

(GPS) principle. GPS-based scheduling algorithms are considered important for providing

di�erentiated quality of service in integrated-services networks. We are interested in the

workload of a particular ow i at the bottleneck node on its path. Flow i is assumed to

have long-tailed tra�c characteristics. We distinguish between two tra�c scenarios, (i) ow i

generates instantaneous tra�c bursts and (ii) ow i generates tra�c according to an on/o�

process. In addition, we consider two con�gurations of feed-forward networks. First we focus

on the situation where other ows join the path of ow i. Then we extend the model by adding

ows which can branch o� at any node, with cross tra�c as a special case. We prove that

under certain conditions the tail behaviour of the workload distribution of ow i is equivalent

to that in a two-node tandem network where ow i is served in isolation at constant rates.

These rates only depend on the tra�c characteristics of the other ows through their average

rates. This means that the results do not rely on any speci�c assumptions regarding the

tra�c processes of the other ows. In particular, ow i is not a�ected by excessive activity of

ows with `heavier-tailed' tra�c characteristics. This con�rms that GPS has the potential to

protect individual ows against extreme behaviour of other ows, while obtaining substantial

multiplexing gains.

2000 Mathematics Subject Classi�cation: 60K25 (primary), 68M20, 90B18, 90B22 (secondary).

Keywords and Phrases: Generalised Processor Sharing (GPS), heavy-tailed tra�c, regular

variation, Weighted Fair Queueing (WFQ).
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1 Introduction

Integrated-services networks carry a large amount of di�erent services. Each of these services

has its own tra�c characteristics and requires its own quality of service (QoS) guarantees. This

heterogeneity in tra�c characteristics and QoS guarantees requires tra�c control mechanisms

to regulate the usage of network resources. In particular, scheduling mechanisms play an im-

portant role in achieving di�erentiated QoS. One of the most important scheduling algorithms

is the Generalised Processor Sharing (GPS) mechanism, which was �rst studied by Parekh and

Gallager [12, 13]. GPS is characterised by two attractive properties, (i) each backlogged ow is

guaranteed a minimum service rate and (ii) the excess service rate is redistributed among the

backlogged ows in proportion to their minimum service rates. Because of the second property

GPS is work-conserving. Commonly-used scheduling mechanisms in packet-switched networks,

such as Weighted Fair Queueing (WFQ) and other algorithms [16], are based on GPS.

Achieving di�erentiated QoS is a challenging task due to the highly bursty tra�c characteristics

in high-speed communication networks. In contrast to traditional assumptions, the burstiness

extends over a wide range of time scales. Statistical data analysis [14, 17] has in fact shown

that tra�c patterns may look similar when observed on various time scales. This behaviour

is usually referred to as self-similarity. Several studies, e.g. [10], further o�ered evidence of

a closely related property called long-range dependence, which means that correlations in the

tra�c activity decay slowly over time. These �ndings caused a fundamental shift in modelling

tra�c behaviour. Classical models mostly assume tra�c processes with a Markovian structure,

which are inherently short-range dependent. Recently though, the focus has shifted to tra�c

processes with long-tailed characteristics, which provide a useful paradigm for modelling long-

range dependence and self-similarity. An example of such a model is an on/o� process where

the on periods are regularly varying with index ��, � 2 (1; 2).

It is not clear to what extent long-tailed tra�c may impact the potential for scheduling mech-

anisms to help achieve di�erentiated QoS. To be able to guarantee end-to-end QoS, it is par-

ticularly relevant to understand to what degree tra�c ows are negatively a�ected as they

traverse the network. Anantharam [1] was one of the �rst to study the inuence of scheduling

strategies on the extent to which long-tailed tra�c a�ects network performance. He showed

the inuence can be signi�cant, depending on whether or not preemption is admissible.

In this study we investigate the impact of long-tailed tra�c on performance in GPS networks.

Existing work on GPS networks is largely restricted to a deterministic setting. In [13] Parekh

and Gallager show that the �rst GPS property, minimum guaranteed rates, translates into

worst-case bounds on delay and workload for leaky bucket controlled tra�c ows. It is clear

that the second GPS property, work conservation, yields statistical multiplexing gains. In

order to quantify these gains however, and to examine how they are possibly inuenced by the

occurrence of long-tailed tra�c, a stochastic analysis of GPS networks is required.

Networks of uid ows seem to defy exact analysis for all but a few speci�c cases, and in

particular we are not familiar with any stochastic analysis of GPS networks. In [15] Ramanan

and Dupuis study a FIFO network fed by uid ows de�ned in terms of �nite-state Markov

processes. Aalto and Scheinhardt [3] determine the bu�er content distribution in a tandem

queue fed by independent on/o� ows with exponential o� periods and generally distributed
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on periods. In the present paper we speci�cally focus on GPS networks fed by several tra�c

ows, of which at least one has long-tailed tra�c characteristics. Under certain conditions we

show that the tail distribution of the workload of the long-tailed ow at the bottleneck node

on its path is equivalent to that in a two-node tandem network where it is served in isola-

tion at constant rates. These rates are the service rates of the two bottleneck nodes for the

long-tailed ow in the original network, reduced by the average tra�c intensities of the other

ows. Hence, the long-tailed ow is only a�ected by the tra�c characteristics of the other ows

through their average rates and is not inuenced by excessive behaviour of any of the other

ows. This result extends the results in Borst, Boxma and Jelenkovi�c [4, 5] for a single GPS

node fed by tra�c with long-tailed characteristics. Agrawal, Makowski and Nain [2] establish

a similar reduced-load equivalence result for a uid queue fed by a ow with subexponentially

distributed on periods and a general light-tailed ow.

The remainder of this paper is organised as follows. In the next section we consider a simple

two-node tandem network, which is fed by a single ow. As alluded to above, this model

will play a key role in analysing more complex network con�gurations. We relate the tail

behaviour of the busy-period distribution at node 1 to the arrival process. Then we determine

the tail behaviour of the workload distribution at the second node in terms of the residual

busy-period distribution at node 1. Two tra�c processes are considered, (i) a tra�c ow

generating instantaneous bursts and (ii) a tra�c ow behaving according to an on/o� process.

We describe the GPS mechanism in more detail in Section 3. In Sections 4 and 6 we extend

the model of Section 2 to a GPS tandem network that is fed by multiple ows. We consider

two network con�gurations: in Section 4 we assume that all ows which are served at node 1

proceed to node 2, while in Section 6 we allow for ows which are only served at node 1. In

both sections we determine an upper and a lower bound for the workload distribution of the

long-tailed ow at node 2. In Section 5 we prove a general lemma which shows that the lower

and upper bounds for the workload distribution asymptotically coincide. We use this lemma

to derive the asymptotics for the other models in this paper as well. In the subsequent sections

we extend the analysis to more general GPS networks with the long-tailed ow traversing more

than two nodes. In particular, in Sections 8 and 9 we consider an extension of the GPS network

in Sections 4 and 6 respectively. We determine for both network con�gurations an upper and

a lower bound for the workload distribution of the long-tailed ow at the bottleneck node on

its path in order to obtain the tail behaviour.

2 Two-node tandem network fed by a single ow

In this section we consider a simple tandem network, which is fed by a single ow. We anal-

yse the tail behaviour of the workload distribution at the �rst and second node. Admittedly,

this model represents the simplest possible network scenario, but it plays a central role in the

further analysis. We need the results concerning the tail behaviour of the workload distribu-

tion in this tandem network to analyse more general networks, where multiple ows share the

capacity according to the GPS principle. Surprisingly, it turns out that in the GPS networks
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that we consider, the tail behaviour of the workload distribution of an individual ow is equiv-

alent to that in a tandem network where the ow is served in isolation at constant rates. We

consider two tra�c scenarios, (i) the ow generates instantaneous tra�c bursts and (ii) the

ow behaves according to an on/o� process. In Subsections 2.1 and 2.2 we give for both tra�c

scenarios the tail behaviour of the busy-period distribution at node 1. In Subsection 2.3 we

derive the tail behaviour of the workload distribution at node 2 for both tra�c scenarios using

the busy-period characteristics at node 1.

First we introduce some notation. Denote by d1 and d2 the constant service rates at node 1

and node 2, respectively. We assume d1 > d2 to exclude the trivial case where the workload at

node 2 is always zero. We de�ne � to be the tra�c intensity, i.e., the mean amount of tra�c

o�ered to the network per unit of time. For stability we assume � < d2. Denote by A(s; t) the

amount of tra�c generated during the time interval (s; t]. We de�ne W c(t) to be the workload

at time t if the ow were fed into a queue of rate c,

W c(t) := sup
0�s�t

fA(s; t)� c(t� s)g;

assuming W c(0) = 0. For c > �, W c is a stochastic variable with the limiting distribution of

W c(t) for t ! 1. We de�ne P to be the busy period in this queue. Observe that the total

workload in the tandem network at time t is W d2(t), while the workload at node 1 is W d1(t).

Thus the workload at node 2 at time t is

W d1;d2(t) := W d2(t)�W d1(t)

= sup
0�s�t

fA(s; t)� d2(t� s)g � sup
0�s�t

fA(s; t)� d1(t� s)g; (1)

assuming the system is empty at time 0. For d2 > �, let W d1;d2 be a stochastic variable with

the limiting distribution of W d1;d2(t) for t!1.

For any two real functions f(�) and g(�), we use the notational convention f(x) � g(x) to denote

limx!1 f(x)=g(x) = 1, or equivalently, f(x) = g(x)(1 + o(1)) as x ! 1. For any stochastic

variable X with distribution function F (�) and IEX < 1, denote by F r(�) the distribution

function of the residual lifetime of X, i.e., F r(x) = 1
IEX

R x
0 (1�F (y))dy, and by Xr a stochastic

variable with that distribution.

The classes of long-tailed, subexponential, regularly varying, and intermediately regularly vary-

ing distributions are denoted with the symbols L;S;R and IR, respectively. The de�nitions

of these classes are given in Appendix A.

We now state some results for the distribution of the workload and the busy period at a single

node. We need these results to determine the asymptotic behaviour of W d1;d2 , and later that

of the workload in more general networks.

2.1 Instantaneous arrivals

Suppose the ow generates instantaneous tra�c bursts according to a Poisson process with

rate �. Let K be the stochastic variable representing the burst size. We assume that the burst
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size distribution K(�) is intermediately regularly varying with mean �. The tra�c intensity is

� = ��. The following three results play a crucial role in the analysis in subsequent sections.

Theorem 2.1 (Pakes [11]) If Kr(�) 2 S and � < c, then

IP(W c > x) �
�

c� �
IP(Kr > x):

Theorem 2.2 (Zwart [18]) If K(�) 2 IR and � < c, then

IP(P > x) �
c

c� �
IP(K > x(c� �)):

The above theorem immediately gives the tail distribution of the residual busy period.

