
Centrum Wiskunde & Informatica

Tracking Down the Origins of Ambiguity
in Context-Free Grammars

H.J.S. Basten

SEN-1005

Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2010, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Science Park 123, 1098 XG Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Tracking Down the Origins of Ambiguity in
Context-Free Grammars

H.J.S. Basten

Centrum Wiskunde & Informatica
P.O. Box 94079

NL-1090 GB Amsterdam, The Netherlands

Abstract. Context-free grammars are widely used but still hindered by
ambiguity. This stresses the need for detailed detection methods that
point out the sources of ambiguity in a grammar. In this paper we show
how the approximative Noncanonical Unambiguity Test by Schmitz can
be extended to conservatively identify production rules that do not con-
tribute to the ambiguity of a grammar. Furthermore we can identify tree
patterns that will never occur in derivations of ambiguous strings. We
prove the correctness of our approach and consider its practical applica-
bility.

1 Introduction

Context-free grammars (CFGs) are widely used in various fields, like for instance
programming language development, natural language processing, or bioinfor-
matics. They are suitable for the definition of a wide range of languages, but
their possible ambiguity can hinder their use. Designed ambiguities are not un-
common, but accidentally introduced ambiguities are unwanted. Ambiguities are
very hard to detect by hand, so automated ambiguity checkers are welcome tools.

Despite the fact the CFG ambiguity problem is undecidable in general [2,
4, 3], various detection schemes exist. They can roughly be divided into two
categories: exhaustive methods and approximative ones. Methods in the first
category exhaustively search the usually infinite set of derivations of a gram-
mar, while the latter ones apply approximation to limit their search space. This
enables them to always terminate, but at the expense of potentially incorrect
reports. Exhaustive methods do produce precise reports, but only if they find
ambiguity before they are halted, because they obviously cannot be run forever.

Because of the undecidability it is impossible to always terminate with a
correct and detailed report. The challenge is to develop a method that gives the
most precise answer in the time available. In this paper we propose to combine
exhaustive and approximative methods as a step towards this goal. We show how
to extend the Regular Unambiguity Test and Noncanonical Unambiguity Test [8]
to improve the precision of their approximation and that of their ambiguity
reports. The extension enables the detection of production rules that do not
contribute to the ambiguity of a grammar, and tree patterns that will not occur

in parse trees of ambiguous strings. These are already helpful reports for the
grammar developer, but can also be used to narrow the search space of other
detection methods.

1.1 Related Work

The original Noncanonical Unambiguity Test by Schmitz is an approximative
test for the unambiguity of a grammar. The approximation it applies is always
conservative, so it can only find a grammar to be unambiguous or potentially
ambiguous. Its answers always concern the grammar as a whole, but the reports
of a prototype implementation [9] by the author also contain clues about the
production rules involved in the potential ambiguity. However, these are very
abstract and hard to understand. The extensions that we present do result in
precise reports, while remaining conservative.

Another approximative ambiguity detection scheme is the Ambiguity Check-
ing with Language Approximation framework [1] by Brabrand, Giegerich and
Møller. The framework makes use of a characterization of ambiguity into hori-
zontal and vertical ambiguity to test whether a certain production rule can derive
ambiguous strings. The difference with our approach is that we test whether a
production rule is vital for the existence of parse trees of ambiguous strings.

1.2 Overview

We start with background information about grammars and languages in Sec-
tion 2. Then we repeat the definition of the Regular Unambiguity (RU) Test in
Section 3. In Section 4 we explain how the RU Test can be extended to iden-
tify sets of parse trees of unambiguous strings. From these parse trees we can
identify harmless production rules as explained in Section 5, and tree patterns
that only appear in parse trees of unambiguous strings as explained in Section 6.
Section 7 explains the Noncanonical Unambiguity (NU) Test, an improvement
over the RU Test, and also shows how it improves the effect of our parse tree and
production rule filtering. In Section 8 we describe how our approach can be used
iteratively to increase its precision. Finally, Section 9 contains the conclusion.

2 Background

This section gives a quick overview of the theory of grammars and languages,
and introduces the notational convention used throughout this document.

2.1 Context-Free Grammars

A context-free grammar G is a 4-tuple (N,T, P, S) consisting of:

– N , a finite set of nonterminals,
– T , a finite set of terminals (the alphabet),

2

– P , a finite subset of N × (N ∪ T)∗, called the production rules,
– S, the start symbol, an element from N .

The following characters are used to represent different symbols and strings:

– a, b, c, . . . represent terminals,
– A,B,C, . . . represent nonterminals,
– X, Y , Z represent either nonterminals or terminals,
– α, β, . . . represent strings in V ∗,
– u, v, . . . , z represent strings in T ∗,
– ε represents the empty string.

We use V to denote the set N ∪ T , and V ′ for V ∪ {ε}. A production (A,
α) in P is written as A → α. We use the function pid : P → N to relate each
production rule to a unique identifier. An item [7] indicates a position in the right
hand side of a production rule using a dot. Items are written like A→ α•β.

The relation =⇒ denotes direct derivation, or derivation in one step. Given
the string αBγ and a production rule B → β, we can write αBγ =⇒ αβγ (read
αBγ directly derives αβγ). The symbol =⇒∗ means “derives in zero or more
steps”. A sequence of derivation steps is simply called a derivation. Strings in
V ∗ are called sentential forms. We call the set of sentential forms that can be
derived from S of a grammar G, the sentential language of G, denoted S(G). A
sentential form in T ∗ is called a sentence. The set of all sentences that can be
derived from S of a grammar G is called the language of G, denoted L(G).

We assume every nonterminal A is reachable from S, that is ∃αAβ ∈ S(G).
We also assume every nonterminal is productive, meaning ∃u, A =⇒∗ u.

The parse tree of a sentential form α describes how α is derived from S,
but disregards the order of the derivation steps. To represent parse trees we use
bracketed strings (See Section 2.3). A grammar G is ambiguous iff there is at
least one string in L(G) for which multiple parse trees exist.

