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Abstract In this paper, we report on the development of a methodology for stochastic parameterization of
convective transport by shallow cumulus convection in weather and climate models. We construct a parame-
terization based on Large-Eddy Simulation (LES) data. These simulations resolve the turbulent fluxes of heat
and moisture and are based on a typical case of non-precipitating shallow cumulus convection above sea in
the trade-wind region. Using clustering, we determine a finite number of turbulent flux pairs for heat and
moisture that are representative for the pairs of flux profiles observed in these simulations. In the stochastic
parameterization scheme proposed here, the convection scheme jumps randomly between these pre-computed
pairs of turbulent flux profiles. The transition probabilities are estimated from the LES data, and they are con-
ditioned on the resolved-scale state in the model column. Hence, the stochastic parameterization is formulated
as a data-inferred conditional Markov chain (CMC), where each state of the Markov chain corresponds to a
pair of turbulent heat and moisture fluxes. The CMC parameterization is designed to emulate, in a statistical
sense, the convective behaviour observed in the LES data. The CMC is tested in single-column model (SCM)
experiments. The SCM is able to reproduce the ensemble spread of the temperature and humidity that was
observed in the LES data. Furthermore, there is a good similarity between time series of the fractions of the
discretized fluxes produced by SCM and observed in LES.

Keywords Stochastic parameterization · Atmospheric convection · Large-Eddy Simulation · Markov chain ·
Clustering · Grey zone

1 Introduction

The effect of clouds and convection on the large-scale atmospheric state is one of the major sources of uncer-
tainty in weather and climate models. To resolve the convective dynamics realistically, a numerical model
resolution of at least 100 m is required. Current operational numerical weather prediction (NWP) models are
still far too coarse to resolve convection: global NWP models are approaching O(10 km) resolutions while
high-resolution limited-area models operate at O(1 km) resolution. The atmospheric components of coupled
climate models currently use resolutions of O(100 km) or more because of the long simulation time spans
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for which climate models are used. In all of these models, the effects of clouds and convection in individual
vertical model columns must therefore be represented through a parameterization, that is, the effect of these
processes have to be taken into account statistically in terms of the resolved mean state of the model column.

As pointed out in the seminal paper of Arakawa and Schubert [1], there are 2 fundamental assumptions
underlying all traditional convection parameterizations: (i) the horizontal model grid size is large enough for
each model column to contain a representative statistical ensemble of convective clouds, (ii) the cloud ensemble
is in quasi-equilibrium with the resolved large-scale variables [13]. These assumptions justify a deterministic
convective parameterization: the resolved-scale state determines a unique ensemble of convective clouds that
is well sampled and that produces unique convective transport and cloud properties.

With increasing model resolution, the above assumptions become problematic. With decreasing grid size,
the size of the ensemble of convective clouds in a model column decreases, so that the ensemble is more likely
to deviate significantly from the theoretical distribution (see Plant and Craig [24]), and as a result, it is expected
that the cloud ensemble will give a fluctuating response to the same mean state. Furthermore, the life cycles of
individual convective events become more prominent, so that quasi-equilibrium is less likely to hold. Clearly,
the one-to-one correspondence between the resolved mean state and the convective response breaks down and
a traditional deterministic convection parameterization will not be able to incorporate these fluctuations.

A promising strategy to tackle parameterization under conditions, where traditional approaches break down,
is the use of stochastic methods [4,14,16–18,21,23,24,30]. Rather than fixing the subgrid-scale response to a
given resolved-scale state (as in a deterministic parameterization), the response is randomly sampled from a
suitable probability distribution. This allows to account for the randomness of underresolved convection in
a small model column.

In this paper, we report on the development of a methodology for stochastic parameterization of atmo-
spheric moist convection. Our approach is based on the stochastic method introduced by Crommelin and
Vanden-Eijnden [5] and has several key features. First of all, the stochastic process that represents the con-
vective response of the subgrid scales in a model column is made conditional on the resolved-scale state in
the same model column. Thus, the statistical properties of the stochastic subgrid-scale response change if the
resolved-scale state changes. Secondly, the set of possible subgrid-scale responses is made finite (discrete),
by using finite Markov chains as a stochastic process. This gives the advantage of an easy and straightfor-
ward computation and estimation. Thirdly, the properties of the stochastic process (i.e., the Markov chain) are
estimated from data, where the data comes from high-resolution Large-Eddy Simulations (LES).

The Large-Eddy Simulations of moist convection are run at resolutions high enough to resolve convection
explicitly. The LES data and thus the Markov chains are precomputed, that is, they are determined before the
stochastic parameterization is put to use. The conditional Markov chain (CMC) parameterization is designed
to reproduce, in a statistical sense, the convective behaviour observed in the LES data. Thus, it can be seen as a
statistical emulator of the high-resolution LES model. Because of its high computational cost, the LES model
can only cover the horizontal domain of a few model columns of an operational NWP or climate model. Using
a statistical emulator type parameterization, trained on LES data, allows one to use realistic, LES-emulating
convection at low computational cost.

Atmospheric moist convection can be distinguished in two categories. One category is shallow convection
characterized by fair weather cumulus that have a limited vertical extent of no more than 3 km. As a result,
precipitation does play a minor role, and for these clouds, its feedback on the dynamics can be neglected. Shal-
low cumulus convection plays an important role in the determination of the vertical temperature and humidity
profiles. Locally, it determines the vertical transport; non-locally, it has strong influence on the planetary-scale
circulation, especially over the sub-tropical oceans where it enhances the moisture transport towards the inter-
tropical convergence zone (ITCZ), thereby intensifying the Hadley circulation. Despite their limited size, they
are the most abundant cloud type in our climate system and their response to global warming forms one of the
largest sources of uncertainty in climate modelling. For a comprehensive introduction to shallow convection,
see Siebesma [29].