Theorem 2.3 (residual busy period) If K(�) 2 IR and � < c, then

IP(P r > x) �
c

c� �
IP(Kr > x(c� �)):

Remark 2.1 The assumption that K(�) 2 IR is in fact not necessary for Theorem 2.3 to hold.

In [5] it is shown that the weaker condition Kr(�) 2 IR is also su�cient.

2.2 On/o� processes

Suppose the ow generates tra�c according to an on/o� process. We assume the o� periods to

be exponentially distributed with mean 1=�. While on, the ow produces tra�c at a constant

rate r. Assume the stochastic variable representing the on period K to have an intermedi-

ately regularly varying distribution with mean �. Because the fraction of o� time is equal to

p = 1
1+�� , the tra�c intensity is equal to � = ��r

1+�� .

The following three results are the analogues of Theorems 2.1, 2.2 and 2.3, respectively.

Theorem 2.4 (Jelenkovi�c and Lazar [8]) If Kr(�) 2 S and � < c < r, then

IP(W c > x) � p
�

c� �
IP(Kr >

x

r � c
):

Theorem 2.5 (Boxma and Dumas [7], Zwart [18]) If K(�) 2 IR and � < c < r, then

IP(P > x) � p
c

c� �
IP(K >

x(c� �)

r � �
):

The following theorem immediately follows from Theorem 2.5.

Theorem 2.6 (residual busy period) If K(�) 2 IR and � < c < r, then

IP(P r > x) � p
c

c� �
IP(Kr >

x(c� �)

r � c
):

Remark 2.2 Again the assumption K(�) 2 IR is su�cient but not necessary for the above

theorem to hold. In [5] it is shown that the weaker condition Kr(�) 2 IR is also su�cient.
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2.3 Workload distribution

The above results completely specify the tail behaviour of the workload distribution at node 1.

Moreover, we can use them to analyse the workload distribution at node 2. Observe that the

input process at node 2 is an on/o� process with as on periods the busy periods at node 1.

The on rate is equal to the service rate at node 1, d1. The o� periods correspond to the idle

periods at node 1, which are exponentially distributed. In addition, the on and o� periods at

node 2 are independent.

For both tra�c scenarios the tail distribution of the residual busy period at node 1 is interme-

diately regularly varying. Hence, we can apply Theorem 2.4 to determine the tail behaviour

of the workload distribution at node 2, which is given in the following lemma.

Lemma 2.1 (workload second node) If K(�) 2 IR, then

IP(W d1;d2 > x) � p0
�

d2 � �
IP(P r >

x

d1 � d2
);

with the fraction of o� time p0 = d1��
d1

.

In Section 5 we give our main theorem concerning the tail behaviour of the workload distri-

bution. In the proof of that theorem we need three properties which are satis�ed for the two

tra�c scenarios that we described in the previous subsections. In the following lemma these

properties are given.

Lemma 2.2 (properties tra�c scenarios) For the tra�c scenarios described in Subsec-

tions 2.1 and 2.2 the following three properties hold:

(i) for �; � su�ciently small,

lim
x!1

IP(W d1+�;d2+� > x)

IP(W d1;d2 > x)
= G(�; �); with lim

�;�!0
G(�; �) = 1; (2)

(ii) for any real y,

lim
x!1

IP(W d1;d2 > x� y)

IP(W d1;d2 > x)
= 1; (3)

(iii) for each c > � there exists a �nite constant C such that,

lim sup
x!1

IP(W c > x)

IP(W d1;d2 > x)
= C <1: (4)

Proof. Theorems 2.3 (instantaneous arrivals), 2.6 (on/o� processes) and Lemma 2.1 have to

be used for all properties. In addition, we use for (ii) that P r(�) 2 IR � L for both tra�c

scenarios. Finally, for (iii) we obtain, using Theorems 2.1 (instantaneous arrivals), 2.4 (on/o�

processes) and Lemma 2.1,

lim sup
x!1

IP(W c > x)

IP(W d1;d2 > x)
=

g �
c��

d1��
d1

�
d2��

lim sup
x!1

IP(Kr > x
h
)

IP(P r > x
d1�d2

)

with g = 1, h = 1 and Kr denoting the residual burst size for instantaneous arrivals, and

g = 1
1+�� , h = r � c and Kr denoting the residual on period for on/o� processes. Because

Kr(�) 2 IR, (4) follows. 2

6



3 Preliminaries

In the next sections we extend the model which we described in the previous section. We

consider again a two-node tandem network, but now fed by multiple ows, where tra�c is

scheduled according to the GPS mechanism. We focus on the workload distribution of a par-

ticular ow i which passes through both nodes. In this section we introduce the notation which

we use throughout the paper and we explain how the GPS mechanism operates. Although the

network that we consider in Sections 4 and 6 has only two nodes, we introduce notation for

networks where ow i traverses N nodes. We conclude with a number of lemmas which we use

in our analysis.

At each node of the network, tra�c is served according to the GPS mechanism which operates

as follows. De�ne cn to be the service rate of node n and S(n) to be the set of all ows that

receive service at node n, n = 1; : : : ; N . Each ow q 2 S(n) is assigned a weight �̂q;n. If every

ow at node n is backlogged at time t, then ow q 2 S(n) is served at node n at rate

�q;n :=
�̂q;nP

q2S(n) �̂q;n
cn:

If some of the ows that are served at node n are not backlogged at time t, then the excess

service rate is redistributed among the backlogged ows at node n in proportion to their re-

spective weights. This means that the server always operates at the full service rate when

there is work and thus GPS is work-conserving.

Denote by AQ(s; t) :=
P
q2QAq(s; t) the amount of tra�c generated by ows q 2 Q in the time

interval (s; t], and denote by Aq;n(s; t) the amount of tra�c that arrives at node n originating

from ow q during (s; t]. In particular, Aq;n(s; t) = Aq(s; t) if node n is the �rst node ow q

feeds into and we de�ne AQ;n(s; t) :=
P
q2QAq;n(s; t). Let Bq;n(s; t) be the amount of tra�c

from ow q that is served at node n during the time interval (s; t]. De�ne Vq;n(t) as the work-

load of ow q at node n at time t, and Vq;n as a stochastic variable with the limiting distribution

of Vq;n(t) for t!1 (assuming it exists). Similarly, we de�ne VQ;n(t) :=
P
q2Q Vq;n(t) and we

denote by Vn(t) :=
P
q2S(n) Vq;n(t) the total workload at node n at time t.

Using the above de�nitions, the following identity relation holds,

Vq;n(t) = Aq;n(s; t) + Vq;n(s)�Bq;n(s; t); for 0 � s � t: (5)

Using (5), the following relation exists between the arrival processes at two successive nodes,

Aq;n+1(s; t) = Bq;n(s; t) = Aq;n(s; t) + Vq;n(s)� Vq;n(t): (6)

The total workload at node n at time t is given by,

Vn(t) = sup
0�s�t

fAS(n);n(s; t)� cn(t� s)g: (7)

We de�ne �q to be the average rate of ow q and �Q :=
P
q2Q �q to be the aggregate average

rate of all ows q 2 Q. Let W c
Q(t) be the workload at time t in a queue with service rate c � 0
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which is fed by ows q 2 Q. Then, for c > �Q, W
c
Q is a stochastic variable with the limiting

distribution of W c
Q(t) for t!1. Analogously we denote by W d1;d2

Q (t) the workload at time t

at node 2 of a tandem network fed by the ows q 2 Q. For d2 > �Q W d1;d2
Q is a stochastic

variable with the limiting distribution of W d1;d2
Q (t) for t!1.

We make the following crucial assumptions throughout the remainder of this paper.

Assumption 3.1. For stability, we assume for each ow q, �q;n > �q for all n = 1; : : : ; N .

This way each ow is guaranteed a higher rate than its average rate. De�ne ~cn := cn��S(n)nfig
as the average service rate available at node n for ow i, i.e., the service rate at node n minus

the aggregate average rate of all ows in S(n) other than i.

Assumption 3.2. We assume ~cN < ~cn for all n = 1; : : : ; N � 1.

The above assumption implies that node N can be viewed as the bottleneck node for ow i.

In the following lemma we express the workload of the set of ows Q at node n in terms of the

amount of tra�c served of the other ows. The proof can be found in Appendix B.

Lemma 3.1 (workload at time t) Assuming VQ;n(0) = 0,

VQ;n(t) = sup
0�s�t

fAQ;n(s; t)�BQ;n(s; t)g = sup
0�s�t

fAQ;n(s; t)� (cn(t� s)�BS(n)nQ;n(s; t))g:

In the next lemma we present an upper bound for Vq;n(t) which follows immediately from the

GPS discipline. The result is trivial for the workload at node 1, e.g., if the ow is backlogged

it receives at least a service rate �q;1. It will be used in deriving the upper and lower bound

for the workload of ow i at node 2 in Sections 4 and 6. Since this lemma is a special case of

Lemma 7.3, we omit the proof.

Lemma 3.2 (GPS upper bound workload 2-node tandem network) For n 2 f1; 2g,

Vq;n(t) �W
~�q
q (t);

with ~�q = �q;1 if n = 1 and ~�q = minf�q;1; �q;2g if n = 2.

4 Merging ows

We distinguish between the following two scenarios. In this section we assume the other ows

which feed into the network to join the path of ow i, i.e., they are not allowed to leave this

path (see Fig. 1). In Section 6 ows are allowed to leave the path of ow i. The latter model

includes cross tra�c as a special case.

In particular, we consider the following scenario in this section. We assume the GPS network

to be fed by ow i and by two additional sets of ows. The set S1 and ow i feed into node 1

8



S1S1

S1

i
S2

S1

i
S2

i 1 2

Figure 1: Two-node network with merging.

and are served both at nodes 1 and 2, while the set of ows S2 feed into node 2 and receive

only service at this node. We are interested in the distribution of the workload of ow i at

node 2, Vi;2.

In this section we derive both a lower and an upper bound for IP(Vi;2 > x). The idea can be

described as follows. If the ows other than i always showed exactly average behaviour, then

Vi;2 would be equal in distribution to W ~c1;~c2
i . In reality, stochastic uctuations in the activity

of the other ows will cause Vi;2 to deviate somewhat from W ~c1;~c2
i . Accordingly, the bounds

will relate Vi;2 to W ~c1;~c2
i with some additional correction terms. In the subsequent section,

we will then show that these terms can be neglected asymptotically, resulting in the exact

workload asymptotics.

In both the upper and lower bound for Vi;2(t) we need a manageable expression for the total

workload at node 2. The following lemma provides such an expression.

