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Preface 

Instead of an academic Festschrift, this is a true liber amoricum - a collection of 

contributions from friends. On the content level, these contributions demonstrate the 

influence Jan had on each of us in a diversity of fields at the intersection of logic, 

philosophy, computer science, and linguistics, as well as the inspiration we draw from it. 

On a personal level, they also express our gratitude for the past and our dear wishes for the 

future . 

The book lives at http: //jve2017.herokuapp.com in a tree-saving and dust-avoiding format 

that allows for code snippets and demos to be run. As many of the contributions included 

in the volume will illustrate, the choice of the online format is not so much an editorial 

convenience but rather captures the spirit of the Haskell way that Jan shaped and shared 

during his career. Alongside executable code, the collection comprises rigorous 

formalizations, informal text, argumentative dialogs, insights, personal notes, poems, and 

pictures. And as a special contribution it includes music that Heleen Verleur has composed 

for this occasion (here included as non-executable code; sorry to everyone who has not 

been live at the workshop to enjoy it at runtime). 

We hope that the sum of all these contributions captures most of the relevant aspects of 

Jan's work and personality, and we are sure we speak for everyone when we say: It has 

been a great honor and an even greater pleasure to be a part of it. 

~tefan Minica 

Christina Unger 

Yanjing Wang 

on behalf of all contributors 

June 2, 2017 

Amsterdam 



For Jan: About the Pythagorean Theorem 

Krzysztof R. Apt 

When my children were at a secondary school I organised for a couple of years a 2-3 days 

long internship for a group of enthusiast children who wanted to learn more about 

mathematics and computer science. The main problem was to find adequate speakers. Jan 

never failed me and each time I asked him he gladly agreed to give a lecture followed by a 

short session during which he discussed solutions in Haskell to programming problems he 

posed. One time I followed his lecture out of curiosity. It started with the Pythagorean 

Theorem. 

Jan presented a visual proof given in 12th century by an Indian mathematician, Bhiiskara. 

It is based on the following two drawings: 

a b b 

a 
b 

b 

a 

a 

Figure 1: Bhaskara's proof of the Pythagorean Theorem 

This is certainly a good start for a lecture for pupils. But recently I found another proof 

that might be even more appropriate for a school presentation because of a colourful story 

surrounding it. This proof was published by an American President, James Abram 

Garfield. Garfield was in office only for 199 days-he died in 1881 after being shot by an 

assassin. Garfield's proof is based on a drawing of a trapezoid given in the following 

figure. 



a 

b 

a 

Figure 2: Garfield's proof of the Pythagorean Theorem 

The area of the trapezoid equals the height times the average of the bases, so ( a - b) a; !.1 

, i.e., ½ ( a • b) 2. But it also equals the sum of the areas of the three triangles, that is, 

1 b 1 ') 1 b . b 1 ,, 1 ( i ) •) b 1 •) h . 
2a + 2c + 2 a. , 1.e., a + 2c-. So 2 a • o - - a • 2c , t at 1s, 

( a - b )2 = 2ab + c2, from which a2 + [/- = c2 follows. Garfield concluded his 

article with this remark (see Dunham [2], page 99): "We think it something on which the 

members of both houses can unite without distinction of party." 

To tease the pupils one could ask them what is the use of Pythagoras' theorem. The typical 

answer is that it helps one to produce a straight angle. Namely, take a rope, with equally 

spaced 11 knots on it (so that 12 equal units are formed) and use it to form a triangle with 

the side lengths of 3, 4, and 5. Since ;3 2 I 42 = 52, this triangle is right-angled. This is 

apparently how Egyptians used this knowledge to produce straight angles. 

But a perceptive reader will notice that we cheated here. Namely, we used the reverse of 

the Pythagorean Theorem: if al + [/- = c2 , then the triangle with the side lengths a, b 
and c is right-angled. This implication also holds and is established in Euclid's Elements 

together with the proof of the original theorem. 

One can go even further. Edsger Wybe Dijkstra [1] proved the following strengthening of 

the Pythagorean Theorem that covers both implications and four others, and makes no 

mentioning of right angles. 

Theorem Consider a triangle with the side lengths a, b and c and the angles (} 1 {J and -/', 

lying opposite u, band c. Then the signs of the expressions a2 + b2 _ c2 and 

( t + ,B - r are the same. 

JO 



For example, for the triangle with the side lengths 3, 4 and 6 we have ~f! + ,12 < 62, so 

n + ,8 < , ... Hence 180° = C:t + /1 + 1 < 2-1, so 90'' < )', which means that the 

triangle is obtuse. 

References 

[1] Edsger Wybe Dijkstra: On the theorem of Pythagoras. EWD-975, 1986. Available from 

http://www.cs.utexas.edu/·"EWDiewd09xx/EWD975.PDF. 

[2] William Dunham: Mathematical Universe. John Wiley & Sons, 1994. 
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My story with Jan, in Haskell 

Matteo Capelletti 

This occasion has brought back to my memory many episodes from my life as a student in 

Utrecht under the supervision of Jan. I would like to use this space to recall some of them, 

and to share with you all some code and ideas that I developed through the years, both as a 

student and later just for fun, that in a way or another owe something to Jan. 

Introduction 

Jan has always been a source of inspiration for me both as a teacher and as a man. I 

remember him coming to the Utrecht Institute of Linguistics on Friday. I knew that at 

some point of the day he would drop by my office to see what I was up to. He would sit 

next to me, listen to my explanation of the experiments I was attempting and tell me that, 

well, this is very interesting, but it is difficult, and you need to prove your claims, you 

need to show that what you say actually works. I was playing a bit with Prolog at the time, 

but he recommended to learn Haskell, that is 'better'. That was a great advice that changed 

my way of approaching research, of exploring ideas and of thinking. 

In this contribution I am going to present through code examples, some results which I 

find somewhat inspired by Jan. I report only parts of the code, and sometimes with some 

simplification to make it fit to the informal character of this contribution. I would be 

happy to share the code and also the literate version of it with whoever may be interested 

in seeing more. 

The Catalan number 

I read interesting contributions by Jan on many subjects. I especially liked the code 

accompanying most of them. When he started helping me on my linguistic research on 

efficient parsing for Categorial Grammars, it was not clear to me what his first assignment 

meant: "Write a function that returns all possible balanced brackets of length n". In other 

words, a grammar generating the language: 

S' -+ (8 )8 c 

I' 



Second question: "How many such strings are possible for any n?" 

It took me a while to find a nice way to do it. I spent an afternoon on this, but I wanted to 

be able to show something to Jan in our next meeting. Here is a revision of my solution, 

and the number was the Catalan number. 

brack . . Int -> . . 
brack n = [ "" ] 

brack (n+l ) = 
11(11 ++ l 

(String] 

++ II) H ++ r I i <-

l <-

[E' .n], 

brack i, 

r <- brack (n-i) 

I banged my head for some days on this code. I had seen some Prolog, but my 

programming skills were low and functional programming was a rather different 

paradigm. I was so proud of this code when it finally worked, and I think Jan was happy 

too that I didn't give up and that we could move on for instance with a memoized version 

of this. 

At the same time, with my other supervisor Michael Moortgat, we were wondering in 

what way generating all brackets is useful in parsing, but that's another thing. Actually, 

from this first coding experience I learned some very important things. At technical level, 

recursion and list comprehension which proved to be amazingly powerful tools. I 

remember the words of Jan in one of his classes on programming: "It looks like magic, but 

it's the power of recursion". And I often had the impression, in my meetings with Jan and 

in my studies in the Netherlands, to be initiated to some sort of magia naturalis while 

learning to use words that create and change things ... At personal level, I learned not to 

give up when faced with something new and maybe initially difficult. 

Later in my career, I used the above approach for language generation in some 

professional context. But the list comprehension approach is a simple, elegant and 

powerful one, that I used in several contexts, whenever a non-deterministic behavior had 

to be implemented. It has been found so simple and elegant that also other programming 

languages have adopted it from Haskell. 

Beyond coding 

1 • 
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After getting acquainted (but actually I should better say addicted) to Haskell and ready to 

disseminate my writings with code snippets, during one of his Friday visits Jan advised me 

not to use code in my abstracts! I was pretty confused and a bit frustrated, I shall say. 

The recommendation was to use code in developing ideas, but to use logical notation for 

dissemination purposes. I never succeed much in the latter, but I tried. Here I present an 

example. 

During my studies on Type Logical Grammar, I came across a contraction procedure that 

could be used to prove the theorems of the Non-Associative Lambek calculus (Lambek 

1961). I present this in a sort of more logical way, but I think the similarity with the style 

of the previous code with list comprehension is clear. List comprehension is perfect to 

model non-determinism and generate multiple solutions. 

The idea, which I present here shortly is that a sequent a -+ c is provable in NL if and 

only if the intersection of the reduction set r computed for the antecedent and of the 

expansion set e computed for the succedent is non-empty: 

r .vLa --·, c iff r(a) r1 e(c) f ~l 

The contraction procedure e and r work as follow: 

1) e(a) - {a}i if a is an atom 

2) e(a ® b) - { a '®b' I a' E e(a) & b' E e(b}} 

3) e(a/b) - let mon be { a'/b' I a' E e(a) & b' E r(b)} in 
{a) mon 

u 
{b) { c I (c@b')/b' E mon } 

u 
(c) { c I a ' /(c\a') E mon } 

1 '} r (a) = {a}, if a i.s an atom 

2') r (a @b) letmon be{ a'@b' I a' E r(a) & b' E r(b}} in 

(a) mon 
u 

{b} { c I c/b' ® b' E mon} 
u 

{c} { c I a' ® a'\c E mon } 

3') r (a/b) = { a' /b' I a' E r (a) & b' E e ( b) } 

I 1 



Suppose for instance that we want to prove a sequent 

(s / (n\ s)) \ s ·, (s / (n\ s)) \ 8 

then we compute the reduction r of the antecedent: 

r((s / (n\ s)) \ s) - {(s,/ (n \ s)) \ s,n\ s} 

and the expansion e of the succedent: 

c((s/ (n \ s)) \ s) -- {(s / (n\ s)) \ s,n \ s} 

Because the intersection of the two sets is non-empty, we know that the sequent is 

provable in NL. A claim that I never succeeded in proving is that the cardinality of the 

(multiset) intersection is the number of proofs of the sequent, so that the procedure not 

only answers the provability problem, but also tells us how many distinct proofs a sequent 

has. 

Beyond syntax 

There are many other works by Jan on syntax and parsing that I studied with interest. I 

remember his Haskel versions of the CYK and Earley algorithms, his version of the 

monadic parser combinators, the proof net contraction algorithm. Not only the topics he 

proposed to me in our Friday sessions were interesting and challenging, but by looking at 

his code I could find clever solutions that could be reused in other contexts. 

My dissertation was about syntax and theorem proving, but I was also fascinated by 

semantics and after completing my studies, I had the freedom to dedicate myself to that 

too, again starting from some reading of Jan's work. 

I wanted to build an Haskell interpreter for predicate calculus. I ended up building an 

Haskell interpreter for Prolog, which would take as input programs like the following 

definition of map : 

mapping = 

map f [] [] : - [], 

map f (y : ys) (z : zs) 
] 

[f y z, map x ys zs] 



Here the program mapping is a list of clauses, each with a left-hand side term and a list 

of right-hand side terms. 

The code includes several components among which a unification algorithm, some 

routines to refresh variables in terms and to normalize terms (adapted from Jan's code for 

lambda term normalization), ways of instatiating a query term to a program, which I am 

not reporting here. More interesting, and inspired by some of Jan's code for exhausting 

alternative possible combinations, the implementation of the depth-first exhaustion 

procedure which I report here (with some simplification): 

eval : : OR-> Prag-> [Subs] 

eval [] prog = [] 
eval ((f, []): as ) prog = 

f:eval as prog 

eval ((f,q:qs): as ) prog = 

eval (os++as ) prog 

where 

os = [ (f'.f,rs ++ qs) I (f',rs) <- scan (f q) prog] 

As we said above, a program is a list of pairs made of a left-hand side term and a list of 

right-hand side terms: 

The eval function is called initially on the pair id function and list of query terms 

qs , [ (id, [ qs])] . The qs are AND conditions that all need to be satisfied. This 

means that only when qs is empty we can return f as a substitution that provides one 

solution.1 However there may be more than one solution. So the first argument of eval , 

of type OR, is of the form 

and accumulates the right hand side of clauses that are instantiated. The list OR will 

consist of alternative branchings or alternative solutions to the initial problem. The eval 

function above generates all possible solutions. 

The scan function, which we omit here, tries to match the current query term q under 

the current variable instantiation f with the left-hand side of a clause in a program 

prog . So it tries to unify f q and any 1 -term in a program. 

Observe, about ( f', rs) that 



1. scan** returns all unifiable right-hand sides in the input program, 

2. these are piled on top of the calling rhs qs as new AND conditions with new 

substitution function. 

3. different possible clause instantiations give rise to new OR branchings. 

I had some fun testing the procedure on some typical Prolog programs. For instance, we 

can define the following programs:
2 

acld.i.tion = 

add zero x x [], 
add (succ x) y (succ z) 

multiplication = 
addition ++ 

mul zero x zero :- [], 

[add X y z] 

mul (succ y) x z :- [mul y x w, add x w z] 

exponentiation = 
multiplication++ 

exp zero x (succ zero) : - [], 
exp (succ x) y z [exp x y w, mul y w z) 

Which unsurprisingly give us: 

*Run> eval [add x y (num 5)) addition 
[ [ ( X, l; ), ( y, ' ) ], [ ( X, 1 ), ( y, 4 )], [ ( X, i) , ( y, ()], [ ( X, ·' ), ( y, ' )], [ ( X, 1), ( y, J ) ], [ ( 

x, ' ),(y, G)]) 

*Run> eval [mul (num 3) (num S) x] multiplication 
[[(x, l', )]) 

*Run> eval [mul x (num 3) (num lS )] multiplication 
[[(x, )]ACinterrupted. 

More interestingly, the full program is also capable of handling higher order term 

resolution as in the following example. 



*Run> eval [map x y [3,4,5,6, 7])] (mapping++ addition) 
[[(x, (add 0)), (y, [3,4,5,6, 7])], 
[(x, (add 1)), (y, [2,3,4,5,6])], 
[ (x, (add 2)), (y, [1, 2, 3, 4, 5])], 

[(x, (add 3)), (y, [0,1,2,3,4])]] 

Beyond semantics 

I knew towards the end of my studies in Utrecht that Jan was approaching new areas of 

investigation, that had to do with knowledge, belief, communication. It seemed all very 

interesting, but I had to write my thesis. A couple of years after my Dutch period, I met 

Jan at ESSLLI in Bordeaux, where he was teaching those things. Again, I found his 

lectures and explanations through code fascinating, and when I went back home, I decided 

to implement a MasterMind code breaker. 

In the game of Mastermind at every guess the player is returned the number of colors that 

are in the right position and the number of color that are present but not in the right 

position. This information can be used to build a sort of propositional logic formulas that 

will act as a filter on the possible states of the world. Formulas are for instance At 

(x, i) , meaning that color x is at position i , or In x meaning that color x should 

be present. Then formulas built from connectives. The eval function below takes a 

sequence of colors (a world) xs and a formula, and checks if the formula is true in that 

world 

eval String-> F -> Bool 
eval xs (At (x,i)) = xs! !i==x 
eva1 xs (In x) = x · elem · xs 
eval xs (Not x) = not (eval xs x) 

eval xs (And ys) = all (eval xs) ys 
eval xs (Or ys) = any (eval xs) ys 

Given a set of possible colors and a predefined length of the sequence to guess, the set of 

possible worlds is defined. 

Subsequent guesses are used as filters. Here is an example run of the code with possible 

colors [a, b, c, d, e, f] and sequence length 4: 



*Main> test "aacc" 

"Code: aacc" 

"Guess: abed" 

"Worlds:" 

1295 

"Outcome: (2,0)" 

"Val: v("(a0, bl, -c2, -d3, -c, -d], " (a0, c2, - bl, -d3, -b, -d], " (a0, d3, -bl, -c2, -b, 

-c), "(bl, c2, -a0, -d3, -a, -d], " [bl, d3, -a0, -cz, -a, -c], "[c2, d3, -a0, -bl, -a, -b)] 

" 
"Guess: abef" 

"Worlds:" 

95 

"Outcome: ( 1, 0)" 

"Val: v("(a0, -bl, -e2, -f3, -b, -e, -f], "(bl, -a0, -e2, -f3, -a, -e, -f), "(e2, -a0, -b 

1, -f3, -a, -b, -f], "[f3, -a0, -bl, -e2, -a, -b, -e]]" 

"Guess: aacc" 

"Worlds:" 

15 

"Success after 2" 

In the above, outcome : ( 2, 0) states that 2 colors that are in the right position and 0 

colors are present but not in the right position. This is encoded in the formula after Val: 

which uses prenex notation with v for or , " for And and - for not. For instance: 

v[" [b0, -a]," [ -e2, f]] 

Read: bis at 0 and a is not in the code, ore is not at 2 and f is in th 

e code 

The initial guess is always "abed". The set of possible worlds is initially 1,295 (61'4 - 1). 

The first guess gives two colors in the right position, and is translated in the formula in 

val . This formula is used then as a filter on the set of possible worlds and the program 

randomly guesses another color from the remaining set. In two iterations the code is 

broken. 

Conclusion 

19 



After my studies, I didn't find a job as a Haskell programmer. Actually when asked "what 

programming language do you you know?" I had a hard time explaining what Haskell was 

and that yes, I can program. However, when I met some of those who can program in the 

private sector, I often thought that they may benefit from learning some Haskell. I myself 

have used it sometimes also at work, but more than it, it's been useful to learn to see 

problems in their various components, in gaining an analytical view of the problem, and 

learning to design solutions that not only do work, but are also efficient and elegant. Under 

the guidance of Jan, learning Haskell has been an exciting, lively, always interesting 

adventure. 

Notes 

1. For instance mapping f on the free variables in qs returns the variable 

instantiations that satisfy the query . ....., 

2 . . . 
. Observe that rn the code, succ does not have the standard Haskell mcanrng. but 

is a term constructor for integers. '-' 



Unavoidability of Induction 

Kees Doets 

For Jan, at the occasion of his farewell 

1 

This began August 17th, 2014. 

In an episode of the Dutch TV series "Zomergasten", Tonica Smeets (professor scientific 

communication, Leiden University) presented a BBC production with Marcus du Sautoy 

on Euclid's theorem about the number of primes. 

The famous argument: whenever you have a finite list of (prime) numbers Pn , ... , P11 1 , 

none of them will divide the number rn -.c. l + rt. II P1 (the point of the construction 

being that all divisions have remainder 1) and, hence, no (prime) divisor of rn occurs on 

your list. 

Which inevitably entails the conclusion that the number of primes cannot be finite. 

2 

The exposition was meant for a general TV audience: it should be both watertight and 

simple. Simple it was, but (admittedly, sometime later) I observed a hidden use of 

induction. This becomes more conspicuous when asking the question: why should $m$ 

have any prime divisor at all? 

The answer is: search for the least number > 1 that divides it, by consecutively trying 

2, :3, 4, ... (In the worst case, this search goes all the way up torn itself if, by 

coincidence, this number happens to be prime.) Finally, a least divisor obviously cannot 

fail to be prime. 

So we used the fact that a certain non-empty set of natural numbers has a least element. 

And most of us know (cf. part 7): this is just an instance of induction. 



The intended audience will probably be unfamiliar with induction. (A first year math 

student at my first encounter, it took some effort before I got familiarized just a bit.) But 

what about this Least number principle? A least number in a clear-cut non-empty set of 

natural numbers - who of the many, watching TV on August 17th 2014, will have 

doubted its existence? And if such persons do not exist, is it within reason to call this 

cheating a little? 

3 

I wrote to Ionica. She dismissed my criticism by referring to the theorem on prime 

decomposition. OK, this well-known fact is teached at primary school. Nevertheless, in 

the given situation, this felt as overkill. 

4 

Perhaps I should have but I did not consider writing du Sautoy. Instead, I grabbed for van 

Eijck and Visser [1]. The first theorem in their book concerns the irrationality of v~- And 

-bingo!-the second one is Euclid's. The proof slightly deviating, but, nevertheless, there 

it was: least divisors exist. 

I wrote to Jan. He agreed there was a minor point here to make explicit. 

5 

Two years passed. The retirement of Jan was approaching and I mused about Doets and 

van Eijck [2] for some handhold. Was I surprised when I noticed Euclid not as second, but 

even as first theorem - be it on p. 102. However, the existence of least divisors was 

somewhat carelessly mentioned already on p. 4, thereby firmly closing full circle on yours 

truly. 

6 



Some serious answers came from an unexpected source. At some stage, I had told 

Krzysztof Apt about the apparent need for induction in proving Euclid's theorem. On one 

of his famous bicycle trips with fellow-mathematicians, Krzysztof mentioned this to Zofia 

Adamowicz. She informed us that things were more intricate when looked at in the setting 

of formalized arithmetic. 

Shepherdson Ct 2015) 1 showed long ago that induction for quantifier-free formulas doesn't 

suffice to prove the Euclid theorem. However, it isn't the existence of the least divisor 

which is the bottleneck here (although the induction uses a bounded formula). It is the 

existence of the number [L n Pi , or, at least, of large numbers with many divisors such 

as factorials. In the usual formalisation the only operations are those for successor, 

addition and multiplication. Others (exponentiation, factorial, ... ) have to be defined and it 

requires proof to show they are total. This is where more serious induction is required. 

Finally, Woods proved Euclid using induction for bounded formulas and the totality of 

;,r l0 ~(.r) , but his proof is very different from the usual one. 

7 

For completeness' sake, here follow the relevant forms of induction. 

The standard formulation: 

(Induction) If A is a set of natural numbers such that (i) O E= A and (ii) 

\/n C A(n • 1 C A), then A contains every natural number. 

Existence of the least divisor follows immediately from either of the following two 

equivalents. 

(Least number principle) Every non-empty set of natural numbers has a least element. 

(Termination) There doesn't exist an infinite descending sequence of natural numbers 

no > n 1 > n 2 > · · ·. 

Most of the six implications between these principles are easily proved. Equivalence of the 

last two is remarkable, as the first one is a second-order statement whereas the second one 

employs infinitary language. (The Axiom of Choice is involved, but that is a different 

story.) 

Only one of the implications requires a little trick: 



(Induction) implies (Least number principle): Assume that pis a set of natural numbers 

without least element. Assuming Induction, we will show it to be empty. 

Define (this is the trick) q - { n i \/rn < n(ni 1- P ) }. 

Note that Q and pare disjoint (a common element would be a least one of P). 

Thus, for p to be empty, it suffices to show that every number is in Q. Here is where we 

employ induction: 

First, 0 E= Q holds vacuously. Next, assume that n E Q. In order that n + 1 E Q, 

choose any ·,n < n + 1; we have to show m fl- P. 

Since n i < n + 1, we have either rn -- n or n1. < n. In the first case, the required 

rn rf: P follows because of n ,f- P, in the second case this follows because of n E Q. 

8 

Krzysztof Apt sent me the paper [3] that lists a wealth of 147 references on Euclid's 

theorem. However, induction isn't the issue here. (Nor, I suspect, is it in any of these 

references.) It is the remarkable and unexplained fact that nearly all of them are 

historically incorrect in stating that Euclid's is among the earliest proofs by contradiction 

(that derive a contradiction from the negation of what has to be proved; in this particular 

case: that only finitely many primes exist). 

Krzysztof also observed that, if N is any natural number, the least number :> 1 that 

divides N! + 1 will be a prime greater than N (which, accidentally, is -< N! + 1 ). 

Obviously, this immediately shows there are infinitely many primes. 

Notes 

1. http: / /www-groups.dcs.st-and.ac.u k/history/Biographies/Shepherdson. htm I ...., 
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From Zero to Logic in Haskell 

Malvin Gattinger 

My first contact with Jan and Haskell coincide. At the beginning of my second year as a 

Master of Logic student I took his course "Functional Specification of Algorithms" . 

My previous programming experience had been completely outside universities. 

Moreover, it was mainly in PHP which you might call the opposite of Haskell. Not just 

imperative and stateful as hell, but with so many weird parts that there are dedicated 

forums to make fun of them. Maybe this is why I usually did not think about connections 

between my interests in mathematics and computers. 

Jan easily changed this and showed me a way to merge logic and programming. The final 

blow to my imperative upbringing happened towards the end of the course. Jan gave a 

short introduction to DEMO, the epistemic model checker. Since then my favorite 

example of how well Haskell accommodates logic is the comparison between 

mathematical definitions as we write them in a paper and their implementations. For 

example, consider the syntax of Public Announcement Logic (PAL): 

This can be easily translated to a new data type: 

type Prop= Char 
type Agent= String 
data Form= Top I P Prop I Neg Form I Con Form Form I K Agent Form I Ann 
Form Form 

The symmetry continues when we interpret the language. Here is the standard truth 

definition for PAL, saying when formulas are true in a pointed model: 



A1. 'W F ·1 

}vt ,w p== p 

,:---'.'> ahvays 

¢::;· p C: V(w) 

< > not J\!f 1 w = ~h A!f , w 1- ,</) 
iv1 , w F </J 1\. ~:,, 

/v1, w p== K i¢ 

,/\,t l w I l ! <;)] ·I/) 

¢::::, .,.\,f , w p== c/> and .;\,t , IL' F 1J; 

How do we write this in Haskell? First we need a definition of models. 

type World= Int 
data Model= Mo {worlds 
->World-> [World)} 

[World], val World -> [Prop], rel Agent 

Now the semantics given by i- above can be written as a function from pointed models 

and formulas to booleans. The helper function ! implements the update from ;\11 to 

.. (Model,World) -> Form-> Boal 
(_,_) Top = True 
(m,w) (Pp) = p elem · (val m w) 
(m,w) (Neg phi) = not (eval (m,w) phi) 
(m, w) (Con phi psi) = eval (m,w) phi && eval (m, w) psi 

eval 
eval 
eval 
eval 
eval 
eval 
eval 

(m,w) (Ki phi) = and [eval (m,v) phi I V <- rel m i w) 
(m,w) (Ann phi psi) = eval 

( ! ) : : Model -> Form -> Model 
(!) m phi= m 

(m,w) phi<= eval (m ! 

{worlds= filter (\w -> eval (m,w) phi) (worlds m) 

phi,w) psi 

, rel= \i w -> filter (\w -> eval (m,w) phi) (rel mi w) } 

This minimalistic toy variant of DEMO can be used as follows: 



\lahrn 

myMolleJ. 
myMocle1 

myval 
myval 
myrel 
myrel 
myrel 
myrel 

.. Model 

= Mo [ l , I. ] 

= "pq" 

= "p" 

''Anne" fJ = 
"Anne" l = 
"Bob" 0 = 
"Bob" = 

myval myrel where 

[ n , l ] 

[ ,. , l ] 

[OJ 
[ 1) 

A> s I (myModel,0) (K "Bob" (P 'q' )) 

True 
A> vu (myModel,0) (K "Anne" ( P 'q' )) 

False 
A> , d (myModel,0) (Ann (P 'q' ) $ K "Anne" (P 'q' )) 

True 

Why would you want to use anything else to implement Logics and model checkers? 

eval : : (Mode1 , World ) -> Form -> Bool 
M, wt·T 
i\.1,w l= p 
M,w l=-.<f, 
M,w f= ¢ /\'IJ, 
,M,w F I<•¢ 
M ,wl[!~lw 

.::::, always 
¢c;> p E V(w) 
q not .M , w <= ¢ 
# M , w I:= ¢ and 
# i:/v ,...,; w : M, t ' F <I> 

¢":· M , w r ¢ w) 

Given this background, I often look at new definitions of semantics for a new logic and 

immediately wonder what they would look like in code. Can we easily translate all logics 

and their semantics to Haskell? Of course not. The language is more restrictive than 

mathematical notation, but this can be seen as a feature. When I started to implement the 

Logic of Agent Types and Questions from Liu & Wang 2013 one obstacle was this 

definition (adapted from page 138): 

The intended meaning of ;!,, ]<P is "No matter how agent a answers the current question J.L, 

<h will be true afterwards." On the right side of the definition we quantify over all formulas 

to represent all possible answers . But of course we can not run through infinitely many 1h 
in an implementation that should ever be run (and finish) . But in this case there is an easy 

way out: The logic only formalizes binary questions Jl, so the only relevant answers are 

equivalents of /1· and 1/L. Thus we do not actually care about all formulas , only those two, 



and the logic can still be implemented easily. 

