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Abstract. We consider a system of particles, each of which performs a continuous
time random walk on Zd. The particles interact only at times when a particle jumps
to a site at which there are a number of other particles present. If there are j
particles present, then the particle which just jumped is removed from the system
with probability pj . We show that if pj is increasing in j and if the dimension d is at

least 6 and if we start with one particle at each site of Zd, then p(t) := P{there is at
least one particle at the origin at time t} ∼ C(d)/t. The constant C(d) is explicitly
identified. We think the result holds for every dimension d ≥ 3 and we briefly discuss
which steps in our proof need to be sharpened to weaken our assumption d ≥ 6.

The proof is based on a justification of a certain mean field approximation for
dp(t)/dt. The method seems applicable to many more models of coalescing and
annihilating particles.
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1. Introduction.
Annihilating and coalescing random walks were studied as simple interacting

particle systems by Bramson and Griffeath (1980), and Arratia (1981). They con-
sidered the following systems. Particles move according to a continuous time ran-
dom walk on Zd. The particles only interact when a particle at some site x jumps to
a site y which already contains a particle. At this time, the two particles annihilate
each other and disappear from the system, or they coalesce to only one particle
at y, which continues with its random walk until it again coincides with another
particle. The former system is called annihilating random walk and the latter sys-
tem is called coalescing random walk. In this paper we shall call the above models
the basic models. These systems first arose as duals to the “anti-voter model” and
the “voter model” and were used as tools to analyze the voter model (see Holley
and Liggett (1975), Harris (1976) and Liggett (1985), Section V.1 and Examples
III.4.16, 17). Further motivation comes from models for chemical reactions. For
chemical reactions one often considers particles of two types and allows only par-
ticles of different types to annihilate each other (or to form an inert compound).
Such systems have received considerable attention in the literature (see Bramson
and Lebowitz (1991a, b) and Lee and Cardy (1995), (1997)). Here we shall restrict
ourselves to systems with particles of one type only.

Usually one starts at time 0 with one particle at each site of Zd, although some
results are valid for more general translation invariant initial states. It is further
common to let the particles move according to continuous time simple random
walk. That is, the particle jumps at the times of a rate 1 Poisson process, and
when it jumps from position x, then it jumps to any one of the 2d neighbors of x
with probability 1/(2d). For this version of the model, Bramson and Griffeath and
Arratia found the asymptotic behavior of

p(t) := P{0 is occupied at time t}.

For the coalescing random walk in dimension d ≥ 3 one has (Bramson and Griffeath
(1980))

p(t) ∼ 1
γdt

, (1.1)

where

γd = P{simple random walk in Zd never returns to the origin

after first leaving it}.

For annihilating random walk in d ≥ 3 Arratia (1981) shows

p(t) ∼ 1
2γdt

. (1.2)
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These articles also find the asymptotic behavior of p(t) for d = 1 or 2, but we
shall only be concerned with d ≥ 3 here. In fact, the proof of our principal result
requires d ≥ 6. Bramson and Griffeath and Arratia base their proof on an ingenious
derivation by Sawyer (1979) of the limit distribution of the number of particles in
the voter model at time t which have taken their opinion from the same individual
as the origin (the so-called ‘patch size’). Bramson and Griffeath use the so-called
duality between the basic coalescing random walk and the voter model to deduce
(1.1) from Sawyer’s result. It is not clear how robust Sawyer’s derivation is. If one
wants to consider small variations in the interaction rules for the particles, then
proving an analogue of (1.1) and (1.2) via Sawyer’s method seems very difficult (see
also Remark (iv) after the Theorem). On the other hand, there is an intuitively
appealing, heuristic derivation of (1.1) and (1.2), which will be shown below. The
main purpose of this paper is to turn those heuristic arguments into a rigorous and
quite robust proof. We first give this heuristic explanation.

It is not hard to see that the forward equation for p(t) is

d

dt
p(t) = −P{0 and e1 are occupied at time t}

for the coalescing random walk, and

d

dt
p(t) = −2P{0 and e1 are occupied at time t}

for the annihilating random walk; here e1 denotes the site (1, 0, . . . , 0). For brevity
we only discuss the coalescing random walk. Now if 0 and e1 are occupied at
time t, then the particles at these two sites must have been at some sites x and y,
respectively, at the earlier time t−∆, and the paths of the particles from x to 0 and
from y to e1 must not have coincided during [t −∆, t]. One can expect that if ∆
becomes large with t, then only the contributions from pairs x, y far apart will play
a role. When x and y are far apart, particles which are at x and y at time t −∆
should not have ‘felt each other’ before time t −∆. It therefore seems reasonable
to believe that in this case the events

{x is occupied at time t−∆} and {y is occupied at time t−∆}

are nearly independent, so that for ∆ chosen properly as a function of t, the de-
pendence between

{0 is occupied at time t} and {e1 is occupied at time t} (1.3)

is almost entirely due to the requirement that the paths from x to 0 and from y to
e1 do not coincide during [t−∆, t]. Let {Ss}s≥0, {S′s}s≥0, {S′′s }s≥0 be independent
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copies of a continuous time simple random walk starting at 0. Then one is led to
approximate

P{0 and e1 are occupied at time t}
by∑

x,y

P{x is occupied at t−∆}P{y is occupied at t−∆}

× P{x + S′∆ = 0, y + S′′∆ = e1, x + S′s 6= y + S′′s for 0 ≤ s ≤ ∆}

= p2(t−∆)
∑
x,y

P{x + S′∆ = 0, y + S′′∆ = e1, x + S′s 6= y + S′′s for 0 ≤ s ≤ ∆}.

Let {S̃′s}s≥0 and {S̃′′s }s≥0 be independent copies of the time-reversed random walk.
For simple random walk these are again simple random walks, but in general S̃′

satisfies for 0 = s0 < s1 < · · · < s` = ∆, and Borel sets Bi,

P{S̃′si − S̃′si−1
∈ Bi, 1 ≤ i ≤ `} = P{S∆−si−1 − S∆−si ∈ −Bi, 1 ≤ i ≤ `}. (1.4)

The same relation holds when S̃′ is replaced by S̃′′. By time reversal one then has

P{x + S′∆ = 0, y + S′′∆ = e1, x + S′s 6= y + S′′s for 0 ≤ s ≤ ∆}
= P{S̃′∆ = x, e1 + S̃′′∆ = y, S̃′s 6= e1 + S̃′′s for 0 ≤ s ≤ ∆}.

It is an exercise in random walk to show that the right hand side here is well
approximated by

P{S̃′∆ = x}P{e1 + S̃′′∆ = y}P{S̃′s 6= e1 + S̃′′s for 0 ≤ s ≤ ∆},

and of course, for large ∆ and simple random walk,

P{S̃′s 6= e1 + S̃′′s for 0 ≤ s ≤ ∆} ∼ P{S̃′s 6= e1 + S̃′′s for s ≥ 0} = γd.

We will explicitly estimate the errors in Lemmas 11–14, but for now we shall just
ignore them. This leads to

P{0 and e1 are occupied at time t}

≈ γd

∑
x

P{S̃′∆ = x}p(t−∆)
∑

y

P{e1 + S̃′′∆ = y}p(t−∆)

= γd

∑
x

P{S′∆ = −x and x is occupied at t−∆}

×
∑

y

P{S′′∆ = e1 − y and y is occupied at t−∆}

≈ γdP{0 is occupied at t}P{e1 is occupied at t} = γdp
2(t),
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where A ≈ B means that A−B is negligeable for our purposes. From these relations
we can expect p(t) to behave asymptotically like the solution of the equation

d

dt
y(t) = −γdy

2(t)

which vanishes at ∞, namely,

y(t) =
1

γdt
. (1.5)

This is the heuristic reason for (1.1). The idea of switching off the interaction
during an interval [t−∆, t] we took from Arratia (1981).

It is precisely these approximations which our paper makes rigorous. To show the
power of our method we treat the model in which the particles perform a continuous
time random walk, but in which particles only coalesce with a probability which may
be < 1. As far as we know this model has not been analyzed before. Specifically,
let {St}t≥0 be a continuous time random walk starting at 0. We denote by q(y) the
probability that S. has a jump of size y when it jumps (thus, q(0) = 0). Assume
that the motion of a particle starting at x is distributed like {x + St}, independent
of the motion of all other particles. However, if a particle jumps to a site which
already contains j particles, then it colaesces with one of these j particles with a
certain probability pj . For our purposes it is simpler to say that the particle which
jumps is removed from the system, and (with the exception of the proofs of Lemmas
9 and 14) we shall follow this convention. (Of course there are other problems for
which one wants to keep track of the mass of particles. One then assumes that
when two particles of masses m1 and m2 coalesce, they form a particle of mass
m1 + m2. However, we shall not do this and only consider the number of particles
at a site.)

Our principal result is the following theorem.

Theorem. Assume that
p0 = 0, p1 > 0 (1.6)

and that
pj is increasing in j. (1.7)

Assume further that the particles perform continuous time random walks which are
distributed as translates of {St} and that

ESt = t
∑
y∈Zd

yq(y) = 0 and
∑
y∈Zd

‖y‖2q(y) <∞. (1.8)

Finally, assume d ≥ 6. Then in the above coalescing model there exists a ζ =
ζ(d) > 0 such that

p(t)− 1
C(d)t

= O
( 1
t1+ζ

)
, t→∞, (1.9)



6

with

C(d) = p1

∞∑
m=0

(1− p1)mP{Sσ
. returns exactly m times to 0 after first leaving it}

=
p1γ

1− (1− p1)(1− γ)
, (1.10)

where Sσ
. is the difference of two independent copies of S., and γ is the probability

that Sσ
. never returns to the origin after first leaving it. Also

E{number of particles at 0 at time t} − 1
C(d)t

= O
( 1
t1+ζ

)
(1.11)

and

P{there are ≥ 2 particles at 0 at time t} = O
( 1
t2

)
, t→∞. (1.12)

Remarks (i) It is crucial for our Theorem that (1.6) holds. If p0 > 0, then
p(t) will usually decrease exponentially in t. If p0 = p1 = 0, then p(t) will usually
decrease like t−ρ for some ρ < 1. Models with p0 = p1 = 0 are presently being
investigated by D. S. Stephenson.

(ii) Although we think that the global structure of our proof is ‘what it should
be’, certain steps are not optimal and therefore our proof works only when d ≥ 6.
We believe that the conclusion of our theorem is valid for d ≥ 3. This is known for
the basic coalescing model with p0 = 0, pj = 1, j ≥ 1 (see Bramson and Griffeath
(1980)). For the basic coalescing model our proof too can be improved (and even
shortened) to work for all d ≥ 3. If p0 = 0 < p1 ≤ p2 ≤ · · · ≤ pM = pM+j = 1
for some finite M and all j ≥ 1, then (with a lot of extra work) (1.9) can still be
proven for d ≥ 4. We hope to return to these improvements in a separate paper;
see also Remark (v) in Section 3.

(iii) The heuristics above form a basic outline of our proof. The principal tech-
nical tool to estimate the correlation between events such as in (1.3) is a bound on
the variance of ∑

x

β(x)ξt(x)

for suitable β(·). This variance estimate is derived in Section 3 by what is sometimes
called the ‘method of bounded differences’.

(iv) We point out that we only consider the expected number of particles at the
origin at time t, or the probability that there is at least one such particle. We do
not keep track of how many particles have coalesced to form the particles at 0 at
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time t. More specifically, one can define the mass of a surviving particle by taking
the mass of each particle at time 0 equal to 1, and by taking the mass of a particle
which arises when two particles of masses m1 and m2 coalesce equal to m1 +m2. If
M(t) denotes the total mass of the particles at 0 at time t, then the result of Sawyer
(1979) for the basic coalescing model is equivalent to an exponential limit law for
p(t)M(t), conditioned on {M(t) > 0} = {0 is occupied at time t} (when d ≥ 2).
For our more general models we do not know how to prove such a conditional limit
law for p(t)M(t), even though we believe that such a conditional limit theorem still
holds. However, even if we could prove such a limit law, we do not see how to use
the method of Bramson and Griffeath (1980) to deduce the asymptotic behavior of
E(t) and p(t) from this. This is so because Bramson and Griffeath use the Markov
property for the dual model of the coalescing random walk (see their Lemma 2).
We do not know how to construct a useful dual to our more general model. We
therefore have not pursued limit laws for M(t), even though this is an interesting
problem in its own right.

Another related interesting problem is the spatial structure of the collection of
particles at time 0 which–through coalescence– end at the origin at time t. For the
basic model this is investigated by Bramson, Cox and LeGall (1998).

2. Description and construction of the Markov process. Since in our system
of random walks there can be arbitrarily many particles at a given site, the standard
existence theorems do not seem to cover the present set-up. We therefore prove in
this section that there exists a Markov process which corresponds to the intuitive
description given just before the Theorem in Section 1.

Throughout the pj are fixed. For the mere construction of the Markov process the
monotonicity condition (1.7) is not needed. However, we do use (1.7) to establish
some desirable properties of our Markov process. On the initial state and the
random walks by which the particles move we only put the weak restriction that
ξ0 ∈ Ξ (see (2.10)) plus the irreducibility condition (2.2).

The state space of our Markov process will be a subset of

Ξ0 := {0, 1, . . .}Zd .

A generic point of Ξ0 is denoted by ξ = {ξ(x) : x ∈ Zd}. ξt denotes the state of
our system at time t. Its x-coordinate is denoted by ξt(x) or sometimes as ξ(x, t);
it represents the number of particles at position x at time t. The most useful
construction of the process for our purposes is essentialy one based on a graphical
representation, as discussed in Griffeath (1979). Let τ1(x, k) < τ2(x, k) < . . . be
the jumptimes of a Poisson process {Nt(x, k)}t≥0 (with N0(x, k) = 0). Set τ0(x, k)
= 0. We assume that

all processes N (x, k), x ∈ Zd, k ≥ 1, are independent. (2.1)
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Without the interaction each particle would perform a continuous time random
walk which jumps at the times of a rate 1 Poisson process, and when it jumps from
position x, then it jumps to y with probability q(y−x) ≥ 0 (q(0) = 0,

∑
z q(z) = 1).

