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Abstract

It is well-known in percolation theory (and intuitively plausible) that two events of
the form “there is an open path from s to a” are positively correlated. We prove the
(not intuitively obvious) fact that this is still true if we condition on an event of the form
“there is no open path from s to t”.
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1 Introduction and statement of results

We consider the usual bond percolation models on a (finite or countably infinite) graph
G = (V,E): each e ∈ E is “open” (has value 1) with probability p(e) and “closed” (has
value 0) with probability 1 − p(e), independently of all other edges. We write P for the
corresponding probability distribution on Ω := {0, 1}E . For general background see [3].

For s, a ∈ V we write s ←→ a for the event that there is an open path from s to a, and
s 6←→ a for the complementary event.

Positive (i.e. nonnegative) correlation of any two events s ←→ a and s ←→ b follows
from Harris’ inequality [5] (Theorem 2.1 below). The correlation inequality of the title says
that this phenomenon persists if we condition on any event s 6←→ t.

Theorem 1.1 For any s, a, b, t ∈ V

P (s←→ a, s←→ b | s 6←→ t) ≥ P (s←→ a | s 6←→ t)P (s←→ b | s 6←→ t).

The intuition for this is not very clear. In particular it is not true if we condition on
s←→ t rather than s 6←→ t. (Consider the graph with vertices s, a, b, t and each of s, t joined
to each of a, b.)

From now on we fix s ∈ V , and set, for X ⊆ V , QX = {s ←→ x ∀x ∈ X} and
RX = {s 6←→ x ∀x ∈ X}.

Theorem 1.2 For any A,B,X, Y ⊆ V ,

P (QARX)P (QBRY ) ≤ P (QA∪BRX∩Y )P (RX∪Y ). (1)

Remarks
1. Of course we recover Theorem 1.1 from Theorem 1.2 by taking A = {a}, B = {b} and

X = Y = {t}. This is not generalization for its own sake: the more general form is needed
for the proof.

2. The perhaps intuitively more natural statement obtained by replacing RX∪Y by
QA∩BRX∪Y in Theorem 1.2 is not true: take V (G) = {s, x, y, a}, E(G) = {sx, xa, ay, ys}
and X = {x}, Y = {y}, A = B = {a}.

3. Note that if we replace A by A \B in Theorem 1.2, the r.h.s. of (1) remains the same
and the l.h.s. does not decrease. So Theorem 1.2 as stated above is not more general than
the case A ∩B = ∅.

4. The original motivation for Theorem 1.1 was a conjecture we learned from the late P.W.
Kasteleyn (personal communication, circa 1985), a slightly informal description of which is
as follows. Let G = (V,E) be a finite graph, W some subset of V , and G̃ = (Ṽ , Ẽ) a copy
of G. For each e ∈ E and v ∈ V , let ẽ and ṽ be the corresponding edge and vertex in G̃
respectively. Now we ‘glue’ G and G̃ together by identifying w with w̃ for w ∈ W , and on
this new graph consider any percolation model with p(ẽ) = p(e) for all e ∈ E. The conjecture
is then that, for every a, b ∈ V , P (a←→ b) ≥ P (a←→ b̃). There is in fact a slight concrete
connection with Theorem 1.1, in that a special case of the latter says that when |W | = 2,
say W = {v,w}, one has P (a ←→ b|v 6←→ w) ≥ P (a ←→ b̃|v 6←→ w). But we feel that
Theorem 1.1 is more interesting for its own sake, and believe it has potential applications in
percolation theory in general.

2 Background

We just recall the two correlation inequalities we will need in Section 3. For more extensive
discussions see [2].
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An event A (i.e. a subset of Ω) is called increasing if A 3 ω ≤ ω′ implies ω′ ∈ A. (Here
ω ≤ ω′ means ωe ≤ ω′e for all e ∈ E). The following correlation inequality is due to Harris
[5].

Theorem 2.1 For any increasing A,B ⊂ Ω,

P (AB) ≥ P (A)P (B).