Lemma 4.1 (alternative expression V2(t))

V2(t) = sup
0�s�t

fAi(s; t) +AS1(s; t) +AS2(s; t) + V1(s)� c2(t� s)g

� sup
0�s�t

fAi(s; t) +AS1(s; t)� c1(t� s)g:

Proof. Using (7) the total workload at node 2 is given by

V2(t) = sup
0�s�t

fAi;2(s; t) +AS1;2(s; t) +AS2(s; t)� c2(t� s)g:

Using (6) to substitute for Ai;2(s; t) + AS1;2(s; t) and then using (7) to substitute for V1(t)

completes the proof. 2

Before presenting the lower and upper bound, we introduce an additional variable. For c < �Q,

U cQ is de�ned to be a stochastic variable with the limiting distribution of U cQ(t) for t ! 1,

with

U cQ(t) = sup
0�s�t

fc(t� s)�AQ(s; t)g: (8)

In words, U cQ(t) is the workload at a node of a ow which feeds this node at constant rate c

and receives an amount of service AQ(s; t) during a time interval (s; t].

9



Throughout the analysis, we use the following properties of the sup operator,

sup
t
ff(t) + g(t)g � sup

t
ff(t)g+ sup

t
fg(t)g; (9)

which also implies

sup
t
ff(t) + g(t)g � sup

t
ff(t)g � sup

t
f�g(t)g: (10)

The lower bound for IP(Vi;2 > x) is given in the following lemma.

Lemma 4.2 (lower bound IP(Vi;2 > x)) For any � > 0, � > 0 su�ciently small and any y,

IP(Vi;2 > x) � IP(W ~c1��;~c2+2�
i > x+ y)IP(Y �;� � y); (11)

with Y �;� a stochastic variable with the limiting distribution of Y �;�(t) for t!1, where

Y �;�(t) := U
�S1��

S1
(t) + U

�S2��

S2
(t) +W

�S1+�

S1
(t) +

X
q2S1

W
~�q
q (t) +

X
q2S2

W
~�q
q (t): (12)

The stochastic variable Y �;� can be seen as the `correction term' mentioned earlier, accounting

for scenarios where Vi;2(t) is smaller than W ~c1��;~c2+2�
i (t).

Proof. By de�nition,

Vi;2(t) = V2(t)� VS1;2(t)� VS2;2(t):

According to Lemma 4.1,

V2(t) = sup
0�s�t

fAi(s; t) +AS1(s; t) +AS2(s; t) + V1(s)� c2(t� s)g

� sup
0�s�t

fAi(s; t) +AS1(s; t)� c1(t� s)g: (13)

Using (10), the �rst supremum in (13) can be lower bounded by

sup
0�s�t

fAi(s; t)� (~c2 + 2�)(t � s)g � sup
0�s�t

f(�S1 � �)(t � s)�AS1(s; t)g

� sup
0�s�t

f(�S2 � �)(t � s)�AS2(s; t)g:

By de�nition, this is equal to

W ~c2+2�
i (t)� U

�S1��

S1
(t)� U

�S2��

S2
(t): (14)

Using (9), the second supremum in (13) is upper bounded by

sup
0�s�t

fAi(s; t)� (~c1 � �)(t� s)g+ sup
0�s�t

fAS1(s; t)� (�S1 + �)(t� s)g

= W ~c1��
i (t) +W

�S1+�

S1
(t): (15)

Finally we have to �nd an upper bound for VS1(t) + VS2(t). Using Lemma 3.2,

VS1;2(t) + VS2;2(t) �
X
q2S1

W
~�q
q (t) +

X
q2S2

W
~�q
q (t): (16)

10



Arranging the terms in (14), (15) and (16), we obtain, using (1) and (12),

Vi;2(t) �W ~c1��;~c2+2�
i (t)� Y �;�(t):

Hence, a lower bound is given by

IP(Vi;2 > x) � IP(W ~c1��;~c2+2�
i > x+ y AND Y �;� � y);

for any y. Because Y �;� is independent of the tra�c process of ow i, (11) follows. 2

The next lemma provides an upper bound for IP(Vi;2 > x).

Lemma 4.3 (upper bound IP(Vi;2 > x)) For any � > 0, � > 0 su�ciently small and any y,

IP(Vi;2 > x) � IP(W ~c1+�;~c2�2�
i > x� y) + IP(W

~�i
i > x)IP(Z�;� > y); (17)

with Z�;� a stochastic variable with the limiting distribution of Z�;�(t) for t!1, where

Z�;�(t) := U
�S1��

S1
(t) +W

�S1+�

S1
(t) +W

�S2+�

S2
(t): (18)

Analogously to Y �;� in the lower bound, the stochastic variable Z�;� can be seen as the correc-

tion term, accounting for situations where Vi;2(t) is larger than W
~c1+�;~c2�2�
i (t).

Proof. By de�nition,

Vi;2(t) � V2(t):

According to Lemma 4.1,

V2(t) = sup
0�s�t

fAi(s; t) +AS1(s; t) +AS2(s; t) + V1(s)� c2(t� s)g �

sup
0�s�t

fAi(s; t) +AS1(s; t)� c1(t� s)g: (19)

Using (7) to substitute for V1(s), we obtain for the �rst supremum in (19),

sup
0�u�s�t

fAi(u; t) +AS1(u; t) +AS2(s; t)� c1(s� u)� c2(t� s)g;

which is upper bounded by, using (9),

sup
0�s�t

fAS2(s; t)� (�S2 + �)(t� s)g+ sup
0�u�t

fAS1(u; t)� (�S1 + �)(t� u)g+

sup
0�u�s�t

fAi(u; t)� (~c1 � �)(s� u)� (~c2 � 2�)(t� s)g: (20)

The �rst two suprema in (20) are equal to

W
�S1+�

S1
(t) +W

�S2+�

S2
(t): (21)

Because ~c2 < ~c1, the third supremum in (20) is upper bounded by

sup
0�s�t

fAi(s; t)� (~c2 � 2�)(t� s)g =W ~c2�2�
i (t): (22)

11
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Figure 2: Overow scenario for instantaneous tra�c bursts.

Next we have to �nd a lower bound for the second supremum in (19). Using (10), we obtain

as lower bound,

sup
0�s�t

fAi(s; t)� (~c1 + �)(t� s)g � sup
0�s�t

f(�S1 � �)(t� s)�AS1(s; t)g

= W ~c1+�
i (t)� U

�S1��

S1
(t): (23)

Arranging the terms in (21), (22) and (23), we obtain using (1) and (18),

Vi;2(t) �W ~c1+�;~c2�2�
i (t) + Z�;�(t):

Combining the above bound with the upper bound in Lemma 3.2,

Vi;2(t) � minfW
~�i
i (t);W ~c1+�;~c2�2�

i (t) + Z�;�(t)g:

Hence, an upper bound is given by

IP(Vi;2 > x) � IP(W
~�i
i > x AND (W ~c1+�;~c2�2�

i > x� y OR Z�;� > y));

for any y, which leads to (17) because Z�;� is independent of the tra�c process of ow i. 2

5 Tail behaviour of the workload distribution

We now state our key theorem concerning the tail behaviour of the workload distribution.

Theorem 5.1 (asymptotic equivalence) For the tra�c scenarios described in Subsections

2.1 and 2.2, under Assumptions 3.1 and 3.2,

IP(Vi;2 > x) � IP(W ~c1;~c2
i > x);

where ~c1 and ~c2 represent the total service rate minus the aggregate average rate of all ows

other than ow i at nodes 1 and 2 respectively, as de�ned in Section 3.

12
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Figure 3: Overow scenario for an on/o� process.

According to this theorem, the workload distribution of ow i at node 2 is asymptotically

equivalent to that in a tandem network where ow i is served in isolation at rates ~c1 and ~c2.

Hence, the workload of ow i at node 2 is only a�ected by the characteristics of the other ows

through their average rates, even when the other ows are `heavier-tailed'. This suggests that

an extremely large workload of ow i is most likely due to either a long on period or a large

burst size of ow i itself. During the subsequent congestion period, the other ows continue

to receive service at approximately their average rates. In the theorem this is represented by

the constant rates ~c1 and ~c2. This result extends the result of [4] for the single-node case and

shows that GPS is capable of isolating ows in networks as well.

The typical overow scenario is schematically depicted in Fig. 2. At some point, ow i

generates a large burst, causing Vi;1(t) to reach some large value. After that, ow i returns to

its average behaviour, producing tra�c at rate �i. Consequently, Vi;1(t) will start to decrease

roughly at rate �i � ~c1, and Vi;2(t) will start to increase approximately at rate ~c1 � ~c2, until

Vi;1(t) reduces to zero at some point. From then on, Vi;1(t) will remain relatively small, and

Vi;2(t) will also start to decrease, roughly at rate �i � ~c2, until Vi;2(t) becomes zero as well.

The corresponding behaviour for an on/o� process is illustrated in Fig. 3.

A similar reduced-load equivalence result is obtained in [2] for a ow with subexponential on

periods and a general light-tailed ow. Here, the other ows need not be light-tailed because

of the GPS properties. Note however that Assumption 3.1 is crucial. If �q > �q;n for some n

then ow i may not receive service at a stable rate when other ows generate a large amount of

tra�c. Flows with an on period distribution or a burst size distribution which is heavier-tailed

than that of ow i will then potentially a�ect the workload of ow i, see [5].

The above theorem follows from a general lemma which shows that the bounds of Lemmas 4.2

and 4.3 asymptotically coincide. Before giving this lemma, we �rst introduce some additional

notation. Let Ri be some stochastic variable. For �; �; � and � > 0 let C�;��i and D
�;�
�i also be

stochastic variables.

