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Abstract
We study the existence of finitary codings (also called finitary ho-

momorphisms or finitary factor maps) from a finite-valued i.i.d. process
to certain random fields. For Markov random fields we show, using
ideas of Marton and Shields, that the presence of a phase transition
is an obstruction for the existence of the above coding: this yields a
large class of Bernoulli shifts for which no such coding exists.

Conversely, we show that for the stationary distribution of a mono-
tone exponentially ergodic probabilistic cellular automaton such a cod-
ing does exist. The construction of the coding is partially inspired by
the Propp-Wilson algorithm for exact simulation.

In particular, combining our results with a theorem of Martinelli
and Olivieri, we obtain the fact that for the plus state for the ferro-
magnetic Ising model on Zd, d ≥ 2, there is such a coding when the
interaction parameter is below its critical value and there is no such
coding when the interaction parameter is above its critical value.
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1 Introduction

One of the main motivations for our paper is the following (all definitions
will be given later): In [34] (see [1] for a published version), it is proved
that the plus state for the Ising model (with 0 external field) is a Bernoulli
shift (i.e., is isomorphic to an i.i.d. process) below, above and at the critical
value of the interaction parameter. Therefore, although there are important
differences in the behavior of the plus state above and below the critical
value, these differences are not reflected in the notion of isomorphism. It
turns out however that these differences are reflected if one considers the
notion of finitary mappings instead. The following theorem (restated and
proved in Section 4) is a particular case of the general results obtained in
our paper.

Theorem 1.1 There does not exist a finitary factor map from any finite-
valued i.i.d. process to the plus state for the Ising model above the critical
interaction parameter. However, there does exist a finitary factor map from
a finite-valued i.i.d. process to the plus state for the Ising model below the
critical interaction parameter.

In fact, one direction of Theorem 1.1 will follow from the following more
general theorem (restated and explained in Section 3).

Theorem 1.2 The limit distribution µ of a monotone, exponentially ergodic
probabilistic cellular automaton is a finitary factor of a finite-valued i.i.d.
process.

We will now give background and the necessary definitions. Throughout this
paper, all stationary processes and stationary random fields will be assumed
to be finite-valued unless otherwise stated, ‖ ‖ will denote the L1 norm on
Zd given by ‖x‖ = |x1| + |x2| + . . . + |xd|, and we will often write [a, b] for
[a, b] ∩ Z and [a, b]d for [a, b]d ∩ Zd.

In [33], D. Ornstein proved the celebrated isomorphism theorem for
Bernoulli shifts. This states that if {Xn}n∈Z and {Yn}n∈Z are stationary
processes consisting of independent and identically distributed (i.i.d.) ran-
dom variables with equal entropy, then there exists a stationary a.e. invert-
ible mapping from the first process to the second. More specifically, if µ is
a probability measure on AZ (A a finite set) which is a product measure
with all the same marginals and if ν is a probability measure on BZ (B a
finite set) which is a product measure with all the same marginals and if
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−∑i∈A pi log pi = −∑i∈B qi log qi, where (pi, i ∈ A) and (qi, i ∈ B) are the
marginals of µ and ν respectively, then there exists an invertible measure
preserving map from (AZ, µ) to (BZ, ν) which is defined a.e. and which com-
mutes with shifts. When µ and ν are arbitrary probability measures on AZ

and BZ respectively which are each invariant under the natural Z–action,
then a mapping with the above property is called an isomorphism and the
two processes are then called isomorphic. If we drop the invertibility as-
sumption, we call the mapping a factor map or homomorphism and say that
the second process is a factor of the first. Often, instead of ‘factor map’ or
‘homomorphism’ the shorter term ‘coding’ is used in the literature (although
some authors use this only for isomorphisms), and we will use this in most
of the paper.

The σ–algebra involved above is the completed Borel σ–algebra with
respect to the product topology. Actually, it is not necessary that A and B
are finite sets and the above result holds more generally (see [33]). From this
work, a number of properties of stationary processes emerged which implied
that a given process is isomorphic to an i.i.d. process. Processes which are
isomorphic to i.i.d. processes are called Bernoulli shifts.

It was also proved by Ornstein (see [33]) that a factor of an i.i.d. process
is a Bernoulli shift.

Prior to [33], isomorphisms between certain classes of i.i.d. processes
were obtained (see [5] and [31]). These mappings had the advantage of being
finitary. A coding is called finitary if it is continuous after removing some set
of measure 0. There is another more natural equivalent definition of finitary
in this context (which also explains the word finitary). To describe this, if
z ∈ AZ and q ≤ r are integers, we let z[q, r] denote (z(q), z(q+ 1), . . . , z(r)).
With this notation, φ is a finitary coding if and only if there exists a set
N ⊆ AZ of µ–measure 0 such that for all x ∈ AZ\N , there exist integers
q ≤ r (depending on x) so that if y ∈ AZ\N and y[q, r] = x[q, r], then
φ(y)(0) = φ(x)(0). In words, after a long enough finite subsequence of the x
sequence is revealed, we know the 0th coordinate of φ(x). In [21], it is proved
that there exists a finitary coding from any i.i.d. process onto any other i.i.d.
process with strictly lower entropy. One of the ideas of this approach came
from [32] where finitary isomorphisms were obtained between special Markov
chains and i.i.d. processes. The work in [21] was extended in [4] to the case of
general finite state mixing Markov chains. At the same time, it was proved
in [22] that for any two i.i.d. processes with the same entropy, there exists
a finitary isomorphism between them whose inverse is also finitary. Finally,
after this, it was proved (see [23]) that for any two finite state Markov
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chains with the same entropy and period, there exists a finitary isomorphism
between them whose inverse is also finitary. We mention that it was proved
much earlier (see [13]) that a finite state mixing Markov chain is isomorphic
(not necessarily finitarily) to an i.i.d. process.

For d ≥ 2, one considers probability measures µ and ν on AZd and
BZd respectively which are each invariant under the natural Zd–action. One
calls such objects stationary random fields. An invertible measure preserving
map from (AZd , µ) to (BZd , ν) which is defined a.e. and which commutes
with shifts in the d directions is also called an isomorphism and the two
processes are then also called isomorphic. The notions of (finitary) coding
and Bernoulli shift extend immediately to d ≥ 2 dimensions. The Ornstein
isomorphism theorem also extends to d ≥ 2 dimensions (see [20]) and in fact
much further to amenable groups (see [35]). It is also mentioned in [20] that
the theorem by Ornstein mentioned earlier that a factor of an i.i.d. process
is a Bernoulli shift also extends to random fields.

Several results in this paper are about Markov random fields which, for
completeness, we give the definition of. Let Bn denote [−n, n]d and for U ⊆
Zd, let ∂(U) denote the boundary {x ∈ Zd\U : ∃y ∈ U with ‖x − y‖ = 1}.
Further, if U ⊆ Zd, we use the notation XU = {Xx}x∈U .