The second category is that of deep convection by cumulus towers that reach heights up to 15 km. Deep
convection occurs especially in the tropics in the ITCZ where they provide extra kinetic energy to the Hadley
circulation through the net latent heat release as a result of the precipitation. The dynamics of these deep
convective clouds is, mainly through the interaction between the precipitation and the cloud dynamics, a far
more complex phenomenon than shallow convection.

In this paper, we will concentrate on shallow cumulus convection, for several reasons. As already men-
tioned, its dynamics is conceptually simpler than that of deep cumulus convection, because precipitation
feedback can be neglected. Furthermore, due to its smaller spatial extent, Large-Eddy Simulations are able to
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resolve the dynamics of shallow convection numerically on domains large enough to contain a representative
ensemble of convective clouds. As a result, we can create a numerical data set that can be coarse-grained
from resolutions that fully resolve the dynamics, through resolutions that partly resolve dynamics and that
will require a stochastic parameterization, all the way to coarse resolutions for which deterministic statisti-
cal parameterizations are sufficient. The focus will be on coarse-grained resolutions of a few kilometres, the
so-called grey zone or terra incognita, see [7,11,32,33] at which individual shallow clouds cannot be resolved
but on the other hand, at which a statistical approach is also not possible. We will explore how to use the sto-
chastic approach from [5] to parameterize the vertical convective transport of heat and moisture in a realistic
way, taking into account the variability of the transport.

Designing a CMC type parameterization for shallow convection poses several challenges that were not
encountered in [5] because of the relative simplicity of the test model used there. In [5], the Lorenz 96 (L96)
model [19] was used for testing and demonstrating the CMC parameterization approach. In the L96 model,
both the resolved-scale state and the subgrid-scale response at each grid point are scalar quantities. For shallow
convection, the situation is much more complicated:

1. The resolved-scale state consists of 5 functions (vertical profiles) in each model column (wind velocities,
temperature and humidity). Conditioning on the resolved-scale state, a key element of the CMC approach,
is therefore highly nontrivial.

2. The subgrid-scale variables consist of 2 vertical profiles, the heat and moisture turbulent fluxes. These
fluxes are strongly correlated and must be treated as such in the CMC parameterization.

In [5], discretizing the subgrid-scale response was rather easy because, in the L96 model, the response is a
single scalar. Here, we are facing the challenge of summarizing the infinite variety of possible heat and mois-
ture fluxes in a handful (finite) number of states; in other words, we have to discretize an infinite-dimensional
function space. To achieve this, we use a clustering method, where each cluster centroid represents a heat and
moisture flux pair (thereby taking care of the observed correlations between the heat and moisture fluxes).

This paper is organized as follows. In Sect. 2, we introduce the variables and equations that are used in
weather and climate models. We describe our approach of parameterizing convection by conditional Markov
chains. In Sect. 3, we describe the high-resolution data obtained from LES. We divide the LES domain into
subdomains of smaller size to obtain highly intermittent turbulent fluxes for which the use of stochastic param-
eterization is necessary. In Sect. 4, we describe in detail how to construct a CMC, and in Sect. 5, results are
given and the CMC is tested in a single-column model (SCM) setting. Finally, in Sect. 6, we summarize and
discuss our findings and make some suggestions concerning future work.

2 Problem formulation and strategy

The prognostic equations for heat and moisture in large-scale models are most conveniently written in terms
of the liquid water potential temperature θl and the total water specific humidity qt which can be written as

θl = θ − L

cpπ
ql, (1)

qt = qv + ql (2)

where θ is the potential temperature, L is the latent heat of vaporization, cp is the specific heat of dry air at
constant pressure, ql is the liquid water content and qv is the water vapour specific humidity. We also introduced
the Exner function π , the ratio of absolute and potential temperature. In the absence of precipitation θl and qt
are conserved for moist adiabatic processes and the grid box averaged prognostic equations for climate and
numerical weather prediction models can be written, using the Boussinesq approximation, as

∂θl

∂t
= −∂w′θ ′

l

∂z
− v · ∇θl − w

∂θl

∂z
+ ∂θl

∂t rad
(3)

∂qt

∂t
= −∂w′q ′

t

∂z
− v · ∇qt − w

∂qt

∂z
(4)
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where v denotes the horizontal velocity vector, w the vertical velocity and the last term of the heat equation
denotes the tendency due to radiation. Overbars denote a spatial average over the grid box, and primes denote
deviations from this average. The first term on the right-hand side represents the turbulent flux divergence
which needs to be parameterized. The second and the third terms denote horizontal and vertical advection
which are resolved by the model. Since the horizontal turbulent flux divergences are much smaller than the
vertical turbulent flux divergence at the resolution of large-scale models, they are omitted in (3) and (4). For
shallow cumulus convection, the cloud fraction is usually small; therefore, the tendency due to radiation can
be simply prescribed by a clear-sky cooling profile.

We can now schematically formulate our parameterization problem for φ ∈ {θl, qt} as

∂φ

∂t
= ∂φ

∂t Convection
+ ∂φ

∂t Forcing
(5)

which states that the overall tendencies of heat and moisture can be broken down in a forcing term given by
model-resolved advection and radiative cooling on the one hand and a turbulent flux divergence term as a
result of convection that needs parameterization on the other hand. More precisely, we are searching for a
parameterization of the turbulent flux in terms of the mean state and the forcing by means of a function f φ

such that

w′φ′(z) = f φ(z; θl, qt, Fφ), φ ∈ {θl, qt}. (6)

where Fφ is a short-hand notation for the forcing term of φ. This is in line with the definition of parameterization
of Jakob [12].