2.2 Bracketed Grammars

From a grammar G a bracketed grammar Gb can be constructed, by adding
unique terminals to the beginning and end of every production rule [6]. The
bracketed grammar Gb is defined as the 4-tuple (N,Tb, Pb, S), where:

– Tb = T ∪ T〈 ∪ T〉,
– T〈 = { 〈i | ∃p ∈ P, i = pid(p)},
– T〉 = { 〉i | ∃p ∈ P, i = pid(p)},
– Pb = {A→ 〈iα〉i |A→ α ∈ P, i = pid(A→ α)}.

Vb is defined as Tb ∪ N , and V ′b as Vb ∪ {ε}. The relation =⇒b denotes direct
derivation using productions in Pb. The homomorphism h from V ∗b to V ∗ is used
to map each string in S(Gb) to S(G). It is defined by h(αb〈iβb) = h(αbβb),
h(αb〉iβb) = h(αbβb), and h(α) = α otherwise.

3

2.3 Parse Trees

L(Gb) describes exactly all parse trees of all strings in L(G). S(Gb) describes
exactly all parse trees of all strings in S(G). We divide it into two disjoint sets:

Definition 1. The set of parse trees of ambiguous strings of G is Pa(G) =
{αb | αb ∈ S(Gb), ∃βb ∈ S(Gb), αb 6= βb, h(αb) = h(βb)}. The set of parse trees
of unambiguous strings of G is Pu(G) = S(Gb) \ Pa(G).

A grammar G is ambiguous iff Pa(G) is non-empty.

Example 1. Equation (1) shows an example grammar and (2) is its bracketed
version. Parse trees of the ambiguous string AAA are 〈1〈2〈2AA〉2A〉2〉1 and
〈1〈2A〈2AA〉2〉2〉1.

1 : S → A, 2 : A→ AA, 3 : A→ a (1)

1 : S → 〈1A〉1, 2 : A→ 〈2AA〉2, 3 : A→ 〈3a〉3 (2)

We call the set of the smallest possible ambiguous sentential forms of G the
ambiguous core of G. These are the ambiguous sentential forms that can not
be derived from other sentential forms that are already ambiguous. Their parse
trees are the smallest indicators of the ambiguities in G.

Definition 2. The set of parse trees of the ambiguous core of a grammar G is
Ca(G) = {αb | αb ∈ Pa(G), ¬∃βb ∈ Pa(G), βb =⇒b αb}

From Ca(G) we can obtain Pa(G) by adding all sentential forms reachable
with =⇒b. And since Ca(G) ⊆ Pa(G) we get the following Lemma:

Lemma 1. A grammar G is ambiguous iff Ca(G) is non-empty.

Similar to Pu(G), we define the complement of Ca(G) as Cu(G) = S(Gb) \
Ca(G), for which holds that Pu(G) ⊆ Cu(G).

2.4 Positions

A position in a sentential form is an element in V ∗b ×V ∗b . The position (αb, βb) is
written as αb•βb. pos(Gb) is the set of all positions in strings of S(Gb), defined
as {αb•βb | αbβb ∈ S(Gb)}.

Every position in pos(Gb) is a position in a parse tree, and corresponds to
an item of G. The item of a position can be identified by the closest enclosing
〈i and 〉i pair around the dot, considering balancing. Two special items •S and
S• are introduced for positions with the dot at respectively the beginning and
the end.

We use the function item to map a position to its item. It is defined by
item(γb•δb) = A→ α′•β′ iff γb•δb = ηb 〈i αb•βb 〉i θb, A→ 〈iα′β′〉i ∈ Pb, α′ =⇒∗b
αb and β′ =⇒∗b βb, item(•αb) = •S, and item(αb•) = S• . Another function items
returns the set of items used at all positions in a parse tree. It is defined as
items(αb) = {A→ α•β | ∃γb•δb, γbδb = αb, A→ α•β = item(γb•δb)}.

4

Example 2. The following shows the parse tree representations of the positions
〈1〈2•〈3a〉3〈3a〉3〉2〉1 and 〈1〈2〈3a〉3•〈3a〉3〉2〉1. We see that the first position is at
item A→ •AA and the second is at A→ A•A.

S

A

A

a

• A

a

S

A

A

a

A •

a

The function proditems maps a production rule to the set of all its items. It
is defined as proditems(A → α) = {A → β•γ | βγ = α}. If a production rule is
used to construct a parse tree, then all its items occur at one or more positions
in the tree.

Lemma 2. ∀αb〈iβb〉iγb ∈ S(G)∃A → δ ∈ P, pid(A → δ) = i, proditems(A →
δ) ⊆ items(αb〈iβb〉iγb).

2.5 Automata

An automaton A is a 5-tuple (Q,Σ,R,Qs, Qf) where Q is the set of states,
Σ is the input alphabet, R in Q × Σ × Q is the set of rules or transitions,
Qs ⊆ Q is the set of start states, and Qf ⊆ Q is the set of final states. A
transition (q0, a, q1) is written as q0

a7−→ q1. The language of an automaton is
the set of strings read on all paths from a start state to an end state. Formally,
L(A) = {α | ∃qs ∈ Qs,∃qf ∈ Qf , qs

α7−→∗qf}.

3 Regular Unambiguity Test

This section introduces the Regular Unambiguity (RU) Test [8] by Schmitz. The
RU Test is an approximative test for the existence of two parse trees for the
same string, allowing only false positives.

3.1 Position Automaton

The basis of the Regular Unambiguity Test is a position automaton, which de-
scribes all strings in S(Gb). The states of this automaton are the positions in
pos(Gb). The transitions are labeled with elements from Vb.

Definition 3. The position automaton1 Γ (G) of a grammar G is the tuple
(Q,Vb, R,Qs, Qf), where

1 We modified the original definition of the position automaton to be able to explain
our extensions more clearly. This does not essentially change the RU Test and NU
Test however, since their only requirement on Γ (G) is that it defines S(Gb).

5

– Q = pos(Gb),

– R = {αb•Xbβb
Xb7−→ αbXb

•βb | αbXbβb ∈ S(Gb)},
– Qs = {•αb | αb ∈ S(Gb)},
– Qf = {αb• | αb ∈ S(Gb)}.

There are three types of transition labels, derives in T〈, reduces in T〉, and
shifts of terminals and nonterminals in V . The symbols read on a path through
Γ (G) describe a parse tree of G. Thus, L(Γ (G)) = S(Gb).