Definition 1.3 A stationary process {Xx}x∈Zd is called a Markov random
field if, for all finite subsets B ⊆ Zd, the conditional distribution of XB

given XBc is the same as the conditional distribution of XB given X∂(B).

While it is known that finite state mixing Markov chains in 1 dimension
are isomorphic to i.i.d. processes, this is not so in higher dimensions. See
[39] for examples of mixing (k-step) Markov random fields which are not K
(the definition of K is given below) and hence are not Bernoulli shifts as
well as a number of other interesting examples. Here, we also mention the
recent book [37] where random fields which arise in an algebraic context
are studied and where their dynamical properties are given certain algebraic
characterizations. We finally mention that a Markov random field which is
K but not a Bernoulli shift was recently constructed in [16], thereby giving
a counterexample to a previous conjecture. The definition of K in general is
slightly complicated but for Markov random fields it is shown (in [17]) to be
equivalent to the property that the (full) tail σ–algebra, ∩n≥1σ(Xi, i 6∈ Bn),
is trivial. See [17] for other related results concerning the K property and
Bernoulli shifts for Markov random fields and [18] for extensions to Gibbs
states.
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As far as extending the results in [4] and [23] to higher dimensional
Markov random fields, it was proved in [19] that there exists a finitary
coding from any ergodic Markov random field onto any i.i.d. random field
of strictly lower entropy. It is mentioned there that it is not known when a
Markov random field is a Bernoulli shift and so one should not necessarily
hope to prove that there exists a finitary coding from any i.i.d. random field
onto any mixing Markov random field of strictly lower entropy.

It turns out, as we show in Section 2, that there are even Markov random
fields which are Bernoulli shifts but are not a finitary factor of any i.i.d.
random field. In fact, there is a fundamental obstruction to the existence of
a finitary coding from an i.i.d.. random field onto a given random field, and
there is a large number of Markov random fields which are Bernoulli shifts
and possess this obstruction. Some of these are even measures of maximal
entropy for nearest neighbor subshifts of finite type (see [6], [7] and [8]).
Conversely, we show in Section 3 how, for certain random fields, a finitary
coding from an i.i.d. process can be constructed. In Section 4 we treat, as
an important special case, the ferromagnetic Ising model on Zd, and restate
and prove Theorem 1.1.

2 A fundamental obstruction for finitary coding

In this section we show that many Markov random fields are not a fini-
tary factor of an i.i.d. random field. The main result in this section is the
following.

Theorem 2.1 Let ν be an ergodic Markov random field all of whose cylinder
sets have positive probability and with the property that there exists another
(different) ergodic Markov random field ν ′ which has the same conditional
probabilities as ν (i.e., for all finite sets B ⊆ Zd, the ν–conditional distribu-
tion of XB given X∂B is the same as the ν ′–conditional distribution of XB

given X∂B). Then there does not exist a finite-valued i.i.d. random field µ
and a finitary coding from µ onto ν.

Remarks:
(a). This result can be extended to so-called infinite range Gibbs states with
essentially the same proof.
(b). An obstruction for finitary codings between infinite state Markov chains
due to M. Smorodinsky is given in [26]. This obstruction arises from the fact
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that certain waiting times between states have tails which are not exponen-
tial. In our case, this latter behavior is not present and the nature of the
obstruction is completely different.
(c). Before proving this theorem, we mention that there is a large class of
Markov random fields which satisfy the assumptions of the theorem and
which are Bernoulli shifts. The above theorem tells us that these random
fields provide examples of Bernoulli shifts for which no i.i.d. process can be
mapped onto them in a finitary fashion. An example of such a field is the
“plus state” for the Ising model with sufficiently large interaction parame-
ter (see Section 4). In Section 4, it is explained that this example satisfies
the assumptions of Theorem 2.1 while the fact that it is a Bernoulli shift is
proved in [34]. (Whenever we refer to [34] in this paper, if one wants to see
published work on the same topic, one can refer to [1] which extends the
work in [34] to an amenable group setting.) The above theorem also holds
in many situations where one does not need to assume that all the cylinder
sets have positive probability. For example, by modifying the proof below,
one can obtain the same conclusion for some of the measures of maximal
entropy in [6], [7] and [8].
(d). In the proof we give below, the reader may not see “what is really going
on”. For this reason, we first give a quick discussion explaining to some ex-
tent what is going on. There is an important property called the blowing–up
property which says more or less that any collection of configurations on a
large finite box which has a total measure which is not too exponentially
small in the volume of the box has the property that most configurations
are close to it in the Hamming metric. (The blowing–up property is related
to the notion of concentration of measure, see [41].) A consequence of this
blowing–up property is that the mean ergodic theorem holds at an exponen-
tial rate. Since i.i.d. processes have the blowing–up property (as mentioned
in the proof), and finitary codings preserve this property (as also mentioned
in the proof), any Markov random field which is a finitary factor of an i.i.d.
process must have the mean ergodic theorem holding at an exponential rate.
However, when an ergodic Markov random field is not the unique Markov
random field with its conditional probabilities, this usually results in the
mean ergodic theorem holding at a subexponential rate and a typical sce-
nario is as follows. µ and ν are distinct ergodic Markov random fields with
the same conditional probabilities but have different means. Roughly speak-
ing, there is a certain boundary condition which you can place on ∂(Bn)
which has positive µ measure but such that conditioned on this boundary
condition, what is inside looks like ν. The µ–probability that this particular
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boundary condition arises is at least e−cn
d−1

for some constant c < ∞ in-
dependent of n. However, if this boundary condition occurs, then with high
(conditional) probability the average in the box will be the ν mean which is
a fixed distance away from the µ mean. Therefore in this scenario, the mean
ergodic theorem occurs at a subexponential rate.

In [30], the blowing–up property for a stationary ergodic process is dis-
cussed (see also Section 1.5 in [9] and references there for background). This
definition, which we will need here, immediately extends to random fields
and is the following.

Definition 2.2 An ergodic stationary random field taking values in the set
A and indexed by Zd has the blowing-up property if given ε > 0, there exists
δ > 0 and an N such that for all n ≥ N , we have that if C ⊆ A[−n,n]d

with P (C) ≥ 2−(2n+1)dδ, then P ([C]ε) ≥ 1 − ε where [C]ε is the set of all
configurations (ai, i ∈ [−n, n]d) for which there exists (ci, i ∈ [−n, n]d) ∈ C
with

1
(2n + 1)d

∑
i∈[−n,n]d

I{ai 6=ci} < ε

i.e., [C]ε is the ε–neighborhood of C in the d–metric.

Proof of Theorem 2.1: It is proved in [30] that finitary codings preserve
the blowing–up property in 1-d. The proof of this result goes through step
by step to d ≥ 2 dimensions. It is proved in [9] that a 1-d i.i.d. process
satisfies the blowing–up property. This result for 1-d immediately yields the
same fact for higher dimensions. Therefore, in order to show that there does
not exist an i.i.d. random field µ and a finitary coding from µ onto ν, we
need only show that ν does not have the blowing–up property.