Since the 1960s, researchers have proposed various ways to parameterize convective processes in a model
column (see e.g. [2] for an overview). Arguably, the most widely used class of convection parameteriza-
tion schemes at present is that of mass-flux parameterizations. In these schemes, the shapes of the turbulent
fluxes are determined by an entraining plume model, a mass-flux closure at cloud base and several parameters
depending on the resolved-scale variables. A straightforward way of designing a stochastic parameterization is
to “stochasticize” one of the parameters of an existing, deterministic scheme, as in example [24]. The stochastic
approach explored in this paper is different: we do not rely on physical concepts such as entraining plumes
or mass-flux profiles, but instead, we infer the turbulent fluxes entirely from pre-computed LES data, thereby
bypassing all existing ideas about convection parameterization. We compute the (time-dependent) vertical
turbulent flux profiles w′θ ′

l and w′q ′
t from the LES data and cluster these profiles in Nα different groups. We

emphasize that each of the Nα cluster centroids represents a flux profile pair, that is, each centroid is associated
with both a heat flux and a moisture flux. They are denoted by ( f θl

α (z), f qt
α (z)), α = 1, . . . , Nα (thus, α is

the cluster centroid index). Once the clusters and their centroids are determined, the time series of LES flux
profiles (w′θ ′

l , w
′q ′

t )(z, t) can be mapped to a time series α(t) for the centroid index.
The key element of our parameterization approach is to infer a Markov chain stochastic process from

the LES time series α(t) and to use this Markov chain to emulate the temporal behaviour of the LES turbu-
lent fluxes. As time evolves, the Markov chain makes random transitions between different values of α, in
accordance with transition probabilities that are estimated from the LES time series. The Markov chain that
generated time series of α is mapped to a time series of turbulent fluxes by using the cluster centroids:

(
w′θ ′

l (z, t), w′q ′
t (z, t)

)CMC = (
f θl
α(t)(z), f qt

α(t)(z)
)
. (7)

The occurrence of convection depends in part on the resolved-scale state in the atmospheric model column.
To account for this, the Markov chain transition probabilities are conditioned on the resolved-scale state. This
conditioning is achieved by clustering the vertical profiles of θl and qt into Nμ clusters. The time series of the
LES resolved variable profiles can be mapped to a time series μ(t) for the resolved-scale state cluster index.
Then, we let the transition probabilities for α depend on the cluster index μ in which the resolved-scale state
is. Thus, the transition probabilities are encoded by Nμ different stochastic matrices, each of size Nα × Nα .

3 Large-Eddy Simulations, turbulent fluxes and the grey zone

To produce high-resolution data, we use the Dutch Atmospheric LES (DALES), a non-hydrostatic atmospheric
high-resolution model that is able to resolve clouds and convection, see Heus et al. [9]. The horizontal- and



Stochastic parameterization of shallow cumulus convection

vertical grid-point distance is on the order of tens of metres, while the horizontal size of the domain with
doubly periodic boundaries is on the order of tens of kilometers and the vertical size is on the order of a few
kilometres. The time step is on the order of a few seconds. The prognostic variables are u, v, w, θl and qt .
The equations of motions are based on the Navier-Stokes equations which are simplified using the Boussinesq
approximation. The model calculates the liquid water content of all grid boxes to compute clouds. DALES
has been used for numerous studies on clouds and convection, both shallow convection and deep convection,
see [9].

As we focus on shallow cumulus convection, we run DALES based on a non-precipitating shallow cumulus
case as observed during the undisturbed phase of the Barbados Oceanographic and Meteorological Experi-
ment (BOMEX) [10]. During this phase, a typical steady state was observed for a period of 5 days where the
large-scale drying and heating due to subsidence is balanced by radiative cooling and convective redistribu-
tion of the surface latent and sensible heat fluxes. This steady state can be well reproduced by LES and has
been extensively described in the literature [26,27]. For the details of the initial profiles and the prescribed
large-scale forcings, we strictly follow the case setup such as described in Siebesma [26].

As already discussed in the introduction, stochastic approaches to parameterization are particularly relevant
for model resolutions in the grey zone. In this zone, model resolution is too low to resolve convection explicitly,
but too high to rely on quasi-equilibrium to hold. Therefore, we consider three different length scales in the
context of our LES model. The first is the horizontal size L × L of the entire LES domain, where we have
chosen L = 25.6 km, see Table 1. For model resolutions of size L (or larger), deterministic parameterizations
based on traditional equilibrium assumptions can be sufficiently adequate for shallow convection. The second
length scale is �x , the model resolution of the LES model itself. Convection is almost fully resolved at this
resolution (which we put at �x = 50 m). Finally, the grey zone length scale(s) lies in between L and �x . To
focus on this intermediate range, we divide the LES domain horizontally into subdomains, and we investigate
the turbulent fluxes on these subdomains. This coarse-graining technique is similar to the one introduced by
Shutts and Palmer [25].