One of the things I learned from Jan is that in situations like this we can realize that 

implementation is not a one-way street: we might as well go back and change the 

definition that we wanted to implement (and this is actually what (Liu & Wang 2013) 

already do implicitly on page 138). Haskell thus prevents us from defining something in a 

non-computable or non-constructive way if there is no real reason to do so. 



Normative Notions by Colored Actions 

FengkuiJu 

Jan is a very nice professor. I would like to thank him for all the kind help to me and my 

family. I wish Jan all the happy things. I also hope that he could visit Beijing again some 

day with his family. 

Jan and I like a semantic setting: labeled and colored transition systems with preference 

among colors. I design a language to talk about this semantic setting. In it, a few 

normative notions can be defined. The semantics is from our previous joint work. 

1 Language 

Let /,_: be a natural number and (_,' - { c0 , ... 
1 

c1,;} a set of k + 1 colors. Let ~ be a 

reflexive and transitive order on C- c i ~ CJ indicates that Cj is at least as good as ci . Let 

-< be the strict version of ~ - Ci -< Cj denotes that CJ is better than c; . Conceptually, one 

has preference among colors and ~ is its preference. 

Let TT0 be a finite set of atomic actions and a range over it. Let <T>o be a countable set of 

atomic propositions and p range over it. Let i range over the set { 0
1 

• • • , k }- Define 

mutually recursively a set TT XL of actions and a set if>xL of propositions as follows: 

··- id {n;o) (n ,J o) 
,. 

¢? O'. .. a 0 a 

9'> :: - p T Cj ,¢ ( <.i> /\ ¢) X</-> (0U¢) A o¢ 

Doing id is doing nothing. Doing ii is refraining from a. The reading of the featured 

formulas is as follows: 

1. l": the next transition has the color c1. 

2. X (1~ : <;) will be the case in the next moment. 

3. (0F1b): (/>Will be the case until '1/'. 

4. A rt</>: no matter how the agent will perform o, q'J is the case now. 



Note that ~!> in A n c/> might contain temporal operators and ~.:> being true now might mean 

something else being true in the future. 

Here are some derivative expressions: 

1. 1 :== a 0 U · · · 1_, an U id where II0 

basic action. 

2. Fcp := c- u ¢ ): (')Will be the case. 

{ a.0 1 
•• • , a 11 } : doing it means doing a 

3. G<b := -F-, c;~: ~~ willa/waysbethecase. 

4. D¢ :-- F( ,XT /\ d.> ): c/>will be the case at the end. 

5. E0 (/J : = - Ati -,<fJ : the agent has a way to perform o: s.t. <:·) is the case now. 

6. : a:¢ :-- A 11 D¢: no matter how the agent will perform 0:, </> will be the case after o: 

is done. This is the classical box modality. 

7. {a )<f>: ······ E
0

D¢ : the agent has a way to perform o: s.t. <h will be the case after er is 

done. This is the classical diamond modality. 

8. C </J := Ei- ,f the agent has the ability to make <h true now. 

<h in C cb might also contain temporal operators and making <h true now might mean 
' . 

making something else true in the future. In reality, when we say that someone has the 

ability to make something true, we usually mean that he has the ability to make it true in 

the future. 

2 Models 

Let C and :5 be specified as before. ~U! = ( nr, { Ra I a E II0 } , Riel , C\ :5 , a , V ) is a 

model if 

1. Hl is a nonempty set of states 

2. Ra C l-V x lVforanya E n o 

4. a is a function from R to C where R ··, LJ { R, I a, E IIo } U Rid 



5. V is a function from <T> 0 to 2 'F 

For any transition ( w: u), CT ( w
1 
u) is called the color of it. We say that (w, v) is at least 

as good as ( w, u) if CT( w 1 u) :5 a(w, v), and ( 111; v) is better than (w, u) if 

a-( w: u) -< a-(ui, v). Note that the preference order concerning colors is the same in all 

models. 

Let lV be a state. For any u s.t. ( U\ it) E R, ( w: u) is a best transition from w if there is 

no v s.t. ( w 1 v) E: Rand er( w, v) '::- a( w, u), and ( w, u) is a worsttransition from w 

if there is no v s.t. (w,v) C Rand 0-(-11.,1, v) -< a(w,u). Best/worst transitions are 

relative notions. 

A finite sequence Wu .. . w 11 of states is called a path if Wu R . .. Rwn. Specially, lV is a 

path. A path Wu .. . W1, is legal if for any i < n, ( w;, w 1 , 1 ) is a best transition, and evil 

if for any i < n , ( lL' i, w 1 ., . 1 ) is a worst transition. Trivially, w is a both legal and evil 

path. 

(continued on next page) 
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Normative Notions by Colored Actions 

Fengkuilu 

(continued from previous page) 

3 Normative Notions 

Recall that C - { c0 , .. . , CJ.·} is a set of k + 1 colors. For any i < k, let 

il ~~ -- { c j CJ >- ci} and il~ ·-- { c j Cj -< ci'}. In an intuitive sense, V ilr;, , the 

disjunction of the propositional constants in il;' , says that the color of the next transition 
I 

is better than the color Ci . , Vil ~~ says that the color of the next transition is not better 

than c; . , V il~'. indicates that the color of the next transition is not worse than c; . With 

the path quantifier A and the special action 1, we can express best/worst transitions: 

1. b : -:: ( ru /-. A 1 , V il~
1

) V · · · \ i ( r;,. .1\ A 1 , Vil,~.) : the next transition is a 

best transition. 

2. ll1 : ••· ··· ( l"o /\ A 1 ·Vil;~) V · · · V ( CJ..- /\ A 1 , Vil~-~ ): the next transition is a 

worst transition. 

The following three constraints offer the language the power to express best/worst 

transitions: 

1. there are only finitely many atomic actions; 

2. there are only finitely many colors; 

3. the preference order among colors is the same in all models. 

X r -+ 6 says that the next transition is a best one if it exists and X i -+ 11.1 that the next 

transition is a worst one if it exists. Fix an action a: and a proposition ~~- Some meaningful 

things about o: and </, can be expressed by use of the ingredients from the sets { A , E}, 
{G, F}, {XT -r b, X T-,, m} and { ,, .!\ -:- }. 

.n 



One of them is E0 ( G ( X T -t b) /\ cf,>). It says that there is a legal path of Cl: s.t. (/) is 

true at it. This in some sense means that the agent is permitted to do er to make <;) true. It 

can also be read as that the agent can legally do a: to realize ~•). Define P() 9'J as 

E 0 ( C (X - ~ b ) 1\ ¢ ). Quite a few normative notions can be defined in terms of A, 9'J 

l. Po := P0 I : the agent is permitted to do a: . 

2. P1) : = P1 • q): the agent is permitted to make ~h true. 

3. F 0 </> := - P ,. q): the agent is forbidden to do ct to make <;) true. 

4. F C¥. : = F,_ 1 l : the agent is forbidden to do a: . 

5. F e/>:= F 1 - cf>: the agent is forbidden to make </> true. 

6. 0 ,) <}J : = , P1 , ,</> /\ - P6 : : the agent is obligated to do a: to make <f> true. 

7. On := 0 0 · : the agent is obligated to do o . 

8. 0 </> := 0 1 . c/>: the agent is obligated to make c/> true. 

In an intuitive sense, what follows is the case: 

l. one is permitted to do a to make (;) true implies he is permitted to do ex and he is 

permitted to make c.ii true, but not vice versa. 

2. one is forbidden to do 0: to make 9) true does not imply he is forbidden to do 0: and 

does not imply he is forbidden to make d> true either. 

3. one is obligated to do Ct to make d> true implies he is obligated to do o: and he is 

obligated to make c;'J true, and vice versa. 

As the triple negation of P(1 ¢, the formula , P
1

--., ,d> is read as this: the agent is forbidden 

to refrain from ex to make ~6 false. It does not imply he is forbidden to refrain from o:. It 

does not imply he is forbidden to make ~6 fa lse. Therefore, , P;-; ,c;'J does not mean that 

the agent is obligated to do et to make ~b true. 

Implementation 



-- Th:Ls is lliY fi.rst Haskell code. Given a regular acti.011, .it can generate 
the set of computation sequences of it. I got a lot of fun from his Hask 

ell course . 

module For_Jan where 

import Data.List 

data Action= Ato Integer 
Com Action Action 

I Cho Action Action 
I Sta Action 
deriving Eq 

a ,b,c,d Action 

a = Ato 
!} = Ato 
C = Ato ? 

d = Ato 

instance Show Action where 
show (Ato 0 ) = !lat! ; 

show (Ato 1. ) = " b" ; 

show (Ato 2 ) = "c " ; 

show (Ato ' ) = "d" ; 

show (Ato n) = 'a' show n 

mer [ [Action]] -> [[Action]] 
mer X y = [s ++ t I s <- x, t <-

ite . . [[Action]] -> [[Action]] 
ite X = union X (mer X (ite X)) 

cs Action -> [ [Action]] 
cs (Ato n) = [[(Ato n)]] 
cs (Com X y) = mer (cs x) (cs y) 

-> 

y] 

cs (Cho X y) = union (cs x) (cs y) 

[[Action]] 

cs (Sta x) = union [ []] (ite (cs x)) 
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An Exercise in Exercises 

Paul Klint 

Abstract 

It is well know that a student learns best when he or she directly applies the knowledge 

that has been presented by teacher or textbook. Interactive, computer-based, exercises 

have the potential of even better delivering on this promise since they can be offered, 

checked and repeated anytime at the convenience of the student. However, designing and 

implementing interactive exercises is difficult and it is not simple to make them both 

educational and entertaining for the student. I describe an experiment-in the context of 

the Rascal meta-programming language-in creating a domain-specific language for 

authoring interactive exercises. 

This short note is dedicated to Jan van Eijck on the occasion of his retirement. Since Jan is 

a teacher at heart, he knows that exercises are essential for education and he may 

appreciate this effort to achieve simpler authoring of interactive exercises. 

Teaser: even random testing plays a role here! 

Jan thanks for our many, pleasant, interactions over the years. 

Requirements 

As every software engineers knows, starting with requirements is a solid way to embark 

on a project like this. So let's begin to write them down: 



Rl 

R2 

R3 

R4 

RS 

R6 

R7 

Description 

The effort to describe an exercise should be small. 

Exercises should be reused as much as possible. Possibly by randomly 
generating exercises from a given template. 

Once a student has filled in an answer to an exercise, it can be automatically 
checked. 

When a student enters a good answer, it is rewarded with positive feedback. 

When a student enters a wrong answer, the error is explained and the student is 
encouraged to make a new attempt. 

Two categories of questions should be supported: knowledge questions and 
source code questions. 

To make exercises more entertaining, different styles of questions should be 
supported. 

Design 

How to design a system that satisfies these requirements? Our approach will be to create a 

small domain-specific language (let's call it EDL for Exercise Description Language) that 

supports generation of random exercises (Rl, R2) in various styles (R6, R7) that can be 

checked automatically (R3). No particular attention will be given here to (R4, RS) but they 

are handled by the implementation of EDL. I will present the following question 

categories: 

• Multiple-choice question: the student has to select one (or more than one) of the 

choices that are presented. 

• Fill-in-the-hole question: an incomplete source code fragment is presented and the 

student must complete it. 

• Move code question: place given source code fragments in the right order. 

• Click-all-cases question: a text is presented and the student must click on all 

occurrences of a text with a certain property. 

• Reorder question: a number of sentence fragments must reordered to form correct 

sentences. 

Multiple-choice questions 



The multiple-choice question is the prototypical interactive exercise and presents a 

number of choices to the student. Each question starts with the keyword question and 

an introductory text. Each question ends with the keyword end . Our description of this 

multiple-choice questions consists of a number of choices, where each choice (indicated 

by the keyword choice ) states whether it is correct or not ( y or n ), the actual text of 

the choice, and an additional explanatory text; 111 is used as separator. 

question Which means of transportation is faster: 
choice n I I I Apache Helicopter I I I The speed of an Apache is 293 km/hou 

r 

choice y I I I High-speed train I I I The speed of a high-speed train is 5 
70km/ hour 

choice n I I I Ferrari F430 I I I The speed of a Ferrari is 315 km/hour 
choice n I I I Hovercraft I I I The speed of a Hovercraft is 137 km/ hou 

r 

end 

This will be presented to the student as follows : 

Question 1 

\Vhich means of transporta tion is faster: 

Apache Helicopter 

High-speed train 

Ferrari f 430 

Hovercraft 

I Check It 
l 

Fill-in-the-hole questions 

A fill-in-the-hole question presents a text to the student and asks to fill-in missing text. 

This can range from the answer to a simple arithmetic question (e.g. , 2* 3 == ? ) to 

filling-in statements or declarations in a source code fragment. The general pattern is 

either: 



• A single equality. Here there are two subcases: 

o An equality in which a single hole occurs on the right-hand side, e.g., 2 + 3 

? . 

o An equality in which a single hole occurs that is nested in the left-hand side or 

right-hand side of the equality, e.g. 2 + ? == s . 

• A code fragment that contains one or more holes followed by a number of tests. After 

filling in the holes, all tests should pass. 

Fill-in-the-hole: single equality 

The general idea is not to write a separate exercise for each possible case, but to write an 

exercise template from which all cases can be generated. Let's consider an exercise for 

rehearsing multiplication on numbers: instead of defining exercises for a large 

combination of arguments and describing the outcome for each case (e.g., 1 * 1 == ? , 

2 * 3 == ? , and so on, where ? marks the answer to be filled in by the student) we 

write a single template 

$gen(int, A) * $gen(int, B). 

EDL can be best understood as a macro language to generate text where directives starting 

with $ indicate generation-time expansion/computation actions. The abovetemplate can 

be read as follows: 

1. $gen(int, A) : Generate a random integer and bind it to A . 

2. $gen (int, B) : Generate another random integer and bind it to B . 

3. We are therefore looking for a value that is equal to A* B . 

4. Create an exercise consisting of a test function containing the following equality test: 

i. the value of A , 

ii. a multiplication operator ( * ), 

iii. the value of B , 

iv. an equals operator ( == ), 
v. a text entry field for the answer ( or ? in this text). 

Although this could generate the above exercise example, it will also generate exercises 

that are less suited for a beginner such as 1730304988 * 982060868 == ? . This 

illustrates that we need a slightly more sophisticated type system to specify an interval of 



integers ( e.g., int [2, 5 J to denote an integer in the interval $[2,5]$) or the size of lists or 

sets ( e.g. not only list [int J for an arbitrary length list of integers but also list [int, 

2, 5] to denote lists of integer of length in the interval $[2,5]$). 

Without further ado, we can now show the complete specification of a multiplication 

exercise: 

question Replace the text box by the result of the multiplication and mak 
e the t est true: 

expr multiplication $gen(int[2,5],A) * $gen(int[2,5],B) 
end 

The keyword expr indicates that we are looking for the value of the given expression 

and multiplication is the name of the test that will be generated. 

Here is a screen shot showing how this question will be presented to the student: 

Question 2 

Replace the text box by the result of the multiplication and make the test true: 

module Question2 

tes t bool mu l tipl icat i on( ) = 
4 * 6 == 1 : 

Each question is presented as a self-contained Rascal module (possibly containing imports 

and declarations of auxiliary functions or datatypes) that can also be executed outside the 

tutoring environment. Also observe that even this simple exercise is framed as a test 

function, which is in Rascal a Boolean function prefixed with the keyword test .
1 

There are cases where even more control over the generated values in an exercises is 

needed. A case in point is an exercise for set intersection (in Rascal denoted by & ).A 

naive approach would be to write: $gen ( set (int], A) & $gen ( set [int], B) , but due to 

the random generation of the set values A and B , there is a high change that these sets 

are disjoint and that the answer of the exercise is in most cases the empty set. A more 

sophisticated approach is as follows: 

,10 



$eval($gen(set[int]) + $gen(set[int],B)) & $eval($gen(set[int]) + $use(B) 
) . 

This introduces two new features: $eval evaluates its argument and yields its value, 

while $use inserts the value of a generated variable. We can read the above recipe as 

follows. First consider the part left of the intersection operator & : 

1. $gen(set[int]) : no variable is included, therefore generate an (anonymous) set 

value; 

2. $gen ( set[int], B) : generate set value B ; 

3. $eval($gen(set[int]) + $gen(set[int],B)) :computetheunionof A and B 

by evaluating the text consisting of the first set value, the symbol + (the set union 

operator) and the set value B . 

4. The result is a set value, call it L . 

For the right operand of & a similar story holds: 

1. $eval( $gen ( set[int]) : generate another (anonymous) set value; 

2. $use(B) : reuse the previously generated set value B . 

3. $eval ( $gen ( set [int]) + $use ( B)) : evaluate the text consisting of the generated 

set value, the symbol + and the set value B . 

4. The result is set value call it R . 

The exercise as a whole is now L & R , where we know (by construction) that L and 

R have the set value B in common thus guaranteeing a "more interesting" answer to 

the exercise. 

Here is the complete description of the set intersection question: 

question Replace the text box by the result of the intersection and make 
the test true: 

end 

expr setrntersection $eval($gen(set[int]) + $gen(set[int],B)) & 

$eval($gen(set[int]) + $use(B)) 

And here is a screen shot of the end result: 



Qiiestion.3 

Replace the text box by the result of the intersection and make the test true: 

modul e Question3 

t est bool setlntersection() = 

{-84,57,-87.74.-44.77.56} & {-85.31.-71,92,-87.74.-44.77,56} == r · 

Fill-in-the-hole: source code 

The single equality question is a degenerated case of a source code question. A simple 

example is the case where a function name has to be inserted in a given code fragment: 

question Replace the text box by a function name and make the test true: 
prep import List; 
expr listFunction $answer(size)($gen(list[int][1,10])) 

end 

Here $answer (size) defines the required answer (needed for checking the answer) but 

is replaced by a text box when presented to the student: 

Question 4 

Replace the text box by a function name and make the test true: 

module Question4 
import List; 

test bool listFunction() = 

((80, -53, -92, -19, 58, -46, -25, 7, 8, -12]) -- 10 ; 

The general case (not illustrated here) is arbitrary source code that contains a number of 

holes to be filled in. The source code should contain one or more test functions2 to assert 

the correctness of the answers provided by the student. 

Move code questions 

1') 
<, ·/ 



The idea of a move code question is to present a number of source code fragments and to 

ask the student to place them in the correct order with correct indentation. We illustrate 

this with a simple function to print a table of squares: 

question Create a function to print squares by placing all code fragments 
in the grey box in the right order with the right indentation: 

movable 
voidsquares(int n){ 

println{"Squares from 1 to"+ n); 

for(int i <- [1 .. n + 1]) 

println(i +"squared="+ (i * i)); 

} 

end 

The keyword movable defines this as a move code question and the fragments are 

separated by lines of dashes (when the dashes are missing the code is automatically split in 

2-line fragments) . The result look as follows : 

Queslio11 S 

Create a function to print squares by placing all code fragments in the grey box in the right order with the 

right i.ndentation: 

Check It 

for(int 1 <- [1 .. n + 1]) 

println ( i +•squared•" • (i * i)); 

println( "Squares from 1 .to " • n); 

void squares(int n){ 

To make this kind of question more challenging, one or more "decoy" fragments can be 

defined that should not be used by the student: 



question create a function to print squares by placing all code fragments 
in the grey box in the right order with the right indentation (and avoid 
decoys!): 

movable 
void squares(int n){ 

println( 11 Squares from 1 to 11 + n); 

for(int i <- (1 .. n + 1]) 

} 

decoy 
i = 0; 

println(i + 11 squared= 11 + (i * i)); 

i += 1; 

println(i + 11 squar ed= 11 + (i + i)); 
end 

With the following result: 

Question 6 

Create a function to print squares by placing all code fragments in the grey box in the right order with the 

right indentation (and avoid decoys!): 

Check It 

Click-all-cases questions 

void squares(_int n ){ 

i += , ; 

printl_n{i • " squared= " + {i * _i)) ; 

pr1ntln("Squares from 1 to• _+ n); 

for{int i <- (1 .. n • 1]) 

i = 0; 

println(i +·squared=" • (i + i)); 

l 1 



A dick-all-cases question presents a text to the student and the exercise is to click on all 

text fragment with a certain property, such as "is an identifier", "is a type", "is a bug" and 

the like. Each clickable area is marked with $click( . . . ) in the question description: 

question Click on all identifiers in this code fragment: 
clickable 
$click(x) = 1; 
if($click(x) ){ 

$click(y) = $click( x) + 2; 
} 

end 

This is how the question will look like: 

Question 7 

Click on all identifiers in this code fragment: 

X = 1; 
if(x){ 

y = X + 2 ; 
} 

i Check It 

Reorder questions 

A reorder question presents two columns of sentence fragments and the student is asked to 

reorder the fragments until they all form true statements. In the question description the 

true statements (starting with the keyword fact ) are specified and they are presented to 

the student in random order. 

question Reorder the following items and make all statements true: 
fact [1,2,3] I I I is a list[int] 
fact {1,2,3} I I I is a set[int] 
fact 123 I I I is an int 
fact "abc" 111 is a str 

end 



It is presented as follows : 

Questio118 

Reorder the following items and make all statements true: 

12 3 

[ 1 , 2, 3 J 

{1,2,3 } 

"abc " 

01eck It 

Implementation 

is a list[int] 

is a str 

is an int 

is a set[int] 

EDL has been implemented as part of Rascal's Tutor, an interactive documentation and 

teaching system. An EDL description is implemented using Rascal, HTML and Javascript: 

the EDL description is translated by a Rascal module to HTML+ Javascript and exercise 

checking is done by callbacks to another component in Rascal. The version as described 

here is a technology preview and is not yet available in the standard Rascal distribution at 

the time of writing (but this may very well be the case at the time of publication). 

Conclusions 

The ideas presented here represent work-in-progress and no formal evaluation has been 

done to assess the effect of this style of exercises on learning. We can, however, go back to 

our original requirements and evaluate how well we have done: 



Description 

The effort to describe 
Rl an exercise should be 

small. 

Exercises should be 
reused as much as 

R2 
possible. Possibly by 
randomly generating 
exercises from a given 
template. 

Once a student has 

R3 
filled in an answer to an 
exercise, it can be 
automatically checked. 

When a student enters a 

R4 
good answer, it is 
rewarded with positive 
feedback. 

When a student enters a 
wrong answer, the error 

RS is explained and the 
student is encouraged to 
make a new attempt. 

Two categories of 
questions should be 

R6 supported: knowledge 
questions and source 
code questions. 

To make exercises more 

R7 
entertaining, different 
styles of questions 
should be supported. 

Assessment 

Achieved. EDL has been designed to provide a 
dense but readable question description. 

Achieved. Random value generation is a built-in 
feature of EDL. 

Achieved . All question categories have been 
designed with automatic checking in mind. Open 
questions, for instance, have not been included. 

Achieved but not described. Occasionally, a Zen 
proverb is presented as reward. ("No snowflake 
ever falls in the wrong place.") 

Achieved. A diagnosis of the wrong answer is 
given. Optionally, the exercise description can 
provide extra feedback. Occasionally, a Zen 
proverb is presented as encouragement. ("After 
climbing the hill, the view will be excellent.") 

Achieved. This is achieved by the various question 
categories. 

Achieved. This is already achieved by the various 
question categories but more categories can be 
considered to increase variation. 

There are several systems around that offer interactive programming exercises. In most 

cases, the student is provided with a general editing pane to enter his/her answer. In my 

experience this is a major obstacle for beginning students since they are not aware of the 

syntax and typing rules of the language they are learning ( obviously!). The question 

categories proposed here assume minimal knowledge and present canned source code 

fragments that only have to be completed or rearranged by the student thus avoiding many 

beginner's pitfalls and traps. 

·l7 



The ideas as presented here will be included in future releases of the Rascal language. 

This paper is accompanied by a small screen cast that gives an impression how to answer 

the example questions discussed here. 

Notes 

1. /\ lihough we will not illustrate this here, the full power of random testing is 

avai !able while ,vriting and running exercises: a test may have formal parameters and 

these will get random values assigned for each execution. By default, a random test is 

executed 500 times. _, 

2 . Even full random tests as observed before . ...., 

1•> 



From principles to practical pigeon 
protocols 

Barteld Kooi and Rineke Verbrugge 

Dramatis personae: 

Jan van Eijck 

Hans van Ditmarsch 

Barteld Kooi 

Rineke Verbrugge 

Yanjing Wang 

Setting: neomedieval Amsterdam. After the calls of Jan van Eijck to reduce carbon 

emissions and energy consumption, the world has gone back to using only sustainable 

energy and technology [7, 3, 6]. Air travel is only allowed with hot air balloons. Only 

sailing ships are allowed on the oceans. The Internet has collapsed. Scientists are 

struggling to maintain their international networks. Many logicians have flocked to 

Amsterdam to be able to continue collaborating. 

Google still provides the fastest communication possible, because it has been converted 

into the largest carrier pigeon company in the world. The range of Google pigeons is 

limited and they often lose their way or are shot down with bows and arrows for 

consumption. 

In the city center, Barteld Kooi and Yanjing Wang are working on a new logic with which 

PCP (Pigeon Communication Protocols) can be verified (cf [B, 4)). 

Yanjing: This is fascinating stuff. Who would have thought that such simple technology 

could lead to such deep logical insights. I wonder whether anyone has worked on this 

before? If only we could search the library quickly. 



Barteld: Indeed! Last time I spoke to Jan and Rineke, they were heading to CWI where 

they are trying to get a computer to run. Perhaps they succeeded and can actually consult 

the library catalogue. 

Yanjing: How would they get a computer to run? You need electricity for that and the only 

way to generate it is by hooking up a bicycle to a generator. Only very few people are 

prepared to bike fast and long enough to be able to use a computer. 

Barteld: What I heard, is that they sent a pigeon to Nancy to invite Hans to make an 

important contribution to this project. He may have arrived. Let's send a pigeon to Jan and 

Rineke and ask whether Hans has arrived. 

Yanjing: It's worth a try. I'll send them a pigeon. 