Γ (G) contains a unique subgraph for each string in S(Gb). The string read
by a subgraph can be identified by the positions on the nodes of the subgraph.
Every position dictates the prefix read up until its node, and the postfix required
to reach the end state of its subgraph. Therefore, every path that corresponds
to a string in L(Γ (G)) must pass all positions of that string.

Lemma 3. ∀αb, βb : αb•βb ∈ Q⇔ αbβb ∈ L(Γ (G)).

A grammar G is ambiguous iff two paths exist through Γ (G) that describe
different parse trees in Pa(G) — strings in S(G) — of the same string in S(G).
We call such two paths an ambiguous path pair.

Example 3. The following shows the first part of the position automaton of the
grammar from Example 1. It shows paths for parse trees S, 〈1A〉1 and 〈1〈3a〉3〉1.

•S S•
S

•〈1A〉1 〈1•A〉1 〈1A•〉1 〈1A〉1•
〈1 A 〉1

•〈1〈3a〉3〉1 〈1•〈3a〉3〉1 〈1〈3•a〉3〉1 〈1〈3a•〉3〉1 〈1〈3a〉3•〉1 〈1〈3a〉3〉1•
〈1 〈3 a 〉3 〉1

3.2 Approximated Position Automaton

If G has an infinite number of parse trees, the position automaton is also of
infinite size. Checking it for ambiguous path pairs would take forever. Therefore
the position automaton is approximated using equivalence relations on the posi-
tions. The approximated position automaton has equivalence classes of positions
for its states. For every transition between two positions in the original automa-
ton a new transition with the same label then exists between the equivalence
classes that the positions are in. If an equivalence relation is used that yields a
finite set of equivalence classes, the approximated automaton can be checked for
ambiguous path pairs in finite time.

Definition 4. Given an equivalence relation ≡, the approximated position au-
tomaton Γ≡(G) of Γ (G) is the tuple (Q≡, V ′b , R≡, {qs}, {qf}) where

6

– Q≡ = Q/ ≡ ∪{qs, qf}, where Q/ ≡ is the set of non-empty equivalence
classes over pos(Gb) modulo ≡, defined as {[αb•βb]≡ | αb•βb ∈ Q},

– R≡ = {[q0]≡
Xb7−→ [q1]≡ | q0

Xb7−→ q1 ∈ R} ∪ {qs
ε7−→ [q]≡ | q ∈ Qs} ∪ {[q]≡

ε7−→
qf | q ∈ Qf},

– qs and qf are respectively the start and final state.

The paths through Γ≡(G) describe an overapproximation of the set of parse
trees of G, thus L(Γ (G)) ⊆ L(Γ≡(G)). So if no ambiguous path pair exists in
Γ≡(G), grammar G is unambiguous. But if there is an ambiguous path pair, it
is unknown if its paths describe real parse trees of G or approximated ones. In
this case we say G is potentially ambiguous.

The item0 Equivalence Relation Checking for ambiguous paths in finite
time also requires an equivalence relation with which Γ≡(G) can be build in
finite time. A relation like that should enable the construction of the equivalence
classes without iterating all positions in pos(Gb). A simple but useful equivalence
relation with this property is the item0 relation [8]. Two positions are equal
modulo item0 if they are both at the same item.

Definition 5. αb•βb item0 γb•δb iff item(αb•βb) = item(γb•δb).

Intuitively the item0 position automaton Γitem0(G) of a grammar resembles
that grammar’s LR(0) parse automaton [7]. The nodes are the LR(0) items of
the grammar and the X and 〉 edges correspond to the shift and reduce actions
in the LR(0) automaton. The 〈 edges do not have counterparts in the LR(0)
automaton. Every item with the dot at the beginning of a production of S is a
start node, and every item with the dot at the end of a production of S is an
end node.

The difference between an LR(0) automaton and an item0 position automaton
is in the reductions. Γitem0(G) has reduction edges to every item that has the dot
after the reduced nonterminal, while an LR(0) automaton jumps to a different
state depending on the symbol that is at the top of the parse stack. As a result,
a certain path through Γitem0(G) with a 〈i transition from A → α•Bγ does not
necessarily need to have a matching 〉i transition to A→ αB•γ.

Example 4. Figure 1 shows the item0 position automaton of the grammar of
Example 1. Strings 〈1〈2〈3a〉3〉1 and 〈1〈3a〉3〉1 form an ambiguous path pair.

3.3 Position Pair Automaton

The existence of ambiguous path pairs in a position automaton can be checked
with a position pair automaton, in which every state is a pair of states from the
position automaton. Transitions between pairs are described using the mutual
accessibility relation ma.

7

qs •S
ε

S•
S qf

ε

S → •A S → A•
A

〈1 〉1

A→ •AA A→ A•A A→ AA•
A A

〈2 〉2

〈2 〉2

〈2 〉2

A→ •a A→ a•
a

〈3 〉3〈3 〉3〈3 〉3

Fig. 1. The item0 position automaton of the grammar of Example 1

Definition 6. The regular position pair automaton ΠR
≡(G) of Γ≡(G) is the

tuple (Q2
≡, V

′2
b ,ma, q2s , q

2
f), where ma over Q2

≡×V ′2b ×Q2
≡, denoted by −→−→ , is the

union of the following subrelations:

maDl = {(q0, q1)
(〈i,ε)−−−→−−−→ (q2, q1) | q0

〈i7−→ q2},

maDr = {(q0, q1)
(ε,〈i)−−−→−−−→ (q0, q3) | q1

〈i7−→ q3},

maS = {(q0, q1)
(X,X)−−−−→−−−−→ (q2, q3) | q0

X7−→ q2 ∧ q1
X7−→ q3, X ∈ V ′},

maRl = {(q0, q1)
(〉i,ε)−−−→−−−→ (q2, q1) | q0

〉i7−→ q2},

maRr = {(q0, q1)
(ε,〉i)−−−→−−−→ (q0, q3) | q1

〉i7−→ q3}.

Every path through this automaton from q2s to q2f describes two paths through
Γ≡(G) that shift the same symbols. The language of ΠR

≡(G) is thus a set of pairs
of strings. A path indicates an ambiguous path pair if its two bracketed strings
are different, but equal under the homomorphism h. Because L(Γ≡(G)) is an
over-approximation of S(Gb), L(ΠR

≡(G)) contains at least all ambiguous path
pairs through Γ (G).