We divide the whole LES domain of size L × L horizontally into K square subdomains of size l × l, such
that we can consider them as model columns of an atmospheric model with a resolution in or near the grey
zone (Fig. 1). Each subdomain contains J grid-point values at every vertical level, which is determined by the
spatial resolution of the LES. The values J and K and the length scales �x, l and L are related as follows:

Table 1 A description of the LES data set

Domain size # grid points Initialization time (hh:mm:ss)
25.6 × 25.6 × 3.2 km3 512 × 512 × 80, J = 1,024 04:00:00
Grid size Field experiment # sampling time instances
50 × 50 × 40 m3 BOMEX N = 240
Spatial averaging size Length scales LES and sampling time step
1.6 × 1.6 km2, K = 256 L = 25.6 km, l = 1.6 km, �x = 50 m �t L E S ≈ 6 s and �t = 60 s

Δx

resolved
convection

in LES

l
stochastic

parameterization
in the grey zone

L

deterministic
parameterization

of moist convection
in an NWP model

with low resolution

Fig. 1 A depiction of the three length scales discussed in Sect. 3. At the length scale L of the entire LES domain, deterministic
parameterizations relying on equilibrium assumptions can still be adequate. At the length scale �x of the LES model reso-
lution, convection is explicitly resolved. In the grey zone, with model resolutions of size l, in between L and �x , stochastic
parameterizations are needed
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J =
(

l

�x

)2

, K =
(

L

l

)2

. (8)

We choose l = 1.6 km, so we have K = 256 subdomains that each contain J = 1,024 LES gridpoints.
The turbulent fluxes calculated over the subdomains do not simply add up to the turbulent flux calculated

over the entire LES domain because the fluxes are determined using deviations from different averages. To
clarify this, we define the following averages over the kth subdomain and over the entire domain:

φ
lk := J−1

∑

j

φ j,k, (9)

φ
L := (J K )−1

∑

j,k

φ j,k = K −1
∑

k

φ
lk
, (10)

where φ ∈ {w, θl, qt}. For the kth subdomain, one can calculate the turbulent flux relative to the subdomain

average φ
lk , or relative to the entire domain average φ

L
. The first case gives

w′φ′lk = J−1
∑

j

(
w j,k − wlk

) (
φ j,k − φ

lk
)

, φ ∈ {θl, qt}, (11)

and is related to the second as follows:

J−1
∑

j

(
w j,k − wL

) (
φ j,k − φ

L
)

= w′φ′lk +
(
wlk − wL

) (
φ

lk − φ
L
)

, φ ∈ {θl, qt}. (12)

For the turbulent flux over the whole domain, we have

w′φ′L = K −1
∑

k

w′φ′lk + K −1
∑

k

(
wlk − wL

) (
φ

lk − φ
L
)

, φ ∈ {θl, qt}. (13)

As is clear, it is not equal to the sum of the subdomain fluxes obtained with (11). There is an additional term
(the second term on the right-hand side), which is the contribution of the fluxes that are resolved at scale l but
not at scale L . In the grey zone, the two contributions are of the same order, by definition of the grey zone.
Remark that in this paper, we will calculate the turbulent fluxes on the subdomains with Eq. (11) and not with
Eq. (12).

With Eq. (13), we can decompose for every length scale �x ≤ l ≤ L , the turbulent flux on the whole LES
domain of size L in a resolved part and an unresolved part. This decomposition is shown in Fig. 2. For this
figure, we used two LES datasets for the BOMEX case: our standard dataset with �x = 50 m resolution and
L = 25.6 km domain length, and an additional dataset with �x = 12.5 m and L = 6.4 km. Including the
second dataset enables us to cover a wider range of length scales in Fig. 2 (without the large computational
cost of simulating a 25.6 × 25.6 km2 domain at 12.5 m resolution). The grey zone is clearly visible (see also
Honnert [11]). The standard deviation of the unresolved flux gives an indication of the difficulty of constructing
a parameterization for it. In the grey zone, this standard deviation is clearly large. Furthermore, we observe
that for larger length scales, the standard deviation decreases as the subdomain size increases; however, it is
still substantial until a horizontal domain size of around 10 × 10 km2. This indicates that stochastic param-
eterizations are appropriate not only in the grey zone, but also for larger length scales up to about 10 km.
Using the same argument, we could derive that also for length scales equal to or smaller than 50 m, stochastic
parameterizations are appropriate; however, because for these length scales convection is almost resolved, the
unresolved fluxes are small compared to the resolved fluxes, and therefore, the argument is not valid.

In Fig. 3, we display time series of the turbulent response to the prescribed large-scale cooling in the
middle of the cloud layer (z = 1,000 m) for one of the subdomains of horizontal size 1.6 × 1.6 km2 and
for the whole domain of horizontal size 25.6 × 25.6 km2. In the left panel, we plot the heating/cooling in
Kelvin per day: on the whole domain, the turbulent heating is in equilibrium with the large-scale cooling,
while in the subdomain, we see large fluctuations. In the right panel, we plot the corresponding heat fluxes
for the whole domain and for the subdomain at the same height. It is not difficult to imagine that it is much
easier to construct a parameterization for the flux on the whole domain than for the highly intermittent flux
on the subdomain. Deterministic parameterizations can be used to calculate the flux in a model column if the
resolution is low enough, see [28]. However, if we desire a parameterization that can produce fluxes such that
besides the correct mean value of the flux, also the variability (in time) is captured for models with a resolution
in the grey zone, we need a new kind of parameterization scheme. Below, we explore the characteristics of
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Fig. 3 a At height 1,000 m the turbulent heating in the whole LES domain of horizontal size 25.6 × 25.6 km2 (dashed line), i.e.,

−∂w′θ ′
l

L
/∂z, is in quasi-equilibrium with the large-scale cooling (dash-dotted line), while this is not the case for the turbulent

heating in a subdomain of horizontal size 1.6 × 1.6 km2 (solid line), i.e., −∂w′θ ′
l
lk
/∂z. b The fluctuations of the corresponding

turbulent heat flux, w′θ ′
l
lk

, in the subdomain (solid line) are much larger than the turbulent heat flux, w′θ ′
l

L
, in the whole domain

(dashed line)

a new stochastic method based on conditional Markov chains. From now on, we will focus on turbulent flux
profiles and resolved-scale variable profiles on the subdomains of size 1.6 × 1.6 × 3.2 km3. The resolution of

LES will be �x = 50 m. Further, we will omit the lk upperscript in the w′φ′lk .
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4 Construction of the CMC

To construct a CMC, we perform three calculations:

1. Cluster the pairs of turbulent heat and moisture flux profiles to obtain Nα different flux centroids (i.e., pairs
of representative heat and moisture flux profiles) that determine the flux states, indexed by α ∈ {1, . . . , Nα};

2. Cluster the vertical profiles of the resolved-scale variables to form the resolved-scale states, indexed by
μ ∈ {1, . . . , Nμ};

3. Count transitions between different flux states to obtain a transition probability matrix for every μ.

Below, we describe these steps in more detail.