Of course this is equivalent to saying that for any increasing A and decreasing B P (AB) ≤
P (A)P (B).

There are a number of significant extensions of Harris’ inequality, notably that of Fortuin,
Kasteleyn and Ginibre [4]. Our main tool is the considerably more general Ahlswede-Daykin
(or “Four Functions”) Theorem [1], viz.

Theorem 2.2 Let N be a finite set and let P(N) denote the set of all subsets of N Suppose
α, β, γ, δ : P(N)→ R+ satisfy

α(S)β(T ) ≤ γ(S ∩ T )δ(S ∪ T ) ∀S, T ⊆ N. (2)

Then
∑
α(S)

∑
β(S) ≤∑ γ(S)

∑
δ(S) (where the sums are over all S ⊆ N).

3 Proof of Theorem 1.2

We assume G is finite. (If G is countably infinite, the result follows from the finite case by
obvious limit arguments). The proof is by induction on the number of vertices |V |. If |V | = 1,
the result is trivial. Suppose it always holds if |V | ≤ n and consider a graph G with n + 1
vertices.

Set X ∩ Y = Z. If Z = ∅ then (1) follows from Harris’ inequality:

P (QARX)P (QBRY ) ≤ P (QA)P (RX)P (QB)P (RY )
≤ P (QAQB)P (RXRY )
= P (QA∪BRX∩Y )P (RX∪Y ).

If Z 6= ∅ we proceed as follows: Set N = {y 6∈ Z : y ∼ Z} (where y ∼ Z means y is
adjacent to at least one vertex of Z). Define the (random) set

S = {y ∈ N : there is an open edge from y to Z}.

We use S, T for possible values of S and write P (S) for P (S = S) and P (·|S) for the
conditional distribution given S = S. We may expand

P (QARX) =
∑
S

P (S)P (QARX |S)

(where the sum is over all subsets of N), and similarly for the other terms in (1). Thus if we
define

α(S) = P (S)P (QARX |S),
β(S) = P (S)P (QBRY |S),
γ(S) = P (S)P (QA∪BRX∩Y |S),
δ(S) = P (S)P (RX∪Y |S),
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then (1) becomes ∑
α(S)

∑
β(S) ≤

∑
γ(S)

∑
δ(S),

where S runs over the subsets of N . Theorem 2.2 says that to verify this we just need to
establish (2), which, since (as one can easily check) P (S)P (T ) = P (S ∪ T )P (S ∩ T ), is the
same as

P (QARX |S)P (QBRY |T ) ≤ P (QA∪BRX∩Y |S ∩ T )P (RX∪Y |S ∪ T ). (3)

Let P ′ refer to the percolation model for the graph G′, obtained from G by removing Z,
with edge probabilities as in our original percolation model on G. Then it is easy to see that
for any C,W ⊆ V \ Z and S ⊆ N ,

P (QCRW∪Z |S) = P ′(QCRW∪S). (4)

Now we obtain (3) as follows: Let X ′ = X \ Z and Y ′ = Y \ Z. We have

P (QARX |S)P (QBRY |T ) = P ′(QARX′∪S)P ′(QBRY ′∪T )
≤ P ′(QA∪BR(X′∪S)∩(Y ′∪T ))P

′(R(X′∪S)∪(Y ′∪T ))
≤ P ′(QA∪BR(S∩T ))P

′(R(X′∪Y ′)∪(S∪T ))
= P (QA∪BRX∩Y |S ∩ T )P (RX∪Y |S ∪ T ),

where the first equality follows from applying (4) twice (with W = X ′ and W = Y ′ respec-
tively), the first inequality from the induction hypothesis (which says that (1) holds for G′),
the second inequality from (S ∩T ) ⊆ (X ′ ∪S)∩ (Y ′∪T ), and the second equality from again
applying (4) twice (with W = ∅ and W = X ′ ∪ Y ′ respectively). 2
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