Lemma 5.1 (general result) If for �; �; � and � > 0 su�ciently small and any y,

IP(Ri > x) � IP(W a1��;a2+�
i > x+ y)IP(C�;��i � y); (24)

IP(Ri > x) � IP(W a1+�;a2��
i > x� y) + IP(W a

i > x)IP(D�;�
�i > y); (25)

13



and IP(W a
i > x) and IP(W a1;a2

i > x) satisfy Properties (2), (3) and (4), then

IP(Ri > x) � IP(W a1;a2
i > x): (26)

Proof. The lower bound (24) implies, for any �; � > 0 su�ciently small and any y,

IP(Ri > x)

IP(W a1;a2
i > x)

�
IP(W a1��;a2+�

i > x+ y)

IP(W a1;a2
i > x+ y)

IP(W a1;a2
i > x+ y)

IP(W a1;a2
i > x)

IP(C�;��i � y):

Using Properties (2) and (3), we obtain

lim inf
x!1

IP(Ri > x)

IP(W a1;a2
i > x)

� Gi(��; �)IP(C
�;�
�i � y):

Letting y !1 and then �; � # 0,

lim inf
x!1

IP(Ri > x)

IP(W a1;a2
i > x)

� 1: (27)

Analogously, the upper bound (25) implies, for any �, � > 0 su�ciently small and any y,

IP(Ri > x)

IP(W a1;a2
i > x)

�
IP(W a1+�;a2��

i > x� y)

IP(W a1;a2
i > x� y)

IP(W a1;a2
i > x� y)

IP(W a1;a2
i > x)

+
IP(W a

i > x)

IP(W a1;a2
i > x)

IP(D�;�
�i > y):

Using Properties (2), (3) and (4), we have

lim sup
x!1

IP(Ri > x)

IP(W a1;a2
i > x)

� Gi(�;��) + CIP(D�;�
�i > y);

for some constant C <1. Letting y !1 and �; � # 0,

lim sup
x!1

IP(Ri > x)

IP(W a1;a2
i > x)

� 1: (28)

Combining Equations (27) and (28) gives the desired result. 2

6 Splitting ows

Consider again a tandem network in which the following ows are served according to the GPS

principle (see Fig. 4). As in Section 4, ow i and the set of ows S1 feed into node 1 and

are served both at nodes 1 and 2, and the set of ows S2 feed into node 2. In addition, we

consider in this section the set of ows S3 which feed into node 1 but do not move on to node 2

after receiving service at node 1. We �rst derive a lower bound and an upper bound for the

workload distribution of ow i at node 2, IP(Vi;2 > x). Then we use Lemma 5.1 to determine

the tail behaviour of IP(Vi;2 > x).

In the following lemma we give an alternative expression for V2(t) which we need in the proof

of the lower and upper bound for IP(Vi;2 > x).

14
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Figure 4: Two-node network with splitting.

Lemma 6.1 (alternative expression V2(t))

V2(t) = sup
0�s�t

fAi(s; t) +AS1(s; t) +AS2(s; t) + Vi;1(s) + VS1;1(s)� c2(t� s)g

� sup
0�s�t

fAi(s; t) +AS1(s; t) +AS3(s; t)� c1(t� s)g+ VS3;1(t):

Proof. Because of (7),

V2(t) = sup
0�s�t

fAi;2(s; t) +AS1;2(s; t) +AS2(s; t)� c2(t� s)g:

Using (6) to substitute for Ai;2(s; t) +AS1;2(s; t), we obtain

V2(t) = sup
0�s�t

fAi(s; t) +AS1(s; t) +AS2(s; t) + Vi;1(s) + VS1;1(s)� c2(t� s)g

�Vi;1(t)� VS1;1(t):

As V1(t) = Vi;1(t)+VS1;1(t)+VS3;1(t), the proof is completed using (7) to substitute for V1(t). 2

Analogously to Section 4, we introduce some additional variables. Due to the presence of the

additional set of ows S3, these variables are more complicated than in the previous section.

For �; � > 0, rede�ne Y �;� to be a stochastic variable with the limiting distribution of Y �;�(t)

for t!1, with

Y �;�(t) := U
�S1��

S1
(t) + U

�S2��

S2
(t) +W

�S1+�

S1
(t) +W

�S3+�

S3
(t) +

X
q2S1

W
~�q
q (t) +

X
q2S2

W
~�q
q (t): (29)

For �; � > 0, rede�ne Z�;� to be a stochastic variable with the limiting distribution of Z�;�(t)

for t!1, with

Z�;�(t) := U
�S1��

S1
(t) + U

�S3��

S3
(t) + U

�S3��

S3
(t) +

3X
j=1

W
�Sj+�

Sj
(t) +

X
q2S3

W
~�q
q (t): (30)

Now we derive both an upper and a lower bound for IP(Vi;2 > x). These bounds are similar to

the bounds in Lemmas 4.2 and 4.3, except for the structure of the correction terms Y �;� and

Z�;� . In the following lemma we give a lower bound for IP(Vi;2 > x).

Lemma 6.2 (lower bound IP(Vi;2 > x)) For any � > 0, � > 0 su�ciently small and any y,

IP(Vi;2 > x) � IP(W ~c1�2�;~c2+2�
i > x+ y)IP(Y �;� � y): (31)

15



Proof. By de�nition,

Vi;2(t) = V2(t)� VS1;2(t)� VS2;2(t): (32)

According to Lemma 6.1,

V2(t) � sup
0�s�t

fAi(s; t) +AS1(s; t) +AS2(s; t)� c2(t� s)g �

sup
0�s�t

fAi(s; t) +AS1(s; t) +AS3(s; t)� c1(t� s)g: (33)

Using (10), the �rst supremum in (33) is lower bounded by

sup
0�s�t

fAi(s; t)� (~c2 + 2�)(t � s)g � sup
0�s�t

f(�S1 � �)(t � s)�AS1(s; t)g �

sup
0�s�t

f(�S2 � �)(t � s)�AS2(s; t)g;

which is equal to (using (8))

W ~c2+2�
i (t)� U

�S1��

S1
(t)� U

�S2��

S2
(t):

Next we need an upper bound for the second supremum in (33). Using (9) it is upper bounded

by

W ~c1�2�
i (t) +W

�S1+�

S1
(t) +W

�S3+�

S3
(t):

Finally, using Lemma 3.2 we �nd a similar upper bound for VS1;2(t) and VS2;2(t) as in (16).

Adding the three bounds and using (1) and (29),

Vi;2(t) �W ~c1�2�;~c2+2�
i (t)� Y �;�(t):

Because Y �;� is independent of the tra�c process of ow i, (31) follows. 2

The following lemma provides an upper bound for IP(Vi;2 > x).

Lemma 6.3 (upper bound IP(Vi;2 > x)) For any � > 0, � > 0 su�ciently small and any y,

IP(Vi;2 > x) � IP(W ~c1+2�;~c2�4�
i > x� y) + IP(W

~�i
i > x)IP(Z�;� > y): (34)

Proof. By de�nition,

Vi;2(t) � V2(t):

According to Lemma 6.1,

V2(t) = sup
0�s�t

fAi(s; t) +AS1(s; t) +AS2(s; t) + Vi;1(s) + VS1;1(s)� c2(t� s)g �

sup
0�s�t

fAi(s; t) +AS1(s; t) +AS3(s; t)� c1(t� s)g+ VS3;1(t): (35)

First observe that Vi;1(s) + VS1;1(s) � V1(s). Using (7) to substitute for V1(s), the �rst

supremum in (35) is thus upper bounded by

sup
0�r�s�t

fAi(r; t) +AS1(r; t) +AS3(r; s) +AS2(s; t)� c1(s� r)� c2(t� s)g: (36)
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Note that (36) can be written as

sup
0�r�s�t

fAi(r; t) � (~c1 � 2�)(s� r)� (~c2 � 4�)(t� s)

+AS1(r; t) � (�S1 + �)(t� r) +AS2(s; t)� (�S2 + �)(t� s)

+AS3(r; t) � (�S3 + �)(t� r) + (�S3 � �)(t� s)�AS3(s; t)g:

Using (9) and ~c1 > ~c2, this is upper bounded by

sup
0�r�t

fAi(r; t) � (~c2 � 4�)(t� r)g+ sup
0�r�s�t

f�2�(s� r)g+ sup
0�r�t

fAS1(r; t) � (�S1 + �)(t� r)g

+ sup
0�s�t

fAS2(s; t)� (�S2 + �)(t� s)g+ sup
0�r�t

fAS3(r; t) � (�S3 + �)(t� r)g

+ sup
0�s�t

f(�S3 � �)(t� s)�AS3(s; t)g;

which by de�nition is equal to

W ~c2�4�
i (t) +W

�S1+�

S1
(t) +W

�S2+�

S2
(t) +W

�S3+�

S3
(t) + U

�S3��

S3
(t):

Now we have to �nd a lower bound for the second supremum in (35). Using (10), this lower

bound is given by

W ~c1+2�
i (t)� U

�S1��

S1
(t)� U

�S3��

S3
(t):

Finally, because of Lemma 3.2, we obtain for the third term in (35)

VS3;1(t) �
X
q2S3

W
~�q
q (t):

Adding the three bounds and using (1) and (30),

Vi;2(t) �W ~c1+2�;~c2�4�
i + Z�;�(t):

Combining the above bound with the upper bound in Lemma 3.2, we obtain the following

upper bound,

Vi;2(t) � minfW
~�i
i (t);W ~c1+2�;~c2�4�

i (t) + Z�;�(t)g:

Because Z�;� is independent of the tra�c process of ow i, (34) follows. 2

Now we have all the ingredients to use Lemma 5.1, which gives the main result of this section.

Theorem 6.1 (asymptotic equivalence) For the tra�c scenarios described in Subsections

2.1 and 2.2, under Assumptions 3.1 and 3.2,

IP(Vi;2 > x) � IP(W ~c1;~c2
i > x);

where ~c1 and ~c2 represent the total service rate minus the aggregate average rate of all ows

other than ow i at nodes 1 and 2 respectively, as de�ned in Section 3.
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7 Preliminaries general networks

In the next two sections we extend the model of Section 6 and focus on the Nth node on the

path of ow i. We assume this node to be the bottleneck node for ow i. Again we assume

the ows to be served at each node according to the GPS mechanism. First we introduce some

additional notation and present a number of lemmas which we use in the next sections. Then

we analyse the behaviour of the workload of ow i at the bottleneck node on its path, if no

other ows feed into any of the nodes on this path. Although this model is quite simple, it

provides some useful intuition for the results in Sections 8 and 9.

We de�ne Sj to be the set of ows that feed into node j and Spm to be the set of ows that feed

into node m and leave the path of ow i at node p (so ows in Spm receive service at node p).

For q 2 Spm we de�ne ~�q := minf�q;m; : : : ; �q;pg, which is the minimum rate guaranteed to

ow q on its path along node m up to and until p.

We now present some lemmas which we use in the next sections. The proofs can be found in

Appendix B. The following lemma gives a lower bound for the amount of service ow q receives

at node n during time interval (s; t].

Lemma 7.1 (lower bound Bq;n(s; t)) For q 2 Spm, 1 � m � n � p and q � ~�q,

Bq;n(s; t) � q(t� s)� sup
s�sm�t

fq(sm � s)�Aq(s; sm)g: (37)

Using this lemma, we can derive an upper bound for the total workload of ow q 2 Spm at

nodes m; : : : ; n. This upper bound is presented in the next lemma.

Lemma 7.2 (upper bound total workload ow q) For q 2 Spm, 1 � m � n � p and

q � ~�q,

nX
j=m

Vq;j(t) �W q
q (t): (38)

The above lemma immediately implies the following lemma, which includes Lemma 3.2 as a

special case.