4.1 Clustering the turbulent flux profiles

We need to find a finite number of functions that can represent the variability of the turbulent heat and moisture
flux profiles observed in LES. We use clustering of the observed profiles to obtain such functions [6]. To take
into account correlations between the heat and moisture fluxes, both fluxes are clustered simultaneously. The
resulting cluster centroids are the representative pairs of heat and moisture flux profiles that we seek.

For clustering, one needs to choose a clustering method and one has to define a distance function that has
to be minimized. We use the k-means++ algorithm, a partitional center-based clustering method introduced
by Arthur [3]. Apart from the initialization, the algorithm of k-means++ is the same as the k-means algorithm
first described by Macqueen [20]. The k-means++ algorithm is summarized in the Appendix. It minimizes the
cost function defined as the sum over all distances d between data points and their closest centroids. In the
present context, a data point of the algorithm is an equal-time pair of heat and moisture flux vertical profiles as
observed in the LES data set. The number of clusters Nα has to be chosen a priori. In Sect. 6, we will briefly
discuss how to make this choice.

The method is computationally inexpensive; it conserves the mean of the data; and it produces smooth
(pairs of) functions as centroids. We observe convergence to a local minimum after a finite number O(20) of
iterations. This local minimum does not have to be a global minimum because the optimization problem is
non-convex. For the present study, this is not a problem, as long as the centroids can represent the variability of
observed LES fluxes. A drawback of k-means++ is that the standard deviation of the clustered data is smaller
than the standard deviation of the original data. In Sect. 5, we will say more about this.

As distance function d , we choose the following Euclidean distance between two pairs of vertical profiles
g = (

g1(z), g2(z)
)

and h = (
h1(z), h2(z)

)
:

d(g, h) =
√∑

z

c1
(
g1(z) − h1(z)

)2 + c2
(
g2(z) − h2(z)

)2
. (14)

The summation over z is the summation over all 80 vertical levels. The weight factors ci are included to
non-dimensionalize the contributions from the two different fluxes (heat and moisture). We choose them to be

ci = 〈
√∑

z

(
gi (z) − hi (z)

)2〉, i ∈ {1, 2}, that is, the average distance between the vertical profiles and their
closest centroids. Remark that these averages may change every iteration step in the cluster algorithm.

In Fig. 4, we display the centroids calculated using the k-means++ cluster algorithm with Nα = 10. The
shaded areas show, for every height, percentile intervals of the observed LES flux profiles, giving an indication
of the distribution of the LES fluxes. The centroids cover the range (variability) of the LES flux profiles quite
well. The percentile intervals show that the turbulent fluxes are mostly close to 0, with infrequent, large fluctu-
ations. Remark that the surface fluxes for the BOMEX case are fixed at 8.0 × 10−3 Km/s for the heat flux and
5.2 × 10−5 m/s for the moisture flux. We have numbered the centroids such that α = 1 corresponds to a clear
atmosphere, a higher centroid and flux-state number corresponds to a more convectively active atmosphere
and α = 10 corresponds to the most convectively active atmosphere.

Jumping briefly forward to Fig. 9a, one can see for every α, the time series of the observed fraction of
LES subdomains that are in this flux state. We see that 60–70 % of the subdomains are in flux-state number
1, around 20 % in flux-state number 2, and lower percentages for higher flux-state numbers. We will discuss
this in Sect. 5.3.
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Fig. 4 The 10 centroids (i.e., pairs of turbulent a heat and b moisture flux profiles) calculated using the k-means++ clustering
algorithm with Nα = 10. The shading indicates for every height the percentage of a heat and b moisture flux profiles passing
through that interval. The centroids cover the range of possible heat and moisture flux profiles that are produced in LES on
1.6 × 1.6 × 3.2 km3 subdomains

4.2 Conditioning on the resolved-scale state

We employ the same clustering method (k-means++) and the same distance function (14) to construct Nμ

different clusters of the resolved-scale variables. The resolved-scale variables we choose to condition on are
the entire vertical profiles of θ and qt , and to retain correlation, we cluster pairs of heat and moisture profiles.
Other choices are possible: one can choose any combination of the resolved-scale variables u, v, w, θl and
qt , at any number of vertical levels. We found that conditioning the Markov chain on the combination of the
entire vertical profiles of θl and qt gives the best results. In Sect. 5.1, we discuss how to choose the number of
clusters Nμ.

The whole idea behind conditioning the Markov chain on the resolved-scale state is that the probabil-
ity of switching between flux states depends on the resolved-scale state. For example, a small difference in
temperature can influence the probability that a thermal becomes a cloud or not. Rather than choosing these
probabilities ad hoc, we estimate them systematically from the LES data. In the next section, we describe this
in more detail.