We denote a random walk with these jump probabilities and which starts at the
origin by {St}t≥0. Throughout we assume that

S. is irreducible, (2.2)

that is, for all x, P{St = x} > 0 for some (and hence for all) t > 0. We now attach
to each jump time τn(x, k) of the Poisson process N (x, k) a position y = yn(x, k)
and a collection of random variables X(n, x, k, j), j ≥ 0. The y here will specify
the position to which a particle will jump from x (if any particle will jump from
x at time τn(x, k)). X(n, x, k, j) takes the value 0 or 1, and specifies whether a
particle which jumps from x at time τn(x, k) is removed from the system or not.
If there are j particles present at yn(x, k) at time τn (i.e., ξ(y, τn−) = j), then the
particle which jumps from x to y at τn is removed from the system if and only if
X(n, x, k, j) = 0. We take our sample paths right continuous, so if a particle is
removed at τ , then it is not counted in ξτ . We assume that

all yn(x, k) and X(n, x, k, ·) for different (n, x, k)

are independent of each other and of all Poisson processes. (2.3)

Further, for fixed (n, x, k),

yn(x, k) and X(n, x, k, ·) are independent, (2.4)

but the X(n, x, k, j) for different j are coupled. We let U(n, x, k), x ∈ Zd, n, k ≥ 1,
be a family of uniform random variables on [0, 1] which are independent of all y’s
and of all Poisson processes N . We then define the joint distribution of yn(x, k)
and U(n, x, k) by

P{yn(x, k) = y, U(n, x, k) ≤ λ} = q(y − x)λ, 0 ≤ λ ≤ 1. (2.5)

Further
X(n, x, k, j) = 0 if and only if U(n, x, k) ≤ pj . (2.6)

In particular,
P{X(n, x, k, j) = 0} = pj . (2.7)

To make the description of our Markov process complete we have to tell when
particles jump. The intuitive description is that if there are ` particles at x at
a certain time t, then the next jump from x occurs at the first jump of one of
the processes N (x, k) with 1 ≤ k ≤ `. If that jump is at time τn(x, k), then the
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particle jumps to y = yn(x, k) and is removed if and only if X(n, x, k, j) = 0, where
j = ξτn(x,k)−(y) is the number of particles at y at time τn(x, k)−.

If our initial state is a finite state, that is, a state with only finitely many particles
present, then there is no difficulty in formalizing the above description. Indeed if we
start with n0 particles, then at all times there are at most n0 particles present, and
therefore with probability 1 the times at which any of the existing particles jumps
have no finite accumulation point. On the null set on which there is an accumulation
point we can give any value to ξt; for instance we can take ξt(x) = 0 for all x and
t ≥ first accumulation point of the jump times for the existing particles. We do
not give any further details but take it for granted that for any finite initial state
the Markov process {ξt} is completely specified by the description in the preceding
paragraph. In fact, this gives us a definition of ξt as a function of the initial state
ξ0, all the τn(x, k), yn(x, k) and the X(n, x, k, j), x ∈ Zd, n, k ≥ 1, j ≥ 0. ξt is with
probability 1 defined simultaneously for all finite initial states (note that there are
only countably many finite states). It will be necessary on occasion to consider ξt for
various initial states. If we have to indicate the initial state explicitly we shall write
ξt(η) for the process with initial state η. Of course ξt(η) is also a function of the
N , yn and the X’s, but we do not indicate this in the notation. In accordance with
this notation Ef(ξt(η)) is the expectation of f(ξt) over all the N , yn, X(n, x, k, j)
when the initial state ξ0 = η. For the time being this is only meaningful for a finite
state η.

Extra work is needed to define the ξ-process when we allow infinitely many
particles in the system. Our construction more or less follows Liggett (1985), Sec-
tion IX.1. To describe the state space when we allow infinitely many particles we
introduce the norms

Nt(ξ) :=
∑
x∈Zd

ξ(x)αt(x), t > 0, (2.8)

where
αt(x) = P{St = −x}. (2.9)

We take as state space for our process the space

Ξ := {ξ ∈ Ξ0 : Nt(ξ) <∞ for all t > 0}. (2.10)

For any η ∈ Ξ we let η(N) be the finite state given by

η(N)(x) = η(x)I[|x| ≤ N ]. (2.11)

For ξ0 ∈ Ξ we can then form the process ξt(ξ
(N)
0 ) (that is, we first truncate ξ0 to a

finite state and then construct the Markov process with the truncated state as its
initial state). We are going to show that the process with the initial state ξ0 can
be defined as ξt = limN→∞ ξt(ξ

(N)
0 ). The principal estimate used to show that this
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makes sense is based on a comparison lemma of chains with different finite initial
states. Let ξ′0, ξ

′′
0 and ξ#

0 be finite initial states which satisfy

ξ′0(x) ≤ ξ#
0 (x) ≤ ξ′0(x) + ξ′′0 (x) for all x. (2.12)

We now take {ξ′t} and {ξ#
t } to be the processes {ξt(ξ′0)} and {ξt(ξ

#
0 )}, respectively.

We also introduce a process {ξ′′t }. This will not be the process {ξt(ξ′′0 )}, but an
equivalent process which is coupled with the ξ′-process and the ξ#-process in such
a way that

the ξ′-process and the ξ′′-process are independent. (2.13)

The three processes are coupled in that they use the same N , yn and U(n, ·, ·), as
we now specify. In order to describe the three processes together we keep track
of the system to which a particle belongs, so that we distinguish #-particles, ′-
particles and ′′-particles. However, we do not distinguish the particles in a single
system, so we really only keep track of the number of particles of each type at
each site. These numbers at x at time t are ξ′t(x), ξ′′t (x) and ξ#

t (x), respectively. If
ξ′t(x) = `′, ξ′′t (x) = `′′ and ξ#

t (x) = `#, then a ′-particle jumps from x at the next
jump of any of N (x, k), 1 ≤ k ≤ `′, and a ′′-particle jumps at the next jump of any
of N (x, k), `′ < k ≤ `′ + `′′. Also a #-particle jumps at the next jump of any of
N (x, k), 1 ≤ k ≤ `#. If a particle jumps at time τn(x, k), then it jumps to yn(x, k).
If it is a ′-particle, then it is removed if and only if X(n, x, k, ξ′τn−(yn)) = 0. The
corresponding rules with ′′ and # instead of ′ hold for ′′-particles and #-particles.
Note that a ′-particle and a #-particle may jump at the same time. However, with
probability 1 there are no times at which both a ′-particle and a ′′-particle jump.
Thus the ′-process and the ′′-process never use the same yn(x, k) or U(n, x, k) and
therefore are independent as claimed in (2.13).

Lemma 1. Assume (1.7). If ξ′0, ξ
′′
0 and ξ#

0 are finite states which satisfy (2.12),
then, under the above coupling, it holds with probability 1 that for all t ≥ 0

ξ′t(x) ≤ ξ#
t (x) ≤ ξ′t(x) + ξ′′t (x) for all x ∈ Zd. (2.14)

The left hand inequality remains valid even without (1.7).

Proof. We shall assume (1.7) and leave it to the reader to verify that this is only
needed when proving the right hand inequality in (2.14).

Let s0 = 0 and define si, i ≥ 1, recursively as follows. First let x
(i)
1 , x

(i)
2 , . . . , x

(i)
p(i)

be the finitely many sites with

ξ′si(x) + ξ′′si(x) + ξ#
si(x) > 0.

Then define

si+1 = first jump time > si of any N (x, k)

with x ∈ {x(i)
1 , x

(i)
2 , . . . , x

(i)
p(i)}, k ≤ ξ′si(x) + ξ′′si(x).
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Now assume that the coupling is such that (2.14) holds for all t ≤ si for some i.
We shall prove that (2.14) also holds for t ≤ si+1. By our construction, ξ′t(x), ξ′′t (x)
and ξ#

t (x) are all constant for all x and si ≤ t < si+1. (Note that

ξ#
t (x(i)

r ) ≤ ξ′t(x
(i)
r ) + ξ′′t (x(i)

r )

for t = si, so ξ#
t (x(i)

r ) indeed does not jump for si < t < si+1.) If

si+1 = τn(i+1)(x(i)
r , k(i + 1)),

then some particle jumps at time si+1 from x
(i)
r to yn(i+1)(x

(i)
r , k(i + 1)), but for

x 6= x
(i)
r , yn(i+1)(x

(i)
r , k(i + 1)), none of ξ′t(x), ξ′′t (x), ξ#

t (x) change at t = si+1. In
order to prove (2.14) for t ≤ si+1, we therefore only have to, check that (2.14) again
holds right after the jump at t = si+1 for x = x

(i)
r and for x = yn(i+1)(x

(i)
r , k(i+1)).

We distinguish three cases:

(a) 1 ≤ k(i + 1) ≤ ξ′si(x
(i)
r );

(b) ξ′si(x
(i)
r ) < k(i + 1) ≤ ξ#

si(x
(i)
r );

(c) ξ#
si(x

(i)
r ) < k(i + 1) ≤ ξ′si(x

(i)
r ) + ξ′′si(x

(i)
r ).

By (2.14) for t = si, these are the only possibilities.
Case (a): In this case a ′-particle and a #-particle jump simultaneously from

x
(i)
r to yn(i+1) = yn(i+1)(x

(i)
r , k(i + 1)) (because we also have k(i + 1) ≤ ξ#

si(x
(i)
r ),

by virtue of (2.14)). However, no ′′-particle jumps. The particle which jumps is
removed from the system in the ′-system if and only if

X ′ := X(n(i + 1), x(i)
r , k(i + 1), ξ′si(yn(i+1))) = 0 (2.15)

and similarly in the #-system. Therefore,

ξ′si+1
(x(i)

r ) = ξ′si(x
(i)
r )− 1,

ξ′′si+1
(x(i)

r ) = ξ′′si(x
(i)
r ),

ξ#
si+1

(x(i)
r ) = ξ#

si(x
(i)
r )− 1.

Also

ξ′si+1
(yn(i+1)) = ξ′si(yn(i+1)) + X ′,

ξ′′si+1
(yn(i+1)) = ξ′′si(yn(i+1)),

ξ#
si+1

(yn(i+1)) = ξ#
si(yn(i+1)) + X#.
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It is clear from the first set of these relations that (2.14) still holds at t = si+1, x =
x

(i)
r . From the second set of relations we see immediately that the left hand in-

equality in (2.14) also holds at t = si+1, x = yn(i+1) if ξ#
si

(yn(i+1)) > ξ′si(yn(i+1)).
And if ξ#

si
(yn(i+1)) = ξ′si(yn(i+1)) = ξ′si say, for short, then

X ′ = X(n(i + 1), x(i)
r , k(i + 1), ξ′si) = X(n(i + 1), x(i)

r , k(i + 1), ξ#
si) = X#, (2.16)

so that even in this case the left hand inequality of (2.14) holds at t = si+1, x =
yn(i+1).

The right hand inequality in (2.14) follows by noticing that under (1.7),

X(n, x, k, j) is decreasing in j (2.17)

(see (2.6)). Thus, (2.14) at t = si and the definition of X ′, X# (compare (2.15))
show that X ′ ≥ X#. Hence (2.14) holds for t ≤ si+1 in case (a).

Case (b): Now no ′-particle jumps, but a #-particle and a ′′ -particle jump from
x

(i)
r to yn(i+1) = yn(i+1)(x

(i)
r , k(i + 1)). The #-particle will be removed from the

system if X# = 0 and similarly for the ′′-particle. This time we therefore have

ξ′si+1
(x(i)

r ) = ξ′si(x
(i)
r ),

ξ′′si+1
(x(i)

r ) = ξ′′si(x
(i)
r )− 1,

ξ#
si+1

(x(i)
r ) = ξ#

si(x
(i)
r )− 1.

Also

ξ′si+1
(yn(i+1)) = ξ′si(yn(i+1)),

ξ′′si+1
(yn(i+1)) = ξ′′si(yn(i+1)) + X ′′,

ξ#
si+1

(yn(i+1)) = ξ#
si(yn(i+1)) + X#.

The right hand inequality in (2.14) at t = si+1, x = x
(i)
r is clear from the former set

of equations. The left hand inequality can only go wrong if ξ′si(x
(i)
r ) = ξ#

si(x
(i)
r ), but

this is impossible in case (b). The left hand inequality in (2.14) at t = si+1, x =
yn(i+1) is immediate from the last set of equations. Finally, the right hand inequality
in (2.14) at t = si+1, x = yn(i+1) is again obvious if ξ′si(yn(i+1)) + ξ′′si(yn(i+1)) >

ξ#
si(yn(i+1)). If we have equality here, then ξ′′si(yn(i+1)) ≤ ξ#

si(yn(i+1)) and therefore
X ′′ ≥ X# by (2.17). Thus (2.14) at t = si+1, x = yn(i+1) again holds in this case.

Case (c): Now only a ′′-particle jumps from x
(i)
r to yn(i+1). We leave the simple

verification of (2.14) at t = si+1 in this case to the reader.
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We now have proven that (2.14) holds for t ≤ si+1 in all cases and therefore
(2.14) holds by induction for all t ≤ limi→∞ si. However, let

Fs =σ-field generated by all Nu(x, k) for u ≤ s

and all yn(x, k) and U(n, x, k) attached to some τn(x, k) ≤ s.
(2.18)

Then the conditional distribution of si+1 − si given Fsi is exponential with mean

1∑
x∈Zd [ξ′si(x) + ξ′′si(x)]

≥ 1∑
x∈Zd [ξ

′
0(x) + ξ′′0 (x)]

.

Consequently, with probability 1, si →∞ and (2.14) holds for all t ≥ 0. �
The same argument as for the right hand inequality of (2.14) shows that if (1.7)

holds and if we have finite initial states ξ0(·), ξ0(·; 1), . . . , ξ0(·; r) such that

ξ0(x) ≤
r∑

i=1

ξ0(x; i) for all x, (2.19)

then there exist independent processes ξt(·), ξt(· ; 1), . . . , ξt(· ; r) so that {ξt(·)}t≥0,
{ξt(· ; i)}t≥0 have the same distribution as {ξt(ξ0(·))}t≥0 and {ξt(ξ0(· ; i))}t≥0, re-
spectively, and so that

ξt(x) ≤
r∑

i=1

ξt(x; i). (2.20)

In particular, (2.19) implies

Eξt(
r∑
1

ξ0(· ; i))(x) ≤
r∑
1

Eξt(ξ0(· ; i))(x). (2.21)

The next lemma compares processes with the same initial states, but with dif-
ferent collections of pj . We shall not need the full strength of (1.7) but instead
that

p0 = 0. (2.22)

The largest and smallest pj which satisfy this side condition are

p∗j :=
{

0 if j = 0
1 if j > 0,

(2.23)

and
pj := 0 for all j,
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respectively. Correspondingly we take

X∗(n, x, k, j) =
{

1 if j = 0
0 if j > 0

and
X(n, x, k, j) = 1, j ≥ 0.

Based on these X∗ and X we can now define processes {ξ∗t (ξ0)}t≥0 and {ξt(ξ0)}t≥0

for any finite initial state ξ0. These will use the same N and yn as the process
{ξt(ξ0)}t≥0 which we already defined (and which uses X(n, x, k, j) in its construc-
tion). The following lemma compares the coupled processes ξ∗, ξ and ξ.

Lemma 2. Assume that (2.22) holds. Then with probability 1 for any finite initial
state ξ0 and any x ∈ Zd, t ≥ 0,

ξ∗t (x) ≤ ξt(x) ≤ ξt(x).

The right hand inequality remains valid even without (2.22).