Next, it follows immediately from Theorem 1.1 in [30] that if a 1-d process
µ has the blowing–up property, then given any other (different) ergodic
process ν, the lower divergence rate of ν with respect to µ is positive where
the lower divergence rate, also known as relative entropy, of ν with respect
to µ for Zd processes is defined as

lim inf
n→∞

1
(2n + 1)d

∑
a∈A[−n,n]d

ν(a) log(
ν(a)
µ(a)

).

The proof of this result easily extends to d ≥ 2 dimensions. Finally, it is
known (see [14], p. 322–323) that for any two Markov random fields all
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of whose cylinder sets have positive probability and which have the same
conditional probabilities, the lower divergence rate of one with respect to
the other is 0. Applying these facts to ν and ν ′, we conclude that ν does not
have the blowing–up property. 2

Remark(e): K. Marton has explained to us that the proof that a finitary
factor of an i.i.d. process has the ergodic theorem occurring at an exponen-
tial rate for all functions, is simpler than the proof that finitary codings
preserve the blowing-up property. As it is known that for any ν satisfying
the assumptions of Theorem 2.1 the ergodic theorem cannot occur at an ex-
ponential rate for all functions, this would yield a simpler proof of Theorem
2.1. However, since the blowing-up property is stronger, it gives rise to a
more powerful recipe for determining that a random field is not a finitary
factor of an i.i.d. process. Moreover, the higher-dimensional generalizations
above of results concerning the blowing–up property, are also useful outside
the scope of this paper.

Remark(f): Finally, we mention that there are nontrivial Markov random
fields in higher dimensions which have the blowing–up property. Theorem
2 in [29] easily extends to d ≥ 2 dimensions. Using this corollary together
with the arguments in [34], it follows that when there is a unique Markov
random field for the Ising model, it has the blowing–up property. Therefore,
the proof of Theorem 2.1 does not exclude the possibility that there exists
a finitary coding from some i.i.d. process onto this Markov random field,
and in Section 4 we show that this is, except possibly at the critical point,
indeed the case.

3 Finitary codings for the limit distributions of
exponentially ergodic probabilistic cellular au-
tomata

Let S be a finite set; this will be our single-site state space. We assign a
linear order ≤ to S and denote the maximal and minimal element of S by
+ and − respectively. Let Ω = SZd . With abuse of notation, + and − will
also be used to denote the maximal and minimal element of SV with the
induced partial order (given by (ai, i ∈ V ) ≤ (bi, i ∈ V ) if ai ≤ bi for all
i ∈ V ) when V ⊆ Zd. We consider certain time evolutions on Ω. As in
Section 2, if ω = (ωi, i ∈ Zd) ∈ Ω and V ⊆ Zd, then ωV is the ‘restriction of
ω to V ’, i.e., ωV = (ωi, i ∈ V ). Further, if µ is a probability distribution on
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Ω (with the natural σ-field), then µV denotes the ‘restriction of µ to V ’, i.e.,
µV (·) = µ(ωV ∈ ·). If µ and ν are two probability distributions on a finite set
F , the variational distance of µ and ν (defined as 1/2

∑
x∈F |µ(x)− ν(x)|) is

denoted by dv(µ, ν). The time evolutions we consider on Ω correspond with
so-called probabilistic cellular automata (PCA’s). To describe them in a way
suitable for future use, let Wi,t, i ∈ Zd, t ∈ N, be i.i.d. random variables
taking values in a finite set A. Let, for i ∈ Zd, Ni denote the set of vertices
at (lattice) distance ≤ 1 from i. Consider a function f : SNO × ANO → S.
Define, for each i ∈ Zd, fi : SNi × ANi → S by fi(s, a) = f(s − i, a − i),
where s− i ∈ SNO is defined by (s− i)j = si+j, j ∈ NO, and a − i ∈ ANO
is defined similarly. The time evolution σ(ω, t), t = 0, 1, · · ·, starting from an
initial configuration ω is now described by

σ(ω, 0) = ω. (1)
σi(ω, t+ 1) = fi((σj(ω, t) , j ∈ Ni), (Wj,t , j ∈ Ni)), i ∈ Zd.

Since the Wi,j’s are random, the σi(ω, t)’s are also random.

Remark(g): If f does not depend on the A-variables, we have a determinis-
tic cellular automaton. PCAs are usually defined somewhat differently from
the above, namely with f being a function SN0×A→ S. The interpretation
is then that at each time the value of each vertex is replaced by a new (ran-
dom) value, whose distribution depends on the current local configuration,
and that, conditioned on σ(ω, t) the σi(ω, t + 1), i ∈ Zd are independent.
With the application in Section 4 to the Ising model in mind, we prefer the
slightly more general setup which allows local conditional dependence.

Definition 3.1 We say that a PCA is monotone if the function f above is
monotone in its first argument (i.e., if for each α, β ∈ SN0 with α ≥ β, and
each a ∈ ANO , f(α, a) ≥ f(β, a)).

Let µ(ω, t) denote the distribution of the configuration at time t when
we start with configuration ω.

Definition 3.2 We say that a PCA is ergodic if there exists a distribution
µ on Ω such that for all ω ∈ Ω, µ(ω, t) converges (weakly) to µ as t→∞.

(Note that the word “ergodic” here has a different meaning from that
in Sections 1 and 2, but it should always be clear from the context which
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is meant.) If the system is monotone, this is (as is well-known and can be
easily checked by standard coupling arguments) equivalent to saying that

lim
t→∞

P (σO(−, t) 6= σO(+, t)) = 0.

(Note that by the construction of the PCA, the evolutions starting from
different configurations are coupled and so this last probability makes sense.)

Definition 3.3 We say that a monotone PCA is exponentially ergodic if
there exists C,λ > 0 such that

P (σO(−, t) 6= σO(+, t)) ≤ C exp(−λt)

for all t.

The main result of this section (which is Theorem 1.2 in the introduction)
is the following.

Theorem 3.4 The limit distribution µ of a monotone, exponentially ergodic
PCA (as defined above) is a finitary factor of a finite-valued i.i.d. process.

Proof: The first part of the proof gives an algorithm for exact simulation of
µ, i.e. a randomized algorithm which assigns to each vertex, one by one, a
value in S, such that the resulting configuration has distribution µ. This is
a modification of the popular (finite-volume) Propp-Wilson algorithm (see
[36]) and is used as a starting point for the construction of a finitary coding.

As to the simulation procedure, it is convenient (and essential in the
Propp-Wilson method) to extend time to the negative integers, so we now
have (Wi,t, i ∈ Zd, t ∈ Z). Completely analogous to what we did before, we
can then consider, for each t1 < t2, the configuration we have at time t2
when we start with configuration ω at time t1. We denote this by Φt2

t1(ω).
(This depends of course on the Wi,t’s but we omit these from our notation.)
Clearly, Φt2

t1(ω) has distribution µ(ω, t2 − t1) defined before. The idea is to
start, for each i ∈ Zd, so far “backwards in time” that the spin value at site
i at time 0 is the same for all starting configurations. More formally, define

τi = min{t : (Φ0
−t(+))i = (Φ0

−t(−))i}.