4.3 Estimation of the transition probability matrices

Once the clustering of the turbulent fluxes (Sect. 4.1) and the resolved-scale states (Sect. 4.2) is completed, the
LES data can be mapped to time series (αLES

k (t), μLES
k (t)) for the cluster indices. Thus, αLES

k (t) = m means
that the LES fluxes in the kth subdomain at time t belong to cluster m, and similarly for the resolved-scale
state index μLES

k (t). From these time series, we can estimate the transition probabilities for α, conditioned
on μ. This is done in a straightforward way, by counting transitions and normalizing in an appropriate way
afterwards.

More specifically, we need to estimate the probabilities

P(i)
nm = Prob

[
αLES

k (t + �t) = m | αLES
k (t) = n, μLES

k (t) = i
]

(15)
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We do so using the following estimator:

P̂(i)
nm = T (i)

nm
∑

m T (i)
nm

, (16)

where

T (i)
nm =

∑

k

∑

t

1
[
αLES

k (t + �t) = m
]

1
[
αLES

k (t) = n
]

1
[
μLES

k (t) = i
]
. (17)

The time t runs over the time points t1 to tN−1, and k runs from 1 to K so that all subdomains contribute to the
estimation of the probabilities. The function 1[.] is the indicator function, satisfying 1[α = m] = 1 if α = m
and 1[α = m] = 0 if α 	= m. Thus, T (i)

nm counts the number of transitions from (n, i) to (m, ·).
In total, we obtain Nμ matrices P̂(i) of size Nα × Nα , one stochastic matrix for every μ. This set of matrices

can be used to emulate the time evolution of the turbulent fluxes of the LES model. Comparing with the CMC
described in [5], we have omitted the conditioning on μ at the next time point t + �t . In this way, we reduce
the number of used matrices without huge loss of accuracy. See also [22].

4.4 Numerical integration with the CMC parameterization

Using the CMC for parameterization during the numerical time integration of an atmosphere model proceeds
as follows. Let (u, v, w, θl, qt)k(z, t) be the resolved-scale state in model column k at time t , and let αCMC

k (t)
be the flux cluster index for the same model column at time t .

1. Determine to which cluster μk the resolved-scale state in column k belongs.
2. Update the resolved-scale state by integrating it, using (3) and (4), from t to t + �t . During this step, the

turbulent fluxes in column k are fixed at (w′θ ′
l (z), w

′q ′
t (z)) = ( f θl

n (z), f qt
n (z)) with n = αCMC

k (t).
3. Update the fluxes in column k using the stochastic matrix P̂(i) with i = μk , i.e. sample m randomly from

the probability distribution P̂(i)
nm for m, with n = αCMC

k (t). Now, αCMC
k (t + �t) = m. Repeat this step for

all k, using independent sampling for different k.

In the first step, the resolved-scale state centroids and the distance function d (14) are needed. For step 2, the
flux-state centroids ( f θl

n (z), f qt
n (z)) are required. The stochastic matrices P̂(i) are used in the 3rd step.

5 Results

We construct and test the CMC parameterization using the LES data shown in Table 1. To construct the CMC,
we perform the three calculations mentioned at the start of Sect. 4: we determine Nα = 10 turbulent flux
centroids (Fig. 4), consider Nμ = 10 resolved-scale states determined by the vertical profiles of θl and qt ,
and compute the 10 transition probability matrices P̂(i). We test the CMC in three different experiments. In
the first experiment, we let the CMC produce the turbulent fluxes while using the LES time series μLES

k (t)
as input. Thus, the CMC-produced flux profiles do not feed back onto the resolved-scale state. In the second
experiment, this feedback is present, by performing integrations in a single-column model (SCM) setting. The
third experiment is similar to the second experiment: only the initial profiles are chosen in a different way.

5.1 Experiment 1: statistics of the CMC

In this experiment, we use the resolved-scale state time series μLES
k (t) obtained from the LES data to “drive”

the CMC. The result is the CMC-generated time series αCMC
k (t) with k = 1, . . . , K = 256 and t = t1, . . . , tN ,

N = 240. These can be compared to the LES time series αLES
k (t). For an example of a flux-state sequence

produced by LES and by CMC, see Fig. 5.
The CMC sequences αCMC

k (t) can be mapped to sequences for the turbulent fluxes by using the flux cen-

troids ( f θl
α (z), f qt

α (z)). In Fig. 6, we display the mean and the standard deviation of the vertical profiles of the
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Fig. 5 a Discretized turbulent fluxes (states) observed in one LES subdomain of horizontal size 1.6×1.6 km2 with Nα = 10. This
discretization is part of the CMC construction algorithm, see Sect. 4.1. b Turbulent flux states produced by CMC (in Experiment
1) using the observed resolved-scale states of the same LES subdomain
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Fig. 6 Mean vertical profile of the turbulent a heat and b moisture fluxes observed in LES subdomains of 1.6 × 1.6 × 3.2 km3

(solid) and produced by CMC (dashed) in the first experiment. c, d The corresponding standard deviations

heat and moisture fluxes observed in the LES data and produced by CMC. There is a small discrepancy for
both the mean value and the standard deviation of the heat and moisture flux. The reason for the discrepancy in
the mean is that the turbulent flux states with a low probability are less frequently visited in the CMC sequence
than in the LES sequence. The reason for this is not entirely clear and may be a subtle effect of the switching
between different transition matrices in the CMC. The decrease in standard deviation is easier to understand: by
replacing data with their corresponding cluster centroids, it can be proven using the Cauchy-Schwarz inequality
that the standard deviation decreases. This problem could be solved by using a moment-preserving clustering
method, see [31]. We will not pursue this here.