The intuitive content of this lemma is fairly clear. In the ξ∗-process we always
remove a particle which jumps to a site which is already occupied. In this process
there can be at most one particle at a site and we remove particles at a maximal
rate. This yields the smallest process. In the ξ-process we remove as few particles
as possible, that is, we never remove a particle and this process is simply a process
of non-interacting random walks. It is the largest process of the type considered
here. We shall not prove Lemma 2. The general outline of its proof is the same as
for Lemma 1 and in fact various cases are easier in this lemma.

We can now show that limN→∞ ξt(ξ
(N)
0 ) exists with probability 1. Note that

this does neither depend on assumption (1.7), nor on (1.6).

Lemma 3. Let ξ0 ∈ Ξ. With probability 1 it holds that for all x ∈ Zd, t ≥ 0,

ξt(ξ
(N)
0 )(x) increases to a finite limit, ξt(x) say. (2.24)

Since ξt(ξ
(N)
0 )(x) is integer valued this actually means that with probability 1, for

fixed x and t, ξt(ξ
(N)
0 )(x) is eventually constant in N .

Proof. By Lemma 1 we have for N < M with probability 1 that

ξt(ξ
(M)
0 )(x) ≥ ξt(ξ

(N)
0 )(x) for all x, t,

because this inequality holds for t = 0. Thus ξt(ξ
(N)
0 )(x) is increasing in N and

we only have to prove that its limit ξt(x) is with probability 1 finite for all t
simultaneously.
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To prove the finiteness of the limit we use (2.20). This shows that

ξt(ξ
(N)
0 )(x) ≤ ξt(x; N), (2.25)

where ξt(· ; N) is a system which starts with

ξ
(N)
0 (y) = ξ0(y)I[|y| ≤ N ] ≤ ξ0(y)

particles at y for each y ∈ Zd, and whose particles merely perform independent
random walks without interaction. It follows from this and the monotonicity of
ξt(ξ

(N)
0 ) in N that for fixed x

P{sup
N

ξt(ξ
(N)
0 )(x) =∞ for some t ≤ r}

= lim
A→∞

P{ξt(ξ
(N)
0 )(x) > A for some t ≤ r and for some N}

= lim
A→∞

lim
N→∞

P{ξt(ξ
(N)
0 )(x) > A for some t ≤ r}

≤ lim
A→∞

lim sup
N→∞

P{ξt(x; N) > A for some t ≤ r}. (2.26)

But, if ξt(x; N) > A at some stopping time t ≤ r, then (for large A) with probability
≥ 1/2 there will still be at least (1/2)e−rA particles at x at time r, because each
particle present at time t will stay till time r with (conditional) probability e−(r−t).
Thus

P{ξt(x; N) > A for some t ≤ r} ≤ 2P{ξr(x; N) ≥ 1
2
e−rA}.

Consequently

P{sup
N

ξt(ξ
(N)
0 )(x) =∞ for some t ≤ r}

≤ 2 lim
A→∞

lim sup
N→∞

P{ξr(x; N) ≥ 1
2
e−rA}. (2.27)

Next we note that (recall (2.9))

αr+1(y) = P{y + Sr+1 = 0}
≥ P{y + Sr = x, Sr+1 − Sr = −x}
= P{S1 = −x}P{y + Sr = x}. (2.28)

This implies that, uniformly in N ,

E ξr(x; N) ≤
∑

y

ξ0(y)P{y + Sr = x}

≤ 1
P{S1 = −x}Nr+1(ξ0) <∞ (see (2.8)). (2.29)
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Thus the right hand side of (2.27) is zero, for each r. Then, the limit in (2.24)
exists and is finite for a fixed x with probability 1 for all t simultaneously. This
implies the lemma because there are only countably many x. �

We now define
ξt := lim

N→∞
ξt(ξ

(N)
0 ) (2.30)

(with ξt(y) = 1 for all y on the exceptional set where (2.24) fails for some x, t). We
wish to show that this process can reasonably be regarded as the Markov process
whose intuitive description was given before the Theorem in Section 1. Before we
tackle any details of the distribution of ξt, let us show that it lives on Ξ.

Lemma 4. Let ξ0 ∈ Ξ. Then

E{ξt(x)} ≤
∑

y

ξ0(y)P{y + St = x} <∞, t ≥ 0, (2.31)

and
P{ξt(ξ0) ∈ Ξ for all t ≥ 0} = 1. (2.32)

Proof. This is a small elaboration of the preceding proof. We saw (cf. (2.25)) that

Eξt(ξ0)(x) = lim
N→∞

Eξt(ξ
(N)
0 )(x) ≤ lim sup

N→∞
Eξt(x; N) =

∑
y

ξ0(y)P{y + St = x}.

This, together with (2.29), proves (2.31). To obtain (2.32) we first note that for
s ≤ u

αu(x) ≥ αs(x)P{Su−s = 0} ≥ αs(x)e−(u−s), (2.33)

so that for any ξ

Ns(ξ) ≤ euNu(ξ), s ≤ u. (2.34)

Therefore (compare (2.26))

P{Ns(ξt) =∞ for some t ≤ r, s ≤ u}
= P{Nu(ξt) =∞ for some t ≤ r}

≤ lim
A→∞

P{sup
N

sup
t≤r

Nu(ξt(ξ
(N)
0 )) > A}

≤ lim
A→∞

lim sup
N→∞

P{sup
t≤r

Nu(ξt(· ; N)) > A}. (2.35)
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Furthermore, for t ≤ s,

E{Nu(ξs(· ; N)|Ft}

=
∑
x∈Zd

αu(x)E{ξs(x; N)|Ft}

=
∑
x∈Zd

αu(x)
∑
y∈Zd

ξt(y; N)αs−t(y − x)

=
∑
y∈Zd

ξt(y; N)αs−t+u(y)

= Ns−t+u(ξt(· ; N)) ≥ e−(s−t)Nu(ξt(· ; N)). (2.36)

Thus t 7→ −etNu((ξt(· ; N)) is a negative supermartingale. For each fixed N this
supermartingale is right continuous, so that by a well known inequality (see for
instance Meyer (1966), Theorem VI.1)

P{sup
t≤r

Nu(ξt(· ; N)) > A}

≤ P{inf
t≤r
−etNu(ξt(· ; N)) < −A}

≤ 1
A

E{erNu(ξr(· ; N))}

=
1
A

erNu+r(ξ0(· ; N)) (by (2.36) with t = 0).

Since lim supN→∞Nu+r(ξ0(· ; N)) = Nu+r(ξ0) <∞ for ξ0 ∈ Ξ, we now obtain from
(2.35)

P{Ns(ξt) =∞ for some t ≤ r, s ≤ u} = 0,

which is just (2.32). �

Now define

Gn = σ-field of subsets of Ξ generated by the

coordinate functions ξ(x) with |x| ≤ n,

and
G =

∨
Gn.

Then for η ∈ Ξ, B ∈ G, define

Kt(η, B) = P{ξt(η) ∈ B}.
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For fixed η, t, Kt(η, ·) is a probability measure on G. If B ∈ Gn, then B is of the
form B = {ξ ∈ Ξ : {ξ(x)}|x|≤n ∈ C} with C a subset of ZM with M = the number
of x with |x| ≤ n. Then

Kt(η, B) = P{{ξt(η)(x)}|x|≤n ∈ C} = lim
N→∞

P{ξt(η(N)) ∈ B} (by Lemma 3).

Since η(N) can take on only countably many values, P{ξt(η(N)) ∈ B} is clearly
a G-measurable function of η. Therefore, for any fixed B ∈ Gn, η 7→ Kt(η, B) is
G-measurable. Standard momotone class arguments show then that this remains
valid for all B ∈ G. The main fact now is that Kt defines a semigroup, as shown in
the next lemma.

Lemma 5. If η ∈ Ξ and B ∈ G, then

Kt+s(η, B) =
∫

Ξ

Ks(η, dξ)Kt(ξ, B). (2.37)

Proof. Both sides of (2.37) are probability measures as functions of B. Therefore,
by the π − λ theorem (see Billingsley (1986), Theorem 3.2) it suffices to show that
(2.37) holds for B ∈ ∪nGn, that is, for B of the form {ξ : {ξ(x)}|x|≤n ∈ C}. It even
suffices to take B of the form

{ξ : ξ(x) ≥ a(x) for |x| ≤ n} (2.38)

with a(x) ∈ R. For such a B the left hand side of (2.37) equals

lim
N→∞

P{ξt+s(η(N)) ∈ B}.

By the Markov property for the process {ξt(η(N))}t≥0 we have

P{ξt+s(η(N)) ∈ B} =
∫

Ξ

P{ξs(η(N)) ∈ dλ}P{ξt(λ) ∈ B}. (2.39)

Now the right hand side here can be written as Ef(ξs(η(N))), where f(λ) =
P{ξt(λ) ∈ B}, and the expectation is over the system of Poisson processes N (x, k)
and the attached yn(x, k), U(n, x, k). When these random elements are fixed (out-
side an exceptional set of probability zero), then for each x, ξs(η(N))(x) = ξs(η)(x),
for all large N (by Lemma 3). In particular, for each fixed M , and large N

(
ξs(η)

)(M)(y) = ξs(η)(y)I[|y| ≤M ] ≤ ξs(η(N))(y) ≤ ξs(η)(y) for all y. (2.40)
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But since B depends on finitely many coordinates only, we have from Lemma 3
that

f(λ(M))→ f(λ) as M →∞ for λ ∈ Ξ. (2.41)

Moreover for B of the special form (2.38), f(λ) is increasing in λ. Thus (2.40) and
(2.41) imply that

Ef(ξs(η)) = lim
M→∞

Ef((ξs(η))(M)) ≤ lim
N→∞

Ef(ξs(η(N))) ≤ Ef(ξs(η)).

In other words, the limit as N →∞ of the right hand side of (2.39) equals

Ef(ξs(η)) = EP{ξt(ξs(η)) ∈ B}

=
∫

Ξ

P{ξs(η) ∈ dλ}P{ξt(λ) ∈ B}

=
∫

Ks(η, dλ)Kt(λ, B). �

The preceding lemma shows that {ξt}t≥0 has the Markov property. In order to
show that this process corresponds to the description given before the Theorem in
Section 1 we also show that its semigroup has the ‘correct’ generator, at least when
applied to functions with sufficient continuity. Formally the description corresponds
to the generator

Ωf(η) =
∑

x

η(x)
∑

y

q(y − x)
{
pη(y)[f(η − ex)− f(η)]

+ (1− pη(y))[f(η + ey − ex)− f(η)]
}
,

(2.42)

where ex is the vector with ex(y) = 1 if y = x and 0 otherwise (here we interpret
Ξ0 as a vectorspace in the obvious way). We shall define Ωf(η) by (2.42) whenever∑

x

η(x)
∑

y

q(y − x)
{
pη(y)

∣∣f(η − ex)− f(η)
∣∣ + (1− pη(y))

∣∣f(η + ey − ex)− f(η)
∣∣}

converges. We now indicate how to prove a proposition which is an analogue of
Theorem IX.1.14 in Liggett (1985). For a bounded G-measurable function f : Ξ→
R we define

Ktf(η) =
∫

Ξ

Kt(η, dξ)f(ξ), η ∈ Ξ.

It is convenient to formulate the proposition using a slightly larger class than the
cylinder functions, because Kt does not preserve cylinder functions, that is Ktf
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does not have to be a cylinder function even if f is. The class L with which we
shall work is more or less a class of Lipschitz functions. To define this class we set
for f : Ξ→ R,

Lt(f) := sup
x

sup
η∈Ξ

|f(η + ex)− f(η)|
αt(x)

.

Then we define

L = {f : f is bounded, G-measurable and Lt(f) <∞ for some t > 0}.

It is not hard to check that L contains all bounded cylinder functions. The following
simple lemma shows that Kt does preserve L.

Lemma 6. Let s0 > 0 and f ∈ L such that Ls0(f) < ∞ and let t ≥ 0. Then the
following hold:
(a)

Ktf(η) = lim
N→∞

Ef(ξt(η(N))), η ∈ Ξ; (2.43)

(b) If (1.7) holds, then

|Ktf(η + ez)−Ktf(η)| ≤ Ls0(f)αt+s0(z), z ∈ Zd, η ∈ Ξ; (2.44)

(c) If (1.7) holds and u ≥ t + s0, then

Lu(Ktf) ≤ Ls0(f)eu−t−s0 . (2.45)

Proof. (a) By definition of Ls0(f),

|Ktf(η)− Ef(ξt(η(N))|
=

∣∣E[f(ξt(η))− f(ξt(η(N)))]
∣∣

≤ Ls0(f)
∑

x

E|ξt(η)(x)− ξt(η(N))(x)|αs0(x). (2.46)

Also by Lemma 2, |ξt(η)(x) − ξt(η(N))(x)| → 0 as N → ∞. Moreover, by the
monotonicity in (2.24) this difference is bounded by ξt(η)(x). (2.43) now follows
from the dominated convergence theorem applied to the right hand side of (2.46).

(b) Again as in (2.46), the left hand side of (2.44) is bounded by

Ls0(f)
∑

x

E|ξt(η + ez)(x)− ξt(η)(x)|αs0(x). (2.47)

Now, if (1.7) holds we can use the right hand inequality of (2.14) to deduce that

|ξt(η + ez)(x)− ξt(η)(x)| ≤ ξt(x),
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where ξ is a process which starts with a single particle at z and which does not
interact with any particle. Consequently,

E|ξt(η + ez)(x)− ξt(η)(x)| ≤ E ξt(x) = P{z + St = x},

and (2.47) is at most

Ls0(f)
∑

x

P{Ss0 = −x}P{z + St = x} = Ls0(f)αt+s0(z).

(c) The estimate (2.45) now follows from (2.44) plus

αu(x) ≥ e(−u+t+s0)αt+s(x) (see (2.33)). �

Proposition 7. Assume that (1.7) holds and that f : Ξ 7→ R is G-measurable and
bounded on Ξ. Then
(a) Kt+sf = Kt(Ksf).

For (b) - (f) assume in addition that f ∈ L, say Ls0(f) <∞, and that η ∈ Ξ. Then

(b) Ω(Ktf)(η) is well defined and

Ktf(η) = f(η) +
∫ t

0

Ω(Ksf)(η)ds;

(c) |Ktf(η)− f(η)| ≤ tetLs0(f)[Nt+s0(η) + 2eNt+s0+1(η)];

(d) lim
s↓0

Ω(Ksf)(η) = Ωf(η);

(e) lim
t↓0

Ktf(η)− f(η)
t

= Ωf(η)

and the fraction in the left hand side is bounded for t ≤ 1, Nt+s0+1(η) ≤ A for any
fixed A <∞;
(f) Ω(Ktf)(η) = Kt(Ωf)(η) = E(Ωf)(ξt(η)).