Clearly, if such a τi exists, then (using monotonicity) Φ0
−t(ω) = Φ0

−t(ω
′)

for all ω and ω′ ∈ Ω and t ≥ τi. In other words, if we start at or before
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time −τi, then the value at vertex i at time 0 no longer depends on the
starting configuration (or on the starting time, as long as it is smaller than
or equal to −τi). We denote this value by σ∗i . So, formally, σ∗i = (Φ0

−τi(+))i.
Of course we have to show that τi exists (i.e., is finite a.s. ). Once we have
done this, and, moreover, have shown that σ∗ ≡ (σ∗i , i ∈ Zd) has the desired
distribution µ, then it is clear what the simulation algorithm is: Determine
for each i ∈ Zd, one by one, the value σ∗i as follows. Check, for larger and
larger values of t, if (Φ0

−t(+))i equals (Φ0
−t(−))i. If this is the case, assign

their common value to σ∗i .
Remark(h): Note that for each t the above mentioned check is a finite task,
since it involves only those Wj,t′ , j ∈ Zd, t′ ∈ {−t, · · · ,−1} with ‖ j−i ‖≤ |t′|
where ‖ ‖ is the L1 norm on Zd. During the algorithm a Wj,t is generated
the first time it is needed in a calculation and, which is important, of course
keeps its value during the remainder of the algorithm. We soon come back
to this notion of ‘being needed’, which will be essential in our construction
of a finitary coding.

Lemma 3.5 If the PCA is monotone and ergodic, then each τi is finite a.s.

Proof of Lemma 3.5: Let µ be the limit distribution of the PCA. Using the
monotonicity of the PCA,

P (τi > t) = P [(Φ0
−t(+))i 6= (Φ0

−t(−))i] (2)
= P (σO(−, t) 6= σO(+, t))

which (by the assumption that the system is ergodic) goes to 0 as t goes to
∞. 2

Lemma 3.6 The random configuration σ∗, defined above, has distribution
µ.

Proof of Lemma 3.6: Let Λ be a finite subset of Zd, and let σ be a random
configuration on Zd, drawn according to distribution µ. Since µ is invariant
under the dynamics, we have for every t, that Φ0

−t(σ) has distribution µ.
In particular we have (Φ0

−t(σ))Λ has distribution µΛ for every t. However,
by Lemma 3.5, (Φ0

−t(σ))Λ = (σ∗)Λ for all sufficiently large t. Hence σ∗Λ has
distribution µΛ. This holds for every finite Λ ⊆ Zd, which completes the
proof. 2
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Remark(i): Letting Zi = {Wi,t, t ∈ Z}, we have that {Zi}i∈Zd is an i.i.d.
process and that µ is a finitary coding of it. The point however is that
{Zi}i∈Zd is not a finite-valued process. The idea is now to modify the pro-
cess {Zi}i∈Zd and the simulation algorithm so that we can obtain a finitary
coding from a finite-valued i.i.d. process to µ.

The proofs of Lemmas 3.5 and 3.6 have not used the exponential conver-
gence. However this exponential convergence yields the fact that (as we point
out more precisely below) for each i the expected number of t ∈ {· · · ,−2,−1}
for which there exists a j ∈ Zd such that Wi,t is “needed for the computation
of σ∗j” is finite.

Remark(j): It is not difficult to show that this exponentiality even implies
that, for the above described simulation procedure, the expected amount
of computational work to generate the spin values of n vertices is bounded
by a constant times n. Although this is not essential for our purpose, it is
interesting from a simulation point of view, since it says that, in some sense,
this algorithm has linear rate, while it is clear that it is impossible to do
essentially better than linear.

Consider the random variables {Wi,t, i ∈ Zd, t ≤ −1}. Informally, we say
that the position (i, t) (i ∈ Zd, t ≤ −1) in the space time diagram is needed
if, for some j ∈ Zd, it is ‘involved’ in the evaluation of σ∗j . More precisely,
we define that (i, t) is needed if there is some j ∈ Zd such that τj ≥ |t| and
‖ j − i ‖≤ |t|; we let n(i, t) denote the indicator function of this event. If
(i, t) is not needed and the W variable is changed at (i, t), then clearly σ∗ is
unaffected. Next, the expected number of t such that (0, t) is needed equals

−1∑
t=−∞

P (∪j:‖j‖≤|t|{τj ≥ |t|}) ≤
−1∑

t=−∞
|{j :‖ j ‖≤ |t|}|P (τ0 ≥ |t|) <∞,

by (2) and the exponentially ergodic assumption.
Let M be any integer larger than this expectation and

L := M −E[
−1∑

t=−∞
n(0, t)] > 0

be the difference. For j ∈ Zd, let n(j) =
∑−(M+1)
t=−∞ n(j, t) and s(j) = M −∑−1

t=−M n(j, t). For i ∈ Zd and k ∈ Z, we denote by i + k the vertex i +
(k, 0, · · · , 0). Further, with abuse of notation, if 0 ≤ k ∈ Z and i ∈ Zd, we
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define [i, i+k] = {i+l : 0 ≤ l ≤ k}, and we say that i is smaller than j if there
exists an integer k ≥ 0 with j = i+k. By our choice of M , E[s(0)−n(0)] = L
and so by the ergodic theorem, we have that for all i ∈ Zd,

lim
k→∞

1
k

i+k−1∑
j=i

(s(j) − n(j))→ L a.s. (3)

The idea is to continue the proof as follows. Intuitively, we should be
able to carry out the generation procedure of σ∗ by using only the Wi,t, i ∈
Zd, −M ≤ t ≤ −1 because E[s(j)] > E[n(j)] and so on the average, there
are sufficiently many Wi,t’s around with t ∈ [−M,−1]; if, for some i, we
need a Wi,t with t < −M , we can transport unused Wj,t′ ’s from elsewhere
with t′ ∈ [−M,−1]. In this way, if this procedure is defined carefully, in
a shift-invariant finitary manner, we should, by combining this with the
procedure for generating σ∗ above, obtain a finitary coding from the process
(Wi, i ∈ Zd) to µ, where Wi = (Wi,t,−M ≤ t ≤ −1) (which is a finite-valued
process). The above procedure will be carried out in stages. We now make
the above intuition precise.

Let Ŵj,t, j ∈ Zd, t ∈ {−M, · · · ,−1} be i.i.d. random variables with the
same distribution as WO,0. We will construct a finitary coding from Ŵ =
(Ŵj , j ∈ Zd) to µ, where Ŵj = (Ŵj,t, t ∈ {−M, . . . ,−1}). As suggested
before, the method is to extend (if necessary) the Ŵ -process to time indices
less than −M by using unneeded Ŵi,t’s, −M ≤ t ≤ −1. First we define
the notion ‘being needed’ and the variables n̂(i, t), i ∈ Zd, t ∈ {−(M +
1), · · · ,−1} exactly as before, but now with respect to the Ŵ process. Note
that n̂(i, t) is measurable with respect to {Ŵj,s, j ∈ Zd, s ∈ {t+1, . . . ,−1}}.
Therefore, since the information that a certain (i, t) is needed tells us nothing
about the value of Ŵi,t, unneeded Ŵi,t’s can be regarded as independent
random variables with the ‘correct’ (original) distribution.