Lemma 7.3 (GPS upper bound workload) For q 2 Spm, 1 � m � n � p,

Vq;n(t) �W
~�q
q (t): (39)

From Lemma 7.2 we can derive an upper bound for the amount of service that ow q receives

during interval (s; t] as well. This upper bound is given in the following lemma.

Lemma 7.4 (upper bound Bq;n(s; t)) For q 2 Spm, 1 � m � n � p and q � ~�q,

Bq;n(s; t) � q(t� s) + sup
0�sm�t

fAq(sm; t)� q(t� sm)g: (40)
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We now briey discuss the workload behaviour at the Nth node of a network which is fed

only by ow i. Take m� 2 argminn=1;:::;N�1f~cng. In Section 3 we assumed that ~cn > ~cN
(Assumption 3.2) for all n = 1; : : : ; N � 1, so that ~cm� > ~cN . The workload distribution,

IP(Vi;N > x), is given in the following theorem.

Theorem 7.1 (workload node N) IP(Vi;N > x) = IP(W
cm� ;cN
i > x):

Proof. Observe that, because of the de�nition of m�, the total workload at nodes 1; : : : ;m�

is equivalent to that at a node with service rate cm� which is fed by the original tra�c process

of ow i (a formal proof can be found in Appendix B). Hence,

m�X
j=1

Vi;j(t) =W
cm�
i (t): (42)

Since cN < cm� (Assumption 3.2) we can apply the same reasoning to the total workload at

nodes 1; : : : ; N and we have

NX
j=1

Vi;j(t) =W cN
i (t):

In [9] the following observation is made. If ck > cj for k > j then the backlog at node k

will always be zero in stationarity and this node can be removed from the network. Because

the nodes succeeding node m� (except N) have a service rate which is larger than cm� , the

workload at these nodes is zero and we have, using (1),

Vi;N (t) =
NX
j=1

Vi;j(t)�
m�X
j=1

Vi;j(t) =W
cm� ;cN
i (t);

which completes the proof. 2

The workload at node N in this network is equal to that at node 2 in a two-node tandem

network serving ow i at rates cm� and cN . Thus the distribution of the workload is entirely

determined by the bottleneck nodes. Asymptotically, this is still true for the more general

networks which we discuss in the next sections.

8 General network with merging

Analogously to Sections 4 and 6 we distinguish between two network scenarios. In this section

we consider an extension of the network described in Section 4 and assume that each node on

the path of ow i in the GPS network is fed by an additional set of ows (see Fig. 5 for the

case where ow i traverses 4 nodes). These sets follow the path of ow i and do not leave

before node N , the bottleneck node. In Section 9 we consider an extension of this network

and the network described in Section 6 and allow the ows feeding into a node on the path of

ow i to leave this path before the bottleneck node. In both sections we �rst derive an upper
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and a lower bound for the workload distribution of ow i at the bottleneck node. Then we use

Lemma 5.1 to determine the tail behaviour.

In this section we only give the proof of the lower and upper bound for IP(Vi;N > x). The

other proofs can be found in Appendix B.

Recall that in the two-node model the upper and lower bounds for Vi;2(t) were derived from

bounds for V1(t) and V2(t). Similarly, in the N -node case, the lower and upper bounds for

Vi;N (t) rely on bounds for the total workload at each node n 2 f1; : : : ; Ng. De�ne

Xn(t) := sup
0�s1�:::�sn�sn+1=t

8<
:Ai(s1; t) +

nX
j=1

h
ASj (sj ; t)� cj(sj+1 � sj)

i9=
; :

In the next lemma we give an expression for Vn(t) in terms of Xn(t). This expression will be

used in deriving the upper and lower bounds for Vi;N(t).

Lemma 8.1 (workload node n) For n � 2,

Vn(t) = Xn(t)�Xn�1(t): (43)

In order to determine a lower and an upper bound for Vn(t) we have to �nd a lower and an

upper bound for Xn(t). In the next lemma the lower bound for Xn(t) is presented.

Lemma 8.2 (lower bound Xn(t)) For any �1; : : : ; �n,

Xn(t) �W e
i (t)�

nX
j=1

U
�j
Sj
(t);

with e := minm=1;:::;nfcm �
Pm
j=1 �jg.

The upper bound for Xn(t) is given in the following lemma.

Lemma 8.3 (upper bound Xn(t)) For any �1; : : : ; �n,

Xn(t) �W d
i (t) +

nX
j=1

W
�j
Sj
(t);

with d := minm=1;:::;nfcm �
Pm
j=1 �jg.
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We now introduce some additional notation similar to Section 4. For �; � > 0, de�ne Y �;� as a

stochastic variable with the limiting distribution of Y �;�(t) for t!1, with

Y �;�(t) :=
NX
j=1

U
�Sj��

Sj
(t) +

N�1X
j=1

W
�Sj+�

Sj
(t) +

NX
j=1

X
q2Sj

W
~�q
q (t): (44)

For �; � > 0, de�ne Z�;� as a stochastic variable with the limiting distribution of Z�;�(t) for

t!1, with

Z�;�(t) :=
NX
j=1

W
�Sj+�

Sj
(t) +

N�1X
j=1

U
�Sj��

Sj
(t): (45)

We use the bounds for Xn(t) to construct a lower and an upper bound for IP(Vi;N > x). The

lower bound is given in the following lemma.

Lemma 8.4 (lower bound IP(Vi;N > x)) For any � > 0, � > 0 su�ciently small and any y,

IP(Vi;N > x) � IP(W
~cm��m

��;~cN+N�
i > x+ y)IP(Y �;� � y): (46)

Proof. By de�nition,

Vi;N (t) = VN (t)�
NX
j=1

X
q2Sj

Vq;N (t):

Using Lemmas 7.3 and 8.1 this is lower bounded by

XN (t)�XN�1(t)�
NX
j=1

X
q2Sj

W
~�q
q (t):

Now we can use the lower bound in Lemma 8.2 for XN (t) and the upper bound in Lemma 8.3

for XN�1(t). Taking �j = �Sj � � in Lemma 8.2 and �j = �Sj + � in Lemma 8.3 we obtain for

� > 0, � > 0 su�ciently small,

Vi;N (t) �W ~cN+N�
i (t)�

NX
j=1

U
�Sj��

Sj
(t)�W

~cm��m
��

i (t)�
N�1X
j=1

W
�Sj+�

Sj
(t)�

NX
j=1

X
q2Sj

W
~�q
q (t):

Using (1) and (44) yields,

Vi;N (t) �W
~cm��m

��;~cN+N�
i (t)� Y �;�(t):

Hence, the lower bound is given by

IP(Vi;N > x) � IP(W
~cm��m

��;~cN+N�
i > x+ y AND Y �;� � y):

Because Y �;� is independent of the tra�c process of ow i, (46) follows immediately. 2

Note that the lower bound we found for Vi;2(t) in Lemma 4.2 is indeed a special case of the

lower bound for Vi;N (t).

The upper bound for IP(Vi;N > x) is given in the following lemma.
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Lemma 8.5 (upper bound IP(Vi;N > x)) For any � > 0, � > 0 su�ciently small and any y,

IP(Vi;N > x) � IP(W
~cm�+m

��;~cN�N�
i > x� y) + IP(W

~�i
i > x)IP(Z�;� > y) (47)

Proof. By de�nition,

Vi;N (t) � VN (t):

Thus, because of Lemma 8.1,

Vi;N (t) � XN (t)�XN�1(t):

Analogously to the proof of the lower bound we take the upper bound in Lemma 8.3 for XN (t)

and the lower bound in Lemma 8.2 for XN�1(t). Taking �j = �Sj + � in Lemma 8.3 and

�j = �Sj � � in Lemma 8.2, we obtain for � > 0, � > 0 su�ciently small,

Vi;N (t) �W ~cN�N�
i (t) +

NX
j=1

W
�Sj+�

Sj
(t)�W

~cm�+m
��

i (t) +
N�1X
j=1

U
�Sj��

Sj
(t):

Using (1) and (45) yields,

Vi;N (t) �W
~cm�+m

��;~cN�N�
i (t) + Z�;�(t):

Combining the above bound with the upper bound in Lemma 7.3, we obtain

IP(Vi;N > x) � IP(W
~�i
i > x AND (W

~cm�+m
��;~cN�N�

i > x� y OR Z�;� > y)):

Because Z�;� is independent of the tra�c process of ow i, (47) follows. 2

Again note that the upper bound for Vi;2(t) in Lemma 4.3 is a special case of the upper bound

for Vi;N (t).

We are now able to characterise the tail behaviour of IP(Vi;N > x). It follows immediately from

Lemma 5.1 and the lower and upper bound given in Lemmas 8.4 and 8.5.

Theorem 8.1 (asymptotic equivalence) For the tra�c scenarios described in Subsections

2.1 and 2.2, under Assumptions 3.1 and 3.2,

IP(Vi;N > x) � IP(W
~cm� ;~cN
i > x);

where ~cm� and ~cN represent the total service rate minus the aggregate average rate of all ows

other than ow i at nodes m� and N , respectively, as de�ned in Section 3.

Remarkably, the workload distribution of ow i at the bottleneck node is asymptotically equiv-

alent to that in a two-node tandem network where ow i is served in isolation at constant rates.

In Sections 5 and 6 these rates are simply ~c1 and ~c2. For the N -node network we have to take

the two smallest service rates for ow i when reduced by the aggregate average rates of the

other ows, ~cm� and ~cN . Hence, for the network described in this section as well, the workload
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Figure 6: General network with splitting.

of ow i at the bottleneck node is only a�ected by the characteristics of the other ows through

their average rates. This suggests that an extremely large workload of ow i at its bottleneck

node is most likely due to either a long on period or a large burst of the ow itself and the

other ows showing roughly their average behaviour. Consequently, we can consider ow i to

be served in isolation at constant rates ~c1; : : : ; ~cN . Following the reasoning of [9] as in the proof

of Theorem 7.1 we can then remove all nodes with capacity ~cn > ~cm� , after which we are left

with a two-node tandem network.

9 General network with splitting

In this section we extend the model of the previous section and assume that each node on the

path of ow i is fed by an additional set of ows, which can leave this path before node N (see

Fig. 6 for the case where ow i traverses 4 nodes).

As before we derive an upper and a lower bound for IP(Vi;N > x) and we use Lemma 5.1 to

determine the tail behaviour of this distribution. Analogously to the previous section we defer

most of the proofs to Appendix B.