Proof. (a) is immediate from Lemma 5. For (b) we use the Markov property for the
ξ-process starting in a finite state (and which consequently has a bounded number
of particles at all times). This gives (compare Dynkin (1965), Vol I, equations
I.2.1.4 and I.2.1.5)

Ef(ξt(η(N))) = f(η(N)) +
∫ t

0

Ω(Ef(ξs(η(N))))ds, (2.48)
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where Ω(Ef(ξs(η(N)))) stands for Ω(Ef(ξs(·))) evaluated at η(N). Note that

Ω(Ef(ξs(η(N))))

=
∑
|x|≤N

η(x)
∑

y

q(y − x)
{
pη(N)(y)[Ef(ξs(η(N) − ex))−Ef(ξs(η(N)))]

+ (1− pη(N)(y))[Ef(ξs(η(N) + ey − ex))−Ef(ξs(η(N)))]
}

(2.49)

is only a finite sum over x. This sum converges without any smoothness assumptions
on f . We now want to take the limit N →∞ in (2.48). If we use that Ls0(f) <∞
then by Lemma 6 the left hand side of (2.48) converges to Ef(ξt(η)). Similarly, for
each fixed x, y

pη(N)(y)[Ef(ξs(η(N) − ex))−Ef(ξs(η(N)))]

+ (1− pη(N)(y))[Ef(ξs(η(N) + ey − ex))− Ef(ξs(η(N)))]

→ pη(y)[Ef(ξs(η − ex))− Ef(ξs(η))] + (1− pη(y))[Ef(ξs(η + ey − ex))− Ef(ξs(η))].

From (2.44) and (2.33) we further have the following bound for (2.49) (when s ≤ t):∑
x

η(x)
∑

y

q(y − x)Ls0(f)
{
αs+s0(x) + αs+s0(y)

}
≤ Ls0(f)et

{
Nt+s0(η) +

∑
x

η(x)
∑

y

q(y − x)αt+s0(y)
}
. (2.50)

Furthermore,

P{x + Su = 0 for some u ∈ [t + s0, t + s0 + 1]}

≥
∑

y

P{St+s0 = −y}P{Su = y − x for some 0 ≤ u ≤ 1}

≥
∑

y

αt+s0(y)P{first jump of S. occurs during [0, 1] and is from 0 to y − x}

=
∑

y

αt+s0(y)(1− e−1)q(y − x) ≥ 1
2

∑
y

αt+s0(y)q(y − x). (2.51)

Consequently ∑
y

q(y − x)αt+s0(y)

≤ 2P{x + Su = 0 for some u ∈ [t + s0, t + s0 + 1]}
≤ 2eP{x + St+s0+1 = 0} ≤ 2eαt+s0+1(x). (2.52)
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Substituting this estimate into (2.50) we find that (2.49) is at most

Ls0(f)et
{
Nt+s0(η) + 2eNt+s0+1(η)

}
.

Essentially the same estimates as used to bound (2.49) show that the formal series
for Ω(Ksf) converges and that

|Ω(Ksf)(η)| ≤ Ls0(f)et
{
Nt+s0(η) + 2eNt+s0+1(η)

}
. (2.53)

With these bounds and the dominated convergence theorem it is easy to justify
that

lim
N→∞

∫ t

0

Ω(Ef(ξs(η(N))))ds =
∫ t

0

Ω(Ef(ξs(η)))ds.

This proves (b).
(c) follows from (b) and (2.53).
We obtain (d) by taking the limit s ↓ 0 in the explicit expression for Ω(Ksf)(η),

which is given by (2.49) with η(N) replaced by η and the sum over x extended
over all x. The estimates (2.44) and (2.50)-(2.52) and the dominated convergence
theorem justify taking the limit s ↓ 0 inside the double sum over x, y.

(e) is immediate from (b), (d) and (2.53).
Finally, (f) is proven in essentially the same way as part (g) in Theorem IX.1.14

in Liggett (1985). �
3. A variance estimate. Throughout this section we take the initial state to be
ξ0 = 11, that is

ξ0(x) = 1, x ∈ Zd,

although the argument works for any ξ0 with ξ0(x) bounded. We also use for the
first time the hypothesis ∑

x∈Zd
‖x‖2q(x) <∞. (3.1)

To simplify notation somewhat, we write just ξt for ξt(11) and ξN,t for ξt(11(N)).
The following estimate is the basic result of this section.

Proposition 8. Assume (1.7) and (3.1). Then there exists a constant C0, which
is independent of β, K, t and the pj, such that for β(x) ∈ R and K < ∞ it holds
that

Var
{ ∑
|x|≤K

β(x)ξt(x)
}
≤ C0 log(t + 2)

∑
x∈Zd

β2(x). (3.2)

If ∑
x∈Zd

|β(x)|Eξt(x) <∞, (3.3)
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then also
Var

{ ∑
x∈Zd

β(x)ξt(x)
}
≤ C0 log(t + 2)

∑
x∈Zd

β2(x). (3.4)

Remark (v) The estimate (3.4) can, by quite a lot of extra work, be improved
to

Var
{ ∑

x∈Zd
β(x)ξt(x)

}
≤ C0t

−1/4 log(t + 2)
∑
x∈Zd

β2(x). (3.5)

If this improved estimate is used throughout Section 4, then one obtains that (1.9)
remains valid even in d = 5. This improvement is obtained by directly comparing
the ξ′ and the ξ′′-processes, rather than comparing each one separately with the ξ̃-
process (these processes are introduced a little before (3.17) below). As we already
stated in Remark (ii) one can even prove (1.9) for d = 4 if one assumes that pM = 1
for some M . To deal with the special case where pM = 1, one needs not only (3.5),
but also an improved version of Lemma 12 which shows that if pM = 1 for some
M , then

EΛt(u1, . . . , up) ≤ C6(p)t−p. (3.6)

(Λt is defined in (4.18)). In turn, (3.6) is obtained by comparing the process with
pM = 1 with a process which has pj replaced by p′j = (j/M ′) ∧ 1 for some large
M ′ so that p′j ≤ pj for all j. It can be shown that the process with parameters p′j
satisfies the analogue of Lemma 1 of Arratia (1981), to wit

P{ξt(xi) ≥ mi, 1 ≤ i ≤ r} ≤
r∏

i=1

P{ξt(xi) ≥ mi}, xi ∈ Zd, mi ≥ 1, r ≥ 1. (3.7)

For such processes our proof even works for d ≥ 3. (Note that the model with
M ′ = 1 is the basic model mentioned in the beginning of this paper.)

We hope to discuss the somewhat lengthy proofs of these improvements else-
where.

Before we can start on the proof proper of this Proposition we need an apriori
estimate for

E(t) := Eξt(x) (3.8)

(this is independent of x).

Lemma 9. Assume (1.6) and (3.1). Then, for d ≥ 3, there exist constants 0 <
C1 ≤ C2 <∞ such that

C1

t
≤ E(t) ≤ C2

t
, t ≥ 1. (3.9)
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Proof. These estimates basically come from Arratia (1983) and Bramson and Grif-
feath (1980). By Lemma 2

E(t) ≥ E∗(t) := E ξ∗t (0),

where ξ∗t is the process with removal probabilities p∗j , given by (2.23) (and initial
state 11). This ξ∗-process is the basic coalescing random walk model, except that S.

does not have to be a simple random walk. We can therefore not simply use (1.1).
However, by Lemma 1 of Arratia (1983) one has for S. an arbitrary random walk,

E∗(t) ≥ C1

t
. (3.10)

Thus the left hand inequality of (3.9) holds.
The right hand inequality of (3.9) is proven in exactly the same way as the

case d ≥ 3 of Theorem 1 of Bramson and Griffeath (1980), but we nevertheless
need three comments about this. The first, rather trivial comment is that for the
inequality three lines below (2.5) in Bramson and Griffeath we need the right hand
inequality of (2.14), or better yet, (2.20). The second comment concerns Lemma 3
of Bramson and Griffeath. Their proof is based on the fact that in the basic model,
when pj = p∗j (see (2.23)) one has for any finite initial state ξ0 that

∑
x∈Zd

ξ0(x)− E
{ ∑

x∈Zd
ξs(ξ0)(x)

}
≥

[ ∑
x∈Zd

ξ0(x)− 1
]

min
ξ0(u),ξ0(v)>0

Hs(u− v), (3.11)

where
Hs(z) = P{Sσ

t = z for some t ≤ s}

and {Sσ
t } is as in the Theorem of Section 1. The min of Hs is taken over all u, v

with ξ0(u) > 0, ξ0(v) > 0. We need the analogue of (3.11) (with a factor p1 in the
right hand side) for general pj satisfying (1.6) and (1.7), not just for pj = p∗j .

In order to show that (3.11) remains valid for such pj we have to use another con-
struction for ξt than the one used in Section 2. In this construction we distinguish
the different particles and keep track of the position of the individual particles, not
merely of the number of particles at each site. For the present purposes it is also
better to let a particle coalesce with another particle after a jump, rather than
removing it. At time 0 we label the particles at any given site x as (x, k) with
1 ≤ k ≤ ξ0(x) (in some arbitrary ordering of the particles at x). We further pick
for each such particle a random walk path {S(x,k)

t }t≥0. The {S(x,k)
t }t≥0 are i.i.d.,

each with the distribution of {St}t≥0. We further attach to each particle (x, k)
further random variables {U (x,k)

n , V
(x,k)
n,j , j ≥ 1, n ≥ 1}. Random variables with

different values of (x, k) or n are independent. Also, for fixed (x, k), all U
(x,k)
n are
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independent of all V
(x,k)
m,j . All the U

(x,k)
n are uniform on [0, 1] and each V

(x,k)
n,j takes

values in {1, . . . , j} with

P{V (x,k)
n,j = `} =

1
j
, 1 ≤ ` ≤ j.

Now the particle labeled (x, k) moves along the path t 7→ x + S
(x,k)
t until it first

jumps to a site, y say, which already contains another particle. At such a jump
the (x, k)-particle may coalesce with one of the particles present at the site y.
Whether the (x, k)-particle does coalesce, and with which particle, is a function of
the {U (x,k)

n , V
(x,k)
n,j }. Suppose that the (x, k)-particle did not coalesce with another

particle at one of the first n − 1 jumps of S(x,k)
. and that at its n-th jump this

particle jumps to y. Suppose at that time there are j particles at y. Number
these particles in some order, say in the order of their arrival times at y. Then the
(x, k)-particle coalesces with one of the j particles at y if and only if U

(x,k)
n,j ≤ pj .

If this is the case, then it coalesces with the particle with the number V
(x,k)
n,j . After

this coalescing event the (x, k)-particle no longer follows the path t 7→ S
(x,k)
t , but

follows the path of the particle with which it coalesced. Note that it is always the
variables associated with the particle which just jumped which determine whether
coalescence takes place. It is also the particle which just jumped which ‘gives up’
its own trajectory and starts following the trajectory of the particle with which it
coalesced.

If we start with finitely many particles, then the construction of the preceding
paragraph assigns with probability 1 a unique trajectory to each particle. If the
(x, k)-particle and the (y, `)-particle have coalesced, then they both move according
to one of the trajectories t 7→ z+S

(z,m)
t ; (z, m) may be (x, k) or (y, `) or yet another

particle with which both the (x, k)-particle and the (y, `)-particle have coalesced.
This allows us to define ξt(x) again as the number of particles present at x at time
t.

We shall not prove that the preceding construction is equivalent to the one of
Section 2, in the sense that the joint distribution of the {ξt(x)}t≥0, x ∈ Zd, is the
same under both constructions (we need this only for finite initial states). It is
further left to the reader to verify that the proof of Bramson and Griffeath’s lemma
3 for (3.11) (with an extra factor p1 in the right hand side) goes through for the
newly constructed {ξt}. But if (3.11) holds for one of the constructions of {ξt}, then
it holds for all constructions, since (3.11) depends only on the joint distribution of
the {ξt(x)}t≥0, x ∈ Zd.

Our final comment concerns the lower bound for inf‖z‖≤r Hr2(z) which Bramson
and Griffeath (1980) derive in their Lemma 5 when S. is simple random walk. This
lemma remains valid under condition (3.1) only, because as Bramson and Griffeath
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argue, one merely needs a lower bound (of size C1r
2−d) on

inf
‖z‖≤r

∫ r2

0

P{Sσ
s = z}ds

≥
∫ r2

r2/2

ds
2r2∑

k=r2/4

P{Sσ
. has k jumps during [0, s]} inf

‖z‖≤r
q∗kσ (z),

where qσ(z) = [q(z) + q(−z)]/2 = P{Sσ
. jumps from 0 to z at its first jump}.

The required lower bound follows directly from the local central limit theorem (see
Spitzer (1976), Proposition 7.9).

In all other respects the proof of the right hand inequality in (3.9) follows Bram-
son and Griffeath (1980). �
Proof of Proposition 8. First choose a K <∞ and let

Z =
∑
|x|≤K

β(x)ξt(x),

ZN =
∑
|x|≤K

β(x)ξN,t(x).

(Recall that ξN,t is the state at time t if we start with ξ0(y)I[|y| ≤ N ] = I[|y| ≤ N ]
particles at y.) Now

EZN =
∑
|x|≤K

β(x)EξN,t(x)

and, as N →∞,

EξN,t(x) ↑ Eξt(x) ≤
∑

y

P{y + St = x} = 1

by Lemma 3, the monotone convergence theorem and (2.31). Hence

EZN → EZ (N →∞). (3.12)

By Fatou’s lemma we then get

Var(Z) = EZ2 − (EZ)2 ≤ lim inf
N→∞

Var(ZN ). (3.13)

It therefore suffices for (3.2) to prove

Var
( ∑
|x|≤K

β(x)ξN,t(x)
)
≤ C0 log(t + 2)

∑
x

β2(x). (3.14)
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Now let Fs be as in (2.18) and define

∆` = ∆`(p) = ∆`(p, N, t) = E{ZN |F`t/p} − E{ZN |F(`−1)t/p}.

Then for each integer p ≥ 1

ZN −EZN =
p∑
1

∆`

and

Var(ZN ) =
p∑
1

E∆2
`(p) = lim inf

p→∞

p∑
1

E∆2
`(p) = lim inf

p→∞

p∑
1

E
{
E{∆2

`(p)|F(`−1)t/p}
}
.

We fix N and write W` = W`(p, N) for the random elements which summarize all
the information which becomes available between time (` − 1)t/p and `t/p. More
precisely, W` stands for all the increments Nu(x, k)−N(`−1)t/p(x, k) of the Poisson
processes with (`−1)t/p < u ≤ `t/p, and the yn(x, k), U(n, x, k) associated to jump
times during ((`−1)t/p, `t/p] of any of these processes. We skip the tedious explicit
construction of a probability space on which these random variables are defined.
Whatever this probability space for the W is, we shall have

F`t/p = σ{W1, . . . , W`}

and the W` for different ` are independent. Also, W` has a distribution which we
denote by µ` (i.e., µ`(dw) = P{W` ∈ dw}). ZN = f(W1, W2, . . . , Wp) for a suitably
measurable function f = fN and therefore

E{ZN |F`t/p}

=
∫ p∏

i=`+1

µi(dwi)f(W1, . . . , W`, w`+1, . . . , wp)

=
∫ p∏

i=`

µi(dwi)f(W1, . . . , W`, w`+1, . . . , wp).