Barteld: Good. But I propose that we use a protocol for sending pigeon messages, how 

about something like this-and let's send this protocol in our pigeon message too, together 

with our question about Hans: 

Sender 

Receiver 

i:=O; 
while true do 

begin read Xi ; 

send xi 

until l(sK n(:ci) ; 
send '' K s l{R(J;i )'' 
until l(s· KnKs l(R(xi ) ; 
i:=i+1 

end 

n 



when K n(x0 ) set i := O; 
while true do 

begin write(;ri ); 

send '' l<n(x.;) '' 
until K RI<s l(R(:ri) ; 
send '' J( n}<s K n(.'Di) ' ' 
until I<n(:ri+1) ; 
i:=i+1; 

end 

Yanjing: Yes. That should do the trick, because the Google pigeon service comes with a 

guarantee of fairness and no other errors than deletions, and those only happen when 

pigeons get lost or shot. 

Barteld: So, there it goes, our first pigeon message to Jan and Rineke. Godspeed! 

Figure 1: White carrier pigeons in The Netherlands 

An hour later, at CWI: 



Rineke: Look, Jan, a pigeon has just flown into your window. It has a message for us. 

Barteld and Yanjing ask us whether Hans has arrived yet, and they also propose an 

"original" pigeon communication protocol for us to use, which they dub PCP ... Mmm, to 

me it looks suspiciously like good old protocol A by Halpern and Zuck [2], which I teach 

my students every year. 

Jan: Barteld and Yanjing should know. These thirty- and forty-somethings have become 

so used to looking up everything on the Internet instead of remembering the literature, 

unlike us fifty- and sixty-somethings. I'm happy for my daughters that their generation is 

developing good memory and other skills again. 

Rineke: A downside is that this PCP communication is really inefficient: it would take 

four messages just to get this 4-way handshake thing going. 

Jan: Yes, and it's common knowledge that this protocol will never lead to common 

knowledge [5]. At each point in time, only E" 'P for some n E N, n > 1 is achieved, 

where ((J is "at least one message was delivered". 

Rineke: I have a suggestion for our pigeon posts. For an infinitary epistemic proof system 

[l],wehave {En,p n (: N, n 2 l} I- Crp.Nowweonlyneedthepigeonstofly 

twice as fast in every new round as in the previous one; the first round takes one hour, the 

second round half an hour, and so on, ad infinitum. Summing the series, after two hours all 

the { E 11 ¢ j n E N, ·n 2: 1} are achieved, whereby C q'> holds. 

Jan: If you want to try to make the pigeons do that, be my guest. But it doesn't sound 

sustainable to me. 

Three quarters of an hour later, Hans arrives at the CWI on his bicycle, all the way from 

Nancy. 

Hans: I was almost hit by a pigeon, flying about 300 miles an hour. 

Rineke (looking guilty): Really? 

Jan: I have a much better idea. let's all bike to the Vondelpark and meet Yanjing and 

Barteld there. Live. Hans, I hope you aren't too tired to bike some more? 

Hans: Of course not! But first a cup of black coffee, please. 

An hour later, all five researchers are sitting around in a circle in the Vondelpark. Some 

pigeons are sitting in their midst, looking exhausted. 



Jan: Dear friends, now this is clearly the best way to create common knowledge, sitting in 

a circle, looking one another deep into the eyes ... Who's in for some meditation practice? 
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Alain Badiou plays the game of Set 

Bert Lisser 

Push the button Start Truth Procedure. Drag some symbols into the intuition so that the 

intuition becomes a truth. Badiou calls such an action a truth procedure. After the intuition 

has become a truth the intuition lights up, you receive match points, and the accepted set is 

displayed in the history panel. After clicking on the intuition this will be empty again and 

a new truth procedure can be started. The purpose of this game is to obtain the highest 

possible score. The button restart starts a new game and reset resets the existing game. 

In this case the set of symbols which transforms an intuition into a truth are the symbols 

placed on the three cards which form a set. (see Game of Set")) . 

Alain Badiou is a French contemporary philosopher. His key concept is event. Events arise 

in a situation (art, love, politics, or science). An event happens often unexpectedly and is 

in first instance unexplainable. An event must be first recognized by a subject. This subject 

have the choice of ignoring this event or accepting this event. In the later case a truth 

procedure will be started in the hope this event becomes a truth. For the definition of truth 

he turns to mathematics, specially set theory. 

For simplicity the term event is here replaced by intuition, situation is replaced by mind, 

factors is replaced by symbols. 

Dear Jan, success with your future work in philosophy and mathematics. 



Interactive Reasoning (paper version) 

~tefan Minica 

Abstract 

The paper will present DEMO_S5 interactive code together with its personal/historical 

context and code for visualizing interactive logical reasoning tasks in games. 

From Prisoners and Lightbulbs to Epistemic 
Probability 

My first memories of Jan go back to ... 

RUNTIME ERROR: "MEMORY OVERFLOltJ" 

your program has run out of memory 
stack trace below: 

iw!e f 1nu.l is not a function at { 1 l!( L c ul uwn ., . 

' This is an automatically generated message 
For further details µlease contact the maintainer of this package ' 

Sorry about that, ... Obviously, I should have used a pure function . Let me start over ... 

My first memories of Jan go back to the years spent as a Ph.D. student ... 

TIMEOUT ERROR: "THIS REQUEST HAS TIMED OUT'' 

{moved permanently 30' , redirecting ... ) 
your program has run out of time 
stack trace below: 

too much time has passed since the last request at (line 11 , col 11 2 ) 

--This is an automatically generated message. 
- -For further deunls please contact the maintainer of this packaoc 

Sorry again ... I might have used an async call ... Let me refresh and try again .. . 



Minicil 

My first memories of Jan go back to the years spent as a Ph.D. student at University of 

Amsterdam starting from 2007 .. .. 

FORMAT ERROR: "YOUR CODE USES THE WRONG FORMAT" 

(unrecognized syntax . , .) 

your program has encountered an unparseable token 

stack trace below: 
You should never use code in a paper format 
implementation is not meant for reading (line ?J , column 

- - n1is is an automatically oe11era t ed messaqe 

--For further details please contact the maintainer of tl1is package 

Oh, I must have forgotten to compile the source. One more time ... 

htis SHIFT+ CTRL + C 

My first memories of Jan go back to the years spent as a Ph.D. student at University of 

Amsterdam starting from 2007. I was just starting the work on my thesis on dynamic 

epistemic logics of questions (DELQ) ... 

UNRECOVERABLE ERROR: "YOUR PROGRAM CAN NEVER BE RECOVERED /\NYMORE '' 

your program has moved to a virtual location 
stack trace below: 

This is NOT an error 
It seems that a deliberate choice has occurred at (line 32A , column 7 ). 

Your code will probably run on the on-line version of the Festschrift 

--This is an automatically generated message 

--For further details please contact the maintainer of this package 

I don't understand ! ? ... This must be a paper bug ! ? .. . 

I really hope the on-line version works .. . 
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rnr:1 P: A Toy Tableaux Theorem Prover for 
16-Valued Trilattice Logics 

Reinhard Muskens 

Introduction 

Jan van Eijck and I go back a very long time. We have known each other since the 1970s, 

when we were both philosophy students in Groningen. The Groningen Philosophy 

Department was in a large house at Kraneweg at that time and I must have met Jan there in 

1974 when I arrived, or a bit later-the mists of time do not reveal a first meeting. I don't 

think we ever followed the same courses in those early years-Jan had started earlier than 

I had and was in another phase of the program altogether-but we certainly had a lot of 

contact after Johan van Benthem had become a 'lector' at the institute and had started 

livening things up. Jan and I participated in reading groups organised by Johan and there 

was also a lot of political activity within the institute that we took part in. Jan was admired 

by all for his ability to write. He could explain things as no-one could. And he also wrote 

some biting satire under the pseudonym 'Hein Egel'. Sweet memories. 

Contacts became less regular after I had moved to Amsterdam late in '79, but increased in 

frequency again ten years later when Jan accepted a position at CWI and I was still living 

in Amsterdam (but working in Tilburg as Jan's successor there ... ). More reading group 

meetings, now organised by Jan. And more sweet memories. I also remember a trip to 

Saarbrucken Jan and I made in his car. It was in the late 1990s and we were scheduled to 

talk about dynamic semantics there. For some reason I remember Jan's car as a 2cv, which 

is a near impossibility, but a low-hanging sun in the almost deserted Eupen-Malmedy area 

seems real. 

Enough of the reminiscing already! Let us ask ourselves a question: Who were the people 

who created the intellectual atmosphere in the Netherlands in which people like Jan and I 

-people who combine interests in logic and computer science with an interest in 

philosophy and the humanities-could thrive? There are many who can be named, and our 

common teacher Johan van Benthem played a central role. But if we go back a bit further 



in time another name also stands out-Evert Willem Beth. Beth stood at the cradle of the 

Centrale Interfaculteit, based on the idea that philosophy should be a kind of central hub 

between other disciplines. This took philosophy out of its all too narrow context of 

humanities only. Beth likewise created the Amsterdam Instituut voor 

Grondslagenonderzoek en Filosofie der Exacte Wetenschappen, ILLC's precursor (even in 

a formal sense). The Centrale Interfaculteit is no more, but ILLC is alive and kicking (or 

certainly seems to be from my short distance) and Beth's idea that philosophy can be a 

bridge between science and the humanities, to the advantage of both, may be under some 

threat but is far from dead. 

Beth brings me to the real topic of the contribution I want to make to this festive 

Festschrift, which combines two interests of Jan's--coding (not in Haskell, alas) and Beth 

Tableaux. I have written a little toy theorem prover 16TA p for 16-valued trilattice logics 

(Shramko & Wansing [9]). The theorem prover itself is at the following url: 

http://swish.swi-prolog.org/p/sixteentap.pl . 

16Til pis based on a calculus for 16-valued trilattice logics that is described in Muskens 

& Wintein [5] . I wrote it just for the heck of it, about two years ago, and have now brushed 

it up so that it will actually display trees and generate counterexamples to sequents if there 

are any. 

In order to explain what the prover does and why I must say a few things about 16-valued 

trilattice logics and about our calculus, but I shall be quite informal, as all these things 

have been explained in detail and with great formal precision elsewhere. For more 

information on the logics one could do worse than to start with Wansing [11] or the 

original Shramko & Wansing [9]. An important precursor in a constructivist setting is 

Shramko et al. [8], while Shramko & Wansing [10] offers a full monograph. 

In order to understand trilattice logics we must start with the well-known four-valued 

Belnap-Dunn logic (Belnap [2,3], Dunn [ 4]). This logic is based on the values T :..-:a { 1} 

(true and not false), F - { ()} (false and not true), N = 0> (neither true nor false), and 

B { () , 1} (both true and false) and can be viewed as a generalisation of classical logic 

-Belnap and Dunn move from {O, 1} with its usual ordering to P({O, 1}) with-as 

[2,3] stress in particular-two lattice orders (which actually form a bi/attice). Shramko and 

Wansing (and Shramko, Dunn, and Takenaka before them) in fact repeat this move, going 

from the set of truth-values P ( { 0, 1}) ,c { T, F, N , B} to its power set 

16 = P ( {T, F , N ; B} ), now with three lattices (as we shall see) . While the four-



valued logic is meant to model the reasoning of a computer that is fed potentially 

incomplete or conflicting information, the 16-valued logic that results models the 

reasoning of a central server that is connected to a network of such computers. Each 

computer in the network is a Belnap-Dunn reasoner on information that is potentially 

incomplete or inconsistent and the central server must now reason with the 16 possible 

outcomes of their reasoning. 

Let us define the three lattice orders with the help of four auxiliary orderings. For each 

:r E { T, F, N , B }, we define the relation S .r on 16 by letting, for a, b E:= 16, 

a < .t b : = .r E= a -~ ::i: t:= l) 

Using this, and writing 2 :r for the converse of S _1• ( x E { T , F , N , B} ) we define the 

truth ordering St , the nonfa/sity ordering SJ and the information ordering Si as follows . 

< f -

Figure 1 depicts 16 with the St order (left) and with the SJ order (right; in both cases 

one actually needs to take the reflexive transitive closure of what is indicated with the 

arrows), while Figure 2 gives the information order Si · 

tb tb 

nf nf 

Figure 1 The trilattice SIXTEEN:~ with the truth order S1, (left) and with the nonfalsity 

order Sf (right). Vertices are accompanied by L tfi formulas denoting them. The top and 

bottom elements of S1. are tb and nf, while those of SJ are nt and fb. 



tb 

ftb . ~ •~ . ntb L nftb ~ b • t 

fb • ft• • nb • nt 

\t:s§/ f •~~•n 

• 
nf 

Figure 2 The trilattice SIXTEEN:\ with the information order ::; 1 (top: nftb, bottom: 0 ). 

Each ordering "S_.1,: ( k C { t , f , i }) comes with obvious meet and join operations, denoted 

as I 11,, and U ,i,. (Clearly, I )i is (1 and LJ; is u .) SIXTEEN:\ can now be defined as 

(16, i i1; U1,l 0.r , _JJ ,l ' i ; _ji ) -

Itcanbeverifiedthat,forany• , o C { 11, Ut, l l j, U f, 1 !1 , LJ ; },wehave 

a. o ( b • c) - ( a o b) • ( a c c) (see also Rivieccio [7]). This makes SIXTEEN:! into a 

distributive trilattice, from which it can be shown to follow that the structure is interlaced, 

in the sense that all six lattice operations are monotone with respect to the three lattice 

orders. 

It is also possible to add three unary operations -- 1 , - f, and i that can be taken to be 

the semantic correlates of negation connectives. We do this by letting, for any a E 16: 

T E - ,a # N E a: 

B E-, o {:::;,, F E "; 

F E - ,a <=> B E a ; 

N E - ,a{::} T E a: 

T E - , a {::} B E a; 

B E-1a ¢:;, T E a ; 

F E - J a <=> N E a: 

N E - / a ¢:;, F E a; 

T E -i a {:} F ~ a: 

B E -i a {:::;,, N (/:. a; 

F E-i a <=> T i a: 

N E -i a¢:} B ¢:, a : 

Inspection will show that, for each pairwise distinct k ; e E { t , f- i }, 



if a <k b, then - kb <k - 1,; a ; 

if a <c b, then - k a <e -k b ; 

(Again see Rivieccio [7].) 

Having defined SJXTEEN:l and the operations we need on it, we now turn to a 

propositional language that will be interpreted in this structure. The language Lt fl is 

defined by the following BNF (where p comes from some countably infinite set of 

propositional constants). 

This language now receives an entirely expected interpretation by letting a valuation 

function be a function V from the sentences of Lt .r i to 16 such that, for each 

k ,.::: {t, f, i}, the following hold. 

If r.p \/1.- ~:J is then defined as ,..._,k( "' k c.p 1\ 1,; ,_ __ _.k ii;), one also gets 

Muskens & Wintein [S] show that L t fi is functionally complete. L t .r; is more expressive 

than Shramko & Wansing's [9] original language Lt .r , which is based on 

{ l, t , V 1 , /\ J ; \lf, r-v 1,, -...__ f } . It is also more expressive than the language L 1 / 

considered in Odintsov [6], in which an implication -'t r is added to L tf. But the calculus 

defined in [S], and hence our toy prover, works for all such sublanguages of the 

functionally complete language. 

Let us define notions of entailment based on each of the three lattice orderings. Using n.~­
for greatest lower bound in the ~k order (k E { t , f , i }) and LJ J.: for least upper bound, 

let the relations , -1 , 

following way. 

, and ;- i between sets of sentences r and~ be defined in the 
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r Ft D. < > nt V{r) :s;t LJl 1/ (<5) for all valuations V 
1EI' J Eti 

r Ff D. ~ nf Vb)~, LJJ V(J) for all valuations V 

~rEJ' liE.C. 

r I=; ~ ·~ ni V(,) ::;I LJi V(o) for all valuations \/ 
1Cr 5E ~ 

We also let be the intersection (1 : 0 : f · Since is an entailment relation based on 

transmission of truth and 

notion. 

is based on transmission of nonfalsity, this seems a natural 

X : t..p 1\1, ~I 

---, (A]) 
X : tp, X : lp 

where X E {ff, r, t , b} 

,vhcrc x E { n, f, t , b} 

X ; , . .., / \ ~1, 
't' t 'f' 2 

X : ip I X : 11, (At) 

where x E {n, f, f, b} 

x : <.p /\J -~ (I\J) 
x :yj x: ?p 

v,.,rhcrc x E {n, f, f, b} 

X: tp /\i 1/1 (/'}) 
X: ipjX: tµ 

,vhere x E {n, i\ f , b} 

X: Ni if) 
-- (""i) where {x, y} E { {n, b}, {f, t}, {n, b}, {f. t} } 

y ; i.p 

Table 1: Tableau expansion rules for PL16. 

It is also expedient to have-auxiliary-entailment relations based on the relations :s;,i: ( 
x E { T, F, N, B}) considered above. These we define as follows. 



For each r-- .r entailment relation defined in this way, write =l.r for its converse. It is not 

difficult to verify that the :· 1 , ;-· f, :·-- i , and c· relations can be characterised in the 

following way. 

Ft FB n =lF n FT n =IN 
1=1 =lB n =lF n FT n l=N 
l=i. l=B n FF n l=T n l=N 
I= l=B n =l B n =lF n l=T n l=N n =l N 

This means that a syntactic characterisation of the .r relations (where 

x C. { T , F : N
I 
B}) will automatically provide us with a syntactic characterisation of 

, 1- J, F i , and 

This is where our tableau calculus-dubbed PL16-comes in. Entries in this calculus are 

signed formulas x : 'P, where 'Pis an L tfi formula and xis one of the signs b, f, t, n, b, 

f, t, and "fi. The role of these signed sentences is purely formal, as far as the calculus is 

concerned, but they also have an intuitive meaning. b : :.p, for example, can be read as 

saying that B is an element of the value of t.p ; the meaning of b : '.p is that B is not an 

element of the value of .p . The other signs are interpreted in an entirely similar fashion. 

x :<.pVt1f: 
---, (vi) 
X: <.p, X: '!/J 

where x E {n , f, t, b} 

x: <.pV11f' (vi) 
X : <p, X : ·if,, I 

\,\ here x E {n, f, f : b} 

x :<.pVi '1/J 
---(Vt) 
X : <p, X : ·~) 

where x E {n, f, t , b} 

X : y Vt 1/' 2 

I 
, (Vt) 

x: <.p x: ·1/) 

where x E {n, f, t , b} 

x : <.p V tb __ J_ , (v2) 
x :cp j x: -~; f 

where x E {n, f, t , b} 

X : y Vi 1/1 (VI) 
x: .p l x: ·lJJ 

where x E {n, f , t , b} 



Table 2: Derived tableau expansion rules for disjunctions. 

Table 2 gives the expansion rules of PL16, but only for the official £ 1 f i connectives. 

Expansion rules for the three defined disjunctions are shown in Table [der]. Note that each 

of the conjunctions (disjunctions) comes with two rule schemas while each of the 

negations comes with one, and that each of these schemas is similar to a rule in a standard 

formulation of a signed tableau calculus for classical propositional logic. Only the side 

conditions are different. 

The procedure to obtain tableaux from these expansion rules, given an initial set of signed 

sentences, is entirely standard. A tableau branch is closed if it contains signed sentences 

x : 4J and x : r.p for x (0. { n , f; t , b } . A branch that is not closed is called open. And a 

tableau is closed if all its branches are closed. 

We can now characterise the four auxiliary entailment relations. Let l' and 6. be finite sets 

of L tf i sentences. Then 

r t=T 6 ¢::;:;? { t : ({) 1P E I'} u {t: 1P j 1P E 6.} has a closed tableau; 

r t=F 6. ¢::;:;? {f : sp 1P E r} u {f : ({) I ({) E 6 } has a closed tableau; 

r IFN 6. ¢=> { n : 1P :.p E r } U {n : 1P I 1.fJ E 6} has a closed tablt•au; 

r t=B 6. ¢::;:;? {b : r.p ,p E r} u {b: i.p I ,p E 6 } has a closed tableau. 

(continued on next page) 
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This requires a proof, of course, but the proof is straightforward and given in [5]. Note that 

a single calculus is used to characterise each of these four entailment relations. 

It can now be concluded that if we want to check whether any of the :c-, , /, ;-; , or ;­

relations holds between given r and il we can do that by developing several tableaux. For 

example, if we want to verify r t il we can do it by making tableaux for I' 13 il, 

il r n r, il f F r, r FT il, r FN il, and il -x r. If all these close then 

r (,::: il holds, otherwise there is a counterexample. The relations r 1 , ; f , and c.c- i each 

require four tableaux. (In general, not always in practice. It can be shown, for example, 

that if /\i does not occur in any of the formulas, we need only two tableaux in order to 

check r-1 and r / relations.) 

Working out all these tableaux by hand is no real fun of course and here is meant to come 

to the rescue. The prover is loosely based on the propositional part of Beckert & Posegga's 
I T P [LeanTaP] ,ean a , but is considerably less lean. On the other hand, it was programmed to 

give some feedback to the user, so that it might conceivably give them some insight in 

what is and what is not valid in 16-valued trilattice logics (and why). In particular, it will 

print out any counterexample it may find and it will graphically display the tableaux it 

constructs (with closed branches marked x and open ones marked o ). 

Any query about the r 1 , ;:c:: r, r i , or ;·· relations will be translated into several subgoals . , 

that relate to the four auxiliary relations. These are then each satisfied by signing the 

formulas in question and developing a tableau. 

The prover is programmed in SWISH (SWI-Prolog for SHaring), which implements a 

subset of SWI-Prolog, but comes with a nice interface and a tree renderer (svgtree­

originally meant for rendering syntax trees). The following predicates are meant to be used 

in queries. 



entailst(+Premises,+Conclusions,-T1, -T2,-T3,-T4) 

This predicate implements ( or rather its syntactic equivalent f- t ). Premises and 

Conclusions are lists of formulas, and Tl , T2 , T3 , and T4 are the tableaux that 

are returned. 

entailsf(+Premises,+Conclusions,-T1,-T2,-T3,-T4) 
entailsi(+Premises,+Conclusions,-T1,-T2,-T3,-T4) 

Similar to entailst/6 , but now f'" J and are modeled. 

entails(+Premises,+Conclusions,-T1,-T2,-T3,-T4, -T5, -T6) 

The relation. Six trees are returned. 

equiv(+Formula1,+Formula2, -T1,-T2,-T3, -T4,-T5, -T6, -T7, -T8) 

The predicate tests whether the formulas Formula1 and Formula2 are logically 

equivalent by developing eight trees. 

thmt(+Formula,-T1, -T2,-T3, -T4) 
thmf(+Formula,-T1,-T2,-T3, -T4) 
thmi(+Formula,-T1, -T2, -T3,-T4) 
thm(+Formula,-T1,-T2,-T3,-T4,-T5, -T6) 

thmt is a version of entailst/6 with an empty set of premises while the three other 

predicates bear the same relation to entailsf/6 , entailsi/6 , and entails/8 , 

respectively. 

Formulas can be entered with binary connectives as infix operators, as usual, but I have 

not been able to persuade SWISH to also render their occurrences in trees in this way, so 

we get their internal Prolog representation there. An overview of the way connectives are 

represented as Prolog operators is given in Table 3. 



At at At af A · l, ai 

Vt ot VJ of vi oi 
~t nt ~1 nf ~ -l ni 
-'tt it -tf if -ti ii 

-, neg 

Table 3: Connectives and the Prolog operators representing them. 

It was a joy to write 16T ,1 p. I hope that Jan and others find pleasure in playing with it. 
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Static code 

/* 

l6TaP---Tal1leaux for 16-valued Trt.latt:i.ce Logic 
Re.i.nh,Hd Muskens 

16TaP is a simple propositional tableau prover/model generator for a 
functionally complete extension of the 16-valued Shra:nko-vJansinq 
logic. Tt1e prover implements the tableau calculus PL_ {16} defined in 
Reinhard Muskens ancl Stefan v✓inte:in, Analytic Tableaux for all of 
SIXTEEN_3, Journal of Philosophical Logic 44 (5):473-487 (2015) 
(http://link.spr1nger.com/article/10.1007/s10992-014-9337-3). It is 
loosely based on Beckert and Posegga's LeanTaP prover for predicate 
logic, but unlike that little marvel it is not very lean. 

The calculus is based on signed formulas and there are eight s.i.gns, 
which we represent here as, nl, fl, tl, bl, n0, f0, co, and 
b0. Intuitively, 'nl:F' means 'n is an element of the value of F' and 
'n0:F' stands for 'n is not an element of the value of F'. A similar 
interpretaU_on can be given to the other signs. 

There are several notions of entailment that are modelled by the 
calculus, and in fact the notions of entailment that are of most 
rnterest, for example those correspondinq to one of the orderings in 
the trilattice SIXTEEN_3, can be obtaim,cl as tile int0,rsecttons of 
certain sets of auxtliary entailment relat:i.ons that tile calculus can 
characterize. Checking whether a sequence is correct often involves 
making several tableaux---fo11r if an entailment relation based on one 
of tl1e orderings in tile trilattice is considered, and six when a 
natural notion of entailment based on two of these orderings is in 

focus. 

The calculus is based on a functionally complete set of connect.i.ves, 
which we write here as {nt, nf, n1, at, at, ai, ot, of, oi}. The 
connectives whose names start with 'n' are negations; one for the 
truth lattice ('t'), one for the (non-)fals1ty lattice ( 'f'), and one 

I c) 



for the j_nforrnation lattice ( 'i'). The other connect.ives are 
conjunctions (names start:Lnn ,·;it:h 'a') and di.sjunct.i.ons ('o'). 

Unlike LeanTaP, the prover does not presuppose that formulas are in 
negation normal form . Counterexamples to an argument are qiven if they 
exist and graphical representations of the tableaux that are generated 
are gi.ven. If a t:ab.l.eau !,ranch :i.s closed, this 1s marked 1r1itl1 an 
'x'; open branches are marked with an 'o'. 

Speed of execution or compactness of code have not been primary aims 
in writing this prover/generator. The basic aims of the program are 
demonstration of the calculus and providing a tool for further 
analysis of the logic. 

As in Beckert and Posegga's LeanTap, the prover searches through the 
branch,,s ot a tableau in Prolog's lett-ngl1t depth-first manner. 

use_rendering(svgtree). 

Operators 
+; 

% connect.:i.ves we take to l;e pri.mitives 

op( ,uo, fy, nt). %negation in t lattice 
op( iUO , fy, nf). %negation in -" lattice i 

op( JUG , fy, ni) %negation in i lattice 

op( r,ou , xfy,at). 't,;conj unction in t latt.ice 
op( ':,00 , xfy, af). %conjunction in f lattice 
op( SOO , xfy,ai). %conjunction in i lattice 

op( GOU , xfy,ot). %disjunction in t lattice 

op U,OG , xfy, of). %cl:i.sjuncti.on ill f lattice 
op( GOO , xfy,oi). %di.sjunction .in i latttce 

% connectives defined from the primitives 

op ( '-'t'C , fy, neg). 
op( 5:,8 , xfy, it). 

op ( 6b0 , xfy, if) . 

op (<J'':,G , xfy, ii). 

%0d.i.ntsov's classi.cal negation 

%0dintsov's t implication 
%0dintsov's f implication 
%an analogous 1 implication 



I' 

Definitions of the def.ined connectives ( roll your ovm). 

define(Definiendum,Definiens) will allow Definiendum to 
be rewritten as Definiens. 

define(neg F,nt nf ni F). 
define(Fl it F2,neg Fl ot F2). 
define(Fl if F2,neg Fl of F2). 
define(Fl ii F2,neg Fl oi F2). 