Let T1 = Zd× (−∞,−(M +1)] and T2 = Zd× [−M,−1]. For p = (i, k) ∈
T1 ∪ T2, let

Cp = {(i′, k′) : k + 1 ≤ k′ ≤ −1, ‖i− i′‖ ≤ 2|k|}.

For i ∈ Zd, ` ≥ 0, let

Ai` = {(j, r) ∈ T1 : j ∈ [i, i+ `]}.

We will now define two processes {Ŵ n
p }p∈T1∪T2,n≥0 and {Ŝnp }p∈T2,n≥0 on

the same probability space.(These processes will in fact be defined in terms
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of the variables {Ŵj}j∈Zd.) For p ∈ T2, let Ŵn
p = Ŵp for all n ≥ 0. Informally

(but not precisely), for p ∈ T1, Ŵn
p will be

(a) “?” if at the end of stage n, we don’t yet know if a Ŵ variable will be
needed at space-time location p,
(b) “u” (for unneeded) if at the end of stage n, we know that a Ŵ variable
will not be needed at space-time location p,
(c) “n” (for needed) if at the end of stage n, we know that a Ŵ variable will
be needed at space-time location p but its value has not yet been determined,
or
(d) some element of the alphabet A if at the end of stage n, it is known
that a Ŵ variable will be needed at space-time location p and this variable
is determined and given by Ŵn

p .

Informally, for p ∈ T2, Ŝnp will be
(a) 1 if the space-time location p is not needed initially and if at the end
of stage n, its value has not been “transported away” (and is therefore still
available for use),
(b) 0 otherwise.

We now formally define these two processes inductively or in stages with
respect to n. Each stage other than the 0th will consist of two substages.

STAGE 0

Let Ŵ 0
p =? for all p ∈ T1 and Ŝ0

p = I{p is not needed } for all p ∈ T2.

STAGE 1(a)
Let V 1 = {p ∈ T1 : Ŵ 0

p =?} (which is T1 at this stage) and U1 = {p ∈ T1 :
Ŵ 0
p = “n” } (which is empty at this stage). We partition V 1 into three sets

V 1
1 , V

1
2 , V

1
3 as follows. V 1

1 = {p ∈ V 1 : Cp∩(V 1∪U1) 6= ∅} (which is {(i, k) ∈
T1 : k < −(M + 1)} at this stage), V 1

2 = {p ∈ V 1\V 1
1 : p is not needed }

and V 1
3 = {p ∈ V 1\V 1

1 : p is needed }. (Note that if p ∈ V 1\V 1
1 , we can

determine whether p is needed.) Let Ŵ 1 be “?” on V 1
1 , “u” on V 1

2 and “n”
on V 1

3 . Note that for each i ∈ Zd, there is at most one k such that (i, k) ∈ V 1
3 .

STAGE 1(b)
We next partition V 1

3 ∪ U1(= V 1
3 ) into two sets V 1

4 and V 1
5 as follows. Let

V 1
4 be

{(i, k) ∈ V 1
3 ∪ U1 : ∃` ∈ [0, 1] :

∑
j∈[i,i+`],r∈[−M,−1]

Ŝ0
j,r ≥ |(V 1

3 ∪ U1) ∩Ai`|}
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and V 1
5 = (V 1

3 ∪ U1)\V 1
4 .

For (i, k) ∈ V 1
4 , let ` be the minimal value satisfying the above and let q

be the unique integer in [−M,−1] such that

∑
j∈[i,i+`−1],r∈[−M,−1]

Ŝ0
j,r +

q∑
u=−M

Ŝ0
i+`,u = |(V 1

3 ∪ U1) ∩Ai`|.

Leave Ŵ 1 unchanged on V 1
1 ∪V 1

2 ∪V 1
5 and for (i, k) ∈ V 1

4 , let Ŵ 1
i,k = Ŵi+`,q

where ` and q are as above. (We think of the unneeded variable Ŵi+`,q being
transported to space-time location (i, k).) Note that in light of the earlier
remark that for each i ∈ Zd, there is at most one k such that (i, k) ∈ V 1

3 , the
random variable Ŵi+`,q is “transported” to at most one space-time point. If
p = (i+ `, q) ∈ T2 corresponds to some (i, k) ∈ V 1

4 as above, then let Ŝ1
p = 0

and let Ŝ1
p = Ŝ0

p otherwise.

STAGE 2(a)
Let V 2 = {p ∈ T1 : Ŵ 1

p =?} and U2 = {p ∈ T1 : Ŵ 1
p = “n” }. On T1\(V 2 ∪

U2), let Ŵ 2 = Ŵ 1. We partition V 2 into three sets V 2
1 , V

2
2 , V

2
3 as follows.

V 2
1 = {p ∈ V 2 : Cp ∩ (V 2 ∪ U2) 6= ∅}, V 2

2 = {p ∈ V 2\V 2
1 : p is not needed }

and V 2
3 = {p ∈ V 2\V 2

1 : p is needed }. (As in stage 1(a), note that, if p ∈
V 2\V 2

1 , we can determine from previous information whether p is needed,
where ‘needed’ is defined in the analogous way as before). Let Ŵ 2 be “?”
on V 2

1 , “u” on V 2
2 and “n” on V 2

3 .

STAGE 2(b)
We next partition V 2

3 ∪ U2 into two sets V 2
4 and V 2

5 as follows. Let V 2
4 be

{(i, k) ∈ V 2
3 ∪ U2 : ∃` ∈ [0, 2] :

∑
j∈[i,i+`],r∈[−M,−1]

Ŝ1
j,r ≥ |(V 2

3 ∪ U2) ∩Ai`|}

and V 2
5 = (V 2

3 ∪ U2)\V 2
4 .

For (i, k) ∈ V 2
4 , let ` be the minimal value satisfying the above and let q

be the unique integer in [−M,−1] such that

∑
j∈[i,i+`−1],r∈[−M,−1]

Ŝ1
j,r +

q∑
u=−M

Ŝ1
i+`,u = |(V 2

3 ∪ U2) ∩Ai`|.

Leave Ŵ 2 unchanged on V 2
1 ∪V 2

2 ∪V 2
5 and for (i, k) ∈ V 2

4 , let Ŵ 2
i,k = Ŵi+`,q

where ` and q are as above. Note again that the random variable Ŵi+`,q

is “transported” to at most one space-time point. If p = (i + `, q) ∈ T2
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corresponds to some (i, k) ∈ V 2
4 as above, then let Ŝ2

p = 0 and let Ŝ2
p = Ŝ1

p

otherwise.