Note that the last member also includes an integration with respect to µ`(dw`); this
integration can be added because the integrand does not depend on w`. Therefore

∆` =
∫ p∏

i=`

µi(dwi)
[
f(W1, . . . , W`, w`+1, . . . , wp)

− f(W1, . . . , W`−1, w`, w`+1, . . . , wp)
]
. (3.15)
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Note that ∆` is a function of W1, . . . , W`, and that therefore

E{∆2
` |F(`−1)t/p} =

∫
µ`(dW`)∆2

`

and
E∆2

` =
∫ ∏

j≤`

µj(dWj)∆2
` .

By Schwarz’ inequality applied to (3.15) we find

∆2
` ≤

∫ p∏
i=`

µi(dwi)
[
f(W1, . . . , W`, w`+1, . . . , wp)− f(W1, . . . , W`−1, w`, . . . , wp)

]2
,

and we now turn to an estimate for[
f(W1, . . . , W`, w`+1, . . . , wp)− f(W1, . . . , W`−1, w`, . . . , wp)

]2
. (3.16)

The expression in square brackets here is the change in ZN due to the change
from w` to W` in the time interval ((`−1)t/p, `t/p], while keeping all other random
elements in [0, (`−1)t/p] fixed at W1, . . . , W`−1 and the random elements in (`t/p, t]
fixed at w`+1, . . . , wp. We shall use that at all times the number of particles present
in the ξ(11(N))-process is at most∑

x

ξN,0(x) =
∑
|x|≤N

1 = (2N + 1)d.

The location of these particles at time (` − 1)t/p is determined by W1, . . . , W`−1

and is therefore F(`−1)t/p-measurable. We shall write I`[≥ k jumps] for the in-
dicator function of the event that the particles present at time (` − 1)t/p have
at least k jumps during ((` − 1)t/p, `t/p]. (Repeated jumps by the same parti-
cle are counted as different jumps; we anyway only keep track of the ξ’s so do
not know which particle jumps.) I`[1 jump] and I`[no jump] have similar self-
evident definitions. If I`[≥ 2 jumps](W1, . . . , W`−1, w`, . . . , wp) = 1 or if I`[≥
2 jumps](W1, . . . , W`, w`+1, . . . , wp) = 1, then we simply estimate (3.16) by

[2 sup |ZN |]2

≤
[
2 sup
|x|≤N

|β(x)|
∑

x

ξ0(x)
]2

= 4(2N + 1)2d
[

sup
|x|≤N

|β(x)|
]2

. (3.17)
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The same bound applies when there is at least one jump in both the configurations
W1, . . . , W`−1, w`, . . . , wp and W1, . . . , W`, w`+1, . . . , wp. We shall soon see that the
contributions to

∑
E∆2

` in all these configurations go to 0 as p → ∞. When
in both configurations W1, . . . , W`−1, w`, . . . , wp and W1, . . . , W`, w`+1, . . . , wp no
particle at all jumps during ((` − 1)t/p, `t/p], then W` = w` and (3.16) equals 0.
Therefore (3.16) is at most equal to the sum of the following three terms:

12(2N + 1)2d
[

sup
|x|≤N

|β(x)|
]2

×
[
I`[≥ 2 jumps](W1, . . . , W`−1, w`, . . . , wp)

+ I`[≥ 2 jumps](W1, . . . , W`, w`+1, . . . , wp)

+ I`[≥ 1 jump](W1, . . . , W`−1, w`, . . . , wp)

× I`[≥ 1 jump](W1, . . . , W`, w`+1, . . . , wp)
]2

;
(3.18)

3
[
f(W1, . . . , W`, w`+1, . . . , wp)− f(W1, . . . , W`−1, w`, . . . , wp)

]2

× I[1 jump](W1, . . . , W`, w`+1, . . . , wp) · I[no jump](W1, . . . , W`−1, w`, . . . , wp)
(3.19)

and (3.19) with W` and w` interchanged.

We first show that the contribution of (3.18) to
∑

E∆2
` becomes negligeable as

p→∞. The square of the sum of the indicator functions between square brackets
in (3.18) is at most

3I`[≥ 2 jumps](W1, . . . , W`−1, w`, . . . , wp)

+ 3I`[≥ 2 jumps](W1, . . . , W`, w`+1, . . . , wp)

+ 3I`[≥ 1 jump](W1, . . . , W`−1, w`, . . . , wp)

× I`[≥ 1 jump](W1, . . . , W`, w`+1, . . . , wp).

We only estimate the contribution of the last term here. The other terms can
be estimated in the same way (but are actually easier to treat). Note that I`[≥
1 jump](W1, . . .W`−1, w`, . . . , wp) depends on W1, . . . , W`−1 and w` only, while I`[≥
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1 jump](W1, . . .W`, w`+1, . . . , wp) depends on W1, . . . , W` only. Therefore∫
µ`(dW`)

∫
µ`(dw`)

∫ p∏
i=`+1

µi(dwi)I`[≥ 1 jump](W1, . . .W`−1, w`, . . . , wp)

× I`[≥ 1 jump](W1, . . .W`, w`+1, . . . , wp)

=
∫

µ`(dW`)I`[≥ 1 jump](W1, . . .W`, w`+1, . . . , wp)

×
∫

µ`(dw`)I`[≥ 1 jump](W1, . . .W`−1, w`, . . . , wp)

=
[
P{at least one jump occurs during ((`− 1)t/p, `t/p]

∣∣W1, . . . , W`−1}
]2

≤
[ ∑

x

ξ(`−1)t/p(11(N))(x)
t

p

]2

≤ t2

p2
(2N + 1)2d.

If we finally integrate the left hand side also with respect to
∏`−1

1 µ(dWj) and then
sum over ` from 1 to p we find a contribution to

∑p
1 E∆2

` of at most

t2

p
(2N + 1)2d,

and this tends to 0 as p→∞. Thus the contribution of (3.18) can be ignored.
Because of the symmetry between W` and w` in our estimates, (3.19) and the

term with W` and w` interchanged gives the same contribution. We therefore
only have to estimate (3.19). To this end let us write ξ′t for the ξ(11(N))-process
in the configuration W1, . . . , W`, w`+1, . . . , wp and ξ′′t for the ξ(11(N))-process in the
configuration W1, . . . , W`−1, w`, . . . , wp. Through time (`−1)t/p these two processes
agree, so that

ξ′(`−1)t/p = ξ′′(`−1)t/p.

Suppose there is exactly one jump during ((` − 1)t/p, `t/p] in the configuration
W1, . . . , W`, w`+1, . . . , wp, that is, in the ξ′-process. Let this jump be from x′ to y′.
Assume further that there is no jump in the configuration W1, . . . , W`−1, w`, . . . , wp.
Then

ξ′′`t/p(x) = ξ′′(`−1)t/p(x) = ξ′(`−1)t/p(x) for all x,

ξ′′`t/p(x) = ξ′`t/p(x) if x 6= x′, y′,

ξ′`t/p(x
′) = ξ′(`−1)t/p(x

′)− 1,

ξ′`t/p(y
′) = ξ′(`−1)t/p(y

′) or ξ′(`−1)t/p(y
′) + 1.
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In any case, ξ′`t/p and ξ′′`t/p differ at most on the two sites x′, y′ and there they
differ by at most 1. Rather than compare ξ′t directly with ξ′′t , we compare each
of them with a third process ξ̃t which we define as the process which behaves like
ξ′ except that the particle which jumps from x′ to y′ during ((` − 1)t/p, `t/p] is
removed immediately after the jump in the ξ̃-process. After time `t/p it develops
by the prescribed rules in the configurations w`+1, . . . , wp. Of course it may be
that ξ̃ ≡ ξ′, namely if the particle which jumps from x′ to y′ is also removed in the
ξ′-process. If this particle is not removed in the ξ′-process, then the ξ′-process has
one particle more than the ξ̃-process at time `t/p, and this extra particle is located
at y′. Therefore, by Lemma 1

ξ̃t(x) ≤ ξ′t(x) ≤ ξ̃t(x) + ξt(y
′)(x), (3.20)

where ξ(y′) is a process which starts with a single particle at y′ at time `t/p which
moves according to the random walk but does not interact with anything. This
process is not defined for times < `t/p. However, ξ̃. and ξ.(y′) are coupled and are
defined as functions of y′ and the Poisson processesNs(x, k), x ∈ Zd, k ≥ 1, s ≥ `t/p,
as well as the yn(x, k), U(n, x, k) corresponding to jumps at or after time `t/p, as
described for the ξ′ and ξ′′-processes just before Lemma 1. (Note that the present
ξ′, ξ′′ do not have the same meaning as in Lemma 1.) Thus

ξt(y
′)(x) = I[extra particle in ξ′ which is at y′ at `t/p

moves to x at time t]. (3.21)

Similarly,
ξ̃t(x) ≤ ξ′′t (x) ≤ ξ̃t(x) + ξt(x

′)(x),

where ξ(x′) is a process which starts with a single particle at x′ at time `t/p and
which does not interact with anything. Therefore, if there is exactly one jump in
the ξ′-process and no jump in the ξ′′-process, then∣∣f(W1, . . . , W`, w`+1, . . . , wp)− f(W1, . . . , W`−1, w`, . . . , wp)

∣∣
is at most∑
|x|≤K

|β(x)||ξ′t(x)− ξ′′t (x)|

≤
∑
|x|≤K

|β(x)|
∑
x′,y′

I`[a single jump from x′ to y′ occurs during

((`− 1)t/p, `t/p](W1, . . . , W`, w`+1, . . . , wp)
[
ξt(y

′)(x) + ξt(x
′)(x)

]
.

(3.22)
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Let us estimate the contribution of the term involving ξt(y′). Note that[ ∑
|x|≤K

|β(x)|
∑
x′,y′

I`[a single jump from x′ to y′ occurs during

((`− 1)t/p, `t/p](W1, . . . , W`, w`+1, . . . , wp)ξt(y
′)(x)

]2

=
∑
x′,y′

I`[a single jump from x′ to y′ occurs during

((`− 1)t/p, `t/p](W1, . . . , W`, w`+1, . . . , wp)
[ ∑
|x|≤K

|β(x)|ξt(y
′)(x)

]2

,

because only for one pair x′, y′ do we have

I`[a single jump from x′ to y′ occurs during

((`− 1)t/p, `t/p](W1, . . . , W`, w`+1, . . . , wp) 6= 0.

This yields the following contribution to E∆2
` :∫ ∏

j≤`−1

µj(dWj)
∫

µ`(dW`)
∫

µ`(dw`)
∫ p∏

i=`+1

µi(dwi)
∑
x′,y′

I`[a jump from x′ to y′ occurs during ((`− 1)t/p, `t/p](W1, . . . , W`, w`+1, . . . , wp)[ ∑
|x|≤K

|β(x)|ξt(y
′)(x)

]2

. (3.23)

(Note that integrating over wi, ` + 1 ≤ i ≤ p, in (3.23) includes taking the ex-
pectation over ξt(y′), since ξt is a function of the processes Ns(x, k), s ≥ `t/p, as
described after (3.20).) The same method will work for the term involving ξt(x′)(x)
in (3.22). We can handle (3.23) by noting that ξt(y′)(x) 6= 0 for exactly one x. Let
us denote this position by zt. Then ξt(y′)(zt) = 1 and[ ∑

|x|≤K

|β(x)|ξt(y
′)(x)

]2

= |β(zt)|2I[|zt| ≤ K].

Moreover, conditionally on F`t/p, zt is just the position of a random walk at time
t which starts at y′ at time `t/p. Thus∫ p∏

i=`+1

µi(dwi)
[ ∑
|x|≤K

|β(x)|ξt(y
′)(x)

]2

≤
∑

z

|β(z)|2P{y′ + St−`t/p = z}.
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Therefore (by (2.52)) (3.23) is at most∫ ∏
j≤`−1

µj(dWj)
∑
x′,y′

ξ(`−1)t/p(x′)
t

p
q(y′ − x′)

∑
z

|β(z)|2P{y′ + St−`t/p = z}

≤
∫ ∏

j≤`−1

µj(dWj)
∑
x′

ξ(`−1)t/p(x′)
t

p

∑
z

|β(z)|2 2eP{St−`t/p+1 = z − x′}.
(3.24)

But, if (`− 1)t/p ≥ 1, then by Lemma 9∫ ∏
j≤`−1

µj(dWj)ξ(`−1)t/p(x′) = Eξ(`−1)t/p(x′) ≤ C2
p

(`− 1)t
.

Also, by (2.31), for any (`− 1)t/p, Eξ(`−1)t/p(x′) ≤
∑

y P{S(`−1)t/p = x′ − y} = 1.
Substituting these estimates into (3.24) shows that (3.23) is at most

C3
t

p
min{ p

(`− 1)t
, 1}

∑
z

|β(z)|2.

With a similar estimate for the other term in (3.22) we finally obtain after summing
over ` the estimate

lim inf
p→∞

p∑
1

E∆2
`

≤ C3

∑
z

|β(z)|2t lim inf
p→∞

1
p

[ ∑
1≤`<p/t+1

1 +
∑

p/t+1≤`≤p

p

(`− 1)t

]
≤ C0

∑
z

|β(z)|2 log(t + 2)

for some constant C0, which is the desired inequality (3.2).
Once we have (3.2) we can obtain (3.4) under (3.3) exactly as in (3.12),(3.13).

Indeed we have

E
∑
|x|≤K

β(x)ξt(x)→ E
∑
x∈Zd

β(x)ξt(x) (K →∞)

and
Var

{ ∑
x∈Zd

β(x)ξt(x)
}
≤ lim inf

K→∞
Var

{ ∑
|x|≤K

β(x)ξt(x)
}
.

�
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4. An approximate differential equation for the expected number of
particles per site.

Again we start with one particle at each site (ξ0 = 11) and we write ξt instead of
ξt(11). Also ξN,t stands for ξt(11(N)). We define

γt(k) = P{ξt(x) = k}.

γt is independent of x. Note that

p(t) =
∞∑

k=1

γt(k) = P{ξt(x) > 0} (4.1)

and

E(t) =
∞∑

k=1

kγt(k). (4.2)

We first derive a differential equation for E(t).

Lemma 10. E(t) is differentiable and

d

dt
E(t) = −

∑
x∈Zd

E
{
ξt(0)q(x)pξt(x)

}
. (4.3)

Proof. For 0 < ∆ ≤ 1

ξN,t+∆(0)− ξN,t(0)

= (number of particles in 0 at t + ∆)− (number of particles in 0 at t)

= (number of particles moving from Zd \ 0 to 0 during (t, t + ∆])

− (number of particles moving from 0 to Zd \ 0 during (t, t + ∆])

− (number of particles removed from 0 during (t, t + ∆]). (4.4)

Here ‘number of particles’ refers to the number of particles in the ξN,·-process. Also
we include in the first and second term in the right hand side particles which are
removed from the system at or after their move to 0 or Zd \0, respectively. For this
proof we use ξt(x) to denote the number of particles at x at time t in the system
of noninteracting particles which starts in the state ξ0(·). (This is ξt(x;∞) in the
notation of (2.25).) We now take expectations of each of the numbers in the right
hand side of (4.4).