/* 

The calculus is based on eight , 1>,h.ich we represent here as 
u.' , · f1.', · nt', ·bl' , ·to· , f0' , no', 

and 'bO'. The predicate opposite/2 defines an obvious notion 
of incompatibility. Branches close if they contain sig11ed formulas 
S1:F and 52:F, with S1 and S2 opposite signs. 
"/ 

opposite (t1,t0). 
opposite(t0,t1). 
opposite(f1, f0). 
opposite ( f0, f1). 
opposite ( n1, n0). 
opposite(n0,n1). 
opposite(bl, b0). 
opposite(b0,b1). 

I' 

Next we give the predicate tableau/4, which is the heart of the 
program. tableau(Signedformulas,Atoms,S,Trees) develops a tableau from 
a tableau branch containing the signecl formulas in Siqnedfornulas 
and the siqned atoms in /\toms. If a model is found it will be described 
(in the form of a list of signed atoms). If no model is found the set 
of formulas in Signedformulas + Atoms is inconsistent. The S argument 
contains a sign, while the Trees argument is used to build a graphical 
representation of the tableau. It is a list of (one or two) terms that 
each represent a subtree of the tableau directly dominated by the root. 

There w.Ul he r u.les for pr imiti.ve connectives, for defined con nee tt ves, 
for closure, and for writing out sets of signed atoms. 

Rules of the first kind take the first element of the Signedformulas list 
and decompose it nccordinq to the tableau expansion rules. Bottom 
formulas of a rule are added as roots to subtrees of the term 
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con.t.1r1u.c<J 

under construction . 
'/ 

I' 

Ne9ation rules 
(Side conditions follow.) 
'/ 

tableau([Sign:nt FIRest],Atoms,S,[Tree]) :­
ntcond(Sign,Signl), !, 

tableau([Signl:FIRest],Atoms,S,Subtrees), 
addroot(Signl:F,Subtrees,Tree). 

tableau([Sign:nf FIRest],Atoms,S, [Tree]) :­
nfcond(Sign,Signl), ! , 

tableau([Signl:FIRest],Atoms,S,Subtrees), 
addroot(Signl:F,Subtrees,Tree). 

tableau([Sign:ni FIRest],Atoms,S, [Tree]) :­
nicond(Sign,Signl), !, 

tableau([Signl:FjRest],Atoms,S,Subtrees), 
addroot(Signl:F,Subtrees,Tree). 

I* 

Conjunction rules 
-; I 

tableau([Sign:(Fl at F2)1Rest],Atoms,S,[Tree]) :­
member(Sign,[n0,f0,t1,b1]), !, 

tableau([Sign:F1,Sign :F21Rest],Atoms,S,Subtrees), 
addroot(Sign:F2,Subtrees,Tree1), 
add root (Sign: Fl, [Treel], Tree) . 

tableau([Sign:(Fl at F2)1Rest],Atoms,S, [Tree1,Tree2]) 
member(Sign, [n1,f1,t0,b0]), !, 

tableau([Sign:FljRest],Atoms,S,Subtreesl), 
tableau([Sign:F21Rest],Atoms,S,Subtrees2), 
addroot(Sign:Fl,Subtreesl,Treel), 
addroot(Sign:F2,Subtrees2,Tree2). 

tableau([Sign:(Fl af F2)1Rest],Atoms,S, [Tree]) 
member(Sign, [n1,f0,t1,b0)), !, 

tableau([Sign:F1,Sign:F2jRest],Atoms,S,Subtrees), 
addroot(Sign :F2,Subtrees,Tree1), 
addroot(Sign:Fl, [Treel],Tree). 

tableau([Sign:(Fl af F2)1Rest],Atoms,s, [Tree1,Tree2]) 
member(Sign, [n0,f1,t0,b1)), !, 

tableau([Sign:FllRest],Atoms,S,Subtreesl), 
tableau([Sign:F2jRest],Atoms,S,Subtrees2), 

7i 



addroot(Sign:Fl,Subtreesl,Treel), 
addroot(Sign:F2,Subtrees2,Tree2). 

tableau{[Sign:{Fl ai F2)1Rest],Atoms,S,[Tree]) 
member{Sign, [nl, fl, tl, bl]), ! , 

tableau{[Sign:Fl,Sign:F21Rest],Atoms,S,Subtrees), 
addroot(Sign:F2,Subtrees,Treel), 
addroot{Sign:Fl, [Treel],Tree). 

tableau{[Sign:{Fl ai F2)1Rest],Atoms,S, [Treel,Tree2]) 
member(Sign, [n0, f0, t0, b0] ), ! , 

tableau{[Sign:FllRest],Atoms,S,Subtreesl), 
tableau([Sign:F21Rest],Atoms,S,Subtrees2), 
addroot(Sign:Fl,Subtreesl,Treel), 
addroot{Sign:F2,Subtrees2,Tree2). 

I' 

Disjunction rules 
*/ 

tableau{[Sign:{Fl ot F2)1Rest],Atoms,S, [Tree]) :­
member{Sign, [nl, fl, t0, b0] ), ! , 

tableau{[Sign :Fl,Sign:F21Rest],Atoms,S,Subtrees), 
addroot{Sign:F2,Subtrees,Treel), 
addroot{Sign:Fl, [Treel],Tree). 

tableau{[Sign:{Fl ot F2)1Rest],Atoms,S, [Treel,Tree2]) 
member{Sign, [n0, f0, tl, bl]), ! , 

tableau{[Sign:FllRest],Atoms,S,Subtreesl), 
t ableau{[Sign:F21Res t],Atoms,S,Subtrees2), 
addroot{Sign:Fl,Subtreesl,Treel), 
addroot{Sign:F2,Subtrees2,Tree2). 

tableau ([Sign: ( Fl of F2) I Rest], Atoms, s, [Tree]) 
member(Sign, [n0, fl, t0, bl]), ! , 

tableau{[Sign:Fl,Sign:F21Rest],Atoms,S,Subtrees), 
addroot{Sign:F2,Subtrees,Treel), 
addroot{Sign:Fl, [Treel],Tree). 

tableau([Sign:{Fl of F2)1Rest],Atoms,S, [Treel,Tree2]) 
member(Sign, [nl, f0, tl, b0] ), ! , 

tableau{[Sign:FllRest],Atoms,S,Subtreesl), 
tableau([Sign:F21Rest],Atoms,S,Subtrees2), 
addroot(Sign:Fl,Subtreesl,Treel), 
addroot(Sign:F2,Subtrees2,Tree2). 

tableau([Sign:(Fl oi F2)1Rest],Atoms,S, [Tree]) 
member(Sign, [n0, f0, t0, b0] ), ! , 

tableau{[Sign:Fl,Sign:F21Rest],Atoms,S,Subtrees), 
addroot{Sign:F2,Subtrees,Treel), 



addroot(Sign:Fl, (Treel],Tree). 
tableau((Sign:(Fl oi F2)1Rest],Atoms,S, (Treel,Tree2]) 

member(Sign,[nl,fl,tl,bl]), !, 

tableau((Sign:FllRest],Atoms,S,Subtreesl), 
tableau((Sign:F21Rest],Atoms,S,Subtrees2), 
addroot(Sign:Fl,Subtreesl,Treel), 
addroot(Sign:F2,Subtrees2,Tree2). 

Rule for defined connectives 

tableau ( (Sign: FI Rest], Atoms, S, [Tree]) 
define(F,Fl), !, 

tableau((Sign:FllRest],Atoms,S,Subtrees), 
addroot(Sign:Fl,Subtrees,Tree). 

Closure rule 
At this point any first element of the Signectformulas list is 
assured to be a signed atom. If its opposite is on the Atoms 

list we can close the branch. 
·1 

tableau([Sign:Atoml_],Atoms,_, [x]) 
opposite(Sign,Signl), 
member(Signl:Atom,Atoms), ! . 

I' 

Otherwise, we add the signed atom to the list of atoms already 
found and continue. 

tableau((Sign:AtomlRest],Atoms,S,Trees) :- !, 

tableau(Rest, (Sign:AtomlAtoms],S,Trees). 

/* 

If all signed formulas have been reduced to signed atoms and there 

is no conflicting pair of signed atoms, we have a model, which is 
a counterexample if we are testing for validity. 

'I 



tableau([],Atoms,S,[o]) :- !, 

write( 'counterexample: ' ), nl, 

/* 

write(Atoms), nl, write( 'no transmission of ' ), 
write(S), nl, nl. 

Side conditions on the negation rules 
'/ 

ntcond(nl,tl), 
ntcond(tl, nl). 
ntcond(fl, bl). 
ntcond(bl,fl). 
ntcond(n0,t0). 
ntcond(t0,n0). 
ntcond(f0,b0). 
ntcond(b0,f0). 

nfcond(nl,fl). 
nfcond(fl,nl). 
nfcond(tl,bl). 
nfcond ( bl, t1) . 

nfcond(n0, f0). 
nfcond(f0,n0). 
nfcond(t0,b0). 
nfcond(b0, t0). 

nicond ( nl, b0) . 
nicond(b0, nl). 
nicond(fl,t0). 
nicond(t0,fl). 
nicond(n0, bl). 
nicond(bl, n0). 
nicond(f0, tl). 

nicond ( tl, f0). 

I' 

Entat1ment predj_cates, equivalence, and tl1eorerns. 

'/ 

entailsaux(Sign, Premises, Conclusions,Tree) :-
sign (Premises, conclusions, Sign, SignedFormulas), ! , 

tableau(SignedFormulas, [],Sign,Trees), 
initialbranch(SignedFormulas,Trees, [Tree]), 

' 1 



continued 

entailst(Premises, Conclusions,Treel,Tree2,Tree3,Tree4) 
entailsaux(tl, Premises, Conclusions,Treel), 
entailsaux(bl, Premises, Conclusions,Tree2), 
entailsaux(f0, Premises, Conclusions,Tree3), 
entailsaux(n0, Premises, Conclusions,Tree4). 

entailsf(Premises, Conclusions,Treel,Tree2,Tree3,Tree4) 
entailsaux(tl, Premises, conclusions,Treel), 
entailsaux(b0, Premises, Conclusions,Tree2), 
entailsaux(f0, Premises, Conclusions,Tree3), 
entailsaux(nl, Premises, Conclusions,Tree4). 

entailsi(Premises, Conclusions,Treel,Tree2,Tree3,Tree4) 
entailsaux(tl, Premises, Conclusions,Treel), 
entailsaux(bl, Premises, Conclusions,Tree2), 
entailsaux(fl, Premises, Conclusions,Tree3), 
entailsaux(nl, Premises, Conclusions,Tree4). 

entails(Premises, Conclusions,Treel,Tree2,Tree3,Tree4,Tree5,Tree6) 
entailsaux(tl, Premises, Conclusions,Treel), 
entailsaux(bl, Premises, Conclusions,Tree2), 
entailsaux(b0, Premises, Conclusions,Tree3), 
entailsaux(f0, Premises, Conclusions,Tree4), 
entailsaux(nl, Premises, Conclusions,Tree5), 
entailsaux(n0, Premises, Conclusions,Tree6). 

equiv(Formulal,Formula2,Treel,Tree2,Tree3,Tree4,Tree5,Tree6,Tree7,Tree8) 

entailsaux(tl, [Formulal], [Formula2],Treel), 
entailsaux(bl, [Formulal], [Formula2],Tree2), 
entailsaux(fl, [Formulal], [Formula2],Tree3), 
entailsaux(nl, [Formulal], [Formula2],Tree4), 
entailsaux(t0, [Formulal], [Formula2],Tree5), 
entailsaux(b0, [ Fo rmulal], [Formula2),Tree6), 

entailsaux(f0, [Formulal], [Formula2],Tree7), 
entailsaux(n0, [Formulal], [Formula2],Tree8). 

thmt(Formula,Treel,Tree2,Tree3,Tree4) :-
entailst([], [Formula],Treel,Tree2,Tree3,Tree4). 

thmf(Formula,Treel,Tree2,Tree3,Tree4) :-
entailsf([], [Formula],Treel,Tree2, Tree3, Tree4). 

thmi(Formula,Treel,Tree2,Tree3,Tree4) :-
entailsi([], [Formula],Treel,Tree2,Tree3,Tree4). 

thm(Formula,Treel,Tree2,Tree3,Tree4,Tree5,Tree6) :­
entails([], [Formula],Treel,Tree2,Tree3,Tree4,Tree5,Tree6). 



/* 

Some predicates to do with the term representation of the 
tree. addroot/3 takes a collection of trees (terms) and 
adds a root (functor), so that the result is a single tree. 
initialbranch/3 uses this to provide a collection of trees 
with a common initial branch. 
'I 

addroot(Signedformula,Trees,Tree) 
term_to_atom(Signedformula,Quoted), 
Tree =. . [Quoted I Trees]. 

initialbranch([],Trees,Trees). 

initialbranch([SignedformulalRest],Trees, [Tree]) 
initialbranch(Rest,Trees,Treesl), 
addroot(Signedformula,Treesl,Tree). 

I' 

si\Jn(Premises, Conclusions, Sign, Si9ncdFormulas) siqns 
the formulas .Ln Premises \,.i.th Si.911 and those in Conc.Ius.i.ons 

v,it:h :i.t s oppos it.e. Tl1e signed formulas a re coJlec t:ed .i.n 

SignedFormulas. 

sign([],[], _ ,[]). 
sign([], [FIRest],Sign, [Sign2:FISignedRest]) 

opposite(Sign,Sign2), sign([],Rest,Sign,SignedRest). 
sign([FIRest],Conclusions,Sign, [Sign:FISignedRest]) 

sign(Rest,Conclusions,Sign,SignedRest). 

/** <examples> 
Some valid, some not. 

?- entails([p at q],[p ot q],Tree1,Tree2,Tree3,Tree4,Tree5,Tree6). 
,_ entailst([P at q], [pot q],Tree1,Tree2,Tree3,Tree4). 
?- entails([p at q], [p],Tree1,Tree2,Tree3,Tree4,Tree5,Tree6). 
?- entaUst( [p at q], [p], Treel, Tree2, Tree3, Tree4). 
?- entails([p at q], [p of q],Tree1,Tree2,Tree3,Tree4,Tree5,Tree6). 

?-- entai.lst( [p, p lt qJ, [q], Tree1, Tree2, Tree3, Tree4). 
?- equ1v(p at (q of r 01 s), (pat q) of (pat r) oi (pat s),Tree1,Tree2, 
Tree3,Tree4,Tree5,Tree6,Tree7,Tree8). 
?- equ1v(p at q af r ai s,s at r af q ai p,Tree1,Tree2,Tree3,Tree4,Tree5, 
Tree6,Tree7,Tree8). 



cnnr1n ur,,J 

?_ equiv(neg (pat q af r ai s),neg pot neg q of neg r oi neg s,Tree1,Tr 

ee2,Tree3,Tree4,Tree5,Tree6,Tree7,Tree8). 
?. equiv(nf (pat (q af (r ai s))),nf pat (nf q of (nf r ai nf s)),Treel 
,Tree2,Tree3,Tree4,Tree5,Tree6,Tree7,TreeB). 
?. thmt((p it (q it r)) 1t ((pit q) it (pit r)),Tree1,Tree2,Tree3,Tree4 
) . 

?- thm((p it (q it r)) it ((p 1t q) it (pit r)),Treel,Tree2,Tree3,Tree4, 
Tree5, Tree6). 
'/ 

For further details see: Analytic Tableaux for all of SIXTEEN3 



Nothing to add 

Rick Nouwen 

Context 

Jan van Eijck taught me to be precise. As with models in any discipline, semantic analyses 

only make sense if we have a detailed understanding of how they work and what their 

predictions are. Jan often insisted on the value of implementation for this purpose: it 

allows the exploration and rigorous testing of an analysis, and it creates a fuller 

appreciation of the complexity of a proposed system. He was ultimately unsuccessful in 

convincing me that my dissertation should contain a Haskell implementation of the system 

I was proposing, but we did collaborate on a joint paper in which we presented a semantic 

analysis of plural discourse anaphora alongside Haskell code implementing that analysis 

(van Eijck and Nouwen 2002). In this brief note, I want to reconsider one of the design 

choices we made in that paper. 

No doubt the most important line of code in our analysis is the line that determines the 

view taken on what exactly a context is. 

type Context= 

It is clear what a context is for, that it has a double function in interpretation. On the one 

hand it provides the necessary background that makes intepretation possible. On the other 

hand, it is being manipulated by interpretation: by interpreting natural language, we are 

changing the context. To determine what a context is, we then need to ascertain what it is 

that interpretation potentially depends and impacts on. 

Doing this, a dual view on context emerges. When you read or listen, you don't just gain 

potential new beliefs, you also create a memory of the topics and things that are being 

discussed. In other words, by interpreting natural language we keep track of (i) the topics 

of conversation and (ii) the information that is being shared on those topics. This way of 

looking at interpretation is the central philosophy behind dynamic semantics (Kamp 1981, 



Groenendijk and Stokhof 1991, van Eijck 2001, Nouwen et al. 2016), a family of theories 

of how ordinary semantics can be extended to take into account the basic dynamics of 

information processing. 

In line with this view, Jan van Eijck's Incremental Dynamics (van Eijck 2001) takes a 

context to be a stack of entities (the list of entities that are discussed, if you want) and 

interpretation is a function from such stacks to sets of such stacks (those sets that comply 

with the given information). Different positions in a stack correspond to different 

discourse referents, the entities under discussion. Introducing a new referent in the 

discourse amounts to simply adding an entity to the context. 1 

[3](c) = {c/\d I d E D} 

There are no ordinary variables, only indices, corresponding to locations in the context: 

c: n ] returns the entity stored on the nth position in c. Predication tests are defined as 
) 

follows: -

[P(n)](c) = { ~c} 
c[n] E J(P) 
othenois e 

Dynamic actions are combined using :ha; 1;·'., [ ( c) ···- { If -ip ]Jc' I c1 E: [ ip] ( c) }. And, so, the 

(in)famous A man came in. He sighed. gets the following analysis in Incremental 

Dynamics, where i is the length of the input context. 

3; rnan( i ); sighed(i ) 

One major advantage of this view on context is that it is absolutely explicit about what the 

anaphoric potential of the context is: the context is the set of accessible discourse 

referents. As we will see next, this has an interesting consequence once we add quantifiers 

and plurals to the system. 

Context and Quantification 

In van Eijck and Nouwen (2002), generalised quantifiers work quite similarly to :: in that 

they push entities to the stack. This is different from the traditional take on quantifiers in 

the dynamic semantic literature, most notably different from Kamp (1981), Kamp and 



Reyle (1993) and Groenendijk and Stokhof (1991). In line with van den Berg (1996), we 

took quantifiers to simply push the so-called reference set, A --1 B for a statement 

Q(A) (B), to the context. For instance, Most students passed the test, if true, will push 

the set of all students that passed the test to the input context. The semantic mechanism 

behind this need not concern us here. Here, I want to focus on the question what the 

addition of plural discourse referents means for our notion of context. 

Since van den Berg (1996), it is standardly assumed that plural referents are not just stored 

in the context as complex individuals, but that they are rather distributed over that context 

(see also: Nouwen 2007, Brasoveanu 2008). This is because quantifiers do not just add 

potentially plural referents to the context, they also store dependencies between referents. 

For instance, 

1. Every farmer owns exactly one donkey. And most of them beat it. 

Here, the first sentence introduces the set of (all) donkey-beating farmers, and the set of all 

donkeys owned by a farmer. The second sentence shows that we do not just have access to 

these pluralities, we also have access to which farmer goes with which donkey. This is 

because the second sentence can only be interpreted as saying that for most farmers, the 

farmer in question beats the donkey he or she owns. If the context is a stack just 

containing a set of farmers and a set of donkeys, then we have not kept track of this 

dependency. Instead, we need to say that the context is a set of stacks, each containing one 

farmer and one donkey: 

The set of entities occurring on the first position in these stack is the relevant set of 

farmers. The set of entities in second position is the set of donkeys. The dependency is 

captured by the way these sets are distributed over the set of stacks. 

Using my rather rusty Haskell skills, here is what this setup could look like: 



import Data.List 

data Entity= A I B I C I D I E I F I G I H I I I J I K I L I M 

deriving (Eq,Bounded,Ord,Enum,Show) 

type StringEnt = [Entity] 

type Context= [StringEnt] 
type Coll= [Entity] 

strings of entities 

set of strings of entities 
a collection is a set of entities 

lookupldx : : StringEnt -> Int -> Entity 
lookupidx [] i = error "undefined context element" 
lookupidx (x:xs) 0 = x 
lookupidx (x:xs) i = lookupidx xs (i 1 ) 

lookupid:<Ctxt Context -> Int -> Coll 
lookupldxCtxt [] i = (] 

lookupidxCtxt (x:xs) i = [lookupidx xi] ++ lookupidxCtxt xs i 

distrib : : Context-> Entity-> Context 
distrib [] e = [] 

distrib (x:xs) e = [x ++ [e]] ++ distrib xs e 

push Context ->Coll-> Context 
push x [] = x 
push x [e] = distrib x e 
push x (e:es) = distrib x e ++ push x es 

project : : Context-> Int -> Coll 
project xi= nub (lookupidxCtxt xi) 

cardi : : Context -> Int -> Int 

cardi xi= length ( project xi 

To illustrate how this works, here is an example of some operations on an input context 

{ AB
1 
AC}. This is a context with two discourse referents, one of which is simply A and 

the other is the plural individual with n and C as its parts (usually written as n I J C). 
The first line shows how this context was created. 



*Main> push (push [[]] [A]) [B,CJ 

[ [A, BJ, [A, CJ] 

*Main> push [ [A, BJ, [A, CJ J [D, E, FJ 

[ [A, B, D), [A, C, D), [A, B, E), [A, C, E), [A, B, F), [A, C, FJ J 

*Main> project (push [ [A, BJ, (A, CJ] (D, E, FJ) 0 

(AJ 

*Main> project (push [ [A, BJ, [A, C]] [D,E,FJ) 

[B,CJ 

*Main> project (push [(A,B), (A,C]] (D,E,F]) ., 

(D,E,FJ 

*Main> cardi (push ([A,B],(A,C]) (D,E,F]) 

As setup like this will now allow us to provide a general recipe for the dynamic semantics 

of quantifiers. In general, quantifiers are operators that take two sets and perform a 

cardinality test on these two sets. If successful, the intersection of the two sets, the 

reference set, will then be pushed to the stack. Here I give a schematic interpretation of 

most as an example.
3 

. r { push C X n y [most] = ,,\X.,,\Y>.c. 0 
1xnYI > JX\ YI 
otherwise 

Nothing to add 

An issue arises as soon as downward entailing quantifiers come into the picture. A 

quantifier is downward entailing if for any A, B and B 1 such that B ~ B 1 it is the case 

that C)(A)(B1
) , c} ()(A)(B). The issue concerns the fact that Q(A)(O) is true for any 

downward entailing Q and any A- Van Eijck and Nouwen remark: 

"An[ ... l unsolved problem is the treatment of downward entailing quantifiers. There 

are essentially two issues. First of all, since we have chosen to make quantifiers 

dynamic by existentially introducing a new index, we presuppose the existence of a 

set of individuals satisfying the restrictor and scope of the quantifier relation. Of 

course. in case the determiner is downward monotone in its right argument, this 

relation is satisfied even if no such individual exists." (van Eijck and Nouwen, 2002, 

p.22) 

ff) 



In my dissertation (Nouwen 2003), I offered a way out of this dilemma. In case the 

reference set is empty, then incrementing is vacuous and consequently there will be 

nothing to refer to. Pronouns simply won't have the chance to refer back. 

This idea already happens to be in place in the short Haskell fragment above (which is 

different from our 2002 paper): 

*Main> push [ [A, B], [A, D], [A, E]) [] 

[ [A, B], [A, D], [A, E]) 

That is, pushing the empty set onto the stack simply returns the input stack. No new 

position is created and, consequently, no new anaphoric potential has been added. This is 

fully in line with the philosophy of contexts in Incremental Dynamics: contexts are fully 

explicit about what the anaphoric potential of the context is. Whether or not downward 

entailing quantifiers introduce a discourse referent depends on the model. Only in models 

in which the intersection between restrictor and scope is non-empty will there be a new 

index. Using a pronoun to refer back to the quantifier presupposes that there is such an 

index and, as such, it presupposes that we are in a model in which that intersection is not 

empty. 

This is an elegant solution to the problem, but one which I am now no longer fully 

convinced of. The reason is that this solution depends on a standard assumption about 

collections of entities that is often made in the literature, but which I now think is wrong. 

It is often assumed that there are two kinds of entities, namely atoms and pluralities, and 

that the latter are built the former. More precisely, the full set of entities is built by taking 

the powerset of the set of atomic entities and then removing the empty set. More 

commonly, the set of entities is actually thought to be only structurally similar to this: 

plural individuals are not sets but sums and the set of entities is a complete join semi­

lattice with the atomic entities as smallest elements (Landman 1989). Explicitly, the 

assumption is that the structure is a semi-lattice and not a lattice: there is no unique bottom 

element, that is a part of any other element in the lattice. This is the detail that I now 

question. 

There are (as far as I know) two arguments in the literature that natural language semantics 

needs to take a bottom element, i.e. an element with cardinality 0, into account. Bylinina 

and Nouwen (2017) provide a complex argument that the fact that most languages have a 

word for "O" (for instance, zero), entails that there has to be an full-fledged entity with 0 



cardinality. The other is Landman (2011), which is more relevant to our discussion of 

dynamics. Landman notices that some plural definite descriptions appear to refer, even 

though the referent is empty: 

1. Of the ten students in my class I would say that the students that studied for the test 

got a good grade (but nobody did). 

The parenthetical continuation does not appear contradictory, and so the description the 

students that studied for the test must have referred to the empty individual. Note, 

especially the contrast with (3), where the singular morphology forces the definite 

description to refer to an atom, and hence to something that is not empty. 

1. Of the ten students in my class I would say that the student that studied for the test 

got a good grade (#but nobody did). 

On a conceptual level, this observation already goes against my assumption above that 

empty sets are referentially void. More generally, I believe it is not impossible that 

Landman's observation extends to pronouns. 

1. Of the ten students in my class I would say that the students that studied for the test 

got a good grade and that they are likely to do well in the next course. Unfortunately, 

none of my students studied for the test. 

2. Of the ten students in my class I would say that the student that studied for the test 

got a good grade and that he is likely to do well in the next course. #Unfortunately, 

none of my students studied for the test. 

I will leave a detailed discussion of these examples for a future occasion. Potentially, they 

indicate that there can be empty discourse referents. In the terms of Incremental Dynamics 

this would mean that the operation of adding nothing to the stack does not simply return 

the input stack, but rather returns a stack with an empty value pushed on top of it. In fact, 

had we chosen not to implement the dependency phenomenon illustrated by (1) but 

instead taken a simpler view on context as a stack of collections, then we would have 

arrived at that behaviour straightforwardly. Take the following simpler code: 

push2 : : Context ->Coll-> Context 
push2 x e = x ++ [e] 

and how it functions: 



*Main> push2 [ [A), [ B, C)] [] 

[ [A], [B, C), []] 

Here, a context is not a collection of stacks, but a stack of collections. Each position in that 

stack is a potentially plural and potentially empty entity (represented by a list) . In such a 

setup, pronouns point to positions in the stack and come with a non-emptiness implicature, 

one that is cancelled in (3). 

Of course, the simple push2 operation above leaves no room to account for examples 

involving quantificational dependencies like (1). But I have no reason to believe that the 

absence of an empty element follows from adopting a view of context in which pluralities 

are distributed over stacks. It just so happened that my crude way of implementing this 

idea resulted in this behaviour. I leave it as an easy exercise for the reader to come up with 

a Haskell program that at the same time implements the idea of contexts with distributed 

pluralities and the idea that pluralities are potentially empty. 