We �rst introduce some additional notation. De�ne Âpk(s; t) to be the amount of work arriving

at node k during the interval (s; t] associated with ows entering the path of ow i at node k

and passing through node p � k, i.e.,

Âpk(s; t) :=
NX
m=p

ASm
k
(s; t):

De�ne Âpk;n(s; t) to be the amount of work arriving at node n during the interval (s; t] associated

with ows entering the path of ow i before or at node k and passing through node p � n � k,

i.e.,

Âpk;n(s; t) :=
kX
j=1

NX
m=p

ASmj ;n(s; t): (48)

Similarly we de�ne V p
k (t) to be the workload at node k at time t associated with ows passing

through node p � k (including ow i), i.e.,

V p
k (t) :=

kX
j=1

NX
m=p

VSmj ;k(t) + Vi;k(t):
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Finally we de�ne cpk(s; t) to be the amount of service available in node k during the interval

(s; t] for ows passing through node p � k, i.e.,

cpk(s; t) := ck(t� s)�
kX
j=1

p�1X
m=k

BSm
j
;k(s; t): (49)

The following lemma expresses the workload at node n at time t associated with the ows

passing through node p, in terms of Xp
n(t), with

Xp
n(t) := sup

0�s1�:::�sn+1=t

(
Ai(s1; t) +

nX
k=1

h
Âpk(sk; t)� cpk(sk; sk+1)

i)
:

Lemma 9.1 (workload node n) For 2 � n � p,

V p
n (t) = Xp

n(t)�Xp
n�1(t): (50)

If we take p equal to N in (50) and
Pk
j=1

PN�1
m=k BSmj ;k(s; t) = 0 so that cpk(sk; sk+1) =

ck(sk+1 � sk) for k = 1; : : : ; N � 1, then we see that it reduces to the result in Lemma 8.1

where we assumed that ows cannot leave the path of ow i before node N .

Before presenting the upper and lower bound for Xp
n(t) we �rst introduce some additional

notation. Let R be the index set of the ows and ; � and  2 IRR. For any vector x 2 IRR,

denote xSmj =
P
q2Smj

xq.

De�ne

dpk := ck �
kX
j=1

NX
m=k

Smj �
k�1X
f=1

fX
j=1

p�1X
m=f

(Smj �  Smj );

and

epk := ck �
kX
j=1

NX
m=k

�Smj �
kX

f=1

fX
j=1

p�1X
m=f

(�Smj � Smj ):

In the next lemma we present the lower bound for Xp
n(t).

Lemma 9.2 (lower bound Xp
n(t)) For n � p and q � ~�q,

Xp
n(t) �W

(epn)
�

i (t)�
nX
k=1

NX
m=p

U
�Sm
k

Sm
k

(t)�
nX
k=1

kX
j=1

p�1X
m=k

X
q2Sm

j

n
U �qq (t) +W q

q (t)
o
;

with (epn)
� := mink=1;:::;nfe

p
kg.

In the following lemma an upper bound is given for Xp
n(t).

Lemma 9.3 (upper bound Xp
n(t)) For n � p and q � ~�q,

Xp
n(t) �W

(dpn)
�

i (t) +
nX
k=1

NX
m=p

W
Sm

k

Sm
k

(t) +
nX
k=1

kX
j=1

p�1X
m=k

X
q2Smj

n
U qq (t) +W q

q (t)
o
;

with (dpn)
� := mink=1;:::;nfd

p
kg.
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Note that if we take p = N in Lemmas 9.2 and 9.3 and we omit all terms concerning ows

that leave before node N , we obtain Lemmas 8.2 and 8.3, respectively. The additional terms

reect the uctuations of the service capacities available for ow i. Before deriving a lower and

upper bound for the workload of ow i in node N at time t, we �rst introduce some additional

notation.

For �; � > 0, de�ne Y �;� as a stochastic variable with the limiting distribution of Y �;�(t) for

t!1, with

Y �;�(t) =
N�1X
k=1

kX
j=1

N�1X
m=k

X
q2Sm

j

�
U�q��q (t) + U�q��q (t) +W �q+�

q (t) +W �q+�
q (t)

�

+
NX
k=1

U
�
SN
k

��jSN
k
j

SN
k

(t) +
N�1X
k=1

W
�
SN
k

+�jSN
k
j

SN
k

(t) +
NX
j=1

X
q2SN

j

W
~�q
q (t): (51)

For �; � > 0, de�ne Z�;� as a stochastic variable with the limiting distribution of Z�;�(t) for

t!1, with

Z�;�(t) =
N�1X
k=1

kX
j=1

N�1X
m=k

X
q2Smj

�
U�q��q (t) + U�q��q (t) +W �q+�

q (t) +W �q+�
q (t)

�

+
NX
k=1

W
�
SN
k

+�jSN
k
j

SN
k

(t) +
N�1X
k=1

U
�
SN
k

��jSN
k
j

SN
k

(t): (52)

Also de�ne

�k :=
kX
j=1

NX
m=k

jSmj j+ 2
k�1X
f=1

fX
j=1

N�1X
m=f

jSmj j: (53)

In the next lemma the lower bound for IP(Vi;N > x) is given.

Lemma 9.4 (lower bound IP(Vi;N > x)) For any �; � > 0 su�ciently small and any y,

IP(Vi;N > x) � IP(W
~cm����m� ;~cN+��N
i > x+ y)IP(Y �;� � y): (54)

Proof. By de�nition,

Vi;N (t) = VN (t)�
NX
j=1

X
q2SN

j

Vq;N (t) = V N
N (t)�

NX
j=1

X
q2SN

j

Vq;N(t):

Using Lemmas 7.3 and 9.1 this is lower bounded by

XN
N (t)�XN

N�1(t)�
NX
j=1

X
q2SNj

W
~�q
q (t):
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Now we can use the lower bound for XN
N (t) as given in Lemma 9.2 and the upper bound for

XN
N�1(t) as given in Lemma 9.3. We take in Lemma 9.2 �q = �q � � and q = �q + �, hence,

XN
N (t) �W

eN
N�

i (t)�
NX
k=1

U
�
SN
k

��jSN
k
j

SN
k

(t)�
NX
k=1

kX
j=1

N�1X
m=k

X
q2Sm

j

n
U�q��q (t) +W �q+�

q (t)
o
;

with for k = 1; : : : ; N ,

eNk = ck �
kX
j=1

NX
m=k

(�Sm
j
� jSmj j�) + 2�

k�1X
f=1

fX
j=1

N�1X
m=f

jSmj j

= ~ck + ��k;

and thus eNN� = ~cN + ��N for � > 0 su�ciently small.

Analogously, we take in Lemma 9.3 q = �q + � and  q = �q � �, hence,

XN
N�1(t) �W

dN
N�1�

i (t) +
N�1X
k=1

W
�
SN
k

+�jSN
k
j

SN
k

(t) +
N�1X
k=1

kX
j=1

N�1X
m=k

X
q2Sm

j

n
U�q��q (t) +W �q+�

q (t)
o
;

with for k = 1; : : : ; N � 1,

dNk = ck �
kX
j=1

NX
m=k

(�Sm
j
+ jSmj j�)� 2�

k�1X
f=1

fX
j=1

N�1X
m=f

jSmj j

= ~ck � ��k;

and thus dNN�1� = ~cm� � ��m� for � > 0 su�ciently small.

Then using (1) and (51) we obtain,

Vi;N (t) �W
~cm����m� ;~cN+��N
i (t)� Y �;�(t):

Hence, the lower bound is given by,

IP(Vi;N > x) � IP(W
~cm����m� ;~cN+��N
i > x+ y AND Y �;� � y):

Because Y �;� is independent of the tra�c process of ow i, (54) follows immediately. 2

The upper bound for IP(Vi;N > x) is given in the following lemma.

Lemma 9.5 (upper bound IP(Vi;N > x)) For any �; � > 0 su�ciently small and any y,

IP(Vi;N > x) � IP(W
~cm�+��m� ;~cN���N
i > x� y) + IP(W

~�i
i > x)IP(Z�;� > y): (55)

Proof. By de�nition,

Vi;N (t) � VN (t) = V N
N (t):

Using Lemma 9.1,

Vi;N (t) � XN
N (t)�XN

N�1(t):
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Analogously to the proof of Lemma 9.4 we use the upper bound for XN
N (t) as given in Lemma

9.3 and the lower bound for XN
N�1(t) as given in Lemma 9.2. We take in Lemma 9.3 q = �q+�

and  q = �q��. In Lemma 9.2 we take �q = �q�� and q = �q+�. Using (1) and (52) yields,

Vi;N (t) �W ~cm�+��m� ;~cN���N
i (t) + Z�;�(t):

Combining the above bound with the upper bound in Lemma 7.3, we obtain

IP(Vi;N > x) � IP(W
~�i
i > x AND (W

~cm�+��m� ;~cN���N
i > x� y OR Z�;� > y)):

Because Z�;� is independent of the tra�c process of ow i, (55) follows. 2

Note that the lower and upper bound for Vi;N(t) in Lemmas 9.4 and 9.5 reduce to the lower

and upper bound in Lemmas 8.4 and 8.5, in case we assume that no ows leave the path of

ow i, i.e., Smj = ; for m < N .

We now have gathered all the elements to characterise the tail behaviour of the workload

distribution in the most general class of networks that we consider.

Theorem 9.1 (asymptotic equivalence) For the tra�c scenarios described in Subsections

2.1 and 2.2, under Assumptions 3.1 and 3.2,

IP(Vi;N > x) � IP(W
~cm� ;~cN
i > x);

where ~cm� and ~cN represent the total service rate minus the aggregate average rate of all ows

other than i at nodes m� and N , respectively, as de�ned in Section 3.

Again the workload distribution of ow i at the bottleneck node is asymptotically equivalent

to that in a two-node tandem network where ow i is served in isolation at constant rates.

10 Concluding remarks

In this paper we analysed the workload behaviour under the GPS mechanism in networks

fed by multiple ows. Speci�cally, we considered a particular ow i traversing the network

and assumed it to have heavy-tailed tra�c characteristics. We distinguished between two

con�gurations of feed-forward networks, (i) other ows follow the path of ow i when they

feed into any of the nodes on this path and (ii) other ows can leave the path of ow i. In

addition, we considered two tra�c scenarios for ow i, (i) ow i generates instantaneous tra�c

bursts and (ii) ow i generates tra�c according to an on/o� process. Under these conditions

we showed that the tail behaviour of the workload distribution of ow i at its bottleneck node is

equivalent to that in a two-node tandem network where ow i is served in isolation at constant

rates. In case ow i traverses only two nodes and the second node is the bottleneck node, these

rates are the service rates in the original network reduced by the average rates of the other

ows. However, when ow i traverses more than two nodes, we have to take the rates from

the nodes which are bottleneck when the service rate is reduced by the average rates of the
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other ows. Hence, ow i is only a�ected by the characteristics of the other ows through their

average rates. This suggests that the GPS mechanism is capable of isolating individual ows in

networks, even when they have heavy-tailed tra�c characteristics, while achieving signi�cant

multiplexing gains.