Lemma 4. ∀αb, βb ∈ Pa(G) αb 6= βb ∧ h(αb) = h(βb)⇒ (αb, βb) ∈ L(ΠR
≡(G)).

4 Finding Parse Trees of Unambiguous Strings

The Regular Unambiguity Test described in the previous section can conserva-
tively detect the unambiguity of a given grammar. If it finds no ambiguity we
are done, but if it finds potential ambiguity this report is not detailed enough to
be useful. In this section we show how the RU Test can be extended to identify
parse trees of unambiguous strings. These will form the basis of more detailed
ambiguity reports, as we will see in Sections 5 and 6.

8

4.1 Unused Positions

From the states of Γ≡(G) that are not used on ambiguous path pairs, we can
identify parse trees of unambiguous strings. For this we use the fact that every
bracketed string that represents a parse tree of G must pass all its positions on
its path through Γ (G) (Lemma 3). Therefore, all positions in states of Γ≡(G)
that are not used by any ambiguous path pair through ΠR

≡(G) are positions in
parse trees of unambiguous strings.

Definition 7. The set of states of Γ≡(G) that are used on ambiguous path pairs
through ΠR

≡(G) is Qa≡ =

{q0, q1 | ∃αb, βb, α′b, β′b, αbβb 6= α′bβ
′
b, q

2
s

(αb,α
′
b)−−−−−→−−−−−→
∗ (q0, q1)

(βb,β
′
b)−−−−→−−−−→
∗ q2f}.

The set of states not used on ambiguous path pairs is Qu≡ = Q≡ \Qa≡.

Definition 8. The set of parse trees of unambiguous strings of G that are iden-
tifiable with ≡, is Pu≡(G) = {αbβb | ∃q ∈ Qu≡, αb•βb ∈ q}.

This set is always a subset of Pu(G), as illustrated by Fig. 2.

Theorem 1. For all equivalence relations ≡, Pu≡(G) ⊆ Pu(G).

To prove this theorem we first define the subautomaton of Γ (G) that is
covered by the ambiguous path pairs through ΠR

≡(G). It describes at least all
parse trees of ambiguous strings of G, as stated by Lemma 5.

Definition 9. The subautomaton of Γ (G) that is covered by the ambiguous path
pairs through ΠR

≡(G) is Γ a(G) = (Qa, Vb, Ra, Qs ∩Qa, Qf ∩Qa), where

– Qa = {q | [q]≡ ∈ Qa≡},
– Ra = {q0

Xb7−→ q1 | q0, q1 ∈ Qa, q0
Xb7−→ q1 ∈ R}.

Lemma 5. Pa(G) ⊆ L(Γ a(G)).

To prove Theorem 1 we will show that no string in Pu≡(G) is in the language
of Γ a(G) and therefore has to be in Pu(G). We prove Lemma 5 afterwards.

Proof (Theorem 1). We take an arbitrary string αbβb ∈ Pu≡(G) and prove αbβb ∈
Pu(G).

Take the state q ∈ Qu≡ such that αb•βb ∈ q. According to the definition of
Γ≡(G) there is only one state that includes αb•βb. From Qu≡ = Q≡\Qa≡ it follows
that q /∈ Qa≡ and q ∈ Q≡. From the latter we can conclude that αbβb ∈ S(Gb).

Because q /∈ Qa≡ it holds that αb•βb /∈ Qa, and together with Lemma 3 we
can conclude αbβb /∈ L(Γ a(G)), and thus also αbβb /∈ Pa(G). Together with
Pu(G) = S(Gb) \ Pa(G) this makes that αbβb ∈ Pu(G). ut

Proof (Lemma 5). We take an arbitrary string αb ∈ Pa(G) and prove by con-
tradiction that it is also in L(Γ a(G)).

9

Pa(G)

S(Gb)

L(Γ≡(G))
Pu(G)

Pu
≡(G)

Fig. 2. Venn diagram showing the relation between S(Gb) and L(Γ≡(G)).

Because αb ∈ Pa(G) there has to be at least one βb ∈ Pa(G) such that
αb 6= βb and h(αb) = h(βb). Then we know that αb, βb ∈ L(Γ≡(G)) and together
with Lemma 4 we can conclude that (αb, βb) is also in L(ΠR

≡(G)).
Now suppose that αb, βb /∈ L(Γ a(G)). Then, according to Lemma 3, there

are (at least) two positions pα and pβ in respectively αb and βb that are not in
Qa. Thus their equivalence classes [pα]≡ and [pβ]≡ are both not in Qa≡, which
means they do not appear in states of ΠR

≡(G) that are visited on path (αb, βb).
However, since αb, βb ∈ L(Γ≡(G)), the classes [pα]≡ and [pβ]≡ are on paths

αb and βb through Γ≡(G). This means that, because h(αb) = h(βb), they also
have to appear in states of ΠR

≡(G) on the path (αb, βb). This contradicts the
previous conclusion and thus αb, βb ∈ L(Γ a(G)) ut

The positions in the states in Qa≡ and Qu≡ thus identify parse trees of respec-
tively potentially ambiguous strings and certainly unambiguous strings. How-
ever, iterating over all positions in pos(G) is infeasible if S(G) is infinite. The
used equivalence relation should therefore allow the direct identification of parse
trees from the states in Qa≡. In the next section we show how with item0 we can
identify production rules that only appear in parse trees in Pu≡(G).

4.2 Join Points

Gathering Qa≡ is also impossible in practice because it requires the inspection
of all paths through Γ≡(G), of which there can be infinitely many. We therefore
need a definition that can be calculated in finite time. For this we use the notion
of join points. These are the points in ΠR

≡(G) where we see that two different
paths through Γ≡(G) potentially come together in the same state.

Definition 10. The set of join points J in ΠR
≡(G), over Q2

≡ × Q2
≡, is defined

as J = {((q0, q1), (q2, q2)) | (q0, q1)
(Xb,X

′
b)−−−−−→−−−−−→ (q2, q2), q0 6= q1, Xb ∈ T〉 ∨X ′b ∈ T〉}.