Notes 

1. For those familiar with the litermme: vvhat in Dynamic Predicate Logic amounts to 

a rondom reset is a rondorn push in Incremental Dynamics.,-, 

2. Here and in what follows lam ignoring undefinedness cases when n exceeds the 

length of c. ,-l 

3. This is a simplification. 'The arguments of most need to be interpreted in context 

too. for they may for instance have dynamic effects themselves. In fact, it is this 

dynamic interpretation of the X and Y argument that ultimately results in the storage 

of qualllificarional dependencies. See van den Berg ( 1996), Nouwen (2003) and 

Brasoveanu (2008) for discussion . .-, 
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A tribute to Jan van Eijck 

Rohit Parikh 

I have known Jan for eleven years, at least since the NIAS project in 2006. He is a very 

soft and polite person who has shared several interests with me. Among them is of course 

Epistemic reasoning in which both he and I have worked, and Social Software where we 

collaborated on a paper-more a dialogue than an essay. 

Another interest we share is language, but in spite of strong interest on both our parts, we 

have not actually worked together. I hope this will change because his interest and 

expertise in language is truly impressive. 

But we still have a lot in common which was the reason why I suggested to Sergei 

Artemov that Jan be invited to give the keynote talk for my 80th birthday conference. 

Let me now proceed to some remarks that I would like to make and hope that Jan will 

approve. 

Introduction 

Epistemic logic started as a child of modal logic and Kripke structures were the usual 

tools for a long time. But of two classical books, one by Hintikka and one by David 

Lewis, only the first was primarily in the modal direction. Lewis' work was more game 

theoretic and it is widely believed that he was influenced by the Nobelist Thomas 

Schelling. Lewis died some years ago and Schelling only recently, but their influence has 

been strong. 

The difference in these two approaches is between the one person case and the many 

person case. Descartes was interested in what he knew and we, part time solipsists, are 

still his children in a way. It is hard to escape being a Cartesian. Much work in epistemic 

reasoning is Cartesian in spirit. 

But Lewis' notion of common knowledge (anticipated by Robert Nozick, see the paper by 

Cubitt and Sugden) is fundamentally a many person or social notion. Even a psychologist 

like Pinker is aware of common knowledge as is Herb Clark. And since common 



knowledge has been important in distributed computing since the classic paper by Halpern 

and Moses, it is inevitable that computer scientists will come to play a large part. 

This insight inevitably leads us to game theory, based on the notion of the super rational 

homo economicus. But as Kahneman and Tversky pointed out, the actual homo is not 

super rational. He (she) is quite often irrational, and even when rational, rational in a 

different way from what the classical theory of von Neumann and Morgenstern, and 

Savage presumes. 

http://www.nobe1prize.org/rnediaplayer/index.php?id=S31 

We reveal our beliefs in action, and even answering yes or no is an action. As we know, 

an utterance may or may not supply the truth value of a proposition, but even when it 

does, it says something about the speaker (and what the speaker thinks about the 

listener) as well as about the world. The speaker wants to bring about a change in the 

mental state of the listener and the desired change may be something different from, or 

more than merely a change in her state of beliefs about the world. 

A related issue is that we need devices for converting a game theoretic problem into a 

decision theoretic one. When an agent is playing a game with another, she thinks what the 

other might do. And having decided, she has converted the game theoretic problem into a 

decision theoretic one, "since he is going to do x, what shall I do?"" Thus suppose there 

are two restaurants A and B and Bob might want to go to the same restaurant as Ann. Then 

if he knows that Ann is going to B, his best decision will be to go to B himself. If she is 

going to A then his best decision will be to go to A. If she usually goes to A, then also his 

best bet is to go to A. So once he has resolved his doubts about Ann's action, he has a 

decision theoretic problem. 

If he wants to go to the same restaurant as Ann he too should go to A. If he wants to go to 

a different one, then once he decides that she is going to A, he should go to B. 

So once he has an idea about her beliefs, her preferences and hence her probable action, 

his game theoretic problem becomes a decision theoretic one. But knowing others' 

preferences and beliefs is not always easy. We often know their ordinal utilities but not 

their cardinal ones and Savage's method of eliciting responses will not work in real life. 

Here is an example. 



Ann lives in San Francisco and Bob is visiting her from out of town. 

/\ fter giving bin1 dinner, Ann ashs. "Would _you like some ice cream?" 

"Do you have chocolate?" says Bob. 

"f am sorry I do not but I do have vanilla and strawberry" says Ann. 

"Vanilla, then" says Bob. 

Now Ann knows that for [fob the utilities have the order chocolate> vanilla > 

strawberry. 

But she does not know the cardinal utilities. So she proceeds. 

''Oh. I am sorry, I do have chocolate. Would you like vanilla or a SO-SO chance of 

chocolate and strawberry?" 

Bob is puzzled but says, "Vanilla." 

"And how about vanilla versus a 7(Y}<J chance of chocolate and 30% chance of 

strawberry?" 

What is the matter with Ann? says Bob to himself and then says aloud, 

"Actually the doctor told me to avoid ice cream. How about just coffee?" 

Ann now knows that that she will not find out more ,vithout being rude. 

So we live in a world where we know something about the beliefs and preferences of 

others but do not and cannot know more precisely. Constraints of time and politeness 

prevent us from finding out everything. And yet we get along by and large. 

It is clear that if we are to have a theory of people which is realistic and yet allows us to 

say something more than bare common sense then we need to move away from the overly 

precise models of classical epistemic logic and Homo Economicus. 

Logic and Society 

One of the strange things about us Homo Sapiens is that evidence reveals that we are more 

clever than wise. We have settled the entire globe, developed the internet and sent 

expeditions to the moon and to Mars. 



Roi11\ P+rikh 

Given this, how is that we have not achieved the condition that most or all humans are 

happy and well taken care of? We look at war movies with dismay and pain but we should 

also be amazed that humans are doing such things to other humans. 

Here is joke about two aliens in a space ship discussing humans. 

One says, 'They have even developed missiles'" 

The other says, "Then they must be very advanced." 

The first says, "Not really they have aimed them at themselves!" 

What we humans need now is the ability to be amazed that we are so poor at taking care of 

ourselves. According to legend, Newton was amazed that the apple fell on his head rather 

than away from his head. And that the moon revolved around the earth even though there 

was no rope tying the moon to the earth. This amazement eventually led to his theory of 

gravitation, amended by Einstein in the early XXth century. 

What was the big deal that the Michelson-Morley experiment did not reveal the "speed at 

which the earth travels through the ether?" That information is not going to help us to pay 

our taxes. And yet, being amazed at our inability to detect that speed led to the theory of 

Relativity. 

So we need to be amazed that we are so poor at taking care of our species and other 

species whom, for whatever reason, we seem to love. We should not say, "It has always 

been so." Many things have always been so and are not any longer. A hundred years ago 

we did not have airplanes, telephones, let alone the internet. 

Also, the major wars in 1914-18 and 1939-45 did not lead to any further major wars in 

Europe and the furthest we have come from war in Western Europe is Brexit! So progress 

is possible. 

A usual explanation for why things are bad is "some bad guy" (it is usually a guy). That 

guy can be Hitler or Trump or whoever. But we do not ask where these bad guys get so 

much power. And we do not ask whether putting Trump in the same boat with Hitler might 

not be a result of our need to look for "bad guys". 

It was not Trump who invaded Iraq or who bombed that hospital in Kunduz. 

on 



Sages like Jesus or Dalai Lama look to personal transformation. If we become 

compassionate and loving then there will be no bad guys and the world will be better­

perhaps even perfect. (See the book by Thich Nhat Hanh.) 

I am skeptical. The tendency to cooperate is built into us humans. See the little essay by 

Tomasello. 

http://www.nytimes.com/2008i05/25/magazine/25wwln-essay-t.html 

But aggression and excessive ambition are also built into us. The millionairess, for 

whatever reason, does not want to share any excess wealth. She wants to become a 

billionaire and "break the glass barrier"! 

And people keep having more and more children, creating ever greater demands on the 

planet. Ditto for the illusion that the more energy we consume, the better off we are. 

Certainly individual human failings are behind our problems. 

But I do not want to make a moral lesson. I disagree with the Dalai Lama much as I 

admire him. I want to look for techniques which will allow us imperfect humans to create 

a good society. So I look for systems where even selfish people will act so as to make 

everyone happy. Adam Smith had this idea long ago but we all agree that his idea does not 

work invariably. So we need systems which harness self-interest into the good of society. 

Economic Design is in a way a contribution in this direction. The Vickrey auction is an 

example of an auction where being honest with one's bid is a winning strategy. In the 

Vickrey auction, the highest bidder wins but only pays the bid of the second highest 

bidder. Then it turns out that being honest about one's own preferences is a dominant 

strategy. 

Perhaps we can set up social software which encourages people to act in a rational way 

which helps other people as well. 

Where does logic come in? 

Ultimately, economists are practical logicians. They are not concerned as much with truth 

as with what works. So they are more in the realm of practical reason . But practical reason 

and theoretical reason are not unconnected. We have game theoretic accounts of truth in 

q I 



first order logic. And backward induction is a logical argument telling us how a certain 

game will be played. 

So logicians can help by coming up with systems which encourage people to act in ways 

which are good not only for them but also for other human beings. 

Criminal law has this function. "Harm others and society will harm you!" But politicians 

who enact laws are not logicians. They tend to come up with "remedies" which do not 

work. 

The US incarcerates at a rate 4 to 7 times higher than other western nations such as the 

United Kingdom, France, Italy, and Germany and up to 32 times higher than nations with 

the lowest rates such as Nepal, Nigeria, and India. 

hups://www.nccdglobal.org/sites/default!files/publication_pdf/factsheet-us­

inG1rceration. pdf 

Cleverer devices are needed to encourage people to help themselves by helping others. 

And the right way is an analysis using tools from social psychology, Economic Design and 

the logic of programs to ask what will work with actual people. 

Once we have such a solution, then the problem will arise of getting the politicians to go 

along. But that part of the project is, luckily, far from our work. 

Language 

One reason why we have misunderstandings is that language is too poor to express the 

complexities of the world. Suppose that the "natural language" for the world consists of 

ten unary predicates. But the average person can only deal with five at one moment. Then 

there will be a many one homomorphism which will conflate 32 different states of the 

world into a single description. And moreover, not everyone will use the same 

homomorphism. Thus words like "feminist", "fascist", "progressive" mean different things 

to different people. 

Is Bernie Sanders a communist? Is Trump a fascist? Different people with the same facts 

will come up with different judgments. 



A related problem is that of multiple identities. For instance Mohammad Ali Jinnah, the 

founder of Pakistan was a Muslim, whereas Gandhi was a Hindu. But they were both 

Gujaratis and both lawyers. So are they opponents or were they fellow travelers? 

Amartya Sen goes into this issue of the conflict between different identities. And it can 

well be true that professional identities which usually have less emotions attached to them, 

can overcome national or religious identities which are more invested with passion. Thus 

at the CUNY Graduate Center where I teach there is nothing unusual about someone from 

Israel being the doctoral supervisor of someone from Iran. 

Perhaps if we remember our multiple identities, then some of the anguish of the world can 

be resolved. In the US currently, it is political identities which have become most 

passionate and a white Democrat would have no problem with his daughter marrying a 

black man, but would be very upset at her marrying a Republican. So let me end with a 

joke from my undergraduate days. 

Girls from a Catholic school are graduating and one by one, each goes to the Mother 

Superior to receive her diplon1a. The Mother Superior asl-.s each of them what she is 

going to do now that she has graduated. 

One girl says, "Mother, lam going to be a prostitute." 

The Mother faints and is revived with cold water and smelling salts. 

"What did you say my dear'?'' asks the Mother Superi.or. 

"Mother, I am going to be a prostitute," is the reply. 

"Thank God." says the i\fother. "I thought you said a Protestant." 
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Programming Real Social Software: 
Matching Students to Supervisors using 
Perl 

Marc Pauly 

Introduction 

Thinking back of my time as a PhD student with Jan van Eijck, programming is not one of 

the things that immediately comes to my mind. My PhD thesis was about the connection 

between logic, game theory and social choice theory, and coding was not part of the work 

I did for my thesis. But when I was thinking back a bit further, I remembered that Jan 

taught a course I took during my Master of Logic program in 1996 or 1997 that dealt with 

the semantic foundations of programming. I do not remember the title of the course, but 

the book we used for the course was called "Semantics with Applications: A Formal 

Introduction" (Nielson & Nielson, 1992). I am still very fond of this book: In a very clear 

way, it covers operational semantics, denotational semantics and axiomatic program 

verification for a simple language called the while-language. The book also contains an 

implementation in the functional language Miranda, a predecessor of the later Haskell 

language that Jan worked with. As I think back, I realize that it was also thanks to this 

course that I was able to extend some ideas about program semantics and verification to a 

programming language for games (Pauly, 2005). 

Ever since my move from computer science to philosophy, I am not surrounded any more 

by people who can (or at least at some point were able to) program. Still, it turns out that 

this ability comes in handy even for somebody working at a philosophy department. I 

would like to illustrate this with a short code snippet we use to solve a specific two-sided 

matching problem. 

The Problem: Matching Students to 
Supervisors 

()(. 



At the philosophy department of the university of Groningen, between 50 and 100 students 

per year write their bachelor theses under the supervision of some staff member. In the 

past, students would approach a teacher and ask him or her to become their supervisor. 

Two problems led us to change this. On the one hand, this way of doing things led to 

certain staff members to attract many students while other staff members supervised 

almost nobody. This unequal distribution was not too problematic at a time when student 

numbers were low, but with more than 50 students per year especially the popular 

supervisors felt that we needed a new system. Given my own interest in social choice 

theory and game theory, I suggested to use the well-known Gale-Shapley algorithm for 

two-sided matching (Gale & Shapley, 1962). In this algorithm, each student submits a 

preference list of possible supervisors, saying who their 1st choice, 2nd choice, etc. for 

supervisor is. Similarly, each supervisor submits a list of possible students who they could 

imagine supervising, also ranked in order of preference. Also, each supervisor is 

associated with a given capacity of students to supervise, usually somewhere between 0 

and 5. Given these preference lists of the two groups, the Gale-Shapley algorithm works as 

follows: First, every student applies to their first choice supervisor. If a supervisor has no 

more applicants than his or her supervision capacity, nothing happens. If, on the other 

hand, a supervisor has more applicants than capacity, the supervisor rejects those 

applicants which rank lowest on his or her preference list. In the second round, those 

students who have been rejected apply to their second choice supervisor, and again the 

supervisors reject depending on their capacity those applicants they least prefer. This 

process continues until all students are assigned. The process is guaranteed to terminate as 

long as the supervisor capacities when added together are at least as high as the number of 

students who need a supervisor. A well-known property of this algorithm is that it will 

result in a student-supervisor matching that is stable: Whenever a student A is matched to 

a supervisor B, there will never be another student A' matched to supervisor B' such that 

A prefers B' to TJ and B' also prefers A to A' . 

So much for the theory. As always, the devil is in the detail. In the concrete situation of the 

philosophy department, there is one important extra complication to the basic setup: Not 

all supervisors speak Dutch, and many students want to write their thesis in Dutch. So my 

task was to first think of an extension of the algorithm that can handle this more 

complicated situation, before actually coding it. 

As for the input, we now need to ask for additional pieces of information. We ask the 

students what language they want to write their thesis in. The options are Dutch, English, 

or Any (meaning: Dutch or English are both fine) . Similarly for the supervisors, we ask 
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them what language they can supervise in, and here the options in practice are only 

English (only) or Any. 

As for the algorithm, note that we first need to make sure that there are enough supervisors 

who speak Dutch to cater to the students who want to write in Dutch. In the past years, this 

fortunately has not been a problem, although with a continuing inflow of academics who 

do not speak Dutch, this problem may arise in the future. For now, we will assume that 

this problem does not arise. 

How to modify the original Gale-Shapley algorithm? My first attempt was to do a 

language check during each round of the matching algorithm, making sure that each time 

we tentatively match a student with a supervisor, we make sure that the languages do not 

conflict. However, this attempt did not work. The problem can be illustrated with a simple 

example: Suppose that supervisor Jan speaks Dutch and English and prefers Marc to 

Sanne. Marc has Jan as his most preferred supervisor and does not care about the language 

he writes his thesis in, but Sanne wants to write her thesis in Dutch. Now we can imagine 

a stage in the matching algorithm where Marc is matched to Jan and Sanne is yet 

unmatched. From the perspective of Jan and Marc, everything is fine, and the languages 

match. However, if Sanne cannot find a supervisor who speaks Dutch it may turn out that 

we have to unmatch Marc and Jan in order to match Sanne to a supervisor (Jan) who is 

able to speak Dutch, even though Jan prefers Marc to Sanne. Clearly, in terms of 

preferences, this is a bad move, but due to hard language constraint, the move seems 

unavoidable. 

Given this difficulty, I decided to match supervisors and students in two phases: First, only 

the supervisors who only speak English are considered. Their slots are filled first, using 

the Gale-Shapley algorithm. Second, the students who remain because they have not been 

matched to the English-only supervisors are matched to the remaining supervisors. This 

algorithm is not ideal for a number of reasons, but given the language constraint I do not 

think that we can do much better. The most important property we lose is the property of 

stability: As the example above with Jan and Marc already illustrates, the new algorithm 

can give rise to situations where an ideal couple (a student and a supervisor who have each 

other as their first choice) does not end up being matched to each other. 

The Code 



The main program first retrieves student and supervisor data from files. Since students and 

supervisors will have submitted only partial preference lists (e.g., a student may have only 

mentioned her top 5 supervisors), we first complete everyone's preference list by randomly 

ordering the candidates that have not been explicitly mentioned below these that have 

been mentioned explicitly. Note that this is what introduces an element of nondeterminism 

into the algorithm (in fact, the only nondeterminism). Next, we first match those 

supervisors who only speak English to those students who are willing to write their thesis 

in English using the Gale-Shapley algorithm. Afterwards, the unmatched students and 

supervisors are matched in a second round of Gale-Shapley matching. The Perl 

implementation of the Gale-Shapley matching algorithm is given below. 

# Arguments passed: teachers, teacher-preferences, students , student pref 
erences 
# Returns reference to match hasii 

sub qs __ aJgo ( \@\%\@\%) { 
print "\nExecuting Gale-Shapley algorithm ... \n" ; 

my $round=O; 
my %student_apply; 

applying to 

# keeps track of the round of the algorithm 
# for each student the current choice he is 

my %assigned; 
is currently 

# has value 1 for a student in case student 

in; 

ine 

# assigned to a supervisor 
my $some_unassigned = : ; # is true whenever unassigned students rema 

my $teachers_ref = shift ; I! f.i.rst reference r,rqument [)8Ssed tosubrout 

my @teachers= @{$teachers_ref}; # dereferencing; 
my $teacher_prefs_ref = shift ; 
my %teacher_prefs = %{$teacher_prefs_ref}; 
my $students_ref = shift ; 

my @students= @{$students_ref}; 
my $student_prefs_ref = shift ; 
my %student_prefs = %{$student_prefs_ref}; 
my %match; 

for my $name (@teachers) { 
@{$match{$name}}=(); 

ching 
ff initialize matching to the empty mat 

} 

for my $name (@students) { 
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$student_apply{$name} = 0 ; 

f.irst choice 
this initializes all applications to 

one 

$assigned{$name} = n; # and all students are initially 
} 

while ($some_unassigned) { 
$round++; 
pri.nt "\nRound $round: \n" ; 

# all unassigned students apply to their next choice, if there is 

for my Sstu ( keys %assigned) { 
if ($assigned{$stu} == 0 ) { 

my @prefs = @{ $student_prefs{$stu} }; 
my choice= prefs[$student_apply{$stu}]; 
if (defined $choice) { 

} 

push@{match{Schoice}}, stu; 
$assigned{$stu}= 1 ; 

Sstudent_apply{Sstu}++; 

else # the student has run out of options to apply to and 
drops out 

} 

{$assigned{$stu}= 1} 

} 

$some_unassigned = 0 ; 

print "After application by students vw have: \n" ; 
print_matching( @teachers ,%match); 

# teachers reject students beyond their capacity, according to th 
eir preferences 

for my $tea (@teachers) { 
my cur_capacity = teacher_caps{$tea}; 
my @new_match = (); N new preference .Li .. st of superv.:i.sor tn.i.ti 

alized 

d to teacher 

for my $stu (@{$teacher_prefs{$tea}}) { 
my $is_present = 0 ; 

for my $j (@{$match{$tea}}) # check :i.f student was matche 

{ 

if (stu eq j) {Sis_present = }; 
} 

if ($is_present) { 
if ($cur_capacity > U) { 

100 



} 

} 

} 

$cur _capacity- - ; 
push@new_match, $stu; 

} 

else 
{ 

} 

} 

$assigned{$stu} = 0; 
$some_unassigned = i ; 

@{$match{$tea}}= @new_match; 

prin t "After rejections by teachers ,,1e have:\n" ; 
print_matching(@teachers,%match); 

return %match; 
} 

Due to the nondeterminism, the matching produced will differ depending on how the 

initial preference profiles of students and supervisors were completed. For this reason, I 

usually run the program 1000 times and see which matching is best in terms of minimizing 

the number of total mismatches, i.e., the number of student-supervisor pairs ( s: S') where 

s did not mention Sin her initial preference list and S did not mention s in her initial 

preference list either. Those pairs will be listed explicitly by the algorithm, and together 

with a colleague I look at these cases to see whether these cases present real problems. In 

some cases, the problem will have arisen because a student applied late and did not submit 

any preference list and hence also the supervisors did not take this student into account 

when submitting their preferences. Hence, the application of the algorithm comes down to 

a combination of deterministic algorithm, nondeterministic preference completion, and 

human interpretation and selection of the results produced by the algorithm. 

Conclusions 

There are a number of lessons I learned from working on this problem. First, when applied 

to actual situations, algorithms often need to be modified and complicated to take account 

of all the relevant features of the situation. Second, such a complication can (and I suspect 

often will) lead to the loss of nice theoretical properties which the original algorithm had. 
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Third, practice has the tendency to lead to an ever increasing series of complications of 

initially simple algorithms, which leads not only to a loss of nice theoretical properties but 

also to a loss of transparency, the understandability of the algorithm decreases. Having 

said that, my impression is that my colleagues do consider the current situation of 

alogrithmic matching an improvement over the initial situation where this process was not 

centralized. So while algorithmic justice leaves many things to be desired, there are 

situations where it can improve the world we live in. A hopeful message to end with in a 

Festschrift devoted to coding. Thank you, Jan! 

Further reading 

Jan van Eijck has edited a volume on games, actions and social software (van Eijck 

&Verbrugge, 2012), which gives more food for thought concerning some of the issues that 

came up in this contribution. In this volume, there is also an article by Rohit Parikh and 

myself (p.3-13) that introduces the notion of social software. Also, this article discusses 

another practical two-sided matching problem, the problem of the Stanford Housing Draw 

where students need to be matched to dormitories. 

Another practical example of a social software problem is designing the competition 

schedule of sports tournaments. At the 2012 London Olympics, strategic play led to the 

disqualification of badminton teams. In order to meet a supposedly easier opponent in the 

next round of a round-robin tournament, these teams both wanted to lose rather than win 

their match. While this led to hilarious badminton, the public felt cheated. This raises the 

question whether it might not be possible to design a tournament schedule that avoids all 

possibilities for strategic manipulation. Besides the paper containing the technical result 

(Pauly, 2014), there is also a more accessible exposition of the problem and the result 

(Pauly, 2015). As it turns out, the technical result involves a computer-assisted proof: At 

some point in the proof, a C-program is used to verify that of the 65,536 possible functions 

to consider, none has a particular combination of properties. The program can be accessed 

at this link. 
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A conversation on money 

R Ramanujam 

December 2016. A logician, a philosopher and a computer scientist are travelling by car 

from Chennai to Tiruvannamalai in southern India. All of them are European and terrified 

by the Indian highway. The only way the travellers can keep sane is to keep their minds 

occupied. As it happens, there is something that is bothering them: money. 

Philosopher: Did you know before you left home that getting hold of cash would be a big 

problem in India? 

Logician: I did, and a fat lot of good it did me. But I realised I better find some cash at the 

airport as soon as I landed, be it at 3 AM. And I managed to get cash too! 

Computer Scientist: I had heard, but thought it mattered little since I could use my credit 

card. And what happens when I try the card here? The connectivity is no good and the 

connection keeps getting timed out. 

Logician: All this because the Indian government announced one day last month, out of 

the blue, that the 500 and 1000 rupee currency notes would be worthless from that day. 

Given that 85 percent of circulating cash was in these notes, it demonetised the economy 

in one stroke. 

Computer Scientist: People have until year-end to change the notes they have, but the 

queues in banks are horrendously long, and most ATMs are dead. Naturally, since printing 

the new notes and getting them to banks is a logistical nightmare. 

Really, if our societies would get used to digital cash, all these problems would disappear. 

Philosopher: The trouble is that we tend to think of money as a thing, that we can possess. 

It is not only something to use, but also something to have. Digital money is fine for using, 

but I am not sure human beings will be happy to lose the element of possession. 

Logician: Currency notes are mere statements of contract. How does having currency 

notes give you the sense of possession you refer to? 
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Philosopher: Good question. We tend to think of money as a projective space, as a means 

of linearly ordering the value of all goods-material goods, at least. This is important for 

trading so that rather than exchanging a cermaic vase for a table, we can talk trade using 

monetary value. Unfortunately, the abstraction then starts applying to non-material goods, 

like labour, and then it becomes a thing in its own right. 

Computer Scientist: But we now have cryptocurrencies like the bitcoin. These are 

spontaneously generated, simply by evidence of work. After that it is all blockchains of 

transactions. 

Logician: You are saying that a currency note is simply a historical record of all the 

transactions it has been used in, are you? The central bank spontaneously generates its 

value, and afterwards its further value is determined by the transactions it participates in. 

Computer Scientist: Yes, but not quite. This applies only to the money value that the 

currency note carries, not to the currency note itself. The note is exchangeable with 

another freshly issued by the bank, one that carries no history. 

Philosopher: So then we are back to the original question . Is money a thing? 

The driver asks if they would like to stop for a coffee. They would, but nobody has 

anything smaller than a 2000 Rupees note, and the driver is not sure whether the small 

coffee place would take credit cards. They stop anyway, but the credit card payment is 

unsuccessful. 

Computer Scientist: I am really puzzled why the card didn't work. Ah I am getting internet 

connection on my phone, let me check .... 

Ohmygod, my bank has sent a message that they have blocked my card since they were 

getting a suspicious transaction request! Now I have neither cash nor a usable card! I will 

also need to make an international call to unblock it. 

Philosopher: Currency does not need trust but credit does. Banks, as holders of trust, are 

naturally distrustful. (Laughter. Computer scientist gives a dirty look.) Oh sorry, I hope 

your card gets activated soon. 

Logician: Interesting. We have talked of money as a thing, as value, as history, as a trust­

carrier. Is it all of these in some haphazard manner, or is it an abstraction that somehow 

underlies all this? 

Computer Scientist: It is mainly an enabler of economic transactions. 



Philosopher: That is a very interesting formulation. It enables not only economics but also 

social status, pride, distrust, many such things. 

Logician: Rohit Parikh makes a plea for social software, an enterprise that tries to figure 

out the software underlying society. Money is of course a crucial component of such 

software. 