E{number of particles moving from Zd \ 0 to 0 during (t, t + ∆]}

=
∑
x6=0

EξN,t(x)P{x + S∆ = 0}. (4.5)
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Moreover, if we write q∗k(·) for the k-th convolution power of q(·), then, for x 6= 0,

P{x + S∆ = 0} =
∞∑

k=1

e−∆ ∆k

k!
q∗k(−x).

Since EξN,t(x) ≤ Eξt(0) <∞, it follows that∣∣E{number of particles moving from Zd \ 0 to 0 during (t, t + ∆]}

−
∑
x6=0

EξN,t(x)q(−x)∆
∣∣

≤ C1∆2 (4.6)

for some constant C1 (which is independent of N, t and ∆). Essentially the same
argument shows that∣∣E{number of particles moving from 0 to Zd \ 0 during (t, t + ∆]}

−
∑
x6=0

EξN,t(0)q(x)∆
∣∣

≤ C1∆2. (4.7)

Next,∣∣∣E{number of particles removed from 0 during (t, t + ∆]}

− E
{ ∑

x6=0

ξN,t(x)
∫ t+∆

t

q(−x)pξN,s(0)ds
}∣∣∣

≤ E{number of particles which visit 0 during (t, t + ∆]

and which make ≥ 2 jumps during(t, t + ∆]}

≤
∑
x6=0

∑
k≥2

∑
`≥k

e−∆ ∆`

`!
q∗k(−x)

≤ C2∆2 (4.8)

for a suitable constant C2 (again independent of N, t and ∆). Finally∣∣∣E{ ∑
x6=0

ξN,t(x)
∫ t+∆

t

q(−x)pξN,s(0)ds− E
∑
x6=0

ξN,t(x)
∫ t+∆

t

q(−x)pξN,t(0)ds
}∣∣∣

≤
∑
x6=0

q(−x)E
{
ξt(x)

∫ t+∆

t

∣∣pξN,s(0)− pξN,t(0)
∣∣ds

}
≤ ∆

∑
x6=0

q(−x)E
{
ξt(x)I[ξN,s(0) is not constant for s ∈ [t, t + ∆]]

}
. (4.9)
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But the distribution of ξt(x) is independent of x and

P{ξN,s(0) is not constant for s ∈ [t, t + ∆]}
≤ P{a particle leaves 0 during (t, t + ∆]}

+ P{a particle jumps to 0 during (t, t + ∆]}

≤ EξN,t(0)∆ +
∑
x6=0

∑
k≥1

∑
`≥k

EξN,t(x)e−∆ ∆`

`!
q∗k(−x)

≤ C3∆,

for a constant C3 independent of N, t. These observations show that the left hand
side of (4.9) is o(∆) as ∆ ↓ 0, uniformly in N .

Combining (4.4)-(4.9) we find that for ∆ > 0

EξN,t+∆(0)−EξN,t(0)

= ∆
∑
x6=0

EξN,t(x)q(−x)−∆
∑
x6=0

EξN,t(0)q(x)

−∆
∑
x6=0

E
{
ξN,t(x)q(−x)pξN,t(0)

}
+ o(∆), (4.10)

where o(∆)/∆→ 0 as ∆ ↓ 0, uniformly in N .
We can now take the limit N → ∞. Taking into account that the distribution

of ξt(x) is independent of x and that we took q(0) = 0, we obtain

Eξt+∆(0)−Eξt(0) = −∆
∑
x6=0

E{ξt(x)q(−x)pξt(0)}+ o(∆)

= −∆
∑
x∈Zd

E{ξt(0)q(x)pξt(x)}+ o(∆).

By taking the limit ∆ ↓ 0 this gives us that the right hand derivative of E(t)
exists and is given by (4.3). However, for ∆ < 0 and t > 0 we can interchange the
role of t and t+∆ in the above derivation to get estimates for E(t)−E(t+∆). This
shows that for t > 0 also the left derivative of E(t) exists and is given by (4.3). �

The remainder of this section is devoted to showing that (4.3) can be replaced
by

d

dt
E(t) = −C(d)(1 + o(1))E2(t), (4.11)

where o(1) → 0 as t → ∞. Throughout we assume (1.6), (1.7) and d ≥ 6. (For
most lemmas d ≥ 5 is enough.) To this end we follow the heuristic outline of the
introduction to approximate E{ξt(0)pξt(x)} for x 6= 0. We want the estimates to
be uniform in x 6= 0. Ci, i ≥ 1, will be used for various strictly positive, finite
constants whose precise value is of no importance to us. The same Ci may take
different values in different formulae.



38

Lemma 11. Assume (1.6) and (1.7). Then for d ≥ 5,

0 ≤ E(t)− p(t) ≤ E(t)− P{ξt(0) = 1} ≤ C3

t2
. (4.12)

Proof.

E(t)− p(t) =
∞∑

k≥2

(k − 1)P{ξt(0) = k} ≥ 0

(see (4.1) and (4.2)). On the other hand,

E(t)− p(t) ≤ E(t)− P{ξt(0) = 1} = E{ξt(0); ξt(0) ≥ 2}

= E
{
E{ξt(0); ξt(0) ≥ 2|Ft/2}

}
= lim

N→∞
E

{
E{ξt(11(N))(0); ξt(11(N))(0) ≥ 2|Ft/2}

}
(4.13)

(by the monotone convergence theorem). Now write, as before, ξN,t/2 for ξt/2(11(N))
and let z1, . . . , zr be the positions at time t/2 of the particles present at time t/2
in ξN,t/2. Here each position occurs with the proper multiplicity; if ξN,t/2(x) = k,
for some x, then k of the zi equal x. Hence r =

∑
x ξN,t/2(x).

To estimate the conditional expectation in the right hand side of (4.13) we apply
(2.20) to the process {ξN,t/2+s}s≥0, conditioned on Ft/2. According to (2.20) there
exist independent processes {ξs(zi)(·)}s≥0, 1 ≤ i ≤ r, such that ξ0(zi)(x) = 1 for
x = zi and = 0 otherwise and such that {ξs(zi)(x)}x∈Zd has the distribution of
{I[zi + Ss = x]}x∈Zd . Moreover these processes are coupled with ξN,t/2+s so that

ξN,t/2+s(x) ≤
r∑

i=1

ξs(zi)(x).

In particular

ξN,t(x) ≤
r∑

i=1

ξt/2(zi)(x). (4.14)



39

Consequently

E
{
ξN,t(0); ξN,t(0) ≥ 2|Ft/2

}
≤ E

{ r∑
i=1

ξt/2(zi)(0);
r∑

i=1

ξt/2(zi)(0) ≥ 2
}

= E
{ r∑

i=1

ξt/2(zi)(0)
}
− P{

r∑
i=1

ξt/2(zi)(0) = 1}

=
∑

x

αt/2(x)ξN,t/2(x)−
∑

x

ξN,t/2(x)
αt/2(x)

1− αt/2(x)

∏
y∈Zd

[
1− αt/2(y)

]ξN,t/2(y)

≤
∑

x

αt/2(x)ξN,t/2(x)
[
1−

∏
y∈Zd

[
1− αt/2(y)

]ξN,t/2(y)
]

≤
[∑

x

αt/2(x)ξN,t/2(x)
]2

, (4.15)

because for any numbers 0 ≤ γi ≤ 1, 1−
∏

i(1− γi) ≤
∑

i γi. Finally, by virtue of
(3.9) and Proposition 8

E(t)− P{ξt(0) = 1} ≤ lim
N→∞

E
{[ ∑

x

αt/2(x)ξN,t/2(x)
]2}

≤ lim
N→∞

[∑
x

αt/2(x)EξN,t/2(x)
]2 + lim sup

N→∞
Var

(∑
x

αt/2(x)ξN,t/2(x)
)

≤
[2C2

t

]2 + C0 log(t/2 + 2)
∑

x

α2
t/2(x)

≤ 4C2
2

t2
+ C0 log(t + 2) sup

x
αt/2(x)

≤ C4[t−2 + t−d/2 log(t + 2)], (4.16)

where in the last inequality we used the estimate

sup
y

αs(y) = sup
y

P{y + Ss = 0} ≤ C5

(s + 1)d/2
, (4.17)

which, in turn, follows from the local central limit theorem (see Spitzer (1976),
Proposition 7.9 and the Remark following it). This gives (4.12) when d ≥ 5. �

Let u1, . . . , up ∈ Zd (not necessarily distinct). Define

p∑
i=1

∗ξt(ui) (4.18)
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to be the sum of the ξt(ui) only over the distinct ui in {u1, . . . , up}. Thus if a
given u appears several times among the ui, there is still only one summand ξt(u)
in (4.18). Define further

Λt(u1, u2, . . . , up)

=
( p∑

i=1

∗ξt(ui)
)( p∑

i=1

∗ξt(ui)− 1
)

. . .
( p∑

i=1

∗ξt(ui)− p + 1
)
.

(4.19)

Λt(u1, . . . , up) represents the number of ordered p-tuples of distinct particles which
we can select from the

∑ ∗ξt(ui) particles present at the sites u1, . . . , up at time t.

Lemma 12. Assume (1.6), (1.7) and d ≥ 5. Then for any u, v ∈ Zd

EΛt(u, v) ≤ C5t
−2. (4.20)

Also, for any p ≥ 3, u1, . . . , up ∈ Zd and 0 < ε < 1/2,

EΛt(u1, . . . , up) ≤ C6(ε, p)[t−p ∨ t−d(1−ε)/2]. (4.21)

Proof. Without loss of generality we may take u 6= v in (4.20) because Λt(u, u) ≤
Λt(u, v) for any v. Similarly we may take the ui distinct in (4.21). We note further
that it suffices to prove (4.20) and (4.21) when ξt(ui) is replaced by ξN,t(ui) (with
constants C5, C6 which are independent of N). We shall write ΛN,t instead of Λt

when this replacement is made. We take zi and ξs(· ; i) as in the preceding lemma
and repeatedly use (4.14).

Now to prove (4.20), we have from(4.14) that

ΛN,t(u, v) ≤
( r∑

i=1

[ξt/2(zi)(u) + ξt/2(zi)(v)]
)

×
( r∑

i=1

[ξt/2(zi)(u) + ξt/2(zi)(v)]− 1
)

=
r∑

i=1

r∑
j=1
j 6=i

[ξt/2(zi)(u) + ξt/2(zi)(v)]

× [ξt/2(zj)(u) + ξt/2(zj)(v)].

The right hand side equals the number of ordered pairs of distinct particles starting
at some zi at time t/2 and ending at u or v at time t. These particles are the ones
counted by the ξt/2(zi) and they just move according to random walks without
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interaction. At time t/2 we have ξN,t/2(z) particles at z to choose from (for any
z ∈ Zd). The number of choices for starting pairs, one from z and one from z′ (with
z = z′ allowed), is ΛN,t/2(z, z′) ≤ ξN,t/2(z)ξN,t/2(z′). The probability that the two
different particles of the pair end at u or v at time t is(

αt/2(z − u) + αt/2(z − v)
)(

αt/2(z′ − u) + αt/2(z′ − v)
)
.

We now sum over all possible z, z′ and take the conditional expectation given Ft/2

to find

E{ΛN,t(u, v)|Ft/2}

≤
r∑

i=1

r∑
j=1
j 6=i

(
αt/2(zi − u) + αt/2(zi − v)

)
×

(
αt/2(zj − u) + αt/2(zj − v)

)
≤

[ ∑
z∈Zd

ξN,t/2(z)
(
αt/2(z − u) + αt/2(z − v)

)]2
. (4.22)

Finally, as in (4.16), for d ≥ 5, and uniformly in u,

E
{[∑

z

αt/2(z − u)ξN,t/2(z)
]2

}
≤ C7t

−2 (4.23)

and the same estimate holds when u is replaced by v. (4.20) is immediate from
(4.22) and (4.23), if we take expectation once again.

The argument for (4.21) begins in the same way as for (4.20). By an application
of (4.14) we can bound ΛN,t(u1, . . . , up) by the number of p-tuples of distinct parti-
cles which start at some zi at time t/2 and end at one the uj at time t. Therefore,
we get as in (4.22) that

EΛN,t(u1, . . . , up) ≤ E
{[∑

z

ξN,t/2(z)
p∑

j=1

αt/2(z − uj)
]p

}
.

It therefore suffices for (4.21) to show that, uniformly in u ∈ Zd,

E
{[∑

z

ξN,t/2(z)αt/2(z − u)
]p} ≤ C8(ε, p)[t−p ∨ t−d(1−ε)/2], p ≥ 3. (4.24)

To prove (4.24) let us use the abbreviation

U =
∑

z

αt/2(z − u)ξN,t/2(z). (4.25)
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Note that U ≥ 0. We further know from Lemma 9 that

EU ≤ C2t
−1, (4.26)

and from Proposition 8 and (4.16) that

Var(U) = E{(U − EU)2} ≤ C9t
−d/2 log(t + 2), E{U2} ≤ C9t

−2. (4.27)

Now use

Up ≤ C10(p)
[
|U −EU |p + (EU)p

]
≤ C10(p)|U − EU |2−ε|U − EU |p−2+ε + C11(p)t−p.

Combined with Hölder’s inequality this shows that

E{Up} ≤ C10

[
E{(U − EU)2}

](1−ε/2)[
E{|U −EU |2(p−2+ε)/ε}

]ε/2

+ C11(p)t−p.

(4.28)
Assume for the moment that we have proven for any integer q ≥ 1

E{Uq} ≤ C12(q), (4.29)

(with C12 independent of N). Then by Jensen’s inequality this holds for any q ≥ 1
and also

E{|U −EU |q} ≤ C13(q) (4.30)

follows. Together with (4.28) this shows

E{Up} ≤ C14(ε, p)[Var(U)](1−ε/2) + C11t
−p.

Together with (4.27) this implies (4.24) and hence (4.21).
The proof of (4.21) has therefore been reduced to (4.29). We now turn to its

proof. We note that
∑

z αt/2(z − u) = 1, so that by Jensen’s inequality

Uq ≤
∑

z

αt/2(z − u)ξq
N,t/2(z)

and hence
E{Uq} ≤ sup

x
Eξq

N,t/2(x).

Next we again use (4.14) (compare also with (2.21)). Then

E{Uq} ≤ sup
x

Eξq
N,t/2(x) = Eξq

N,t/2(0)

(by translation invariance) ≤ E
[∑

z

ξt/2(z)(0)
]q

≤ C15(q)
q∑

k=1

∑
n1,...,nk

∑
z1,...,zk
distinct

E{ξn1

t/2(z1)(0)} · · ·E{ξnk
t/2(zk)(0)},
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where n1, . . . , nk runs over the partitions of q into k nonzero integers. Since
ξt/2(z)(0) can take on only the values 0 or 1 and P{ξt/2(z)(0) = 1} = P{z+St/2 =
0} = αt/2(z), we find that

E{Uq} ≤ C15(q)
q∑

k=1

∑
n1,...,nk

∑
z1,...,zk

k∏
i=1

P{zi + St/2 = 0} ≤ C16(q),

as desired. �

The next lemma is an estimate for noninteracting random walks. If s 7→ u+S
(u)
s

and s 7→ v + S
(v)
s are two random walk paths, then we shall say that they meet at

least m times during a time interval J if there exist m times s1 < s2 < . . . sm in J

such that each si is a jumptime of one of these paths for which u+S
(u)
si = v +S

(v)
si .