With J we then define the following alternative to Qa≡.

Definition 11. The set of states in Γ≡(G) that are used in pairs of ΠR
≡(G) that

can reach, or can be reached by, a join point, is Qa′≡ =
{q0, q1 | ∃(p0, p1) ∈ J, q2s −→−→

∗ (q0, q1) −→−→
∗ p0 ∨ p1 −→−→

∗ (q0, q1) −→−→
∗ q2f}.

10

This is a safe over-approximation of Qa≡, because all ambiguous path pairs
through Γ≡(G) will eventually join in a certain state. Calculating it requires
an iteration over the edges of ΠR

≡(G) to collect J , and reachability tests from
every pair to possibly every join point. Both these calculations can be done in
O(|Q≡|4), given we first calculate the transitive closure of ΠR

≡(G). With the
Floyd-Warshall [5, 10] algorithm, which is worst case cubic in the number of
states, this can be done in O(|Q≡|6). Gathering Qa′≡ is therefore also worst case
O(|Q≡|6).

5 Harmless Production Rules

In this section we show how we can use Qa≡ to identify production rules that
do not contribute to the ambiguity of G. These are the production rules that
can never occur in parse trees of ambiguous strings. We call them harmless
production rules.

5.1 Finding Harmless Production Rules

A production rule is certainly harmless if it is only used in parse trees in Pu≡(G).
We should therefore search for productions that are never used on ambiguous
path pairs of ΠR

≡(G) that describe valid parse trees in G. We can find them by
looking at the items of the positions in the states of Qa≡. If not all items of a
production rule are used then the rule cannot be used in a valid string in Pa(G)
(Lemma 2), and we know it is harmless.

Definition 12. The set of items used on the ambiguous path pairs through
ΠR
≡(G) is Ia≡ = {A→ α•β | ∃q ∈ Qa≡, ∃γb•δb ∈ q, A→ α•β = item(γb•δb)}.

With it we can identify production rules of which all items are used:

Definition 13. The set of potentially harmful production rules of G, identifiable
from ΠR

≡(G), is Phf = {A→ α | proditems(A→ α) ⊆ Ia≡}.

Because of the approximation it is uncertain whether or not they can really
be used to form valid parse trees of ambiguous strings. Nevertheless, all the other
productions in P will certainly not appear in parse trees of ambiguous strings.

Definition 14. The set of harmless production rules of G, identifiable from
ΠR
≡(G), is Phl = P \ Phf .

Theorem 2. ∀p ∈ Phl ¬∃αb〈iβb〉iγb ∈ Pa(G), i = pid(p).

Proof. We take an arbitrary production rule p ∈ Phl and an arbitrary parse tree
δb = αb〈iβb〉iγb such that i = pid(p), and prove that δb /∈ Pa(G).

Because p /∈ Phf there is (at least) one item of p that is not in Ia≡, let us call
this item m. According to Lemma 2 there must be a position ηb•θb in δb such
that item(ηb•θb) = m. From m /∈ Ia≡ it follows that [ηb•θb]≡ /∈ Qa≡, and thus also
ηb•θb /∈ Qa of Γ a(G). From Lemma 3 it then follows that δb /∈ L(Γ a(G)). With
Lemma 5 we can then conclude that δb /∈ Pa(G). ut

11

5.2 Complexity

Finding Phf comes down to building ΠR
≡(G), finding Qa′≡ , and enumerating all

positions in all classes in Qa′≡ to find Ia≡. The number of these classes is finite,
but the number of positions might not be. It would therefore be convenient if the
definition of the chosen equivalence relation could be used to collect Ia≡ in finitely
many steps. With the item0 relation this is possible, because all the positions in
a class are all in the same item.

Constructing ΠR
item0

(G) can be done in O(|G|2) (see [8]), where |G| is the
number of items of G. After that, Qa

′

item0
can be gathered in O(|G|6), because

|Qitem0 | is linear with |G|. Since this is the most expensive step, the worst case
complexity of finding Phf with item0 is therefore also O(|G|6).

5.3 Grammar Reconstruction

Finding Phl can be very helpful information for the grammar developer. Also, Phf

represents a smaller grammar that can be checked again more easily to find the
true origins of ambiguity. However, the reachability and productivity properties
of this smaller grammar might be violated because of the removed productions
in Phl. To restore these properties we have to introduce new terminals, nontermi-
nals, and production rules, and a new start symbol. We must prevent introducing
new ambiguities in this process.

From Phf we can create a new grammar G′ by constructing2 :

1. The set of defined non-terminals of Phf :
Ndef = {A |A→ α ∈ Phf}.

2. The used but undefined non-terminals of Phf :
Nundef = {B |A→ αBβ ∈ Phf}\Ndef .

3. The unproductive non-terminals:
Nunprod = {A |A ∈ Ndef ,¬∃u : A =⇒∗ u using only productions in Phf}.

4. The start symbols of Phf :
Shf = {A |A ∈ Ndef ,¬∃(B → βAγ) ∈ Phf}.

5. New terminal symbols tA, bA, eA for each non-terminal A.
6. New productions to define a new start-symbol S′:
P ′S = {S′ → (bA)kA(eA)l | A ∈ Shf , k = minprefix(A), l = minpostfix(A)}.

7. Productions to complete the unproductive and undefined non-terminals:
P ′ = Phf ∪ P ′S ∪ {A→ (tA)k | A ∈ Nundef ∪ Nunprod, k = minlength(A)}.

8. The new set of terminal symbols:
T ′ = {a | (A→ βaγ) ∈ P ′}.

9. Finally, the new grammar:
G′ = (Ndef ∪ {S′}, T ′, P ′, S′).

2 where minlength(A) = min({k | ∃u, A =⇒∗ u : k = |u|}), minprefix(A) =
min({k | ∃u, α : S =⇒∗ uAα, k = |u|}), and minpostfix(A) = min({k | ∃u, α : S =⇒∗

αAu, k = |u|}).