Computer Scientist: With currency being the hardware? Isn't that too simplistic? 

Philosopher: We are looking for an abstraction that enables and shapes the functioning of 

society. 

Logician: Yes, an abstraction that can then be also manipulated in its own right. 

Computer Scientist: That is easy, that is exactly what we call a data structure 

Logician: This is very interesting. Money as data structure underlying social algorithms? 

Philosopher: Yes, I agree. Thinking of money as a structuring device is useful. It helps to 

explain how algorithms in society create value as well as measure value using it, and how 

the structure carries memory of transactions. But how can a data structure reflect epistemic 

attitudes and social status? 

Computer Scientist: One basic feature of a data structure is that it is essentially defined by 

what operations are allowed on it. A queue and a stack are similar, but the former is first­

in-first-out and the latter is last-in-first-out. It carries social memory, but how that memory 

is accessed and updated is what we need to understand. 

Logician: That it is collective memory is important, I think. This is shaped by what each 

person knows, what each knows about the other, what is common knowledge in society ... 

Philosopher: You have got knowledge, dynamics, data structures, social algorithms ... 

Aren't we entering Jan van Eijck territory? 

The driver informs them that they are reaching Tiruvannamalai, where Jan has reached 

previously and is even now climbing the hill. 



Ji Hu:in 

True Lies and True Love 

Hans van Ditmarsch, Ji Ruan, and Yanjing Wang 

The famous Zen master Gaiarosa wants to make two friends Heleen and Jan attend a 

Buddhist meditation retreat. She knows that they are dying to get close to each other. Thus 

one will come if and only if (s)he believes that the other will come. Obviously, they do not 

yet wish to admit this to each other, because they are uncertain about each other's 

feelings. Given the uncertainty about the other attending, both in fact intend not to go to 

the retreat. Gaiarosa now lies to Heleen that Jan will come to the retreat and she lies to 

Jan that Heleen will come to the retreat. As a result, they both come to the retreat, declare 

their love to each other (in between meditation sessions), and live happily ever after. 

Sadly, shortly afterwards Gaiarosa passed away, but in her next incarnation, she was 

reborn as twins. 

Introduction 

You lie if you say something that you know to be false with the intention to make the 

listener believe that it is true. This analysis of lying goes back to Augustine [2], and every 

serious work on lying, including Jan van Eijck's [17], starts with this citation. Lying has 

been a thriving topic in the philosophical community [12, 5, 9], and typically more recent 

modal logical analyses that can be seen as a continuation of this philosophical tradition 

include [3, 13, 7, 17, 11, 8, 15]. In modal logics with (only) belief operators one cannot 

model the intentional aspect of lying. 

How do we model a lie in a dynamic epistemic logic? In dynamic epistemic logic a lie is a 

dynamic operation (with a corresponding dynamic modality) transforming an information 

state (that encodes the beliefs or the knowledge of the agents) into another information 

state (wherein they may consequently have different beliefs or knowledge). In truthful 

public announcement logic [10] we cannot announce something false thus making it true. 

The announced formulas are supposed to be true. 'Truthful' is actually a misnomer, new 

information is simply assumed to come from an outside, reliable, source. Or, rather more 

precisely: in this logic we only model the consequences of incorporating new information 

abstracting from the process that made it reliable in the first place. So in truthful public 
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announcement logic we cannot model that the source of information is unreliable (because 

an agent is mistaken or lying). In an alternative semantics for public announcement logic, 

that of conscious update [6], and that is also known as believed (public) announcement 

logic, the announcement of a formula is independent of its truth. In that logic, we can call 

an announcement a lie if the announced formula is false. The term 'lie' is justified because 

the observing/listening agents consider this false announcement to be true, and may 

therefore incorrectly revise their beliefs. This analysis of lying has been pursued in [17]. 

What is missing in this analysis of lying in dynamic epistemic logic is that the announcing 

agent itself is not modelled: in [17], a lie is simply an announcement that is false, not an 

announcement that is believed to be false by an announcing agent. But there is a solution 

for that. In public announcement logic, it is common to model the truthful announcement 

that 91> by agent a who is modelled in the system, as the truthful public announcement of 

'agent a knows <//. This analysis also extends to believed public announcement logic and 

to 'agent a believes 91>' (knowledge and belief are both formalized in our setting as n0 9
1
) ). 

A precondition for that epistemic action should then be that agent a believes -.</> 

(formalized as Da -.cp). Still, the lie that </J by agent a cannot simply be the believed 

public announcement of na 9;, because agent a. is also addressing herself with that 

announcement and surely does not believe her own lie. In a variation on the [17] semantics 

for lies in believed announcement logic, a lie by agent a. to agent(s) b can then be 

modelled as an epistemic action wherein agent b believes that a truthfully informs him of 

9\ whereas agent a herself does not change her beliefs. This agent lie (from a to b) is 

presented in [15]. In this setting, agent a. is lying, when saying </) but believing -.q) (thus, 

the precondition for the action is n0 ---,<M, whereas agent a is telling the truth (is truthful), 

when saying ~b and believing </J (thus, precondition n,, </J ). A third option in this setting is 

when agent a is saying ¢, and thus acting as if she believes <;\ but really is ignorant about 

q): such an action has precondition ,(LJ,1 ¢ V Dn ,d> ). We can call that bluffing. When 

modelling individual agents lying to other agents, we can thus distinguish agents that are 

lying from agents that are bluffing or agents that are truthful (or more, such as 

randomizing agents saying anything whatsoever based on throwing a dice). This approach 

wherein different types of agents behave in different ways is pursued in [8]. 

Among public lies there are different sorts of lies. First, let the lie </J be that of a 

propositional variable p. In believed public announcement logic, a public lie that p, with 

therefore precondition that p is false, results in the agents incorrectly believing that pis 

true. So, before the lie that <:6, c,b is false, and after the lie that ch, </J is still false. Now 

consider a public lie that p V Op. Consider a model with designated state (a pointed 
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Kripke model) wherein the negation of this formula is true: , p ;\ -□p, and such that the 

agent considers it possible that p, so the model contains accessible p-states. If this a 

JCD45 model (a Kripke model wherein all accessibility relations are serial, transitive, and 

euclidean; which is said to encode the beliefs of agents with consistent beliefs), then none 

of the accessible states satisfy □p. The result of the believed public announcement that 

p \I 7 p in our model will therefore only preserve accessibility links to p states, such that 

after this update np is true in the designated state, and therefore p V L .. .p. So, in this case, 

where cp = p \/ n p, before the lie that ~-,, ~:'> is false, and after the lie that <;~, ~h has 

become true. One can call this a true lie. This is investigated in [1]. 

The lie by Gaiarosa to Jan and Heleen can be viewed as a true lie in general, since it 

eventually makes the lie true. However, it is a true lie of a different sort than the above, 

and on two counts. Firstly, it is not a public lie, to all agents, but a private lie (namely to 

Jan only, or to Heleen only). Secondly, it involves agents changing their mind (namely 

Jan, and Heleen), which in dynamic epistemic logic is modelled as ontic change, i.e., as an 

assignment of different values to certain variables. And apart from that, this assignment is 

done in private: Jan changes his mind without Heleen knowing, and vice versa. Only the 

combination of these various events can be interpreted as making something true by lying 

about it. Such more complex epistemic actions can most elegantly be modelled in action 

model logic [4], such that we can eventually model check their consequences in Jan van 

Eijck's DEMO [19]. 

Action model logic 

In this section we present action model logic (with factual change). Its language, 

structures, and semantics are as follows. For more details, see [ 4, 14, 16] ( our presentation 

follows [16]). Given are a finite set of agents A and a countable set of propositional 

variables p. 

The language [ is inductively defined as 

¢ :: - p / ¢, / (</> /, ¢) r ia<+~ :M, s]<,b where p c= P, a t= A, 

and where epistemic action ( M, s) is defined below (and assumed to be simultaneously 

defined with the language). Other propositional connectives are defined by abbreviation. 

For □0 cj>, read 'agent a believes formula 9) 1
• If there is a single agent only, we may omit 

the index and write □6 instead. Agent variables are a, b, c, .. .. For :M: s]·ij,, read 'after 



execution of epistemic action ( M, s ), 1j/. If □0 ,~'J, we say that <.b is unbelievable (for a) 

and, consequently, if -.na ,9'J, for which we write (\ c;\ we say that (:) is believable (for a 

). This is also read as 'agent a considers it possible that (ji . 

We continue by defining the structures. An epistemic model Al :::.cc (.8 , R
1 
V) consists of 

a domain S of states (or 'worlds'), an accessibility function R : A --'t P ( 8 x 8 ), where 

each R ( a), for which we write R,i, is an accessibility relation, and a valuation 

V : P -- , P ( 8 ), where each l/ (p) represents the set of states where pis true. For s E 8, 
(.A,f; s) is an epistemic state. 

An epistemic state is also known as a pointed Kripke model. We often omit the 

parentheses in (J:H; s ). Without any restrictions we call the model class K,. The class of 

models where all accessibility relations are transitive, euclidean and serial is called 

KD45, and the class of models where all accessibility relations are equivalence relations 

is S 5-Class K, D45 is said to have the properties of belief, and S 5 to have the properties 

of knowledge. 

An action model M (S, R, pre, post ) for language f, (simultaneously defined above) 

consists of a domain S of actions, an accessibility function R : A -->P ( S x S ), where 

each R(a ), for which we write R0 , is an accessibility relation, a precondition function 

pre : S --,, l:,, that assigns to each action its executability precondition, and postcondition 

function post : S ··+ P -r➔ £, where it is required that each post ( s) only maps a finite 

subset of all atoms to a formula. For T C S, (M. T ) is an epistemic action (or multi­

pointed action model) . For ( M, { s} ) we write ( M, s ). 

For epistemic models and for action models we assume the usual visual conventions for 

KD45 models: all directed arrows point to clusters of indistinguishable nodes for that 

agent (i. e., for all states s E S and a E A, ( s , s) E R a unless there is a state /, E S 

such that (s, t) E R0 but ( t , s) ~ R,1 ); where a cluster is a set of indistinguishable 

nodes, such that transitivity, reflexivity, and symmetry can be assumed: instead of directed 

arrows it suffices to connect indistinguishable nodes with undirected arrows, i.e., links. In 

the next section we use such visualizations. 

Assume an epistemic model 1'1 - (8 , R , V ), a state s E S, an action model 

M - (S, R, pre, post ) with an actions E 5. The interpretation of formulas </> E f, is 

defined by induction (simultaneously with that of action model execution). 

l 0 
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Af,8 l= JJ 
.kl. s I= -,cf> 

, ' 

Al t 8 p= q> (\ 1/J 

iff sE l~i 
iff AI , s F ¢ 
ifI Af , 8 I= C/~ ancl 1\,f , s I= 11'.J 

.Af, S I= Dn <P 
1\1, s p= [M; s] •1!1 

iff for all t E S: R 0 (s , t ) irnplios Al , t p= ¢ 
iff J1{ s p= pre(s) in1plics J\1 ® M: (s , s) p ·zL, 

where Jlf 0 M = ( 8 1
, R1

, V') (known as update of Af with M, or as the result of 

executing Min Af) is such that 81 
········ {(s, s) I A{ s pre (s)}; ((s, s ), (t , t)) E R 11 

iff (s, t ) E R,1 and (s , t ) E R11 ;and (s, s ) E V '{p ) ifL U ,s r- post (s )(p ) forallp 

in the domain of post ( s ) , and otherwise ( s, s ) C V 1 (p ) iff s C V (p). The semantics of 

multi-pointed action models is (purely for convenience) defined by abbrevation as 

Af, s r [M, T]1h iff (for alls E= T , 1lf, s [M, s]lb). 

Throwing all further explanations and justifications to the wind, we can now define the 

action models corresponding to the epistemic actions already referred to in the informal 

introductory section and that will be used in the continuing analysis of the story on true 

lies and true love. 

Consider an epistemic action ( M , T), where M -- (S, R, pre, post ) . We distinguish the 

following types of epistemic actions. Obviously, postconditions for actions (partial 

functions) are only specified on their finite domain of propositional variables, that also 

may be empty. 

(continued on next page) 
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• private lie that </J to agent a 

S ·•····•• {s,t,u}andT ...... {t};Ra. ···••···• {(t,s),(s,s),(u,u)}andforall 

b E A \ {a.}, R1; = {(s, u), (t , u) , (u, u)}; pre(s) = <f>, pre(t) ,¢, and 

pre ( u) = T. 

• public assignment that variable p becomes <;) 

S 0= T ,::::, { s }; R11 ,- { (s, s)} for all a E A; pre(s) ::= T ; post(s)(p) ,,, d;,. 

• private assignment for agent a that variable p becomes <h (agent a changing her 
mind) 

S = {s, t} and T = {s}; Rf/ = { (t, t) , (s, s)}, and R1, - {(s, t ), (t , t)} for all 

b E A \ {a.}; pre(s) pre(t) T; post (s)(p) ¢ and post(t)(p) p. 

• lie that ¢ by agent a 

S - { s, t, u} and T - { t}; R,1 - { ( t, t), ( s, s), ( u, u)}, and 

Rb = {(t, s) , (s, s), (u, s) } for all b E A\ {a.}; pre(s) = '-Ja¢, 

pre(t) LJrr 1¢ ,pre(u ) 1(L 11 ·¢ \/LJ 0 ¢). 

• private announcement of qJ to agent a 

S = {s, t} and T = {s}; R0 = { (s, s) , (t, t)}, and Rb ~-= {(s, t), (t, t)} for all 

l> E 11 \ {a}; pre (s) :::: ct; and pre (t) 

• truthful public announcement of <h 

S T ...... {s}; Ra == {(s, s)} for all a E A; pre(s) = </J. 

• believed public announcement of <JJ 

JI 



S · T ····· {s,t}; R11 ········ {(t,s))(s,s)}foralla E= A;pre(s) ········ ¢ and 

pre( t) - ,cf>. 

• public lie that(/> 

S '""'· {s) t}, T = { t}; Ra - { (t, s), (s1 s)} for all a E= A; pre(s) -,, <;f) and 

pre(t) ·-- ,¢,. 

Only the private assignment for agent a and the private announcement to agent a will be 

used in the continuation (and their meaning may only become intuitively clear in that 

continuation). 

Private lies and private assignments 

We recall the introductory lying story about true lies and true love. 1 What Gaiarosa tells to 

Jan and Heleen can be considered an example of a true lie, because when Gaiarosa is 

telling to Heleen that Jan plans to come, in fact Jan is not planning to come, and when she 

is telling to Jan that Heleen plans to come, in fact Heleen is not (yet) planning to come. 

(For modelling convenience we assume that Heleen is slow in making up her mind after 

Gaiarosa informs her about Jan.) After that, they both change their mind, and both lies 

have become true. 

For an initial model, we assume that Heleen and Jan know of themselves whether they 

intend to go to the retreat but do not know it of the other one (and that this is known, that 

this is the background knowledge). This comes with the following model, wherein solid 

access represents the uncertainty of Heleen and dashed access represents the uncertainty of 

Jan, and where worlds are named with the facts 1'h ('Heleen comes to the retreat') and 1'J 

('Jan comes to the retreat') that are true there, where O 1 stands for 'r1i is false and r 1 is 

true', etc. The designated point of the model is boxed: initially both do not intend to go to 

the retreat. 

01 ------ · 11 

[QQ]------ 10 

1 I ), 



Gaiarosa now lies to Heleen, in private, that Jan goes to the retreat. For the convenience of 

the reader informed about action model logic, we can model this as a three-pointed action 

model as follows, on the left-where for convenience we have put the similar private lie to 

Jan about Heleen next to it, on the right. (We recall that we consequently use the KD45 
visualization where for all states ;z:, ( x: ,r,) E R0 unless there is a state y such that 

(x, y) E: Ra but (y, :r) '/- R0 , for a = j, h.) 

I , 

I 

I 

T 

\ 

\ 

I • .,.j 1---
\ 

r · J 

The result of the first of these lying actions is as follows. 

Now Gaiarosa lies privately to Jan that Heleen goes to the retreat. The result of that action 

is shown in Figure 1. For the convenience of the reader we also depict (on the right) the 

restriction of this model to the submode! generated by the point $00$. 

J l 1 
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_ ... ---- --
01 - 01 - - -, 01 - -- --- 11 

00 - 00 - - - - - - 10 

Figure 1: The resulting model after two lies and its generated submode! under bisimulation 

\label {modelresult:twolies} This model formalizes that: Heleen is not going to the retreat, 

believes that Jan goes to the retreat, and believes that Jan is uncertain whether she goes to 

the retreat; and that: Jan is not going to the retreat, believes that Heleen goes to the retreat, 

and believes that Heleen is uncertain whether he goes to the retreat. See the DEMO 

implementation in the next section. We now let first Heleen and then Jan change their 

mind. Heleen changing her mind can again be formalized as an action model, namely as a 

private assignment to Heleen; and similarly, Jan changing his mind as a private assignment 

to Jan. It is important here that a *public* assignment is an improper way to formalize this 

action: a public assignment of Heleen going to the retreat if she believes that Jan goes to 

the retreat would be informative to Jan in case he were to believe that she believed that he 

was going to the retreat. Because in case he was uncertain if she would go to the retreat, he 

would then learn from this public assignment that she would come to the retreat for his 

sake. Boring. Because exactly the absence of this sort of knowledge of the other's 

intentions makes first lovers' meetings so thrilling. That kind of uncertainty should *not* 

be resolved. Therefore, we formalize it as a private assignment. Interestingly, in the 

current model the result of a public and of a private assignment (the result of Heleen 

privately changing her mind or publicly changing her mind) is the same. But that is 

because both Heleen and Jan believe that the other is uncertain whether they go to the 

retreat. We will of course again corroborate this in DEMO. Below on the left is the action 

model for Heleen changing her mind, and on the right, the one for Jan changing his mind. 

(So, for example, according to our conventions, in the left action model the solid relation, 

that of Heleen, has identity access, and the dashed relation, for Jan, has only a reflexive 

arrow in the point that the dashed arrow is pointing to.) 



We now depict in Figure 2, from left to right, once more the model before they change 

their minds, the model resulting from executing the action of Heleen changing her mind, 

and the model resulting from Jan changing his mind, where once again we restrict the 

actually resulting models to the point-generated subframes. 

01 - - - + 01 - - - - - - 11 

00 -- ---- · 10 

l 
I oo I - - - - - - - - - - - - -. 10 

11---+ 01 -- -- - - 11 

00 - - - - - - 10 

l 
lkkmi [TII] ------------+ 1() 
⇒ 

11 --- + 01 ------ 11 

00 ------ · 10 

l 
,Jan [II] ------------+ 11 
⇒ 

Figure 2: The models before and after Heleen and Jan changed their minds Now that 

Heleen and Jan have changed their minds, the lies have become the truth! They both go to 

the retreat, and they both expect the other to be surprised to find them at the retreat. [ A2] 

They declare their love to each other and they both live happily ever after. We conclude 

this section with two further technical observations on the model constructions and the 

analysis. Firstly, one can imagine Heleen already changed her mind before Gaiarosa 

informs Jan that Heleen is going to the retreat-in which case Gaiarosa would no longer 

have been lying. But that is a modelling artifact. To avoid such a scenario we simply 

assume that Gaiarosa simultaneously sends two *letters* to Heleen and to Jan containing 

the lies. At that moment both are indeed lies. Then again, the information change affected 

in Heleen and Jan depends on the moment the letter is opened ... It does not greatly matter: 

Heleen changing her mind can be modelled both before and after Gaiarosa talking to Jan. 

But lying twice is far more interesting than lying once only. Secondly, as mentioned, when 

executing the private assignments we restricted ourselves to point-generated subframes. 

Without that restriction, for example, based on the model on the left above, the model in 

the middle above would look as follows: 

I c; 



Clearly the simplified visualization is better. 

DEMO implementation 

We implement the above modelling and verify the proposed properties in the DEMO 

(short for Dynamic Epistemic MOdelling) [19], which is a model checking tool developed 

mainly by Jan van Eijck, with contributions from his students since 2004. Our code runs 

on a slightly modified version of DEMO Light [18] and the Glasgow Haskell Compiler 

GHC, version 8.0.2. 

Here is the declaration of the module. 

module Truelieslove where 

import Data.List 
import ModelsVocab hiding { 1l10 ) 

import Actionvocab 
import ChangeVocab hiding ( pulJHc , preconditions , voe ) 
import ChangePerception 

We first define two special agents h and j and the atomic propositions that 

representing their come to the retreat. We omit the Zen master Gaiarosa as her knowledge 

and belief are not the focus of the modelling. 



h, heleen, j, jan : : Agent 
h = Ag heleen =Ag ~ 
j = Ag G; jan = Ag G 

rh , rj Form 

rll = Prp (RH) this represents He1een comes to the retreat 

rj = Prp (RJ) •· tllis represents Jan comes to the r-etr-eat 

The initial epistemic model is defined as mod0 . 

moci0 = (Mo [ O,, ] [h,j] [RH, RJ] val aces points) 
i-;here 

val= [( O, []), ( J , [RJ]), ( 2, [RH]), ( 3 , [RH,RJ])] 

aces= [(h, x ,y) Ix<- [ U, l] , y <- [ 0 , 1 ]] ++ 

[(h,x,y) Ix<- [ 0 , 3 ], y <- [2 , 3 ]] ++ 

[ ( j, X, y) I x <- [ 0 , 2 ] , y <- ((l , ]] ++ 

[(j,x,y) I x <- [ 1, 3], y <- [ l , 3 ]] 

points= [OJ 

The private lie to Heleen that Jan goes to the retreat is encoded in the action model 

amlie2h . 

amlie2h : : FAM State 
amlie2h ags = Am [ C, .l , ?] ags [( O,(Neg rj)), ( 1,rj), ( ? , Top)] 

[(h, U, J. ), (h, 1 , l ), (h, 2 , ), (j, 0 , 2 ), (j, 1 , Z) , (j, ' , )] [ iJ 

The private lie to Jan is encoded in action model amlie2j in a similar fashion. 

amlie2j : : FAM State 
amLie2j ags = Am [C, J , ?] ags [( C,(Neg rh)), ( 1,rh), (' , Top)] 

[(j, C, ), (j, J , 1), (j, ? , 2 ), (h, C, ), (h, J , :? ), (h, ? , ? )] [ U 

The resulting epistemic models of two lies are then kept in modi and mod2 . The 

corresponding mod1' and mod2' are the submodels generated under bisimulation: 



rnod1 = up mod0 amlie2h 

modt' = bisim mod1 

mod2 = up modl' amlie2j 

mod2' = bisim mod2 

The following shows mod2' , which corresponds to the generated submode! in Figure 1. 

*Truelieslove> mod2' 

Mo [0,1,2,3,4,5,6) [h,j] [rh,rj] 

[{0, []), {1, []), (2, [rj]), (3, [rj]), (4, [rh]), (5, [rh]), (6, [rh, rj])] 

[(h,0,2), (h,1,1), (h,1,3), (h,2,2), (h,3,1), (h,3,3), (h,4,5), (h,4,6), (h,5,5), 

(h,5,6), (h,6,5), (h,6,6), (j,0,4), (j,1,1), (j,1,5), (j,2,3), (j,2,6), (j,3,3), 

(j,3,6), (j,4,4), (j,5,1), (j,5,5), (j,6,3), (j,6,6)) [0) 

We formalize in heleenbelief the following statement "Heleen is not going to the 

retreat, believes that Jan goes to the retreat, and believes that Jan is uncertain whether she 

goes to the retreat". Similarly we have janbelief for Jan. Here the operator K 

represents belief as it is interpreted over ${\mathcal KD45 }$ models. 

l1eleenbelief = Conj [Neg rh, K h rj, K h januncertain] 

janbe1ief = conj [Neg rj, K j rh, K j heleenuncertain] 

j anuncer ti'li.n = Neg (Disj [ ( K j rh), (K j (Neg rh))]) 

hel.eenuncertain = Neg (Disj [ ( K h r j), (K h (Neg rj))]) 

We verify that the above two properties are both true in the model mod2 . The results with 

respect to mod2' are the same due to bisimulation. 

*Truelieslove> isTrue mod2 heleenbelief 

Just True 

*Truelieslove> is True mod2 janbelief 

Just True 

*Truelieslove> isTrue mod2' heleenbelief 

Just True 

*Truelieslove> isTrue mod2' janbelief 

Just True 

We now turn to the mind changing actions. The following action model acm4h encodes 

that Heleen changes her mind privately, and acm4j encodes Jan's private mind changing. 
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acm4h : : FACM State 

acm4h ags = Acm [h , ] ags [( c , (Top, [(RH, K h rj)])), ( 1, (Top,[]))] 

[ (h, u , ()) ,(h, t , 1), (j, C, l) , (j, 1, 1)] [ u ] 

acm4j : : FACM State 

acm4j ags = Acm [0 , l ] ags [( C,(Top,[(RJ, K h rh)])), ( ' ,(Top,[]))] 

[ (j, 8 , 0 ),(j, 1, 1), (h, O, l ), (h, J , 1)] [O] 

The resulting epistemic models from these two actions are kept in mod3 and mod4 . 

Their generated submodels mod3' and mod4' refer to the second and third models 

depicted in Figure 2. 

mod3 = upc mod2' acm4h 

mod3' = bisim mod3 

mod4 = upc mod3' acm4j 

mod4' = bisim mod4 

Both Heleen and Jan now believe that the other comes to the retreat. But Heleen believes 

that Jan does not believe that she plans to come, and further more, she believes that Jan 

believes that Heleen is uncertain whether Jan comes. This can be encoded in the following 

formula heleenbeliefnew . Similarly Jan's belief is encoded in j anbeliefnew . 

heleenbeliefnew = Conj [K h rj,K h (Neg (K j rh)),K h (K j heleenuncertai 

n)] 

janhe1.iefne1,1 = Conj [K j rh,K j (Neg (K h rj)),K j (K h januncertain)] 

We can verify that they are both true in mod4 . 

*Truelieslove> isTrue mod4 heleenbeliefnew 

Just True 

*Truelieslove> isTrue mod4 janbeliefnew 

Just True 
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• Hans van Ditmarsch recalls Jan van Eijck from an ESSLLI summer school in 

Barcelona, in 1998, where he was impressed by Jan going around on a bicycle (and 

where Jan still had a mop of black curly hair; those were the days), and he recalls that 

this bicycle later was stolen. However, we did not really know each other at that time, 

I think. Not so long afterward, it must have been in 1999 (or maybe even before 

ESSLLI, it is all mixed up in my mind), we had a joint meeting in Johan van 

Benthem's office at ILLC (at Plantage Muidergracht), at a time when I was much 

struggling with my PhD. Jan then made the memorable statement that I had learnt 

swimming but apparently was afraid to plunge and go for it, and kept standing on the 

shore or hold my hands to the railing while in the water. No progress! Well, 

something to that effect, in Dutch, involving fear of flying and swimming. He was 

right! Shortly afterwards, I plunged. Since then, we have collaborated on many 

occasions (a shared ESSLLI course, publications on the riddle of 100 prisoners, the 

Logic in Action project, two Lorentz Center workshops, etc., etc.). Last but not least, 

I have also been Jan and Heleen's guest on many occasions, both in Amsterdam and 

in Lavidalle (arriving, of course, on bicycle), which has always been greatly 

stimulating for my musical state of mind. Thanks to you both! To all four of you! 