The results in this paper may be extended in several directions. We assumed for each ow the

minimal rate guaranteed by the GPS mechanism to be larger than the average input rate. It

may be possible to relax this assumption for a certain class of ows as in [6]. In this paper we

only considered the workload distribution at nodes with the minimum average service rate for

ow i on its path. The tail behaviour of the workload distribution of ow i at a node following

the node with the minimal average service rate is an interesting topic for further research.
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A De�nitions

De�nition A.1. A distribution function F (�) on [0;1] is called long-tailed (F (�) 2 L) if

lim
x!1

1� F (x� y)

1� F (x)
= 1; for all real y:

De�nition A.2. A distribution function F (�) on [0;1] is called subexponential (F (�) 2 S) if

lim
x!1

1� F 2�(x)

1� F (x)
= 2;

where F 2�(�) is the 2-fold convolution of F (�) with itself, i.e., F 2�(x) =
R x
0 F (x� y)F (dy).

A relevant subclass of S is the class R of regularly-varying distributions (which contains the

Pareto distribution).
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De�nition A.3. A distribution function F (�) on [0;1] is called regularly varying of index ��

(F (�) 2 R��) if

F (x) = 1�
l(x)

x�
; � � 0;

where l : IR+ ! IR+ is a function of slow variation, i.e., limx!1
l(�x)
l(x) = 1; � > 0.

A technical extension of R is the class IR of intermediately regularly varying distributions.

De�nition A.4. A distribution function F (�) on [0;1] is called intermediately regularly

varying (F (�) 2 IR) if

lim
�"1

lim sup
x!1

1� F (�x)

1� F (x)
= 1:

Examples of subexponential distributions which do not belong to IR include the Weibull,

lognormal and Benktander distributions.

B Proofs

Lemma 3.1 Assuming VQ;n(0) = 0,

VQ;n(t) = sup
0�s�t

fAQ;n(s; t)�BQ;n(s; t)g = sup
0�s�t

fAQ;n(s; t)� (cn(t� s)�BS(n)nQ;n(s; t))g:

Proof. We show

(i)

VQ;n(t) � sup
0�s�t

fAQ;n(s; t)� (cn(t� s)�BS(n)nQ;n(s; t))g;

(ii)

sup
0�s�t

fAQ;n(s; t)� (cn(t� s)�BS(n)nQ;n(s; t))g � sup
0�s�t

fAQ;n(s; t)�BQ;n(s; t)g

and (ii)

sup
0�s�t

fAQ;n(s; t)�BQ;n(s; t)g � VQ;n(t):

(i) De�ne

s� := maxfsjVQ;n(s) = 0; 0 � s � tg;

i.e., s� is the last time before t at which the workload of all the ows q 2 Q at node n was 0.

Note that s� is well-de�ned since VQ;n(0) = 0. Because of the de�nition of s�, VQ;n(s) > 0 for

all s 2 (s�; t]. Recall that the GPS mechanism is work-conserving, so that

BQ;n(s
�; t) +BS(n)nQ;n(s

�; t) = cn(t� s�);
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and hence,

VQ;n(t) = AQ;n(s
�; t) + VQ;n(s

�)�BQ;n(s
�; t)

= AQ;n(s
�; t)� (cn(t� s�)�BS(n)nQ;n(s

�; t))

� sup
0�s�t

fAQ;n(s; t)� (cn(t� s)�BS(n)nQ;n(s; t))g:

(ii) By de�nition,

BQ;n(s; t) � cn(t� s)�BS(n)nQ;n(s; t);

for all s 2 [0; t].

(iii) From (5),

VQ;n(t) � AQ;n(s; t)�BQ;n(s; t)

for all s 2 [0; t]. Hence,

VQ;n(t) � sup
0�s�t

fAQ;n(s; t)�BQ;n(s; t)g;

for all t � 0. 2

Lemma 7.1 For q 2 Spm, 1 � m � n � p and q � ~�q,

Bq;n(s; t) � q(t� s)� sup
s�sm�t

fq(sm � s)�Aq(s; sm)g:

Proof. We will prove by induction on r that for each r 2 f0; : : : ; n�mg,

Bq;n(s; t) � q(t� s)� sup
s�sn�r�t

fq(sn�r � s)�Aq;n�r(s; sn�r)g; (56)

which gives immediately the desired result for r = n�m.

For r = 0, (56) reduces to

Bq;n(s; t) � q(t� s)� sup
s�sn�t

fq(sn � s)�Aq;n(s; sn)g; (57)

which can be veri�ed as follows. We distinguish between two cases.

(i) If Vq;n(sn) > 0 for all sn 2 [s; t], then ow q is continuously backlogged at node n during

[s; t], meaning that

Bq;n(s; t) � �q;n(t� s) � ~�q(t� s) � q(t� s):

Obviously we then immediately obtain (57).

(ii) If the workload Vq;n(sn) is equal to 0 for some sn 2 [s; t], then de�ne s�n := maxfsnjVq;n(sn) =

0; 0 � sn � tg. We have,

Bq;n(s; t) = Bq;n(s; s
�
n) +Bq;n(s

�
n; t)

= Vq;n(s) +Aq;n(s; s
�
n)� Vq;n(s

�
n) +Bq;n(s

�
n; t):
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Since Vq;n(s
�
n) = 0 and ow q is continuously backlogged at node n during (s�n; t], this is lower

bounded by

Aq;n(s; s
�
n) + �q;n(t� s�n) � Aq;n(s; s

�
n) + q(t� s�n)

= q(t� s)� (q(s
�
n � s)�Aq(s; s

�
n)) � q(t� s)� sup

s�sn�t
fq(sn � s)�Aq;n(s; sn)g:

Now assume (56) to hold for r � 1, i.e.,

Bq;n(s; t) � q(t� s)� sup
s�sn�r+1�t

fq(sn�r+1 � s)�Aq;n�r+1(s; sn�r+1)g: (58)

As in (57),

Bq;n�r(s; sn�r+1) � q(sn�r+1 � s)� sup
s�sn�r�sn�r+1

fq(sn�r � s)�Aq;n�r(s; sn�r)g:

Using (6) to substitute Bq;n�r(s; sn�r+1) for Aq;n�r+1(sn; sn�r+1) in (58) yields (56). 2

Lemma 7.2 For q 2 Spm, 1 � m � n � p and q � ~�q,

nX
j=m

Vq;j(t) �W q
q (t):

Proof. By induction on r we prove that for each r 2 f0; : : : ; n�mg,

Vq;n(t) =
nX

j=n�r

Vq;j(s) +Aq;n�r(s; t)�Bq;n(s; t)�
n�1X
j=n�r

Vq;j(t); for all 0 � s � t: (59)

For r = 0, (59) reduces to (5). Assume (59) to hold for r�1. Substituting (6) for Aq;n�r+1(s; t)

we immediately obtain (59).

Taking r = n�m in (59) and choosing time s such that
Pn
j=m Vq;j(s) = 0 (for example s = 0)

yields,

nX
j=m

Vq;j(t) = Aq(s; t)�Bq;n(s; t):

Rewriting the lower bound for Bq;n(s; t) in Lemma 7.1 to

� sup
s�sm�t

f�Aq(s; sm)� q(t� sm)g;

we obtain,

nX
j=m

Vq;j(t) � Aq(s; t) + sup
s�sm�t

f�Aq(s; sm)� q(t� sm)g = sup
s�sm�t

fAq(sm; t)� q(t� sm)g

and the proof is completed. 2

Lemma 7.4 For q 2 Spm, 1 � m � n � p and q � ~�q,

Bq;n(s; t) � q(t� s) + sup
0�sm�t

fAq(sm; t)� q(t� sm)g:
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Proof. We �rst prove by induction on r that for each r 2 f0; : : : ; n�mg,

Bq;n(s; t) � Aq;n�r(s; t) +
nX

j=n�r

Vq;j(s): (60)

For r = 0, (60) reduces to the upper bound which immediately follows from (5). Assume (60)

to hold for r � 1. Substituting (6) for Aq;n�r(s; t) yields (60).

Taking r = n�m in (60) and using Lemma 7.2 we obtain

Bq;n(s; t) � Aq(s; t) +W q
q (s) � Aq(s; t) + sup

0�sm�t
fAq(sm; s)� q(s� sm)g:

2

Equation (42)

m�X
j=1

Vi;j(t) = sup
0�s�t

fAi(s; t)� cm�(t� s)g

Proof. As in the proof of Lemma 8.1, for any n � 1,
nX
j=1

Vi;j(t) = sup
0�s1�:::�sn�sn+1=t

fAi(s1; t)�
nX
j=1

cj(sj+1 � sj)g =:W
(n)
i (t):

We now show with a lower and upper bound that

W
(n)
i (t) =W

cj�

i (t); (61)

with cj� := minj=1;:::;nfcjg. We �rst show that the right-hand side is a lower bound for the

left-hand side. Imposing a restriction on the optimising arguments, the supremum becomes

smaller. Hence, choosing s = s1 = : : : = sj� and sj�+1 = : : : = t,

sup
0�s1�:::�sn+1=t

fAi(s1; t)�
nX
j=1

cj(sj+1 � sj)g � sup
0�s�t

fAi(s; t)� cj�(t� s)g:

Next we show that the right-hand side is in fact also an upper bound. Because cj � cj� for all

j = 1; : : : ; n,
nX
j=1

cj(sj+1 � sj) �
nX
j=1

cj�(sj+1 � sj) = cj�(t� s1);

and the proof is completed. 2

Lemma 8.1 For n � 2,

Vn(t) = Xn(t)�Xn�1(t):

Proof. Note that S(n�m) = S(n�m�1) [ Sn�m and S(n�m�1) \ Sn�m = ;. We prove by

induction on m that for each m 2 f0; : : : ; n� 1g,

Vn(t) = sup
0�sn�m�:::�sn�sn+1=t

fAS(n�m�1);n�m(sn�m; t)

+
nX

j=n�m

(ASj (sj; t)� cj(sj+1 � sj))g �
n�1X

j=n�m

Vj(t); (62)
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with the notational convention that S(0) = fig. If m = 0, then (62) reduces to (7).

Assume (62) to hold for m� 1. Using (6) to substitute for AS(n�m);n�m+1(sn�m+1; t),

Vn(t) = sup
0�sn�m+1�:::�sn�sn+1=t

fAS(n�m);n�m(sn�m+1; t) + Vn�m(sn�m+1)� Vn�m(t)

+
nX

j=n�m+1

(ASj (sj ; t)� cj(sj+1 � sj))g �
n�1X

j=n�m+1

Vj(t):

Substituting (7) for Vn�m(sn�m+1), and arranging the terms yields (62).