The choice of the number of flux centroids Nα and the number of resolved-scale state clusters Nμ influ-
ences the performance of the CMC. The smaller Nα the more reduction of the standard deviation of the fluxes.
The larger Nα the larger the Nα × Nα transition matrices of the Markov chain, requiring more data for their
estimation. The number Nμ is equal to the number of matrices one has to estimate, so the higher Nμ the
more matrices one has to estimate. Nμ = 1 produces the most accurate mean fluxes and standard deviations;
however, for Nμ = 1, the Markov chain is not conditioned on the resolved-scale state, giving poor results in
the SCM test (Sect. 5.2). Better results in the SCM test are obtained with Nμ > 4. We find the values Nα = 10
and Nμ = 10 to be a reasonable compromise between these different considerations.

With this test using resolved-scale states that we observed in LES, we showed that the CMC is able to pro-
duce flux profiles with approximately the right statistics. However, in an NWP or climate model, the turbulent
fluxes interact with the resolved-scale state as in Eqs. (3) and (4) which is not the case in this test. Therefore,
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to make a step forward towards this interactive model, we will test the CMC by implementing it in an SCM
setting.

5.2 Experiment 2: implementation of CMC in an SCM setting

We test the CMC, described in the first paragraph of Sect. 5, in an SCM setting. An SCM is a 1-dimensional
model in which the tendencies of the prognostic variables are only calculated for one column, considered as a
column of an NWP or climate model. We will calculate the tendencies of θl and qt using the CMC to generate
turbulent fluxes. The governing equations for θl and qt are analogous to Eq. (3) and (4)

∂θl

∂t
= −∂w′θ ′

l

∂z
− wLSS

∂θl

∂z
+ ∂θl

∂t rad
, (18)

and

∂qt

∂t
= −∂w′q ′

t

∂z
− FLSHA − wLSS

∂qt

∂z
, (19)

in which the large-scale subsidence, w = wLSS, is a negative vertical wind velocity over the whole domain that

was determined for BOMEX. The large-scale forcing for θl and qt is radiative cooling ( ∂θl
∂t rad) and large-scale

horizontal advection (FLSHA), respectively.
We set the initial profiles of θl and qt equal to the average profiles observed in the K = 256 LES subdo-

mains at time t1. The CMC does not provide w′φ′(t1) because to determine the turbulent flux profiles, it uses
the turbulent flux profiles at the time instance before. Therefore, we choose one of the Nα = 10 flux profiles at
random with a probability given by the invariant distribution of the fluxes for the given resolved-scale state. For
other time instances, the CMC can produce flux profiles w′φ′, which are used to determine the time evolution
with Eq. (18) and (19).

We calculate the time evolution of θl and qt for 256 runs of the SCM. We compare these time evolutions
to the original time evolution of the LES variables: first, by looking at the entire vertical profiles observed
in LES at time t240 and produced by the SCM (with implemented CMC) after 4 h of integration and then by
calculating probability density functions (PDFs) of θl and qt at several heights. In Fig. 7, we see the vertical
profiles of θl and qt of 256 LES subdomains and 256 independent SCM realizations after 4 h of integration.

At heights 800, 1,000, 1,400 and 1,600 m, we take a closer look by plotting the PDFs of the 256 values
of θl and qt of LES and SCM in Fig. 8. Here, we also plot the results of an SCM experiment in which we
use an unconditioned Markov chain (MC), that is, Nμ = 1: we clearly see that the conditional Markov chain
performs better. At t1, the profiles of the SCM are equal for all the 256 realizations, because we chose them to
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Fig. 7 Superimposed vertical profiles of θl and qt of a, b 256 LES subdomains and c, d 256 independent SCM-CMC realizations
after 4 h of integration in the second experiment
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Fig. 9 Time series of the fractions of the 10 flux states a observed in the 256 LES subdomains and b produced in the 256
SCM-CMC realizations in the third experiment

be equal. Therefore, at t1, the density function is a Dirac delta function. After 4 h of integration, the ensemble
spread for θl and qt resembles the spread of the profiles produced by LES. If we continue integrating, the
standard deviation of the SCM ensemble keeps growing. This is caused by ensemble members with θl and
qt profiles too far outside the LES training dataset, so that the CMC parameterization is not trained to drive
these ensemble members back to equilibrium. There is a way to solve this problem, by enlarging the training
dataset to include such out-of-equilibrium profiles (e.g. by imposing these profiles in LES through nudging).
For the unconditioned Markov chain (MC) parameterization, such an enlarged training set is unlikely to solve
the problem, because the MC is not sensitive to the θl and qt profiles.

5.3 Experiment 3: implementation of CMC in an SCM setting with different initial conditions

We perform another experiment with the SCM. Now, we run the SCM-CMC again 256 times, but with initial
profiles of θl and qt of the kth run set equal to the profiles of the kth subdomain observed in the LES data at time
t1. For both LES and the SCM, we count the fraction of realizations that are in flux state 1 to 10 as a function
of time and plot the time series in Fig. 9. The figure is inspired by a similar figure in Khouider et al. [15]. We
see a good similarity between the fractions produced by the SCM and observed in the LES. The equilibrium
value of the fractions and the random fluctuations around it are well reproduced by the SCM. Remark that it
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takes a few hours of calculation on a supercomputer to produce the LES time series, while the time series of
the SCM with the implemented CMC can be calculated on a laptop within 1 min. What is not well visible in
Fig. 9 is that the fractions of the least probable flux states (e.g. α = 10) are not very well reproduced by the
SCM. In the SCM-CMC simulation, these fractions are too low compared to the fractions observed in LES,
as was already mentioned in Sect. 5.1.