We say that the paths meet exactly m times during J if they meet at least m times
during J but not at least (m + 1) times.

Lemma 13. Let d ≥ 3 and let {S(u)
t }t≥0, u ∈ Zd, be independent copies of {St}t≥0.

Also let ∆ ≥ 1. Define for u, v, y ∈ Zd

E(u, v, m) =E(u, v, m, ∆, y) = {u + S
(u)
∆ = 0, v + S

(v)
∆ = y and the paths

s 7→ u + S(u)
s , s 7→ v + S(v)

s meet exactly m times during (0, ∆]}.

Then, there exists a δ = δ(d) with 0 < δ(d) ≤ 1 such that uniformly in y and m,

∑
u,v∈Zd

∣∣∣P{E(u, v, m, ∆, y)}

− P{s 7→ S(0)
s and s 7→ −y + S(−y)

s meet exactly m times during (0,∞)}

× α∆(u)α∆(v − y)
∣∣∣

≤ C17∆−δ. (4.31)

Remark (vi) We can take

δ(d) =
d− 2

3d2 − 3d− 4
. (4.32)

Proof. Let {S′s}s≥0 and {S′′s }s≥0 be two independent copies of {Ss}s≥0. Also let
{S̃′s}s≥0 and {S̃′′s }s≥0 be two independent copies of the corresponding time reversed
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random walk which satisfies (1.4). We first use time reversal to write P{E(u, v, m)}
as

P{S̃′∆ = u, y + S̃′′∆ = v and the paths s 7→ S̃′s, s 7→ y + S̃′′s

meet exactly m times during (0, ∆]},

If we put
α̃s(u) = P{S̃s = −u} = P{Ss = u} = αs(−u),

then
α∆(u)α∆(v − y) = α̃∆(−u)α̃∆(y − v).

Moreover,

P{s 7→ S(0)
s and s 7→ −y + S(−y)

s meet exactly m times during (0,∞)}
= P

{
{S(0)

s − S(−y)
s }s≥0 = −y for exactly m jump times of {S(0)

s − S(−y)
s }s≥0

}
= P

{
{−S(0)

s + S(y)
s }s≥0 = y for exactly m jump times of {−S(0)

s + S(y)
s }s≥0

}
= P{s 7→ S̃′s and s 7→ y + S̃′′s meet exactly m times during (0,∞)}.

Therefore, the left hand side of (4.31) equals∣∣∣P{S̃′∆ = u, y + S̃′′∆ = v and the paths s 7→ S̃′s, s 7→ y + S̃′′s

meet exactly m times during (0, ∆]}
− P{s 7→ S̃′s and s 7→ y + S̃′′s

meet exactly m times during (0,∞)}α̃∆(−u)α̃∆(y − v)
∣∣∣.

To simplify notation we drop the tildes and introduce

ν(J) := number of times s 7→ S′s and s 7→ y + S′′s meet during J.

We shall prove, merely from assumption (1.8), that∑
u,v

∣∣∣P{S′∆ = u, y + S′′∆ = v, ν((0, ∆]) = m}

− P{ν((0,∞)) = m}α∆(−u)α∆(y − v)
∣∣∣

≤ C17∆−δ. (4.33)

If we apply this to the random walk {S̃s} (which also satisfies (1.8)) and reverse
time we obtain (4.31).
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The estimate (4.33) will be obtained by estimating various pieces. For the time
being we fix an arbitrary δ > 0. First we drop the sum over the terms with
‖u‖ > ∆(1+δ)/2 or ‖v − y‖ > ∆(1+δ)/2. Since

E‖S∆‖2 =
∞∑

k=0

e−∆ ∆k

k!
k

∑
x

‖x‖2q(x) ≤ C18∆

for some constant C18 < ∞, we see from Chebyshev’s inequality that the terms
with such u, v add up to at most

P{‖S′∆‖ > ∆(1+δ)/2}+ P{‖S′′∆‖ > ∆(1+δ)/2} ≤ 2C18∆−δ. (4.34)

Next we fix 1 ≤ Γ ≤ ∆/2. For the time being Γ is otherwise arbitrary. We next
replace

P{S′∆ = u, y + S′′∆ = v, ν((0, ∆]) = m}

by
P{S′∆ = u, y + S′′∆ = v, ν((0, Γ]) = m}

and
P{ν((0,∞)) = m}

by
P{ν((0, Γ]) = m}.

This changes the left hand side of (4.33) by at most

2P{s 7→ S′s and s 7→ y + S′′s meet at least once during (Γ,∞)}
≤ 4E{amount of time in (Γ,∞) that S′s = y + S′′s }

≤
∫ ∞

Γ

P{S′s − S′′s = y}ds ≤ C19

∫ ∞
Γ

ds

sd/2
≤ C20Γ1−d/2. (4.35)

Combining (4.34) and (4.35) we see that the left hand side of (4.33) is at most

2C18∆−δ + C20Γ1−d/2

+
∑

‖u‖∨‖v−y‖≤∆(1+δ)/2

∣∣∣P{S′∆ = u, y + S′′∆ = v, ν((0, Γ]) = m}

− P{ν((0, Γ]) = m}α∆(−u)α∆(y − v)
∣∣∣. (4.36)
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Next we fix a γ > 0 and write

P{S′∆ = u, y + S′′∆ = v, ν((0, Γ]) = m}

=
∑

a,b∈Zd
P{S′Γ = a, y + S′′Γ = b, ν((0, Γ]) = m}α∆−Γ(a− u)α∆−Γ(b− v)

=
∑

‖a‖,‖b−y‖≤Γ(1+γ)/2

P{S′Γ = a, y + S′′Γ = b, ν((0, Γ]) = m}

× α∆−Γ(a− u)α∆−Γ(b− v) + E1,

where the error E1 = E1(u, v) satisfies

0 ≤ E1 =
∑

‖a‖∨‖b−y‖>Γ(1+γ)/2

P{S′Γ = a, y + S′′Γ = b, ν((0, Γ]) = m}

× α∆−Γ(a− u)α∆−Γ(b− v)

≤ P{‖S′Γ‖ > Γ(1+γ)/2 or ‖S′′Γ‖ > Γ(1+γ)/2} sup
z1,z2

α∆−Γ(z1)α∆−Γ(z2)

≤ C21Γ−γ∆−d (by Chebyshev, (4.17) and Γ ≤ ∆/2). (4.37)

Similarly,

P{ν((0, Γ]) = m}α∆(−u)α∆(y − v)

=
∑

‖a‖,‖b−y‖≤Γ(1+γ)/2

P{ν((0, Γ]) = m}

× αΓ(−a)αΓ(−b + y)α∆−Γ(a− u)α∆−Γ(b− v) + E2,

for an error E2 = E2(u, v) with

0 ≤ E2 ≤ C21Γ−γ∆−d. (4.38)

Finally we note that∣∣∣ ∑
‖a‖,‖b−y‖≤Γ(1+γ)/2

P{S′Γ = a, y + S′′Γ = b, ν((0, Γ]) = m}

−
∑

‖a‖,‖b−y‖≤Γ(1+γ)/2

P{ν((0, Γ]) = m}αΓ(−a)αΓ(−b + y)
∣∣∣

≤
∣∣∣ ∑
‖a‖,‖b−y‖≤Γ(1+γ)/2

P{S′Γ = a, y + S′′Γ = b, ν((0, Γ]) = m} − P{ν((0, Γ]) = m}
∣∣∣

+
∣∣∣ ∑
‖a‖,‖b−y‖≤Γ(1+γ)/2

P{ν((0, Γ]) = m}αΓ(−a)αΓ(−b + y)− P{ν((0, Γ]) = m}
∣∣∣

≤ 2P{‖S′Γ‖ > Γ(1+γ)/2 or ‖S′′Γ‖ > Γ(1+γ)/2} ≤ 4C18Γ−γ .
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Now for any positive measures µ1, µ2 of total mass ≤ A on some space Ω and a
function f : Ω 7→ R one has the general and simple inequality

∣∣ ∫
µ1(dω)f(ω)−

∫
µ2(dω)f(ω)

∣∣
≤

∣∣µ1(Ω)− µ2(Ω)| sup
ω
|f(ω)|+ A sup

ω1,ω2

|f(ω1)− f(ω2)|.

We apply this with

µ1(a, b) = P{S′Γ = a, y + S′′Γ = b, ν((0, Γ]) = m},
µ2(a, b) = P{ν((0, Γ]) = m}αΓ(−a)αΓ(−b + y).

We then obtain∣∣∣ ∑
a,b∈Zd

P{S′Γ = a, y + S′′Γ = b, ν((0, Γ]) = m}α∆−Γ(a− u)α∆−Γ(b− v)

−
∑

a,b∈Zd
P{ν((0, Γ]) = m}αΓ(−a)αΓ(−b + y)α∆−Γ(a− u)α∆−Γ(b− v)

∣∣∣
≤ E1 + E2 + C22Γ−γ∆−d

+ sup
‖a1−a2‖≤2Γ(1+γ)/2

‖b1−b2‖≤2Γ(1+γ)/2

∣∣∣α∆−Γ(a1 − u)α∆−Γ(b1 − v)− α∆−Γ(a2 − u)α∆−Γ(b2 − v)
∣∣∣.

(4.39)

We now sum (4.39) over ‖u‖, ‖v − y‖ ≤ ∆(1+δ)/2. Since there are at most
C23∆d(1+δ) points u, v satisfying these restrictions we find by means of (4.36)-
(4.38) that the left hand side of (4.33) is at most

2C18∆−δ + C20Γ1−d/2 + C24∆dδΓ−γ

+ C23∆d(1+δ) sup
‖a1−a2‖≤2Γ(1+γ)/2

‖b1−b2‖≤2Γ(1+γ)/2

∣∣∣α∆−Γ(a1 − u)α∆−Γ(b1 − v)

− α∆−Γ(a2 − u)α∆−Γ(b2 − v)
∣∣∣. (4.40)

Finally, denote by Φt(θ) = E{exp(iθ · St)}, θ ∈ Rd, the characteristic function of
St. Then standard arguments (compare Spitzer (1976), Propositions 7.7, 7.8) show
that there exists some C25, C26 > 0, η > 0 such that

|Φt(θ)| ≤ e−C25t‖θ‖2 for ‖θ‖ ≤ η,
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and
|Φt(θ)| ≤ e−C26t for η < ‖θ‖, θ ∈ [−π, π]d.

Consequently,

sup
‖a1−a2‖≤2Γ(1+γ)/2

‖b1−b2‖≤2Γ(1+γ)/2

∣∣∣α∆−Γ(a1 − u)α∆−Γ(b1 − v)− α∆−Γ(a2 − u)α∆−Γ(b2 − v)
∣∣∣

≤ 2 sup
‖c1−c2‖≤2Γ(1+γ)/2

∣∣α∆−Γ(c1)− α∆−Γ(c2)
∣∣ sup

v
α∆−Γ(v)

≤ C27∆−d/2 sup
‖c1−c2‖≤2Γ(1+γ)/2

∫
θ∈[−π,π]d

∣∣e−iθ·c1 − e−iθ·c2
∣∣|Φ∆−Γ(θ)|dθ

≤ C28∆−d/2Γ(1+γ)/2∆−(d+1)/2. (4.41)

Substituting this estimate into (4.40) yields the upper bound

C29

[
∆−δ + Γ1−d/2 + ∆dδΓ−γ + ∆dδ−1/2Γ(1+γ)/2

]
for the left hand side of (4.33). It remains to choose

Γ = ∆1/(1+3γ),

γ =
(d + 1)δ

1− 3(d + 1)δ
=

(d + 1)(d− 2)
2

,

δ =
d− 2

3d2 − 3d− 4
,

to find that (4.33) holds for the given δ. �

We define

ρ(m, y) = P{s 7→ S(0)
s and s 7→ −y + S(−y)

s meet exactly m times during [0,∞)}
(4.42)

and

D(y) = p1

∞∑
m=0

(1− p1)mρ(m, y). (4.43)

We also define Λ∗t (u, v) as the number of ordered pairs of distinct particles, the
first particle being present at u at time t, and the second particle at v at time t.
Comparison with (4.19) shows immediately that Λ∗t (u, v) ≤ Λt(u, v).
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Lemma 14. Let 1 ≤ ∆ < t/2. Then for y 6= 0, d ≥ 5, 0 < ε < 1/2,∣∣E{ξt(0)pξt(y)} −D(y)
∑

u,v∈Zd
α∆(u)α∆(v − y)E{Λ∗t−∆(u, v)}

∣∣
≤ C30∆[t−3 ∨ t−d(1−ε)/2] + C30∆−δ(d)t−2. (4.44)

Proof. First we show that∣∣E{ξt(0)pξt(y)} − p1P{ξt(0) = ξt(y) = 1}
∣∣ ≤ C31(ε)[t−3 ∨ t−d(1−ε)/2]. (4.45)

To see this we take ξN,t, z1, . . . , zr and ξ(zi)(·) as in Lemma 11. Then∣∣E{ξt(0)pξt(y)} − p1E{ξt(0)I[ξt(y) = 1]}
∣∣

≤ E{ξt(0)ξt(y)I[ξt(y) ≥ 2]}

≤ E
{
E

{ r∑
i=1

ξt/2(zi)(0)
r∑

i=1

ξt/2(zi)(y)I[
r∑

i=1

ξt/2(zi)(y) ≥ 2]
∣∣Ft/2

}}
.

(4.46)

Similarly ∣∣E{ξt(0)I[ξt(y) = 1]} − P{ξt(0) = ξt(y) = 1}
∣∣

≤ E{ξt(0)I[ξt(0) ≥ 2]ξt(y)}
= E{ξt(−y)I[ξt(−y) ≥ 2]ξt(0)}.