STAGE n(a)
Let V n = {p ∈ T1 : Ŵ n−1

p =?} and Un = {p ∈ T1 : Ŵ n−1
p = “n” }. On

T1\(V n ∪Un), let Ŵn = Ŵn−1. We partition V n into three sets V n
1 , V

n
2 , V

n
3

as follows. V n
1 = {p ∈ V n : Cp ∩ (V n ∪ Un) 6= ∅}, V n

2 = {p ∈ V n\V n
1 :

p is not needed } and V n
3 = {p ∈ V n\V n

1 : p is needed }. Let Ŵn be “?” on
V n

1 , “u” on V n
2 and “n” on V n

3 .

STAGE n(b)
We partition V n

3 ∪ Un into two sets V n
4 and V n

5 as follows. Let V n
4 be

{(i, k) ∈ V n
3 ∪ Un : ∃` ∈ [0, n] :

∑
j∈[i,i+`],r∈[−M,−1]

Ŝn−1
j,r ≥ |(V n

3 ∪ Un) ∩Ai`|}

and V n
5 = (V n

3 ∪ Un)\V n
4 .

For (i, k) ∈ V n
4 , let ` be the minimal value satisfying the above and let

q be the unique integer in [−M,−1] such that

∑
j∈[i,i+`−1],r∈[−M,−1]

Ŝn−1
j,r +

q∑
u=−M

Ŝn−1
i+`,u = |(V n

3 ∪ Un) ∩Ai`|.

Leave Ŵn unchanged on V n
1 ∪ V n

2 ∪ V n
5 and for (i, k) ∈ V n

4 , let Ŵ n
i,k =

Ŵi+`,q where ` and q are as above. Note that as before, the random variable
Ŵi+`,q is “transported” to at most one space-time point. If p = (i + `, q) ∈
T2 corresponds to some (i, k) ∈ V n

4 as above, then let Ŝnp = 0 and let
Ŝnp = Ŝn−1

p otherwise. This completes the construction of the two processes
{Ŵn

p }p∈T1∪T2,n≥0 and {Ŝnp }p∈T2,n≥0.
The idea is now to use the {Ŵn

p }p∈T1∪T2,n≥0 variables to construct a σ̂∗

analogously to what we did earlier. In doing this, we need to know that for
all p ∈ T1, Ŵn

p is either “u” or some value in A for sufficiently large n. To do
all this, it is useful to construct analogous processes to the above but with
respect to the original variables {Wp}p∈T1∪T2 . This will allow a more precise
comparison.

We now define two processes {W n
p }p∈T1∪T2,n≥0 and {Snp }p∈T2,n≥0 which

are measurable with respect to {Wp}p∈T1∪T2 and which are defined almost
completely analogously to {Ŵ n

p }p∈T1∪T2,n≥0 and {Ŝnp }p∈T2,n≥0 but with one
essential difference. The processes {Wn

p }p∈T1∪T2,n≥0 and {Snp }p∈T2,n≥0 are
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defined inductively over n exactly as {Ŵ n
p }p∈T1∪T2,n≥0 and {Ŝnp }p∈T2,n≥0

except that when we are at some stage n(b) where we are about to assign
a value from A to a space-time location p ∈ T1, rather than transporting
the value from a space-time location in T2, we let Wn

p simply be Wp; i.e.,
we reveal the value which was already there (but which we “did not know”
before this stage). Since transporting a variable tells us nothing about its
value, it is clear that

{Ŵn
p , Ŝ

n
p′}p∈T1∪T2,p′∈T2,n≥0 =D {Wn

p , S
n
p′}p∈T1∪T2,p′∈T2,n≥0 (4)

where =D means equal in distribution.
Next, note that it follows from the construction that for a fixed p ∈ T1,

and for every ω, Ŵn
p as a function of n must behave in one of the following

ways.
(i) start off with value “?” and remain fixed forever.
(ii) start off with value “?”, change to “u” at some point and then remain
fixed forever.
(iii) start off with value “?”, change to a value in A at some point and then
remain fixed forever.
(iv) start off with value “?”, change to “n” at some point and then remain
fixed forever.
(v) start off with value “?”, change to “n” at some point and then change
to a value in A at some later point and then remain fixed forever.

Lemma 3.7 For all p ∈ T1, behavior (i) and (iv) above do not occur a.s.

Proof of Lemma 3.7: First note that for every ω, if behavior (i) occurs for
some p ∈ T1, then behavior (iv) must occur for some p′. To see this, let
p = (i, k) be a point where Ŵn

p is always in state “?” and where k is maximal
with respect to this property. Then p ∈ V n

1 for all n and so there must be a
p′ ∈ Cp where Ŵn

p′ remains fixed in state “n”. Hence we need only rule out
behavior (iv) and we do this for a fixed p0 = (i0, k0) ∈ T1.

In view of (4), it suffices to do this for {Wn
p0
}n≥0 instead. First, choose

n0 such that Wn0
p0

= “n” from which it immediately follows that p0 ∈
V n0

3 ∪ Un0 . Now by (3), choose k0 such that

i0+k0∑
j=i0

(s(j)− n(j)) > n0M,

and choose n′0 > max{n0, k0}. (Note that n0M is the maximum number of
space-time points p in [i0, i0+∞)×[−M,−1] which have been “transported”
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to a point to the left of i0 by stage n0.) We claim that Wn′0
p0 ∈ A, which would

complete the proof. It is clear from the construction that no point in T2 at
or to the right of p0 can after time n0 be “transported” to something to the
left of p0 as long as p0 remains in state “n”. Therefore if at the end of stage
n′0 − 1, p0 is still in state “n”, then it easily follows from the fact that

i0+k0∑
j=i0

s(j) > n0M +
i0+k0∑
j=i0

n(j)

that ∑
j∈[i0,i0+k0],r∈[−M,−1]

S
n′0−1
j,r ≥ |(V n′0

3 ∪ Un′0) ∩Ai0k0 |,

which implies that Wn′0
p0 ∈ A, as desired. 2

Letting
Ŵ∞p := lim

n→∞
Ŵn
p and W∞p := lim

n→∞
Wn
p

(which are clearly well-defined since all the sequences are eventually con-
stant), Lemma 3.7 implies that a.s. Ŵ∞p is “u” or an element of A for all
p ∈ T1 ∪ T2 while (4) immediately yields

{Ŵ∞p }p∈T1 =D {W∞p }p∈T1 . (5)

It is clear from the construction that W∞p is Wp if p is needed and “u”
otherwise. Because of this and (5), it immediately follows that if we define
σ̂∗ as we defined σ∗ before but now with respect to the Ŵ∞p variables, then
σ̂∗ will have the correct distribution µ. (Note that the Ŵ∞p variables are not
always in A, since some of them take the value “u” but this obviously does
not matter since such a variable is unneeded in this case).