As a final remark, we recall that we use the entire vertical profiles of θl and qt to condition the Markov
chain on. When conditioning on the values of θl and qt at only a few vertical levels, then after 4 h of integrating
SMC-CMC, the profiles of θl and qt were correct at these levels but (highly) inaccurate at other levels (results
not shown).

6 Discussion and outlook

In this study, we considered the parameterization of shallow cumulus convection by data-inferred stochastic
processes. The vertical turbulent fluxes of heat and moisture in an atmospheric model column were modelled
with a stochastic process that is conditioned on the resolved-scale state in the same column. We adopted the
approach from Crommelin and Vanden-Eijnden [5], in which the conditional stochastic processes, represent-
ing the feedback from unresolved scales, are chosen to be conditional Markov chains whose properties are
estimated from data of high-resolution simulations. This approach has not been applied to convection parame-
terization before. We used LES at convection-resolving resolutions to simulate shallow convection in a realistic
manner. The data from these simulations were used to estimate (“train”) the CMC.

Modelling convective turbulent fluxes with a finite-state Markov chain requires discretization of the space
of possible fluxes. This was achieved by using a clustering method, in which the LES-generated heat and
moisture fluxes were clustered simultaneously in order to capture the correlation between the two fluxes. The
resulting cluster centroids each represent both a heat and a moisture flux profile. The CMC emulates the con-
vective behaviour of LES by randomly jumping between the centroids, according to transition probabilities
estimated from the LES data.

We demonstrated in Sect. 5 that the CMC was able to reproduce the mean vertical profile of the
LES-generated fluxes and the vertical profile of their standard deviations. Tests in an SCM setting showed
that the CMC was able to produce realistic fluxes, as well as an ensemble spread comparable to the spread
observed in the LES data. Also, the time series of the fractions of different flux states were very similar in
SCM-CMC and LES. Altogether, the CMC was well able to mimic the turbulent heat and moisture processes
corresponding to shallow cumulus convection in the LES model. The CMC can be regarded as a statistical
emulator of the high-resolution LES model.

We mentioned the strong anti-correlation between the turbulent heat and moisture fluxes. One could con-
sider taking only one of the fluxes into consideration and calculating the other from it. In the subcloud layer,
however, this correlation switches to positive because both surface fluxes are positive. To stay as close to LES
as possible, we therefore take both fluxes into account. More about correlation between θl and qt can be found
in Heus [8].

The added value of this present stochastic parameterization is not so much that it is capable of reproducing
the observed mean state, but more so that it is able to reproduce the fluctuations at scales in the grey zone of the
relevant process, in this case shallow cumulus convection. A crucial ingredient is that the constructed Markov
chain is conditional on the resolved-scale state. This way it is possible to have the correct temporal evolution
of the states of the subgrid domains, albeit in a stochastic way, reflecting the life cycle of the clouds that live
in such a subdomain. The relevance of these fluctuations for the larger scales depends on whether they will
cascade up to larger scales. These effects have not been investigated within the present study.

In order to do so, one may need to take into account spatial correlations through conditioning the transition
probability not only on the state of the subdomain of interest but also on the state of the neighbouring sub-
domains. This way one could construct a data-driven cellular automaton that would be able to create spatial
mesoscale structures, assuming that such structures are present in the dataset on which the system is trained.
However, this is beyond the scope of the present study.

The main purpose of this paper is to simply demonstrate that the CMC that has recently been introduced
and applied to the L96 model [5], which is a low-dimensional toy model, can actually successfully be applied
to complex realistic high-dimensional atmospheric processes such as shallow cumulus convection.

We also demonstrated that the range of scales where stochastic parameterizations are required goes beyond
the grey zone (see Fig. 2). For the present case of rather unorganized shallow cumulus convection, the grey
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zone ranges from 50 to 800 m. The range where stochastic parameterizations are required on the other hand
extends to scales up to 10 km, at which there are still significant fluctuations of the turbulent fluxes amongst
the various subdomains that are subjected to the same large-scale forcing.

Finally, one might ask how one can make the present CMC more general applicable. After all in the present
study, the CMC has been trained to reproduce a specific realization of shallow cumulus convection (BOMEX)
and will hence only be able to reproduce this realization with all its variability. Of course, the aim is to develop
a stochastic parameterization that will be able to reproduce moist convection more generally under a range of
different conditions. We see various possibilities of using the present CMC to “stochasticize” existing moist
convection parameterizations that operate on a wide scale of conditions. One possibility is to apply the present
CMC technique on a multicloud model such as put forward by Khouider et al. [15] to infer the transition prob-
abilities from data, rather than base them on physical intuition. Alternatively, one can apply this technique to
more conventional moist convection mass-flux parameterizations. One can use LES data (or real observations
if available) to find parameters in the parameterizations that will strongly fluctuate when diagnosed on smaller
subdomains and train the CMC in order to stochasticize the fluctuating parameters. One obvious candidate is
the cloud base mass flux which is a rather constant parameter at coarse resolution but that will start to fluctuate
wildly if the subdomains reach scales on the order of the size of the clouds that constitute the moist convection.
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Appendix

The k-means++ algorithm: (see also [3,6,20]) Given data consisting of data points that have to be clustered
into a finite number of clusters each represented by a cluster centroid. Let a distance between a data point and
its nearest centroid be defined.

1. Choose a data point uniformly at random from the set of data points, this will be the first centroid.
2. Select a new data point at random from the set of data points with probability proportional to the squared

distance to its nearest centroid, this will be the next centroid.
3. Repeat step 2 until the number of desired centroids has been reached.
4. Assign every data point to its closest centroid to form clusters.
5. In every cluster take the mean of its data points to form new centroids.
6. Repeat step 4 and step 5 till the centroids do not change anymore.
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