12

Surrounding the non-terminals in Shf with unique terminals at step 6 pre-
vents the rules of S′ from being ambiguous with eachother. Also, they make sure
that in all derivations of S′ up to a certain length, the non-terminals in Shf can
not be expanded further than in the original grammar. At step 7 we prevent
the non-terminals from being expanded less far than in the original grammar.
This way every derivation of the original grammar corresponds to a derivation of
equal length in the filtered grammar. The number of derivations of the filtered
grammar up to a certain length is then always less or equal to that of the original
grammar, and certainly not greater.

6 Harmless Parse Tree Patterns

Apart from harmless production rules we can also identify more fine grained
patterns of parse trees in Pu(G). We can search for substrings in L(Γ a(G)) to
identify patterns of parse trees of ambiguous strings. The complement of this set
of patterns then represents parse trees in Pu(G).

6.1 Derivation Patterns

We will now show how we can extract unambiguous tree patterns of length two
from ΠR

≡(G). These describe for each occurence of a nonterminal in a production
rule what other productions are used to derive it.

We first look at the subset of the transitions of Γ≡(G) that are used on
ambiguous path pairs:

Definition 15. The set of transitions of Γ≡(G) that are used on ambiguous path

pairs through ΠR
≡(G) is Ra≡ = {q0

X7−→ q2, q1
X′7−→ q3 | ∃αb, βb, α′b, β′b, αbXβb 6=

α′bX
′β′b, q

2
s

(αb,α
′
b)−−−−−→−−−−−→
∗ (q0, q1)

(X,X′)−−−−→−−−−→ (q2, q3)
(βb,β

′
b)−−−−→−−−−→
∗ q2f}.

Then we collect for each item A→ α•Bγ all production rules that are used
to derive B, by looking at outgoing 〈i transitions. Note that in all valid parse
trees of S(G) there always exists a corresponding 〉i transition back into A →
αB•γ. Unfortunately we cannot determine this without traversing all ambiguous
path pairs, but we can identify if the corresponding 〉i transition occurs at all.
Therefore we assume production rule i is used at A → α•Bγ if both 〈i and 〉i
transitions appear.

Definition 16. The set of derivation steps of a grammar G that are used on
ambiguous path pairs through ΠR

≡(G) is
Da
≡ = {(A→ α•Bγ,B → β) | ∃p0, p1 ∈ pos(G), ∃q0, q1 ∈ Q≡,

A→ α•Bγ = item(p0), A→ αB•γ = item(p1),

i = pid(B → β), [p0]≡
〈i7−→ q0 ∈ Ra≡, q1

〉i7−→ [p1]≡ ∈ Ra≡}.

Because of the approximation we cannot be certain whether these patterns
really appear in Pa(G), but we know all other derivation patterns of length two
certainly only appear in trees in Pu(G):

13

Definition 17. The set of derivation steps of a grammar G that are not used
in parse trees of ambiguous strings, identifiable with ≡, is

Du
≡ = {(A→ α•Bγ,B → β) | (A→ α•Bγ,B → β) /∈ Da

≡}.

Theorem 3. ∀(A → α•Bγ,B → β) ∈ Du
≡ ¬∃αb〈iβb ∈ Pa(G), i = pid(B →

β), item(αb•〈iβb) = A→ α•Bγ.

Proof. We take an arbitrary pair (A → α•Bγ,B → β) ∈ Du
≡ and an arbitrary

parse tree αb〈iβb ∈ S(Gb), such that i = pid(B → β) and item(αb•〈iβb) =
A → α • B γ, and prove that αb〈iβb /∈ Pa(G).

Since derivations of Gb always introduce pairwise brackets there exists
αb〈iγb〉iδb = αb〈iβb, such that item(αb〈iγb〉i•δb) = A→ αB•γ.
Because (A → α•Bγ,B → β) /∈ Da

≡ there are no q0, q1 ∈ Q≡ such that

[αb•〈iγb〉iδb]≡
〈i7−→ q0 and q1

〉i7−→ [αb〈iγb〉i•δb]≡ are in Ra≡. This means no
ηb 6= αb〈iβb exists such that (αb〈iβb, ηb) ∈ L(ΠR

≡(G)). With Lemma 4 we can
then conclude that αb〈iβb /∈ Pa(G). ut

6.2 Feasibility

The above definition for Ra≡ is impractical to compute because it requires ex-
ploring all paths through ΠR

≡(G). Again, we can use J , the set of join points in
ΠR
≡(G), to define a practical and safe over-approximation of Ra≡:

Definition 18. The set of transitions of Γ≡(G) that are used on path pairs
through ΠR

≡(G) over join points is

Ra′≡ = {q0
X7−→ q2, q1

X′7−→ q3 | ∃(p0, p1) ∈ J,
q2s −→−→

∗ (q0, q1)
(X,X′)−−−−→−−−−→ (q2, q3) −→−→

∗ p0 ∨

p1 −→−→
∗ (q0, q1)

(X,X′)−−−−→−−−−→ (q2, q3) −→−→
∗ q2f ∨

(p0 = (q0, q1) ∧ p1 = (q2, q3))}.

Also, by using item0 it is not necessary to iterate over all positions in pos(G)
to gather Da

≡.

7 Noncanonical Unambiguity Test

In this section we explain the Noncanonical Unambiguity (NU) Test [8], which
is more precise than the Regular Unambiguity Test. It enables the identification
of a larger set of irrelevant parse trees, namely the ones in Cu(G). From these
we can also identify a larger set of harmless production rules and tree patterns.

7.1 Improving the Regular Unambiguity Test

The regular position pair automaton described in Section 3 checks all pairs of
paths through a position automaton for ambiguity. However, it also checks some
spurious paths that are unnecessary for identifying the ambiguity of a grammar.

14

These are the path pairs that derive the same unambiguous substring for a
certain nonterminal. We can ignore these paths because in this situation there
are also two paths in which the nonterminal was shifted instead of derived.
For instance, consider paths 〈1〈2〈3a〉3αb〉2〉1 and 〈1〈2〈3a〉3βb〉2〉1. If they form
a pair in L(ΠR

≡(G)) then the shorter paths 〈1〈2Aαb〉2〉1 and 〈1〈2Aβb〉2〉1 will
also (considering A → 〈3a〉3 ∈ Pb). In addition, if the first two paths form an
ambiguous path pair, then these latter two will also, because 〈3a〉3 does not
contribute to the ambiguity. In this case we prefer the latter paths because they
describe smaller parse trees than the first paths.