• Ji Ruan was introduced to Jan by Johan van Benthem when Ji was working on his 

master thesis in 2004. I became very interested in Jan's DEMO project and we 

worked on a structural characterization of two action models being equivalent. Jan 

was the person leading the direction and I felt very fortunate for being inspired and 

encouraged by him. On finishing my thesis, Jan then introduced me to Hans van 

Ditmarsch, who at the time was working at University of Otago in New Zealand. 

Hans subsequently supported me to work with him in Otago for three months, and 

that was my first time to the home of middle-earth, as a fan of The Lord of the Rings! 

Like Hans, I have also been Jan and Heleen's guest on several occasions, when Gaia 

and Rosa were still little. I really enjoyed the time with you and the homemade dutch 

soups were tasty. Now that I live and work in Auckland, you will be my guest if you 

visit this beautiful country someday. 

• Yanjing Wang did his Ph.D. with Jan, but he met Jan for the first time long before that 

(and it was actually due to Ji). On the second day after I arrived in Amsterdam for my 

master study in 2004, Jan kindly helped Ji to move (lots of stuff) to my place by his 

car. Both Ji and I were clearly last-minute people, in particular on that day, but Jan 

has been such a patient and optimistic person, who encouraged and helped us in all 

kinds of moves in our lives. I still remember vividly that after my Ph.D. interview, 
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Jan took me to one of those coffee machines at CWI and proposed to share an Earl 

Grey tea bag with me (my first time to share that!). Indeed, in the next couple of 

years, we shared much more than tea. Besides work, I especially enjoyed the 

philosophical conversations with Jan and Heleen in their lovely house. Even after my 

Ph.D., we still witnessed many important moments in each other's lives. I am looking 

forward to hearing exciting stories from Jan after his moving to a new stage of life. 

Notes 

1 This is a story adapted frmn an exarnple in [J].'""" 

") 

~- In the actual world 11 of the third model in Figure 2, Heleen believes that Jan does 

not know that she plans to come. and vice versa for Jan, although they both in fact 

believe that the other is coming. '""" 
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Hintikka's world 

Franc;ois Schwarzentruber 

Abstract 

We present an online software for playing with higher-order knowledge of agents. 

Playgrounds (muddy children, Sally and Anne, etc.) are described in Dynamic Epistemic 

Logic. 

1 Introduction 

Higher-order knowledge of agents is relevant in many applications: game theory [3], 

robotics ([14], [9]), specifications of distributed systems [11], etc. Dynamic Epistemic 

Logic (DEL) ([4], [17], [16]) extends epistemic logic ([13], [12]) for describing and 

reasoning about epistemic properties and information change. Recently, model checking in 

DEL has been proven to be possible in practice [18] via the tool DEMO1, even in with 

symbolic techniques [15]. 

Nevertheless, none of these tools have a graphical interface that may be used by 

roboticians, game theorists, psychologists, etc. In this paper, we present such a tool called 

Hintikka's world along the lines of Tarski's world [5] and Kripke's worlds [10] . 

Section 2 presents the graphical user interface. Section 3 explains the architecture of the 

software and how new examples can easily be implemented. Section 4 discusses the 

perspectives. 

2 Graphical user interface 

Figure 1 shows the graphical user interface of Hintikka's worli. The example taken here 

is the muddy children where two agents $a$ and $b$ are muddy and it is common 

knowledge one sees the state of the other agent while not knowing its own state. 
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Figure 1: Graphical user interface of *Hintikka's world* 

By clicking on agents, the interface shows the possible worlds for that agent and it shows 

the unfolding of the current pointed Kripke model that models the current situation. 

On the right, the software shows buttons for possible actions (public announcement, public 

actions, private actions, etc.). Actions are modeled by pointed event models. By clicking 

on a button, the corresponding action is executed: the product of the pointed Kripke model 

and the pointed event model becomes now the current pointed Kripke model. 

3 Architecture 



Figure 2 shows the main part of the architecture of Hintikka's world. The interesting part is 

the fact that the graphical user interface (GUI) is independent from the current example 

that is running (muddy children, Sally and Anne, etc.). In particular, adding a new 

example only requires to add a new class that inherits from world and to implement the 

method for drawing the scene from data (valuations, numbers, etc.) that are members of 

the class. 

Graph 
-~ -

GUI EpistemicModel EventModel 

1 * 

* 

1 

World 
- -- -

Muddy Children World Sally AndAnne Wor Id 

Figure 2: Architecture of *Hintikka's world* 

4 Perspectives 

Improving the reasoning tool inside Hintikka 's world. 



We believe that Hintikka's world should embed the model checker DEMO ([18], [15]). We 

also want to extend the tool by implementing algorithms for epistemic planning ( even 

bounded epistemic planning because epistemic planning is undecidable in the general case 

([6], [2], [7])) and arbitrary public announcements, also in the succinct cases ([8]). 

Improving the graphical user interface. 

By clicking on agents, the interface shows some possible worlds. We want to implement 

heuristics for displaying the most relevant epistemic worlds when there are too many 

possible worlds for a given agent. 

Applications of the tools. 

We plan two kind of applications. First, the tool may help children for learning to reason 

about higher-order knowledge (see [1]) . Secondly, the tool may be an interface for 

displaying mental states of real human-aware robots ([14], [9]). 

Notes 

1. http://bornepages.cwi.nJ/,vjve/software/clemo_s5/, 

http:/ /homepages. c:wi .n 11~,jve/so ftw are/proclemo/ ,_, 

2
. http:/ /people .irisa. friFrancois.Sc:hwarzentruber!hi ntikkasworld/ ,_, 
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Beste Jan, 

Vandaag vieren wij de voltooiing van een prachtige loopbaan. Ik weet zeker dat je met 

jouw sprankelende persoonlijkheid velen hebt gei"nspireerd. Mij in ieder geval wel. Tijdens 

mijn promotieonderzoek stond jij altijd voor me klaar, en je bent een grote steun voor me 

geweest zowel op inhoudelijk gebied als met alles eromheen. Jong als ik was had ik het 

gevoel dat jij op de achtergrond een oogje in het zeil hield, en mij tegelijkertijd de vrijheid 

gaf om het op mijn eigen manier te doen. Ik hoop dat de komende jaren je veel plezier 

gaan brengen en de start van een prachtige nieuwe reis, wat de bestemming ook mag zijn. 

Als bijdrage aan dit Festschrift heb ik twee gedichten uitgezocht, die me doen denken aan 

jou en aan de fase waarin jij je nu bevindt. Ik ben erg benieuwd om te zien welk vervolg je 

nu zult kiezen, en ik wens je veel wijsheid en geluk toe in de komende jaren. 

Lieve groet, 

Floor 

Zo'n gelukkige dag. 

De mist was vroeg gezakt, ik werkte in de tuin. 

De kolibries stonden stil boven de bloeiende kamperfoelie. 

Er was geen ding op aarde dat ik zou willen hebben. 



Ik kende niemand die het benijden waard was. 

Wat aan kwaad was geschied, had ik vergeten. 

Ik schaamde me niet bij de gedachte dat ik was wie ik ben . 

Ik voelde nergens in mijn lichaam pijn. 

Toen ik mij oprichtte, zag ik de blauwe zee en de zeilen. 

I have heard what the talkers were talking, the talk of the beginning and the end, 

But I do not talk of the beginning or the end. 

There was never any more inception than there is now, 

Nor any more youth or age than there is now, 

And will never be any more perfection than there is now, 

Nor any more heaven or hell than there is now. 

\Valt V/hilnktll (JB::i'> J .\me; 1kdanse die htcr 

t { j 



1 A Tale of Two Jans 

Martin Stokhof 

There is the formal Jan, there is the informal Jan, there is the Jan of the Haskell Road to 

Logic Programming, there is the Jan of Filosofie: Een Inleiding, there is the analytic Jan 

who wants nothing to do with Heidegger, there is the Jan who studies buddhism and 

practises aikido, there is the Jan at the CWI research centre, there is the Jan who once 

considered teaching philosophy to prison inmates, there is the Jan who writes highly 

specialised and technical papers, there is the Jan who writes books for high-school 

students and philosophy for the millions, there is the Jan who proves theorems, there is the 

Jan who paints and makes music, there is the Jan who organises scientific conferences, 

there is the Jan who is still restoring a farm house in France-in short, there is Jan van 

Eijck: there is his curiosity and enthusiasm, in exploring and investigating, in sharing and 

communicating, there is his relativism and self-irony, in evaluating and combining work & 

life, there is his inspiration and knowledge, shared with students and fellow scientists 

alike, and there is his optimism and trustworthiness, as a colleague and as a friend. 

Two Jans, many Jans, but still one Jan: the one I am proud and happy to have known and 

worked with, and that I hope to know for many more years, in all his many guises. 

Notes 

1. With sincere apologies to the estate of Charles Dickens . ..., 



Personal Note 

Elias Thijsse 

I owe a lot to Jan. Few people have been more important for my academic career than Jan 

van Eijck. Although, due to our shared interest in Montague Grammar, we might have met 

earlier, my first clear recollection of Jan's influence was a course on recent developments 

in linguistics, given by him and Nico van der Zee at Groningen University in 1979 or 

1980. One paper, written by Barwise and Cooper, by then only available in manuscript 

form, was explained by Jan in his typical well-informed and enthusiastic manner. Since I 

considered myself to be a die-hard Montagovian by that time, I was quite sceptical about 

this paper: it seemed partly a reformulation of Montague Grammar, partly an empirically 

weak account of linguistic universals some of which were tautological and some were 

incorrect. I expected a negative comment by Jan on my critical review, but he encouraged 

me to carry on. Looking deeper into the matter, the research on Generalized Quantifiers 

proved to reveal various new logical, mathematical and linguistics aspects. Moreover, the 

open culture and the intensive interaction (students, lecturers, professors discussing 

matters on an almost even terms) during the Groningen semantic wave of the eighties 

made it fun to work in this area. To cut a long story short, I managed to publish several 

papers and write a Master Thesis on Generalized Quantifiers, and Jan was certainly not to 

blame for me not getting a PhD scholarship for pursuing this research. 

Before I finished studying, Jan left Groningen for Tilburg University and I became a 

maths teacher. But it was no coincidence that some years later, I followed Jan's 

professional move and became a research assistant in Tilburg. Only a few years later Jan 

left Tilburg again, now heading for SRI Cambridge and I succeeded Jan as teacher of 

several of his courses on logic, semantics and grammar. This also paved the way for 

converting Jan's lecture notes to a joint Dutch text book on logic for students in linguistics 

and computer science. Since I left academia some years ago to become a maths teacher 

again, contacts have dropped but good memories survived. 

Unfortunately, I did not share Jan's enthusiasm in programming, so it may not be a 

coincidence that I have not been able to retrieve my old and fairly simple ALGOL, Pascal 

and Prolog programs for the present occasion. 



Jan's good spirit and humour should be emphasized here. Jan's hospitality in Groningen, 

Tilburg, Cambridge and Amsterdam should be praised and one wishes many more 

colleagues to act in such a friendly matter. And I consider it a privilege that Jan asked my 

advice, also on rather personal matters, and even seemed to consider the advice valuable. 

Jan is very good person and I hope he can enjoy his retirement for many more years to 

follow. 



Hup! Hup! 

Christina Unger 

'But one must be careful to read Haskell code as one would read poetry' 

-- (Wi.lliarn Cook, https://9i.thub.com/\~/cook//\0PL.) 

type Poem= [String] -- TODO Probably there's more to this ... 

type Dank= String 
type Wens = String 

type VoorAlles =Harte-> [Dank] -> Jan 
type VoorDeToekomst =Harte-> [Wens] -> Jan 

type Harte= [Int] -- slight simplification for the sake of 1mplementabil 
Hy 

data Jan = Jan1 I Jan2 - - I ... 
'Two Jans, many Jans, but still one Jan' 
cf. Martin Stokhof's contribution 

-- [)ear Jan, 

Jubel : : Maybe Poem 
Jubel = let best = head 

in Just$ replicate 10 $best$ wishes 
++ take 2 ( repeat "Hup ! Hup ! " ) 

v-1:i.shes = "alt :i. jd geluk en pJ.ez:i.er" 

joy ( "li.fe" ++ "rest" ) 
helemaal_niets_slechts 

joy = foldl (++) "" words 
l1elemaa.l ___ n:\ets __ s.lechts = [] 

-- Yours, Christina 

~------------------------------~.!.1 
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Working with Jan in Four Movements 

Johan van Benthem 

I feel that I just met Jan van Eijck yesterday, in the turbulent revolutionary Groningen of 

1976---but now, the editors of this festschrift are telling me that I have not kept track of 

time, and that we live 40 years later, our long hairs gone, close to retirement. Academic 

life is a sheltered cave. We Dutch are all Rip van Winkles if it comes to it. 

Over those years, Jan turned from a student into a colleague, ally, and friend whose vigor 

and continued growth kept impressing me. I could write about his dissertation on 

quantifiers, his work on natural logic in natural language, his record in computational 

semantics and computational logic, in dynamic-epistemic logics, or in broad social 

software. I could write about his didactic gifts, leading to a string of textbooks, all the way 

to our most recent collaboration on the internet course "Logic in Action". I could write 

about his broad intellectual interests, from general philosophy where he wrote a widely 

used and often reprinted textbook in his early years to the austere world of computer 

programming in his mature period. I could write about his stylistic talents, from technical 

papers to engaging public dialogues. And finally, I could write about his leadership in the 

national research program "Semantic Parallels in Natural Language and Computation", the 

Education team of my Spinoza Award project, or the "Games, Action and Social 

Software" project at the Netherlands Institute for Advanced Studies NIAS. And all this 

from someone who, when I first met him, sported a luxuriant black hairstyle presaging 

Marx and Engels rather than Hilbert and Godel. 

This string of laudatory modalities is not just my own personal view, or that of a local 

circle. Even Jan's relatively short foreign stays left their traces. Just a few years ago I met 

the somewhat intimidating CEO of a well-known internet start-up in San Francisco who 

became positively warm and jubilant the moment Jan's name came up. They had worked 

together in Cambridge, and his appreciation had stayed ever since. 

But for this festschrift, I want to look at something else, namely, the public record of my 

collaborations with Jan. What did we write together, and what became of it? 



The first paper we wrote, called "The Dynamics of Interpretation", appeared in 1982 as the 

first item in the first volume of the new Journal of Semantics. 'Dynamics' is a popular term 

these days (it may already be past its prime, as youth turns into cliche), but we may have 

been among the first to use it. By that time, classical Montague Grammar was challenged 

by new richer semantic frameworks for natural language, and these frameworks were busy 

developing content and attracting followers. Instead of adding one more, Jan and I wanted 

to understand what was going on. In the paper, we mention a conference in Cleves that 

brought together leading innovators of the time like Jaakko Hintikka and Hans Kamp, but 

also, in another tradition, Pieter Seuren. In our paper, we try to bring logical clarity to 

these approaches, including then current views of discourse representations as schematic 

pictures of the real world and connections with semantic tableaux, and we explore 

consequences for logical theory. Specifically, we show that a picture metaphor can only 

work for a small existential fragment of a language: in more modern terms, the domain of 

model-checking methods for inference in knowledge representation. We also analyze to 

which extent semantic tableaux can be viewed as generalized pictures, with not just 

individual facts but also rules, and prove in which precise sense tableaux manipulate open 

branches as schematic representations of ( classes of) standard models. Finally, we question 

the conservative tendency of much semantic innovation at the time of insisting on tight 

connections with complete classical models, and suggest that a more radical approach 

would just stick with partial models as one's semantic universe. 

Looking back at these themes, we were too early. Pictures and diagrams as a vehicle for 

reasoning only became a big topic in the 1990s, and partial possibilities semantics in its 

own right did not sweep the world, although it is making a comeback these years. 

Moreover, we made a tactical mistake in giving an extensive comparison between 

Hintikka's game-theoretic semantics and Kamp's discourse representation theory and 

suggesting that these frameworks could learn from each other. This is of course anathema 

to founders of new religions that are on the march. 

Despite this irenic tendency, there are also striking critical undertones in the paper. For 

instance, on the status of representations, we write "some view them as syntactic 

constructs, some as psychological ones, and some just prefer to remain confused on this 

issue." Nowadays, several decades later, I would never write anything like that, having 

learnt to sugarcoat criticism for thin academic skins, suppress emotion, count to 10, 100 or 

whatever power of 10 it takes, and realizing that every ironical remark will come back to 

haunt you. But oh my, how I enjoy the barbs in this paper! 



All in all, I believe that methodological clarity and a cooperative stance are crucial for a 

healthy field: but one can overdo it. Competition between schools, including unfair 

propaganda, may well be a prime mover that we should not stifle. 

Are there still things to think about for Jan and me? Our paper is about the dynamics of 

interpretation, not about dynamifying meanings, and this distinction in locus for capturing 

the dynamics of language use still seems relevant. I wonder what Jan thinks about it, 

decades later, as a much more experienced computational semanticist. 

In the 1980s, our interests turned from natural language by itself to include action and 

computation in general. Computer science became a new source of inspiration, in its fast 

development of new paradigms for sequential and parallel computation. This fit is natural 

given the many parallels between the study of language and computation, a trademark 

item at the ILLC. Our second paper came some ten years later, written with Vera 

Stebletsova from Moscow. Again, our goal was comparative and systematic. We 

contribute to connecting two realms that were already interacting: the tradition of labeled 

transition systems in computer science, in particular process algebra, and polymodal and 

dynamic logic over relational models. We give a general perspective on the proliferation 

of process equivalences at the time in terms of matching logical languages, showing how 

classical results on definability go through. Going beyond that, we introduce the notion of 

safety for bisimulation, a logical take on program or process operations that fit a chosen 

invariance notion-though a full first-order characterization theorem came only later in 

the 1990s. And finally, we take parallel processing seriously by proposing a new notion of 

bisimulation for concurrent POL. 

I could say more (the paper is 45 pages long), but these points are of course mainstream by 

now. Computer science and modal logic have drawn ever closer, and qua methods, the 

paper is typical Amsterdam School in its emphasis on model theory as a source of 

generality. So, no story of unjust neglect here: we were just helping build a highway, and 

the computer science influence stayed in our own later work. 

An open end for Jan to ponder today is our treatment of concurrency. Modeling parallel 

action is a very live issue - unless you think your religion has solved it all (sects also 

abound at the interface of logic and CS). With some colleagues, I am puzzling over natural 

bisimulations for games these days, and questions from our paper return. 



But Jan and I did not always just streamline what was already happening: we also 

ventured into new territory. In a 1993 report "Changing Preferences", written together with 

Alla Frolova from Moscow (again a Russian logician, the Moscow connection was strong 

in those days), we point out how, in addition to action and information, preference is 

crucial to agency. True to form, we then propose a general logic of order minimization for 

analyzing various notions of consequence proposed at the time in AI and semantics of 

natural language, that combined information and preference (be it as the rather bleak 

notion of what would nowadays be called relative plausibility). We show how many 

further notions of consequence can be defined in our framework, demonstrating the free 

spirit that comes with logical abstraction. There is also an extensive discussion of 

dynamics of new information, and of technical translations for laws of dynamic scenarios 

into the language of static logics, in the spirit of things Jan and I were doing separately at 

the time for systems of dynamic semantics. 

Again, this sort of approach is mainstream by now. However, the period is pre-DEL, and 

the technique of the paper is the one we used back then, inspired by the work of Edsger 

Dijkstra, the only Dutch winner of the Turing Award to date. We use transformations of 

propositions as sets of worlds, connecting pre-and postconditions recursively. Nowadays 

this would be seen as a 'lifted version' of DEL-style update, I guess, though the 

proposition-transformer approach is more general in principle - and it did feature 

prominently in the work of our joint student Marc Pauly. It is a long time since I have 

discussed this methodological shift with Jan, and I sometimes wonder why we gave up the 

Old Way (or did it just happen?). Of course, there must be an answer, since we are talking 

logic and mathematics, and if there is one, Jan is sure to have it. 

But to me the most striking part of the report comes toward the end. We propose two 

operations that change preference order, that would nowadays be called 'suggestion' and 

'radical upgrade', and suggest that these are central notions to study. But we did not. We 

did not even publish this paper. Why? Perhaps the reason can be found at the start of the 

paper: we apologize for taking preference seriously, as being subjective and fleeting (a 

shallow objection one still finds in some circles today). This was a mistake. Only some 10 

years later, preference became crucial to my own work on logic and games, and I am sure 

that Jan, too, has seen the light. And our operations for preference change turned out to be 

central to the creation of dynamic-epistemic preference logic in the work of Fenrong Liu 

around 2006. So, we missed our chance. 

1.1n 



But to those who stay afloat, the great stream of research always carries fresh 

opportunities. The emergence of dynamic-epistemic logic in our community around 2000 

affected us deeply, as it was an ideal vehicle for pursuing the dynamic and computational 

themes that had been there in our work from the start. Here, too, a modeling challenge 

plus a search for systematization combined to produce my final example, the 2006 paper 

"Logics of Communication and Change", written with Barteld Kooi. 

This paper arose from the needs of group knowledge, and in particular, finding the right 

recursion laws for common knowledge after update. I had already found one solution for 

the special case of public announcement logic: extending the base logic with conditional 

common knowledge, and next, with Barteld, I had found a solution for the much harder 

case of DEL product update in terms of finite product automata. However, joining forces 

with Jan made us see the power and elegance of making two further changes in the set up: 

working with an epistemic version of propositional dynamic logic in the base, and using a 

beautiful algorithm for finding recursion laws based on the proof of Kleene's Theorem for 

finite automata. In addition, we showed how factual change can be taken on board in DEL, 

as long as it can be modeled by changing truth values for proposition letters according to 

some definable recipe. 

I believe that this is still about the most elegant formulation of DEL in its generality, 

though some friends feel we either did too much (the base language becomes hyper­

baroque) or too little (we did not arrive at generalized dynamics in the style of Girard, Liu 

& Seligman, and we did not cover the modal mu-calculus, something I did later with 

Daisuke lkegami). I do not think our paper got the attention it deserved, and in fact, in the 

years since 2006, I have seen many publications on DEL reinventing the wheel (or even 

worse, square or polygonal versions thereof) that do not seem to be improvements. 

However, truth is a slow but sure traveler, and our time will come. 

That does not mean that our paper is the last word: the road goes on. Right now, I am 

interested in fixpoint logics where DEL programs can be defined by recursion (for 

cognoscenti: the way things happened in PAL*), and then we need to spring the bounds of 

all this. However, these logics are highly complex computationally, at least in their current 

versions, so I am not sure if the programmer in Jan will approve. 

These four papers show what working with Jan van Eijck produces. I believe that their 

methodology and content are still alive, with new questions if you add up all asides in the 

above. But the process was as pleasant as the product. Here are some qualities one 

experiences when working with Jan. He likes to be broadly informed across a topic, and 



then shed light by seeing patterns across notions, results, and schools. He likes to ascend 

to well-tested logical abstraction levels where things become clear and comparable, rather 

than engage in ad-hoc modeling. And in his approach to both ideas and the people creating 

them, he tends toward generosity, and collaboration. 

Of course, Jan also has habits that are more alien to me, such as his insistence on practical 

programming skills. These are like prowess in jogging: I admire people who do it, but I 

find it hard to follow. But I do marvel at how the programmer in Jan turns abstract logic 

into concrete methods, say, when he computed recursion laws for difficult communication 

scenarios that I could never keep straight with just brain power. And I have seen with my 

own eyes how adding programming to logic courses, another recommendation of his, can 

turn hostile mobs into engaged students. 

Jan's academic road has many more milestones than the four I have placed in this short 

piece, but I am sure that this festschrift in total will reveal a long scenic road. 

It will be clear that Jan and I have been travel companions for a long time. There are many 

more personal things one could say about success and failure , hope and fear. But not 

everything that is announced is valuable, and not everything that is valuable should be 

announced. I wish Jan all the best with designing a meaningful life beyond retirement, 

avoiding the trap he dreads of 'more of the same'. Now is the time! 
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The Value of Alternative Semantics 

Tijs van der Storm 

Abstract 

Starting his return to philosophy, Jan wrote an interesting blog about alternative facts . In 

the article he writes that "Alternative facts do not exist". A statement is considered a fact, 

when it corresponds to reality, otherwise, it's a falsehood ( or a lie if dishonesty is 

involved). In a certain sense this is a matter of dependency: a statement's being a fact 

depends on the world, but the reverse is not true: you can have different states of the world 

or different possible worlds compatible with the same facts. In programming language 

design, there seems to be a similar dependency between semantics on the one hand, and 

syntax on the other: it's not possible to have different kinds of syntax for the same 

semantics since semantics is defined in terms of syntax. It is, however, very well possible 

to have different (imagined) semantics for the same syntax. In short: alternative syntax 

does not exist, but alternative semantics do. 

In this essay I'd like to explore the value of alternative semantics for the benefit of the 

programmer. Value here has two meanings: value as in "useful", or "a good thing", but also 

value in the functional programming sense, where values are immutable data objects 

resulting from evaluating expressions. The idea is to partition a language according to 

different but related concerns, and then have different interpretations for the whole 

language, where each interpretation addresses only one concern. I'll illustrate with a 

simple domain-specific language (DSL) for Web-based user interface programming, called 
TwoStones Two Stones . 

All the code can be found online here: https: //github.corn/cwi-swat/TwoStones. 

Introduction 

The "Right View" 

JU 



The idea of using two interpretations to untangle what's going on in typical web-based Uls 

is inspired by Evan Czaplicki's work in Elm. Elm is a functional programming language 

that separates a UI app into two parts: a view function that takes an immutable application 

model and produces an HTML tree structure for rendering, and an "update" function, 

interpreting events into a (functional) modifications of the application model. These 

functions are called alternatingly, providing an clean model of stepping through an 

application. 

Recently, I've ported the Elm architecture to the Rascal language, resulting in the Salix 

library. Both update and view functions can be written in Rascal, but the UI is executed in 

the browser. Observing the amount of boilerplate I had to write to evolve a model in the 

update function, I revisited an idea originally applied in the Enso system and Recaf: 

instead of having two functions for render and update, we'll use a single program, but with 

two semantics, effectively turning the Elm model inside out. As a result, the programmer 

writes a single "function" addressing both concerns at once, but the runtime will separate 

these concerns in different executions of the program. My goal here is to show how this 

can be achieved without losing the benefits of functional programming. 

To make this more concrete, here are two function signatures describing the two 

semantics. The first is "rendering": 

render : Program x Aiodel -', IVode 

So the render semantics takes a program, an application model, and produces a HTML 

node, which can subsequently be rendered in a browser. 

The handling concern is captured by the following signature: 

handle: Program x Afodel x Event -➔ iHodel 

In this case, the function takes a program, a model, and an event value, and produces an 

updated model. 

A UI program then consists of an (infinite) top-level driver loop calling render and 

handle in alternating fashion, like this: 
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view_0 = render(p, m_0); 
. . . event e_0 happens .. . 
m_l = handle( p, m_0, e_0) 
view_l = render(p, m_l) 
... etc. 

The sequence starts with rendering an initial model m_0 . Then some event e_0 

happens, which is fed into handle . The function handle is invoked with the original 

model ( m_0 ), and produces the new model ( m_1 ). The new model is then rendered 

producing the new view view_1 , and the cycle repeats. 

(Aside: this might look very expensive in terms of computation; however, rerendering the 

whole GUI "virtually" and then patching the actual GUI based on the difference ("diff") 

between $view_{i+l}$ and $view_i$ is what state of the art frameworks like Facebook 

React, Om, and Elm all do. The approach represented here is fully compatible with this 

technique.) 