Taking m = n� 1 in (62), we obtain

Vn(t) = Xn(t)�
n�1X
m=1

Vm(t);

so that Vn(t) = Xn(t)�Xn�1(t). 2

Lemma 8.2 For any �1; : : : ; �n,

Xn(t) �W e
i (t)�

nX
j=1

U
�j
Sj
(t);

with e := minm=1;:::;nfcm �
Pm
j=1 �jg.

Proof. Using the fact that
Pn
j=1 �j(t� sj) =

Pn
j=1 �

j(sj+1� sj) and �
j :=

Pj
m=1 �m, we write

Xn(t) = sup
0�s1�:::�sn+1=t

fAi(s1; t)�
nX
j=1

(cj � �j)(sj+1 � sj) +
nX
j=1

�
ASj (sj ; t)� �j(t� sj)

�
g:

Because of (10) this is lower bounded by

sup
0�s1�:::�sn+1=t

fAi(s1; t)�
nX
j=1

(cj � �j)(sj+1 � sj)g �
nX
j=1

sup
0�sj�t

f�j(t� sj)�ASj (sj ; t)g:

Using (8) and (61) for the �rst supremum, the proof is completed. 2

Lemma 8.3 For any �1; : : : ; �n,

Xn(t) �W d
i (t) +

nX
j=1

W
�j
Sj
(t);

with d := minm=1;:::;nfcm �
Pm
j=1 �jg.

Proof. The proof is similar to that of the lower bound. First adding
Pn
j=1 �j(t � sj) =Pn

j=1 �
j(sj+1 � sj) with �j :=

Pj
m=1 �m to Xn(t), then subtracting it again and using (61)

yields

Xn(t) � sup
0�s�t

fAi(s; t)� (ck � �k)(t� s)g+
nX
j=1

sup
0�sj�t

fASj (sj; t)� �j(t� sj)g;
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and the proof is completed. 2

Lemma 9.1 For 2 � n � p,

V p
n (t) = Xp

n(t)�Xp
n�1(t):

Proof. First we prove, using induction on r, that for each r 2 f0; : : : ; n� 1g,

V p
n (t) = sup

0�sn�r�:::�sn+1=t
fAi;n�r(sn�r; t) + Âpn�r�1;n�r(sn�r; t)

+
nX

k=n�r

[Âpk(sk; t)� cpk(sk; sk+1)]g �
n�1X

k=n�r

V p
k (t): (63)

For r = 0, (63) reduces to

V p
n (t) = sup

0�sn�t

n
Ai;n(sn; t) + Âpn;n(sn; t)� cpn(t� sn)

o
;

which is true by virtue of Lemma 3.1.

Assume (63) to hold for r�1. Substituting (6) for Ai;n�r+1(sn�r+1; t) + Âpn�r;n�r+1(sn�r+1; t)

yields,

V p
n (t) = sup

0�sn�r+1�:::�sn+1=t
fAi;n�r(sn�r+1; t) + Âpn�r;n�r(sn�r+1; t) + V p

n�r(sn�r+1)

+
nX

k=n�r+1

[Âpk(sk; t)� cpk(sk; sk+1)]g �
n�1X

k=n�r+1

V p
k (t)� Vi;n�r(t)�

n�rX
j=1

NX
m=p

VSmj ;n�r(t):

Using Lemma 3.1 to substitute for V p
n�r(sn�r+1), i.e., V

p
n�r(sn�r+1) =

sup
0�sn�r�sn�r+1

fÂpn�r;n�r(sn�r; sn�r+1) +Ai;n�r(sn�r; sn�r+1)� cpn�r(sn�r; sn�r+1)g;

and rewriting the supremum, we obtain (63).

Taking r = n � 1 in (63) yields
Pn
k=1 V

p
k (t) = Xp

n(t) for all n � p, and thus we obtain the

desired result. 2

Lemma 9.2 For n � p and q � ~�q,

Xp
n(t) �W

(epn)
�

i (t)�
nX
k=1

NX
m=p

U
�Sm
k

Sm
k

(t)�
nX
k=1

kX
j=1

p�1X
m=k

X
q2Smj

fU �qq (t) +W q
q (t)g;

with (epn)
� := mink=1;:::;nfe

p
kg.

Proof. Using the lower bound for Bq;k(sk; sk+1) as given in Lemma 7.1 and using (48) and

(49),

Xp
n(t) � sup

0�s1�:::�sn+1=t

(
Ai(s1; t) +

nX
k=1

"
NX
m=p

ASm
k
(sk; t)� ck(sk+1 � sk)

+
kX
j=1

p�1X
m=k

Sm
j
(sk+1 � sk) �

kX
j=1

p�1X
m=k

X
q2Sm

j

sup
sk�sm�sk+1

fq(sm � sk)�Aq(sk; sm)g

3
75
9>=
>; :
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Observe that

�Sm
k
(t� sk) =

nX
j=k

�Sm
k
(sj+1 � sj);

which means that

nX
k=1

NX
m=p

�Sm
k
(t� sk) =

nX
k=1

nX
j=k

NX
m=p

�Sm
k
(sj+1 � sj):

First changing the order of summation and then interchanging the indices j and k, the latter

term can be written as

nX
j=1

jX
k=1

NX
m=p

�Sm
k
(sj+1 � sj) =

nX
k=1

kX
j=1

NX
m=p

�Sm
j
(sk+1 � sk): (64)

Hence, adding and subtracting
Pn
k=1

PN
m=p �Smk (t� sk) yields,

Xp
n(t) � sup

0�s1�:::�sn+1=t

8<
:Ai(s1; t)�

nX
k=1

(ck �
kX
j=1

p�1X
m=k

Smj �
kX
j=1

NX
m=p

�Smj )(sk+1 � sk) +

nX
k=1

NX
m=p

(ASm
k
(sk; t)� �Sm

k
(t� sk)) �

nX
k=1

kX
j=1

p�1X
m=k

X
q2Smj

sup
sk�sm�sk+1

fq(sm � sk)�Aq(sk; sm)g

9>=
>; :

The inner supremum is upper bounded by

sup
sk�sm�sk+1

f�q(t� sk)�Aq(sk; t)g + sup
sk�sm�sk+1

fAq(sm; t)� q(t� sm)g+ (q � �q)(t� sk): (65)

Because

(Sm
j
� �Sm

j
)(t� sk) =

nX
f=k

(Sm
j
� �Sm

j
)(sf+1 � sf );

we can follow the derivation of (64) to obtain

nX
k=1

kX
j=1

p�1X
m=k

(Smj � �Smj )(t� sk) =
nX
k=1

kX
f=1

fX
j=1

p�1X
m=f

(Smj � �Smj )(sk+1 � sk): (66)

Using (65) and (66), we obtain for the lower bound,

sup
0�s1�:::�sn+1=t

fAi(s1; t)�
nX
k=1

ek(sk+1 � sk)g �
nX
k=1

NX
m=p

sup
0�sk�t

f�Sm
k
(t� sk)�ASm

k
(sk; t)g

�
nX
k=1

kX
j=1

p�1X
m=k

X
q2Smj

 
sup

0�sk�t
f�q(t� sk)�Aq(sk; t)g+ sup

0�sm�t
fAq(sm; t)� q(t� sm)g

!
:

Finally using (8) and (61) for the �rst supremum the proof is completed. 2
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Lemma 9.3 For n � p and q � ~�q,

Xp
n(t) �W

(dpn)
�

i (t) +
nX
k=1

NX
m=p

W
�Sm

k

Sm
k

(t) +
nX
k=1

kX
j=1

p�1X
m=k

X
q2Sm

j

fW �q
q (t) + U qq (t)g;

with (dpn)
� := mink=1;:::;nfd

p
kg.

Proof. Using the upper bound for Bq;k(sk; sk+1) as given in Lemma 7.4 and using (48) and

(49) yields,

Xp
n(t) � sup

0�s1�:::�sn+1=t

(
Ai(s1; t) +

nX
k=1

"
NX
m=p

ASm
k
(sk; t)� ck(sk+1 � sk)+

kX
j=1

p�1X
m=k

Smj (sk+1 � sk) +
kX
j=1

p�1X
m=k

X
q2Sm

j

sup
0�sm�sk+1

fAq(sm; sk+1)� q(sk+1 � sm)g

3
75
9>=
>; :

Analogously to the proof of Lemma 9.2, we obtain

nX
k=1

NX
m=p

Sm
k
(t� sk) =

nX
k=1

kX
j=1

NX
m=p

Smj (sk+1 � sk):

Hence, adding and subtracting
Pn
k=1

PN
m=p Smk (t� sk) yields,

Xp
n(t) � sup

0�s1�:::�sn+1=t

8<
:Ai(s1; t)�

nX
k=1

0
@ck � kX

j=1

p�1X
m=k

Sm
j
�

kX
j=1

NX
m=p

Sm
j

1
A (sk+1 � sk)+

nX
k=1

NX
m=p

(ASm
k
(sk; t)� Sm

k
(t� sk))+

nX
k=1

kX
j=1

p�1X
m=k

X
q2Sm

j

sup
0�sm�sk+1

fAq(sm; sk+1)� q(sk+1 � sm)g

9>=
>; :

The inner supremum is upper bounded by

sup
0�sm�t

fAq(sm; t)� q(t� sm)g+ sup
0�sk+1�t

f q(t� sk+1)�Aq(sk+1; t)g+ (q �  q)(t� sk+1):

Because

(Sm
j
�  Sm

j
)(t� sk+1) =

nX
f=k+1

(�Sm
j
�  Sm

j
)(sf+1 � sf );

and following the reasoning in the proof of Lemma 9.2, it is easily seen that

nX
k=1

kX
j=1

p�1X
m=k

(Sm
j
�  Sm

j
)(t� sk+1) =

nX
k=1

k�1X
f=1

fX
j=1

p�1X
m=f

(Sm
j
�  Sm

j
)(sk+1 � sk):

Using this in the upper bound yields,

sup
0�s1�:::�sn+1=t

fAi(s1; t)�
nX
k=1

dk(sk+1 � sk)g+
nX
k=1

NX
m=p

sup
0�sk�t

fASm
k
(sk; t)� Sm

k
(t� sk)g

+
nX
k=1

kX
j=1

p�1X
m=k

X
q2Sm

j

 
sup

0�sm�t
fAq(sm; t)� q(t� sm)g+ sup

0�sk+1�t
f q(t� sk+1)�Aq(sk+1; t)g

!
:

Then using (8) and (61) for the �rst supremum the proof is completed. 2
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