7.2 Noncanonical Position Pair Automaton

It only makes sense to let paths take different reduce transitions from an identical
pair if they do not share the same substring since their last derives. To keep track
of this property we add two extra boolean flags c0 and c1 to the position pairs.
These flags tell for each position in a pair whether or not its path has been in
conflict with the other, meaning it has taken different reduce steps as the other
path since its last derive. A value of 0 means this has not occured yet, and we
are thus allowed to ignore an identical reduce transition.

All start pairs have both flags set to 0, and every derive step resets the flag
of a path to 0. The flag is set to 1 if a path takes a conflicting reduce step, which
occurs if the other path does not follow this reduce at the same time (for instance
〉2 in the parse trees 〈1〈2〈3a〉3〉2〉1 and 〈1〈2〈3a〉3〉1). We use the predicate confl
(called eff by Schmitz) to identify a situation like that.

confl(q, i) = ∃u ∈ T ∗〈 , q
u7−→∗qf ∨ (∃q′ ∈ Q≡, X ∈ V ∪ T〉, X 6=〉i, q

uX7−→+q′) (3)

It tells whether there is another shift or reduce transition other than 〉i pos-
sible from q, ignoring 〈 steps, or if q is at the end of the automaton.

Definition 19. The noncanonical position pair automaton ΠN
≡ (G) of Γ≡(G) is

the tuple (Qp, V ′2b , nma, (qs, 0)2, (qf , 1)2), where Qp = (Q≡ × B)2, and nma over
Qp × V ′2b × Qp is the noncanonical mutual accessibility relation, defined as the
union of the following subrelations:

nmaDl = {(q0, q1)c0, c1
(〈i,ε)−−−→−−−→ (q2, q1)0, c1 | q0

〈i7−→ q2},

nmaDr = {(q0, q1)c0, c1
(ε,〈i)−−−→−−−→ (q0, q3)c0, 0 | q1

〈i7−→ q3},

nmaS = {(q0, q1)c0, c1
(X,X)−−−−→−−−−→ (q2, q3)c0, c1 | q0

X7−→ q2, q1
X7−→ q3, X ∈ V ′},

nmaCl = {(q0, q1)c0, c1
(〉i,ε)−−−→−−−→ (q2, q1)1, c1 | q0

〉i7−→ q2, confl(q1, i)},

nmaCr = {(q0, q1)c0, c1
(ε,〉i)−−−→−−−→ (q0, q3)c0, 1 | q1

〉i7−→ q3, confl(q0, i)},

nmaR = {(q0, q1)c0, c1
(〉i,〉i)−−−−→−−−−→ (q2, q3)1, 1 | q0

〉i7−→ q2, q1
〉i7−→ q3, c0 ∨ c1}.

As with ΠR
≡(G), the language of ΠN

≡ (G) describes ambiguous path pairs
through Γ≡(G). The difference is that L(ΠN

≡ (G)) does not include path pairs

15

without conflicting reductions. Therefore L(ΠN
≡ (G)) ⊆ L(ΠR

≡(G)). Nevertheless,
ΠN
≡ (G) does at least describe all the parse trees in Ca(G):

Theorem 4. ∀αb, βb ∈ Ca(G) αb 6= βb ∧h(αb) = h(βb)⇒ (αb, βb) ∈ L(ΠN
≡ (G)).

Proof. We take an arbitrary string αb ∈ Ca(G). Then there is at least one βb ∈
Ca(G) such that αb 6= βb and h(αb) = h(βb). We show that (αb, βb) ∈ L(ΠN

≡ (G)).
Because Ca(G) ⊆ Pa(G) we know that αb, βb ∈ L(Γ≡(G)) and (αb, βb) ∈

L(ΠR
≡(G)). To prove that (αb, βb) is also in L(ΠN

≡ (G)) we show that the extra
restrictions of nma over ma do not apply for (αb, βb). We distinguish the following
cases:

– nmaDl, nmaDr and nmaS: These relations are similar to respectively maDl,
maDr and maS, and have no additional restrictions.

– nmaR: One nmaR transition is similar to taking two consecutive maRl and
maRr transitions with the same 〉i, with the extra restriction that at least
one boolean flag is 1. We will show that it is not possible to reach a pair
with both flags 0 if both paths need to read the same 〉i.
If we would reach a pair like that this means we have not followed any 〈 or 〉
steps since the two 〈i steps that match the 〉is. Reading a 〈j step left or right
since 〈i would set a flag to 0, but then we would also have read a matching
〉j before 〉i because 〈s and 〉s are always balanced. However, this would have
set at least one flag to 1.
The only steps we thus could have taken since the 〈is are shifts of the same
terminal or nonterminal symbols left and right. But then we have an identical
substring 〈iγ〉i in both strings αb and βb that represents the same substring in
h(αb) and h(βb). This means αb, βb /∈ Ca(G), because if we “underive” 〈iγ〉i
— substituting it with the nonterminal at the right hand side of production i
— in αb an βb we still get two parse trees of an ambiguous string. Therefore,
nmaR can always be followed on path (αb, βb).

– nmaCl and nmaCr: These relations are similar to maRl and maRr, with the
added confl restrictions. Above we saw that if both paths reach identical
〈i symbols we can read them with nmaR. In all other cases we can read 〉i
symbols with either nmaCl and nmaCr, because then confl will be true: if
we ignore 〈 symbols, the 〉i symbol will eventually come into conflict with
another 〉j or X symbol of the other path, or the other path is already at its
end.

All 〈 symbols in αb and βb can thus be read through ΠN
≡ (G) with nmaDl or

nmaDr transitions, the X ∈ V symbols can be read synchronously with nmaS,
and the 〉s with nmaCl, nmaCr or nmaR. Therefore (αb, βb) ∈ L(ΠN

≡ (G)). ut

The Theorem shows that if G is ambiguous — that is Ca(G) is non-empty
— L(ΠN

≡ (G)) is also non-empty. This means that if L(ΠN
≡ (G)) is empty, G is

unambiguous.