Since this has the same form as (4.46), it suffices for (4.45) to estimate (4.46).
It is easy to see that

E
{ r∑

i=1

ξt/2(zi)(0)
r∑

i=1

ξt/2(zi)(y) I[
r∑

i=1

ξt/2(zi)(y) ≥ 2]
∣∣Ft/2

}
≤ E

{ r∑
i=1

ξt/2(zi)(0)
∣∣Ft/2

}
E

{ r∑
i=1

ξt/2(zi)(y) I[
r∑

i=1

ξt/2(zi)(y) ≥ 2]
∣∣Ft/2

}
,
(4.47)

because ξt/2(zi)(0) can only take the values 0 or 1, and if it equals 1, then ξt/2(zi)(y)
= 0. The second factor in the right hand side of (4.47) was estimated in (4.15),
except for a trivial translation. This factor is at most[ ∑

z∈Zd
αt/2(z − y)ξN,t/2(z)

]2
.
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The first factor in the right hand side of (4.47) trivially equals
∑

x∈Zd αt/2(x)ξN,t/2(x).
We therefore find that (4.46) is bounded by

E
{ ∑

x∈Zd
αt/2(x)ξN,t/2(x)

[ ∑
z∈Zd

αt/2(z − y)ξN,t/2(z)
]2}

≤
[
E

{
[
∑
x∈Zd

αt/2(x)ξN,t/2(x)]3
}]1/3[

E
{[ ∑

z∈Zd
αt/2(z − y)ξN,t/2(z)

]3}]2/3

.
(4.48)

(4.45) now follows from (4.27)-(4.29).
Next we approximate

P{ξt(0) = ξt(y) = 1}. (4.49)

It is easiest to carry out this part of the proof if we construct ξt as in Lemma 9, so
that we can speak of the trajectory of a particle. We only know how to carry out
such a construction for a system with a finite initial state. Formally the remaining
estimates in this lemma must therefore be carried out for the process ξN , and then
the limit N → ∞ must be taken in the final estimates (4.52) and (4.54) below.
For simplicity we have written the proof as if it applies directly to the full process
ξ. Here we want to condition on Ft−∆, so that we think of t − ∆ as the origin
of the time axis. Thus, the label (x, k) refers to the k-th particle at position x at
time t−∆. s 7→ {S(x,k)

s }s≥0 describes the motion of this particle until it coalesces,
that is, its position at time t − ∆ + s is x + S

(x,k)
s , if it did not coalesce during

(t − ∆, t − ∆ + s]. Of course we take the {S(x,k)
s }s≥0 to be independent copies

of {Ss}s≥0. If ξt(0) = ξt(y) = 1, then there must be two different particles, π′

and π′′ say, in the system at time t − ∆ which move to 0 and y, respectively, at
time t, without coalescing with another particle during (t−∆, t]. Let the positions
of these particles at time t − ∆ be u and v, respectively. Then there must exist
1 ≤ k ≤ ξt−∆(u), 1 ≤ ` ≤ ξt−∆(v) and random walk paths s 7→ S

(u,k)
s , s 7→ S

(v,`)
s

with u + S
(u,k)
∆ = 0, v + S

(v,`)
∆ = y.

As a first step in approximating (4.49) we bound the probability of the event
G that there exist two different particles π′, π′′ with labels (u, k) and (v, `), which
move along the trajectories s 7→ u + S

(u,k)
s , s 7→ v + S

(v,`)
s for 0 ≤ s ≤ ∆, satisfying

u + S
(u,k)
∆ = 0, v + S

(v,`)
∆ = y, and that there exists another particle π such that

π coincides with π′ or π′′ at some time s ∈ (0, ∆]. If π coincides with π′, then
the probability that they stay together for one unit of time after their paths first
coincide is at least e−2. We can therefore estimate P{G|Ft−∆} by e2 times the
conditional expectation given Ft−∆ of the amount of time in (t−∆, t+1] at which
a particle π coincides with π′ or π′′. A decomposition with respect to the position z
at which π coincides with π′ or π′′, as well as with respect to the starting positions



51

u, v, w of π′, π′′ and π, shows that this expectation is bounded by∑
u,v,w

Λt−∆(u, v, w)
∫ ∆+1

0

[∑
z

αs(u− z)αs(w − z)α∆−s(z)α∆(v − y)

+ α∆(u)
∑

z

αs(v − z)αs(w − z)α∆−s(z − y)
]
ds.

Therefore, taking expectation,

P{G} ≤ e2
∑

u,v,w

E{Λt−∆(u, v, w)}

×
∫ ∆+1

0

[ ∑
z

αs(u− z)αs(w − z)α∆−s(z)α∆(v − y)

+ α∆(u)
∑

z

αs(v − z)αs(w − z)α∆−s(z − y)
]
ds

≤ e2C6[t−3 ∨ t−d(1−ε)/2]
∑

u,v,w

∫ ∆+1

0

[ ∑
z

αs(u− z)αs(w − z)α∆−s(z)α∆(v − y)

+ α∆(u)
∑

z

αs(v − z)αs(w − z)α∆−s(z − y)
]
ds (by (4.21))

= e2C6[t−3 ∨ t−d(1−ε)/2]
∫ ∆+1

0

2ds = 2e2C6(∆ + 1)[t−3 ∨ t−d(1−ε)/2]. (4.50)

Now on the complement of G, {ξt(0) = ξt(y) = 1} occurs if and only if the
following two events occur:
(i) there exist u, v ∈ Zd and a pair of particles π′, π′′ located at u, v, respectively
at time t−∆, which move to 0 and y, respectively, at time t;
(ii) at each of the jumptimes of π′ or π′′ at which these two particles meet during
(t−∆, t], the corresponding Uπ′

n,1 or Uπ′′

n,1 exceeds p1.
In explanation of (ii) we point out that we do not want π′ and π′′ to coalesce.
However, on Gc, neither π′ nor π′′ coincide with a third particle π during [t−∆, t].
Thus, when π′ jumps to the position of π′′, then it jumps to a site which contains
exactly one particle. If this is the n-th jump of π′, then no coalescence takes place
if and only if Uπ′

n,1 > p1. A similar statement holds for π′′.
Conditionally on Ft−∆, the probability of (i) and (ii) is
∞∑

m=0

(1− p1)mP
{ ⋃

u,v∈Zd

⋃
1≤k≤ξt−∆(u)
1≤`≤ξt−∆(v)
(u,k)6=(v,`)

{u + S
(u,k)
∆ = 0, v + S

(v,`)
∆ = y

and s 7→ u + S(u,k)
s and s 7→ v + S(v,`)

s meet exactly m times during (0, ∆]}
}
.

(4.51)
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We shall write E1(u, k, v, `, m) = E1(u, k, v, `, m, ∆, y) for the event

E1(u, k, v, `, m) ={u + S
(u,k)
∆ = 0, v + S

(v,`)
∆ = y and s 7→ u + S(u,k)

s

and s 7→ v + S(v,`)
s meet exactly m times during (0, ∆]}.

Then (4.51) shows that (with E as in Lemma 13)

P{ξt(0) = ξt(y) = 1|Ft−∆}

≤ P{G|Ft−∆}+
∞∑

m=0

(1− p1)m
∑

u,k,v,`

P{E1(u, k, v, `, m)}

= P{G|Ft−∆}+
∞∑

m=0

(1− p1)m
∑
u,v

Λ∗t−∆(u, v)

×
[
P{E(u, v, m, ∆, y)}− ρ(m, y)α∆(u)α∆(v − y)

]
+
∞∑

m=0

(1− p1)mρ(m, y)
∑
u,v

Λ∗t−∆(u, v)α∆(u)α∆(v − y).
(4.52)

Taking expectation once more and using (4.50) and Lemmas 12 and 13 we find

p1P{ξt(0) = ξt(y) = 1}
≤ 4p1e

2C6∆
[
t−3 ∨ t−d(1−ε)/2

]
+ p1

∞∑
m=0

(1− p1)m C5

t2

∑
u,v

∣∣P{E(u, v, m, ∆, y)}− ρ(m, y)α∆(u)α∆(v − y)
∣∣

+ p1

∞∑
m=0

(1− p1)mρ(m, y)
∑
u,v

E{Λ∗t−∆(u, v)}α∆(u)α∆(v − y)

≤ 4p1e
2C6∆

[
t−3 ∨ t−d(1−ε)/2

]
+ C5C17∆−δ(d)t−2

+ D(y)
∑
u,v

E{Λ∗t−∆(u, v)}α∆(u)α∆(v − y). (4.53)
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In the other direction, we have from the inclusion-exclusion principle that

P{ξt(0) = ξt(y) = 1|Ft−∆}

≥ −P{G|Ft−∆}+
∞∑

m=0

(1− p1)mP
{ ⋃

u,v∈Zd

⋃
1≤k≤ξt−∆(u)
1≤`≤ξt−∆(v)
(u,k)6=(v,`)

{u + S
(u,k)
∆ = 0, v + S

(v,`)
∆ = y

and s 7→ u + S(u,k)
s and s 7→ v + S(v,`)

s meet exactly m times during [0, ∆]}
}

≥ −P{G|Ft−∆}+
∞∑

m=0

(1− p1)m
∑

u,k,v,`

P{E1(u, k, v, `, m)}

−
∞∑

m=0

(1− p1)m
∑
ui,ki

P{E1(u1, k1, u2, k2, m) ∩ E1(u3, k3, u4, k4, m)},
(4.54)

where the last sum is over all 4-tuples (u1, k1), . . . , (u4, k4) with ui ∈ Zd, 1 ≤
ki ≤ ξt−∆(ui) and (u1, k1) 6= (u2, k2), (u3, k3) 6= (u4, k4),

(
(u1, k1), (u2, k2)

)
6=(

(u3, k3), (u4, k4)
)
. Let us first estimate the contribution to this sum from the 4-

tuples with all four (ui, ki) distinct. Then for given u1, . . . , u4 we get a contribution∑
k1,...,k4

with all (ui,ki) distinct

P{E1(u1, k1, u2, k2, m) ∩ E1(u3, k3, u4, k4, m)}

≤ Λt−∆(u1, u2, u3, u4)α∆(u1)α∆(u2 − y)α∆(u3)α∆(u4 − y).

After taking the expectation and multiplying by (1−p1)m and summing over ui, m
these terms contribute at most

1
p1

∑
u1,...,u4

E{Λt−∆(u1, u2, u3, u4)}α∆(u1)α∆(u2 − y)α∆(u3)α∆(u4 − y)

≤ 1
p1

C6(ε, 4)
[
(t/2)−4 ∨ (t/2)−d(1−ε)/2

] ∑
u1,...,u4

α∆(u1)α∆(u2 − y)α∆(u3)α∆(u4 − y)

≤ C32

[
t−4 ∨ t−d(1−ε)/2

]
.

Similarly the sum of the P{E1(u1, k1, u2, k2, m) ∩ E1(u3, k3, u4, k4, m)} over the
(ui, ki) with only three distinct pairs contributes at most C32

[
t−3 ∨ t−d(1−ε)/2

]
.

Combining these estimates we obtain

P{ξt(0) = ξt(y) = 1|Ft−∆}

≥ −P{G|Ft−∆}+
∞∑

m=0

(1− p1)m
∑

u,k,v,`

P{E1(u, k, v, `, m)}− 2C32

[
t−3 ∨ t−d(1−ε)/2

]
.
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Continuing as in (4.52) and (4.53) this yields

p1P{ξt(0) = ξt(y) = 1}

≥ D(y)
∑
u,v

E{Λ∗t−∆(u, v)}α∆(u)α∆(v − y)

−C33∆
[
t−3 ∨ t−d(1−ε)/2

]
− C34∆−δ(d)t−2. (4.55)

Together with (4.45) and (4.53) this gives (4.44). �
Proof of Theorem. Let d ≥ 6. Then choose ∆ = t1−η with 0 < η < 1 so small
that for large t

log(t + 2)∆−d/2 ≤ t−5/2. (4.56)

After that choose ε ∈ (0, 1/2) so small that, again for large t,

∆t−d(1−ε)/2 ≤ t−2−η/2. (4.57)

Lemmas 10 and 14 then show that there exists some ζ = ζ(d) ∈ (0, η] and some
constant C35 <∞ such that∣∣ d

dt
E(t) +

∑
y

q(y)D(y)
∑
u,v

α∆(u)α∆(v − y)E{Λ∗t−∆(u, v)}
∣∣ ≤ C35t

−2−ζ . (4.58)

In addition, by the definition of Λ∗t−∆(u, v),∑
u,v

α∆(u)α∆(v − y)Λ∗t−∆(u, v)

=
∑

u

α∆(u)ξt−∆(u)
∑

v

α∆(v − y)ξt−∆(v)−
∑

u

α∆(u)α∆(u− y)ξt−∆(u).

Therefore, by (3.9), (3.4) and (4.17), there exists a constant C36, independent of y
such that∣∣∣∑

u,v

α∆(u)α∆(v − y)E{Λ∗t−∆(u, v)}

−E
{∑

u

α∆(u)ξt−∆(u)
}
E

{∑
v

α∆(v − y)ξt−∆(v)
}∣∣∣

≤ σ
(∑

u

α∆(u)ξt−∆(u)
)
σ
(∑

v

α∆(v − y)ξt−∆(v)
)

+
C2

t

∑
u

α∆(u)α∆(u− y)

≤ C0 log(t + 2)
∑

u

α2
∆(u) +

C2

t
sup

u
α∆(u)

≤ C36
log(t + 2)

∆d/2
. (4.59)



55

Substitution of this estimate into (4.58) and use of (4.56) yields∣∣ d

dt
E(t) +

∑
y

q(y)D(y)E
{∑

u

α∆(u)ξt−∆(u)
}
E

{∑
v

α∆(v − y)ξt−∆(v)
}∣∣

≤ C35t
−2−ζ + C36

log(t + 2)
∆d/2

≤ 2C35t
−2−ζ . (4.60)

Moreover, with C(d) as in (1.10),∑
y

q(y)D(y) = C(d). (4.61)

Now for ξt(y) 6= 0 to occur, there must be at least one particle in the system at
time t −∆ which moves to y during [t −∆, t] without coalescing. The same kind
of arguments as in Lemma 14 (but easier) now show that

E{ξt(y)|Ft−∆} ≥
∑

v

∑
`≤ξt−∆(v)

P{v + S(v,`) = y, and the path s 7→ v + S(v,`)
s

does not coincide with another path

s 7→ w + S(w,k)
s for any s ≤ ∆, k ≤ ξt−∆(w)}

≥
∑

v

∑
`≤ξt−∆(v)

α∆(v − y)

−
∑
v,w

e2

∫ ∆+1

0

Λt−∆(v, w)}
∑

z

αs(v − z)αs(w − z)α∆−s(z − y)ds

Therefore
Eξt(y) ≥ E

{∑
v

α∆(v − y)ξt−∆(v)
}
−C37∆t−2.

Of course we also have

Eξt(y) ≤ E
{∑

v

α∆(v − y)ξt−∆(v)
}

so that ∣∣Eξt(y)−E
{∑

v

α∆(v − y)ξt−∆(v)
}∣∣

≤ C37∆t−2 = C37t
−1−η ≤ C37t

−1−ζ . (4.62)

Combined with (4.60), (4.61) and (3.9) this yields∣∣ d

dt
E(t) + C(d)E2(t)

∣∣ ≤ C39t
−2−ζ ≤ C40t

−ζE2(t), t ≥ 1.
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Integration now gives

1
E(t)

− 1
E(0)

= −
∫ t

0

E−2(s)
dE(s)

ds
ds = C(d)t + O(t1−ζ),

from which (1.11) follows. (1.9) and (1.12) then follow from Lemma 11.
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