The composition of first going from the {Ŵj}j∈Zd random variables to
the {Ŵp}p∈T1∪T2 random variables and then to σ̂∗ yields a stationary coding
from {Ŵj}j∈Zd to µ and now we need only show that it is finitary. To do this,
it clearly suffices to show that for all ε > 0, there exists N such that the prob-
ability that σ̂∗0 is determined by {Ŵj}‖j‖≤N is> 1−ε. For this, first choose N1

such that P (τ0 > N1) < ε/2. Let SN1 = {(i, t) : −N1 ≤ t ≤ −1, ‖i‖ ≤ |t|}.
Hence σ∗0 is determined by the random variables {Wp}p∈SN1

with probability
> 1 − ε/2 and so by the above, σ̂∗0 is determined by the random variables
{Ŵ∞p }p∈SN1

with probability > 1 − ε/2. Next, choose N2 such that with
probability > 1 − ε/2, Ŵ∞p = ŴN2

p for all p ∈ SN1 . This would imply that
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the Ŵ∞p variables for p ∈ SN1 are determined by stage N2 with probabil-
ity > 1 − ε/2. Let N = N1 + N2. Clearly, by construction, {ŴN2

p }p∈SN1

is measurable with respect to {Ŵj}‖j‖≤N . Therefore the random variables
{Ŵj}‖j‖≤N determine σ̂∗0 with probability > 1− ε, as desired. 2

4 Application to the Ising model

We consider the ferromagnetic Ising model on Zd, d ≥ 2, with interaction
parameter J, J > 0, and zero external field, that is, we consider random
fields {σj}j∈Zd taking values ±1 with the property that, for each i ∈ Zd,
and α ∈ {−1,+1},

P (σi = α | σj, j 6= i) = p
(σj ,j∼i)
i (α), (6)

where we have used the following notation: j ∼ i means that i and j are
neighbors, and

pγi (α) =
exp(αJ

∑
j∼i γj)

exp(αJ
∑
j∼i γj) + exp(−αJ∑j∼i γj)

, γ ∈ {−1,+1}{j:j∼i}. (7)

We call such distributions Ising distributions (with parameter J).
It is well-known (see [25], p. 189–190) that there exists a critical value

Jc(d) ∈ (0,∞) such that if J < Jc(d) then there is a unique Ising distribution
in d dimensions, while for J > Jc(d) there is more than one Ising distribution
in d dimensions. This corresponds with the occurrence of a so-called phase
transition. In particular, if we assign the value +1, respectively −1, to each
vertex outside Bn = [−n, n]d ∩ Zd, and consider the (unique) distribution
which satisfies (6) for each i inside the cube, then, by letting n → ∞ and
taking weak limits, we obtain two Ising distributions, called respectively the
‘plus state’ and the ‘minus state’ of the Ising model, which are equal when
J < Jc(d) but distinct when J > Jc(d). The existence of the above limits
follows from well-known stochastic monotonicity results (see [25], p.189). We
now restate Theorem 1.1.

Theorem 4.1 Consider the Ising model defined by (6).
a) If J < Jc(d), the plus state (which equals the minus state) of the Ising
model is a finitary factor of a finite-valued i.i.d. process.
b) If J > Jc(d), the plus state (and the minus state) of this model is not a
finitary factor of a finite-valued i.i.d. process.

19



Proof:

b) This follows immediately from Theorem 2.1.
a) It is well-known, and can be easily proved by (now standard) mono-
tonicity and coupling arguments, that, if J < Jc(d), then under the fol-
lowing continuous-time dynamics, the distribution at time t starting from
any configuration converges to the (unique) Ising distribution: Each vertex
has a clock which rings after i.i.d. exponentially distributed (parameter 1)
time intervals. All these clocks behave independently of each other. When
a clock rings (say, at vertex i, at time t), then the spin value of i is up-
dated, i.e., is replaced by a new value, which is drawn (independently of
anything else) from the distribution p

(σj(t),j∼i)
i . Here σj(t) denotes the spin

value at j at time t. A much deeper result, proved by Martinelli and Olivieri
in [28], which, in turn, involves a key result in [2] about the spatial mixing
properties of the Ising distribution (see also [15]) is that the above men-
tioned convergence occurs exponentially. This is of crucial importance for
us. Instead of formulating the Martinelli-Olivieri result precisely here, we
will state its analog for the following, discrete-time dynamics, which cor-
responds with a cellular automaton to which Theorem 3.4 can be applied.
(There are several other ways to set up a discrete-time dynamics for the
Ising model (see e.g. [40] and [27]) but for our purpose we prefer the one
below). At each discrete time step, each vertex is, independent of the others,
‘activated’ with probability 1/2. When a vertex is activated, but none of its
neighbors is, then its value is updated (where ‘updating’ means the same as
in the continuous case). Again one can easily verify (by the same standard
arguments referred to above) that if J < Jc(d), the distribution starting
from any configuration converges to the unique Ising distribution as t→∞.
This discrete dynamics can be described in a semi-deterministic way (like
the PCA in Section 3), which has the advantage that it couples the time
evolutions for all initial configurations. Such a coupling is analogous to the
so-called ‘basic coupling’ (see [25], p.124). Let Ai,t, i ∈ Zd, t ∈ N, be i.i.d.
with P (Ai,t = 1) = 1 − P (Ai,t = 0) = 1/2. As before, let ∂i = {j : j ∼ i}.
Let U ′i,t, i ∈ Zd, t ∈ N be i.i.d. uniformly distributed random variable on
the interval (0, 1) and independent of the above A-process. Next, define
Ui,t = max{pγO(1) : γ ∈ {−1,+1}∂O, pγO(1) < U ′i,t} (the maximum here
is interpreted as 0 if pγO(1) ≥ U ′i,t for all γ ∈ {−1,+1}∂O). Finally, define
Wi,t = (Ai,t, Ui,t).

Consider the following PCA with initial configuration ω.
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σ(ω, 0) = ω. (8)
σi(ω, t+ 1) = σi(ω, t) if Ai,t = 0 or Aj,t = 1 for some j ∼ i;

= +1 (−1) if Ui,t < (≥) p(σj(ω,t),j∼i)
i (1) otherwise.

One can easily verify that this PCA is monotone and corresponds with
the discrete dynamics described above. Next, the following proposition is
the discrete-time analog of Theorem 5.1 in [28]. The latter uses Theorem
3.1 in the same paper, of which the statement and proof go essentially (and
straightforwardly) through step-by-step for the discrete-time dynamics de-
scribed above.

Proposition 4.2 If J < Jc(d), then the above PCA is exponentially ergodic.

Theorem 4.1 a) now follows immediately from Theorem 3.4, Proposition 4.2
and the earlier observed facts that this PCA is monotone and has the Ising
distribution as its limit distribution. 2

Remark(k): The Ising model is just one (important) example to illustrate
Theorem 3.4. It should be clear from this example that the combination
of our Theorem 3.4 with the before mentioned Theorem 3.1 in [28] yields
analogs of Theorem 4.1 (a) for a large class of random fields.