16

7.3 Effects on Filtering Parse Trees and Production Rules

The new nma relation enables our parse tree identification algorithm of Section 4
to potentially identify a larger set of irrelevant parse trees, namely Cu(G). These
trees might be ambiguous, but this is not a problem because we are interested
in finding the trees of the smallest possible sentential forms of G, namely the
ones in Ca(G).

Definition 20. Given Qu≡ from ΠN
≡ (G), the set of parse trees not in the am-

biguous core of G, identifiable with ≡, is Cu≡(G) = {αbβb | ∃q ∈ Qu≡, αb•βb ∈ q}.

Theorem 5. For all equivalence relations ≡, Cu≡(G) ⊆ Cu(G).

The set of harmless production rules that can be identified with ΠN
≡ (G) is

also potentially larger. It might include rules that can be used in parse trees of
ambiguous strings, but not in parse trees in Ca(G). Therefore they are not vital
for the ambiguity of G.

Definition 21. Given Qa≡ and Ia≡ from ΠN
≡ (G), the set of harmless productions

of G, identifiable from ΠN
≡ (G), is P ′hl = P \ {A→ α | proditems(A→ α) ⊆ Ia≡}.

Theorem 6. ∀p ∈ P ′hl ¬∃αb〈iβb〉iγb ∈ Ca(G), i = pid(p).

Similarly, ΠN
≡ (G) also allows the identification of parse tree patterns that

will not occur in Ca(G). Assuming Du′
≡ is defined similar to Du

≡, but with Ra≡
and Du

≡ taken from ΠN
≡ (G), we get the following Theorem:

Theorem 7. ∀(A → α•Bγ,B → β) ∈ Du′
≡ ¬∃αb〈iβb ∈ Ca(G), i = pid(B →

β), item(αb•〈iβb) = A→ α•Bγ.

8 Excluding Parse Trees Iteratively

Our approach for the identification of parse trees of unambiguous strings is
most useful if applied in an iterative setting. By checking the remainder of the
potentially ambiguous parse trees again, there is possibly less interference of the
trees during approximation. This could result in less ambiguous path pairs in
the position pair automaton. We could then exclude an even larger set of parse
trees and production rules.

Example 5. The grammar of (4) is unambiguous but needs two iterations of the
NU Test with item0 to detect this. At first,ΠN

item0
(G) contains only the ambiguous

path pair 〈1〈4c〉4〉1 and 〈2〈5〈6c〉6〉3〉1. The first path describes a valid parse tree,
but the second does not. From B → •Cb it derives to C → •c, but from C → c•

it reduces to A→ aC• . Therefore productions 2, 5 and 3 are only used partially,
and they are thus harmless. After removing them and checking the reconstructed
grammar again there are no ambiguous path pairs anymore.

1 : S → A, 2 : S → B, 3 : A→ aC, 4 : A→ c, 5 : B → Cb, 6 : C → c (4)

17

It is also possible to choose a new equivalence relation with each iteration. If
with each step Γ≡(G) better approximates S(Gb), we might end up with only the
parse trees in Pu(G). Unfortunately, the ambiguity problem is undecidable, and
this process does not necessarily have to terminate. There might be an infinite
number of equivalence relations that yield a finite number of equivalence classes.
Or at some point we might need to resort to equivalence relations that do not
yield a finite graph. Therefore, we can decide to stop the iteration at a certain
moment, and continue with an exhaustive search of the remaining parse trees.

In the end this exhaustive searching is the most practical, because it can point
out the exact parse trees of ambiguous strings. A drawback of this approach is its
exponential complexity. Nevertheless, excluding sets of parse trees beforehand
can reduce its search space significantly.

9 Conclusions

We showed how the Regular Unambiguity Test and Noncanonical Unambigu-
ity Test can be extended to conservatively identify parse trees of unambiguous
strings. From these trees we can identify production rules that do not contribute
to the ambiguity of the grammar. Also, we can extract tree patterns that can
only appear in parse trees of unambiguous strings. This information is already
very useful for a grammar developer, but it can also be used to significantly
reduce the search space of other ambiguity detection methods.

Acknowledgements The author would like to thank Jurgen Vinju, Jan van Eijck
and Floor Sietsma for reviewing early versions of this document.

References

1. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free gram-
mars. In: Baĺık, M., Holub, J. (eds.) Proc. 12th International Conference on Im-
plementation and Application of Automata, CIAA ’07 (July 2007)

2. Cantor, D.G.: On the ambiguity problem of backus systems. Journal of the ACM
9(4), 477–479 (1962)

3. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Braffort, P. (ed.) Computer Programming and Formal Systems, pp. 118–161.
North-Holland, Amsterdam (1963)

4. Floyd, R.W.: On ambiguity in phrase structure languages. Communications of the
ACM 5(10), 526–534 (1962)

5. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962)
6. Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. Journal of Com-

puter and System Sciences 1(1), 1–23 (1967)
7. Knuth, D.E.: On the translation of languages from left to right. Information and

Control 8(6), 607–639 (1965)
8. Schmitz, S.: Conservative ambiguity detection in context-free grammars. In: Arge,

L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP’07: 34th International
Colloquium on Automata, Languages and Programming. LNCS, vol. 4596 (2007)

18

9. Schmitz, S.: An experimental ambiguity detection tool. In: Sloane, A., Johnstone,
A. (eds.) Seventh Workshop on Language Descriptions, Tools, and Applications
(LDTA’07). Braga, Portugal (March 2007)

10. Warshall, S.: A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962)

19

Centrum Wiskunde & Informatica

Centrum Wiskunde & Informatica (CWI) is
the national research institute for
mathematics and computer science in the
Netherlands. The institute’s strategy is to
concentrate research on four broad,
societally relevant themes: earth and life
sciences, the data explosion, societal
logistics and software as service.

Centrum Wiskunde & Informatica (CWI) is
het nationale onderzoeksinstituut op het
gebied van wiskunde en informatica. De
strategie van het instituut concentreert zich
op vier maatschappelijk relevante
onderzoeksthema’s: aard- en
levenswetenschappen, de data-explosie,
maatschappelijke logistiek en software als
service.

Bezoekadres:
Science Park 123
Amsterdam

Postadres:
Postbus 94079, 1090 GB Amsterdam
Telefoon 020 592 93 33
Fax 020 592 41 99
info@cwi.nl
www.cwi.nl