Remark(l): It has been proved (see [3] and p. 171-172 in [11]) that for
all dimensions except 3, (and is also certainly believed in 3 dimensions) for
J = Jc(d) the plus state and the minus state of the Ising model are equal.
However, it is well-known that at the critical point the dynamics cannot be
exponentially ergodic, so that the question whether there exists a finitary
coding for the critical Ising model is left open. However, one can prove the
following result which was obtained jointly with Yuval Peres.

For a finitary mapping, for x ∈ Zd, we let Nx denote the random variable
which is the side length of the smallest hypercube about the point x which
has the property that the value at x in the process we are mapping to is
determined by the values of the configuration that we are mapping from
in this hypercube. (Finitary means that Nx is finite a.s.) N0 is called the
coding length in one dimension.

Theorem 4.3 There does not exist a finitary factor map from a finite-
valued i.i.d. process to the plus state for the Ising model at the critical
value in d dimensions which has finite expected coding volume, i.e. for which
E[Nd

0 ] <∞.
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Proof of Theorem 4.3: Let {σx}x∈Zd denote the Gibbs state at the critical
value in d dimensions. We may assume that it is unique, since otherwise there
is no finitary mapping at all to the plus state by Theorem 2.1. It is well known
(and goes back to [38] and [24]) that in this case

∑
j∈Zd E[σ0σj] = ∞. We

will show that if there is a finitary factor map with finite expected coding
volume, then the above sum is finite, which completes the proof. (Recall
again that E[σxσy] ≥ 0 for all x, y ∈ Zd and so we don’t need to take
absolute values here.)

Fix j ∈ Zd. Then E[σ0σj ] is equal to∑
k,`≥0

max{k,`}≥b |j|2 c−1

E[σ0I{N0=k}σjI{Nj=`}] +

∑
k,`≥0

max{k,`}<b |j|2 c−1

E[σ0I{N0=k}σjI{Nj=`}] ≤

∑
k,`≥0

max{k,`}≥b |j|2 c−1

P ({N0 = k} ∩ {Nj = `}) +

∑
k,`≥0

max{k,`}<b |j|2 c−1

E[σ0I{N0=k}]E[σjI{Nj=`}] ≤

2
∑

k≥b |j|
2
c−1

P ({N0 = k}) +

b
|j|
2
c−2∑

k=0

E[σ0I{N0=k}]


2

=

2
∑

k≥b |j|
2
c−1

P ({N0 = k}) +

 ∑
k≥b |j|

2
c−1

E[σ0I{N0=k}]


2

≤

3
∑

k≥b |j|
2
c−1

P ({N0 = k}).

The equality above was based on the fact that E[σ0] = 0. Since it is clear
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that ∑
j∈Zd

∑
k≥b |j|

2
c−1

P ({N0 = k})

is bounded above by a constant times E[(N0)d], this completes the proof. 2

This leaves open two questions.
Question 1: Does there exist a finitary factor map from a finite-valued

i.i.d. process to the plus state for the Ising model at the critical value in d
dimensions?

Question 2: Does the finitary coding we construct for the subcritical
Ising Model have finite expected coding volume and if not, does there exist
such a finitary coding?

Note that if the answer to both questions is yes, then the behavior (with
respect to finitary coding) at the critical value will be different from both
the subcritical and supercritical cases.

Although we feel that when studying finitary codings, one should pri-
marily be interested in the case where the i.i.d. process that one is mapping
from is finite-valued, we mention that in the larger category where the i.i.d.
process is not necessarily finite-valued, then we can already distinguish the
critical Ising model for d 6= 3 from both the subcritical and supercritical
cases. This is because of the following. It is not hard to show (using sim-
ilar ideas as earlier) that the Ising model above the critical value is not a
finitary factor of any i.i.d. process (finite-valued or otherwise). However in
the critical case, for d 6= 3, there is such a mapping by combining Lemmas
3.5, 3.6 and Remarks (i) and (l), showing that the critical case is different
from the supercritical case. Next, it is clear that the finitary code given in
Remark (i) (where the domain is an uncountably valued i.i.d. process) has
finite expected coding volume in the subcritical case. On the other hand,
the proof of Theorem 4.3 immediately extends to the case where the i.i.d.
process is not finite-valued showing that the critical case is also different
from the subcritical case.

5 Some further open questions

Here we mention a few open questions. In view of Theorem 2.1, one may
ask whether ν being the unique translation invariant Markov random field
with its conditional probabilities implies that ν is a finitary factor of an i.i.d.
process. This is not true as we will indicate below. As noted in the proof of
the theorem, such a finitary factor satisfies the blowing-up property. In [30],
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it is proved that in 1 dimension a process satisfies the blowing–up property
if and only if it is a Bernoulli shift, has the “exponential rate of convergence
property for frequencies” (which means that the mean ergodic theorem for
cylinder sets occurs at an exponential rate) and has the “exponential rate of
convergence property for entropy”. This proof extends to d ≥ 2 dimensions.
So there are potentially three natural ways to look for counterexamples, and
we discuss two of them.

We first mention that there exists a translation invariant Markov random
field which is the unique translation invariant Markov random field with its
conditional probabilities, but which is not a Bernoulli shift. For example, for
the antiferromagnetic Ising Model in 2 dimensions (see [14] for the definition
of this) above the critical interaction parameter, there is a unique transla-
tion invariant Markov random field with the proper conditional probabilities,
but this field is not even totally ergodic and hence not a Bernoulli shift (it
splits as a convex combination of two periodic Markov random fields with
the proper conditional probabilities). This gives our first counter-example,
as mentioned above. What is happening here is that there may be nontrans-
lation invariant Markov random fields (even nonperiodic Markov random
fields can exist, e.g., the Ising model in 3 dimensions (see [10])) and one
needs to know whether the unique translation invariant Markov random
field that one is looking at is extremal within the class of all Markov ran-
dom fields with the given conditional probabilities, not just within the class
of the translation invariant ones. Further, if we do assume that in addition
to ν being the unique translation invariant Markov random field with its
conditional probabilities, it is also extremal in the class of all Markov ran-
dom fields with its conditional probabilities, then it is not known whether ν
is necessarily a Bernoulli shift (although it is in this case necessarily K, see
[14]). In fact, even if ν is the unique Markov random field with its conditional
probabilities (unique among all both translation invariant and nontransla-
tion invariant Markov random fields), which implies that ν is translation
invariant and K, it is still not known whether ν is necessarily a Bernoulli
shift. Here it is very important to point out that the example given in [16]
has the property that it is not the unique Markov random field with its
conditional probabilities.

Next, as far as the second property of “exponential rate of convergence
property for frequencies”, a measure ν which is the unique translation in-
variant Markov random field with strictly positive conditional probabilities
does in fact satisfy this property. This follows from Theorem 4.1 in [12], the
lower semicontinuity of relative entropy and Theorem 15.37 in [14], p. 323.
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The above discussion leads to the following question.

Question 3: If a translation invariant Markov random field µ is the unique
Markov random field (among both translation invariant and non-translation
invariant fields) with its conditional probabilities, is µ necessarily a Bernoulli
shift? (It is K by the above discussion).
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