As a result, the programmer only writes a single program, but may still enjoy the benefits 

of functional programming with immutable values. Next I'll describe a simple prototype 

language, called TwoStones in more detail. Basically, we'll be filling in the definitions of 

both render and handle . 

Rendering Views with TwoStones 

Let's start with the first concern: constructing the visual presentation of the user interface, 

or: rendering. In the following I'll use the Rascal to present the abstract syntax of 

TwoStones, as well as the definitions of standard interpreters to represent the semantics. 

Most code snippets will be easy to follow for anyone familiar with functional 

programming idioms; where needed, I'll explain Rascal specific constructs. 

The core of TwoStones is captured in the following abstract syntax definition of 

statements ( stm ): 



data Stm 
= elt(str name, Stm body) 

ifThenElse(Expr cond, Stm then, Stm els) 
forEach(str x, Expr 1st, Stm body) 
output(Expr text) 
block(list[Stm] stms); 

The elt statement produces an HTML element node, tagged with name and containing 

child nodes produced by body . The construct i fThenElse is used for conditional 

evaluation. To loop through a list, one can use forEach which iterates over the elements, 

and binds each element to the variable x in scope of body . The leaves of the node tree 

are represented by text nodes, produced by the output statement. Finally, statements can 

be grouped using the block construct. 

For now we assume we have a standard expression language ( Expr ) which is used in 

i fThenElse , for Each and output . We assume further that there's an eval function 

to evaluate expressions to values of type value . Values include primitives (int, str, bool; 

wrapped in constructor prim ),aswellaslists( array(list[Value]) )and records 

(JSON-like sets of properties; record ( map [ st r, value J) ). The expression language 

contains constructs for accessing list elements by index ( x [ i J ) and fields of records 

( x . f ), and the usual operations on booleans, integers, and strings. 

The result of rendering a TwoStones statement will be a Node , which represents a 

simplified version of HTML. For now, node attributes are omitted, except for a map 

associating identities (integers) to event types (strings). This events map is a keyword 

parameter which makes it optional; retrieving the keyword parameter from a constructor 

will return the default value if it hasn't been explicitly set. Here's the definition of Node : 

data Node 
= element(str name, list[Node] kids, map[int,str] events=()) 
I text(str text); 

The render signature introduced above takes a model value and a program and produces a 

Node ; this is the signature of the main entry point as shown earlier. The render 

function I'll introduce next has a slightly different signature, consuming a statement, and 
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environment (containing the model), a parent Node , and an identity generator function 

next (which will be explained below). The parent argument allows nested statements 

to append new nodes to their enclosing element. 

Here's the definition of render for TwoStones statements: 

Node render(elt(str name, Stm body), Env env, Node parent, int() next) 
= parent[kids =parent.kids+ [n]] 
when 

Node n := render(body, env, element(name, [] ), next); 

Node render(output(Expr e), Env env, Node parent, int() next) 
= parent[kids =parent.kids+ [text("<v>")]] 
when 

prim(value v) := eval(e, env)) 

Node render(ifThenElse(Expr cond, Stm then, Stm els), Env env, Node paren 
t, int() next) 

= render(v? then : els, env, parent, next) 
when 

prim(bool v) := eval(cond, env) 

Node render(forEach(str x, Expr 1st, Stm body), Env env, Node parent, int 
() next) 

= ( parent I render(body, env + (x: v), it, next) I Value v <- vals 
when 

array(list[Value] vals) := eval(lst, env); 

Node render(block(list[Stm] body), Env env, Node parent, int() next) 
= ( parent I render(s, env, it, next) I Stm s <- body ); 

Some notes on Rascal notation: : = represents pattern matching, postfix assignment t [x 

= e] is used to functionally update a component of a tuple or constructor; the construct 

( ini t I accu I gen ) is sugar for reduce , where init is the initial value, accu 

the accumulator, and gen represents an arbitrary sequence of generators, like in list 

comprehesions. In each iteration the intermediate result is bound to the keyword it in 

the context of accu . 

Rendering the elt statement simply renders the body statement with a new parent 

node, and the result is added to the current parent. Same for output , except that the 

argument expression is converted to a string (using Rascal's string interpolation) and 



wrapped in a text node. Note that only primitive values can be output. Conditional 

execution selects either then or else based on the result of evaluating cond . To 

render each element of a list individually, the forEach statement accumulates child 

nodes through the use of a "reducer" by executing the body of the loop in the context of 

a new environment binding x to consecutive values of the list 1st . Finally, the 

block statement executes each statement in its body, appending child nodes to the 

current parent . 

The definition of render can be used to produce passive nodes from TwoStones 

programs, but what about interaction? This is where the next function starts to be 

relevant. First, however, we extend the syntax with one more statement to specify the 

effect of an event: 

data Stm 

= 
I on(str kind, Expr x, Expr v); 

The on statement states that when an event of type kind happens (where kind could be 

"click", or "change", etc.), it should update the location in the model designated by 

expression x to be the value of v . In other words, the on statement associates an 

event occurrence to some update of a sub tree of the model. How this is realized is outside 

the scope of render . Nevertheless, in order for handle to know which effect to apply 

when an event occurs, render leaves a small trace in the node structure of UI, by 

associating a unique identity to the node surrounding the on statement, as well as the 

type of event: 

Node render(on(str kind, Expr _, Expr _), Env env, Node parent, int() nex 

t) 

= parent[events =parent.events+ (next(): kind)]; 

So the only thing render does, is getting the next id, and linking it to the event type in the 

events map of the surrounding element. The identity will later be used in handle to 

identify where in the node tree a particular event occurred. 

The next function is a stateful closure that gives a unique integer on every invocation. 

Purists might consider this to be a violation of functional programming, but I could have 

threaded an integer through the whole computation just as easily, at the cost of additional 
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boilerplate. Another way to simulate node identity is to use a canonical representation of 

the execution trace up till the point it is needed (i.e ., a path). 

Time to look at an example: a simple counter app. This app shows an integer value with 

two buttons labeled " .._ " and " T " respectively. Clicking on those buttons increases resp. 

decreases the counter value. The application model is a simple integer, and we'll assume it 

resides in the variable "model" . 

Here's the AST representing the counter app: 

elt("div", block([ 

elt( "button", block( ( 

on("click", var("model") , add(var("model"), integer(l))), 

output(string("•")) 

]) ) , 
output(var("model")), 

elt("button", block([ 

]) ) 

on("click", var("model"), sub(var("model"), integer(l))), 

output(string("T")) 

]) ) 

Rendering this program produces the following node structure: 

element ("div", ( 

]) 

element("button", [text("•")],events=(0: "click")), 

text("0"), 

element("button", [text("T")],events=(l: "click")) 

Such node values can be converted to HTML and rendered in the browser. For instance 

like this: 

0 

Each element that has an events map will have Javascript event handlers for each kind 

of event in the map. These handlers are all of the same type: they return an object 

capturing the id , the type of event, and any additional data ( e.g., the text entered in a 
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text box). In turn, these event objects are then fed into the event handling process, which 

I'll describe now. 

Handling Events and Updating Models 

As seen above, the render semantics simply skips any event-handling logic, except for 

leaving a tiny trace in the view so that the handle semantics knows where in the node 

tree an event has occurred. This context is found by having handle execute the exact 

same control-flow as the render code, when given the same model value (see the trace 

above), and providing it with a fresh id generator as next . Because the control-flow is 

exactly the same and TwoStones programs are purely functional, the function next will 

be invoked in the exact same context as render called it. As a result, if a generated id 

matches the id of the event given to handle , we'll know we're at the right place. 

The handle function not only consumes a TwoStones statement, an environment and an 

id generator, but also an event object. Events carry the id of the originating element and 

their kind; they are defined as data Event = event(int id, str kind) . For now we 

abstract from the actual additional data that events may carry, such as entered text, or 

mouse coordinates. 

Handling an event results in a list of zero or one updated value ; I'm using list s here 

as the Optional monad so that I can use Rascal's splicing (using * ) in combination with 

list comprehensions to simulate the monadic operations bind and return . When 

handle returns the empty list, the event was not handled; otherwise, the single element 

in the list is the updated version of the model. 

Here's the definition of handle : 



list[Value] handle(elt(str name, Stm body), Env env, Event event, int() n 
ext) 

= handle(body, env, event, next); 

list[Value) handle(ifThenElse(Expr cond, Stm then, Stm els), Env env, Eve 
nt event, int() next) 

= handle(v? then : els, event, next) 
when 

prim(bool v) := eval(cond, env); 

list(Value] handle(forEach(str x, Expr 1st, Stm body), Env env, Event eve 
nt, int() next) 

= [ *handle(body, env + (x: v), event, next) I Value v < - vals ] 
when 

array(list[Value) vals) := eval(lst, env); 

list(Value] handle(block(list[Stm] body), Env env, Event event, int() nex 
t) { 

= [ *handle(s, env, event, next) I Stm s <- body ] ; 

list(Value] handle(output(Expr e), Env env, Event event, int() next)=[]; 

The code looks very similar to the code of render . Note, however, that this time the 

output and elt constructs are skipped, since they should not contribute to the result. 

Conversely, however, the on statement is now the place where the actual work is done: 

list[Value) handle(on(str kind, Expr x, Expr v), Env env, Event event, in 
t() next) 

= [ . . . I event. id next (), event. kind kind ] 

Here, we check if the event that occurred ( event ) is of the right type and that it is the 

event that should be handled at this point of execution via the next function and the 

event's id . But what should be done at the ellipsis in this code? Somehow, the location 

designated by x needs to be updated to the new value v , but how should this be 

propagated up to the top-level to obtain a complete new model? The answer is zippers. 

Originally invented by Gerard HuetZipper (but at a time that Henry Lieberman was 
. . . . Marcottage . 

explonng similar ideas •. ), a zipper represents a sub element of a data structure 

that is somehow in focus, together with functions to update this element in its context and 



to move around further in the data structure. Zippers are widely used in functional 

programming ( cf. HaskellWiki)-below I'll describe a simplified, "untyped" version of the 

zipper, dubbed "cursors", to avoid buying into too much detail of Huet's original. 

Cursors to the Rescue 

A cursor can be represented using the following type aliases: 

alias Put= Value(Value); 
alias Cursor= tuple[Value get, Put put]; 

A cursor thus encapsulates a value indicated by the get component of the tuple, and a 

function to "update" this value in its context, using the put component of the tuple. How 

this works will be clear when discussing how values are traversed during evaluation. But 

first, we have to change the standard eval function and Env data type to reflect that 

we won't be processing bare values, but actually values of type cursor . So we'll assume 

Env is a map from string to cursor , and eval returns Cursor instead of Value . 

(Note that render defined above could also reuse this new eval, by simply always 

projecting out the first component of a cursor, and binding values with the identity 

function as put in the environment.) 

The relevant expressions that traverse data are indexing of a list using a subscript index 

(e.g., like x [i] ), or accessing a field of a record value (like x. f ): 

data Expr 
= 

field(Expr rec, str name) 
index(Expr 1st, Expr idx); 

The eval function for these cases: 



Cursor eval(field(Expr rec, str name), Env env) 
= <props[name], Value(Value v) { return put(record(props + (name: v))); 

}> 

when 
<record(map[str,Value] props), Put put> := eval(rec, env); 

cursor eval(index(Expr 1st, Expr expr), Env env) 
= <vals[idx], Value(Value v) { return put(array(replaceAt(vals, idx, v) 

) ) ; }> 

when 
<array(list[Value] vals), Put put> := eval(lst, env), 
<prim(int idx), _> .- eval(expr, env); 

Some explanation is needed here. In the first case, evaluating the expression rec results 

in an record value cursor: the left component indicates the actual value of the record, the 

right component ( put ) represents its context. The result of accessing the property name 

is then a cursor consisting of the actual property value, and a Put function to "update it". 

Updating the property in its original context with a new value v entails updating the 

props map with the new value, and calling the put function (captured in the when -

clause) of its original context. The same mechanism applies to list indexing: the put 

component updates the indexed element in the original list (using replaceAt ), and then 

calls the parent put function to propagate upwards. 

So cursors can be interpreted as the functional equivalent of a pointer to a location in 

memory: traversing an object moves the pointer along; calling the the put function 

updates the location pointed to. Of course, cursors do this in a purely functional way: 

calling put produces an updated version of the data structure you started with at the top 

of the program. 

It's now clear what needs to be done when handling an event: 

list[Value] handle(on(str kind, Expr x, Expr v), Env env, Event event, in 
t() next) 
= [ eval(x, env).put(eval(v, env).get) I event.id== next(), event.kind 

==kind]; 

Updating the model thus boils down to calling put on the left expression, with the value 

of the right expression. This will return a new value, that reflects the updated model. 



Unfortunately, there's one issue we've overlooked: since the handle case for forEach 

simply binds elements of the list to the loop variable, we've lost the connection to the 

container list in the cursor. As a result, updates to elements will not be reflected back into 

the list, and from there on up. So as a final (essential!) tweak, the forEach 

implementation needs to be modified as follows : 

list[Value] handle(forEach(str x, Expr 1st, Stm body), Env env, Event eve 
nt, int() next) 

= [ *handle(body, env + (x: subscript(vals, idx, put)), event, next) I 
int idx <- (0 .. size(vals)] ] 

when 
<array(list[Value] vals), Put put> := eval(lst, env); 

Cursor subscript(list(Value] vals, int idx, Put put) 
= <vals[idx], Value(Value v) { return put(array(replaceAt(vals, idx, v) 

) ) ; }>; 

So instead of simply binding successive values, the code now simulates index -based 

access to list elements. The cursor returned by the helper function subscript propagates 

changes to the element, back into the container list, and upwards from there using put . 

Counter App 

Recall the output of the counter app above: 

element("div", [ 

]) 

element("button", [text("•")],events=(0: "click")), 
text("0"), 
element("button", [text("T")],events=(1: "click")) 

Let's assume further that the inital counter model is 0, and stored in the environment as 

follows : 

Env env = ("model": <prim(0), Value(Value v) { return v; }); 



This means, that the initial cursor simply returns the new value for the model. Now let's 

say the user has clicked the increment button ( _. ), which is represented as the event 

event0 : event(0, "click") . At the top level, this event is then handled using the 

following code: 

handle(counterApp(), env, event0, idGen()); 

The result of evaluating this code will be [prim ( 1) J , as expected. This very simple 

example does not involve model navigation, so it doesn't really show the power of cursors 

in action. The example in the next section, however, fully exploits cursors in a user 

interface for recursive data. 

A More Elaborate Example: Recursive Data 

Up till now we've only looked at simple statements and control-flow using conditional and 

forEach . However, the idea is easily extended to support functional abstraction, and 

even higher-order functions. The key point is that computed values carry their original 

context with them, so whenever the model is traversed, it doesn't matter in what ways a 

value ends up in the left-hand side of the on construct; an update will also be reflected 

on the whole model. 

Let's say we'd like to define an editor for labeled tree structures, with boolean values at the 

leaves. This type could be defined as follows: 

data Tree 
= node(str label, list[Tree] kids) 
I leaf(bool val); 

In the dynamically typed TwoStones language, values of this type would be represented 

using records and lists. Here's a simple example in JSON-like notation: 



{label: "Top" , kids: [ 

{label: "Sub1" , kids: 

{val: trH }, 

{val: ial'<,} 

]}, 

{label: "Sub2" , kids: [ 

{val: fill e} 

]}]} 

Here's an example of two view functions to render such trees. (Note for the sake of 

reability, we use a concrete pseudo syntax here; it should be easily mapped to the abstract 

syntax defined above, with additional constructs for function definition and invocation): 

def treeView(tr~Pi 

output(tree.label) 

elt( "ul" ) for (kid: tree.kids) 

itemView( kid) 

end 

def itemView(itcml 

elt( "li" ) if (item.kids) 

treeView(item) 

end 

else 

elt( "button" ) { 

output( "toggle" ) 

on( "click" ) item.val . - !item.val 

} 

The tree function starts by rendering the tree's label , and then unfolding the list of 

children below an unordered list element ( ul ). Each child is rendered using itemview . 

The function itemview creates a list item element ( li ) and then checks whether this 

node has any children, and if so, recursively calls t reeView . If the current node does not 

have children, it is a leaf, and a button is rendered to toggle the boolean value attached to 

it. 

Because cursors maintain a relation between a rendered element (and its on handler) and 

the position in the model, a click event on one of the toggle buttons will update the 

appropriate, corresponding leaf value. 



Composing Views 

The previous section highlighted an important benefit of TwoStones' approach to view 

maintenance: the use of functional abstraction to organize view programming. The tree 

example exploited mutually recursive functions to render recursive data. But functional 

abstraction can be put to good use for other common use cases as well . Some of these are 

illustrated below. 

Different Views for the Same Model Element 

Let's say we have two functions for creating different views for the same kind of data. For 

instance, representing a number as a text field or using a slider. They can be simply 

combined by calling them on the same model expression: 

textboxView(model . value) 
sliderView(model.value) 

Since TwoStones handles only a single event at a time, an update to the model will result 

from either textboxView , or sliderView . And since we're rerendering after every 

update, there's no possibility that either view will ever display data that is out of date. 

The Same View for Different Model Elements 

Alternatively, sometimes an application will have multiple instances of the same type of 

data, all to be represented using the same view. For instance, a shop application might 

store both an invoice address and a shipping address. Showing both addresses can be 

realized as follows: 

addressView(model.invoiceAddress) 
addressView(model.shippingAddress) 

In this case, since the cursors resulting from model. invoiceAdd ress and 

model. shippingAdd ress will be different, events resulting from different 

addressview -renderings will update only the corresponding parts of the model. In other 

words: changing the invoice address will not affect the shipping address, and vice versa. 



Higher-Order Views 

It's also possible to define higher-order views, which consume other view functions. For 

instance, let's say we want to define a generic list-view: it will take care of rendering and 

updating the list. However, to abstract from the type of elements in the list, we'd like this 

view to be parameterized by another function, dealing with element-level rendering and 

handling. 

For instance, like so: 

end 

def J.i.stV:i.ev-:1 l. t Ju.ul 

elt( "ul" ) for (x: 1st) 
elt( "li" ) view(x) 

end 

listView(model.list, eltView) 

Again, the use of cursors instead of plain values traveling through the data flow of the 

program ensures that updates resulting from each respective invocation of eltView, will 

update the correct element in the list. 

All three examples illustrate an extremely powerful way of component-based UI 

development, where good old functional abstraction is used to define highly reusable UI 

components. This is not merely cute: it means that UI programming in this style scales. 

Discussion 

Assessment 

Although the syntax of TwoStones might "smell" imperative through the use of loops and 

sequencing, TwoStone programs are still purely functional: there is no way to mutate data 

or re-assign variables. In a certain sense, the syntax represents a light syntactic sugar over 

monadic folds over some data type, producing different values in render and handle , 

respectively. 



One benefit is that there's no boilerplate resulting from encoding such folds in a general 

purpose language; this is all encapsulated in the semantics instead. Furthermore, the code 

is clearly structured like the render output it produces. The simple control-flow is easy 

to understand and debug, much like plain, procedural code, but without the side-effects. 

The use of cursors in the semantics of handle enables that functional abstraction is 

sufficient for rich patterns of view composition, both first-order and higher-order. In 

contrast, when nesting view components in Elm, the messages originating from the child 

component need to be "mapped" into messages of the parent component, so that the user­

provided update function that interprets these messages can route them to the 

appropriate (sub) element of the model. None of that is needed in TwoStones: events will 

automatically be routed to the right on handler, which will update the right model value. 

Meanwhile, the fact that TwoStones programs consume and produce only immutable 

values, makes advanced time-travel debugging features easy to implement: simply store 

successive model versions, and the events that produced them, and you'll be able to go 

back and forward in time. It's also trivial to visually highlight the activated event handler, 

by simply locating the appropriate id in the rendered node. 

One could argue that a limitation of TwoStone's approach is that it's limited to dealing 

with one event at a time, one update at a time, and one model value at a time. It's not 

possible to batch up events, and handle them all at once. Likewise, it's not possible to 

update different parts of the model while dealing with a single event. Finally, the model 

value returned from handle (if any) can only be the model value, because there is no 

way to know to which model it would belong, if the process would start with more than 

one model to begin with. Nevertheless, these limitations do not significantly reduce 

expressivity of TwoStones. 

Related Work 

TwoStones combines many existing ideas, often in simplified form. If there's anything 

novel, it lies in the combination of these ideas, rather than the ideas themselves. I'm very 

much indebted to William Cook for many ideas presented here, which have evolved from 

numerous discussions on web programming in the Enso systemEnso, the full potential of 

which has not yet been realized. 



Multiple semantics are employed in the area of "two-tier" computations. For instance, 

b h Batches 11 1· · d b . . d . d h ·11 b d ate es a ow app 1cat10n co e to e part1t10ne m co e t at w1 e execute on a 

client, and code that executes remotely (e.g., in an SQL server). Similar partitioning is 

applied in the context of web programming, where some code executes in the browser, 
Hop while other parts run on the server (e.g., as in Hop ). 

The use of cursors is further inspired by David Nolen's initial version of Om, which 

presented an immediate mode UI framework on top of Facebook React, with an emphasis 

on single-value, immutable application state, just like described here. Cursors themselves 

originate from Huet's zippers and are related to functional lensesLenses _ Many of these 

ideas can be traced back to Meertens' seminal work on constraint maintainersMeertens, 

developed partly at CW! in the context of the Views systemViews_ As far as I know, 

Greenberg's honor's thesis is the only work directly applying lenses in the context of UI 
. Greenbero 

programmmg 0
. 

Further Directions 

The TwoStones prototype described in this article only scratches the surface in terms of 

what kinds of "back propagation" through put is possible. Apart from field selection on 

records and indexing and looping on lists, cursors could support many other operations, as 

long as they can be meaningfully "reverted". In the scalar case, the programmer can 

simply invoke whatever "inverse" function is needed in the last argument to on . For 

instance, the programmer would call fahrenheit2celsius if the model stores 

temperature in celsius but the user edits in fahrenheit. If you apply an operation, for 

instance, on lists, however, and then iterate through it using forEach , we'd like to 

maintain the origin relation in the cursors of each of the elements. 

As an example: 

for (x : reverse(lst)) 

# do somethino v1iti1 x . .. 

In this case, evaluating the reverse application could be implemented as follows. 



Cursor eval(apply("reverse", Expr e), Env env) 
= <array(reverse(vals), Value(Value v) { return put(array(reverse(v.val 

s))); }> 

when 
<array(list[Value] vals), Put put> .- eval(e, env); 

Whenever the put component is invoked, the list is simply reversed back to represent 

the original order. Other examples include, projecting out a sub-list of a list (useful for 

pagination) or list permutation (for instance, if you don't want to sort the model list itself, 

but only present it according to some order). Often, the cursor needs to maintain additional 

information to faithfully realize put , especially when an operation is lossy (like 

projection). In the implementation of field access on records and list indexing shown 

earlier, this is realized by having the put -closure capture the necessary values from the 

"old" value. 

Conclusion 

"Alternative facts do not exist". Yet, as Jan is well aware, there is value in possible worlds. 

Design is about exploring such possible worlds, and programming language design is no 

different. I hope I have succeeded in showing that defining alternative semantics for 

languages can sometimes clarify and simplify complex programming tasks. The simple 

TwoStones user interface DSL is supported by two semantics, one for rendering, and one 

for event handling. The first one constructs the visual presentation of the user interface, 

whereas the second one updates the application model whenever an user event occurs. 

Applying these alternative interpretations in alternating fashion, isolates these two 

concerns, and eliminates a significant amount of boilerplate code, without sacrificing the 

benefits of functional programming. 
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Rambling with Minkowski 

Stijn van Dongen 

Around October 1995 I started my PhD under supervision of Jan van Eijck and Michiel 

Hazewinkel at the CWI, the Dutch Centre for Mathematics and Computer Science in 

Amsterdam, finishing it in May 2000. Many are the happy memories from that period, and 

Jan played a large part in these. You are an inquisitive scientist, always ready to establish 

and show connections and work out new ideas in a number of different fields. I could see 

this easily even from my vantage point, which was less than ideal as my background had 

only little overlap with the realms of logic, language and computation where you roam 

freely. During the first year of my PhD I followed courses with you in Utrecht to widen 

my horizon (it needed much widening). You are also an engaging and inspiring educator. I 

vividly remember the course where small fragments of Haskell kept popping up and 

effortlessly developed into ever more sophisticated mathematical and computational 

machinery. Other happy memories include the dinners you organised with Heleen, which 

always had a welcoming and lively atmosphere with an interesting crowd of people. 

I must admit that I never picked up Haskell, even though its appeal is clear. This may be 

partly because of a lack of suitable projects, partly because monads scare me, but more 

likely my mind is not quite functional and tends to ramble. To keep it in check, I use 

imperative languages, with an affinity for low-level specimens such as C and PostScript. 

Over the years I have regularly returned to writing little bits of (quite simple) PostScript, 

often to experiment with visualisations of tessellations, spirals, fractals , deformations, and 

combinations of these. A somewhat unlikely conviction has taken hold of me, namely that 

Postscript is a perfectly good vehicle for engaging children in programming. If the child is 

interested in programming to begin with, then for some the response to simple Postscript 

files immediately producing interesting patterns is very gratifying, more so than text 

scrolling in a terminal, my otherwise preferred display medium. These days we have many 

other languages aimed at young or novice programmers. Two that I am somewhat familiar 

with through my own children are Scratch and Processing, and we highly recommend 

both. These are visually oriented languages-another popular language in the household is 

Python, which began life at the CWI. 



In this article, I will explore the Minkowski fractal in a fairly rambling manner. It will 

incorporate simple bits of linear algebra, rewrite systems and logarithmic spirals, and is 

best thought of as recreational mathematics. Postscript is used throughout with a little bit 

of Python at the end to verify some numerical identities. A Planck limit to a Minkowski 

spiral is mooted with the question as to what might lie inside it. 

Returning to Postscript, it has a delightfully simple syntax, entirely dictated by a stack. To 

compute the Euclidean distance from the origin to some point, say the point (,H, 117), 

you would enter (for example interactively with gs ) 

44 2 exp 117 2 exp add sqrt pstack 

Here exp , add , sqrt and pstack are all Postscript operators, and the last one 

displays what is on the stack. With the gs program, it should display 125. 0 . In the 

remainder of this article I will show various bits of Postscript and each of these is nearly 

self-contained. They all require the following preamble starting the file. 

%! 

28.3464567 dup scale 
/pageheight 29.7039 def 

% change to metric, centimeters. 

/pagewidth 20.9903 def 
pagewidth 0.5 mul pageheight 0.5 mul translate % origin in centre. 

To draw a simple square, one would use a few graphics operators: 

newpath 
0.1 setlinewidth 
-1 -1 moveto 
0 2 rlineto 
ereas 
2 0 rlineto 
tern. 
0 -2 rlineto 
closepath 
stroke 

% This is now our current point. 
% 'relative line to'; relative to the current point, wh 

% lineto uses coordinates in the current coordinate sys 

% closepath takes us back to the start of our path 
% this draws the outline; 'fill' would fill the shape. 

We change our square drawing code by specifying the midpoint and the side length, we 

make it a procedure and add some comments. 



/draw_square { 
stack. 

t 

ht 

} 

newpath moveto 
dup 0 .5 mul dup 
dup -1 mul dup 
0 exch rlineto 

0 rlineto 

closepath 
stroke 

def 

% 

% 

rmoveto % 

0 rlineto % 

% 

% 

our procedure, expects length x yon the 

stack : l (length) 
stack: l position top right 
stack: l -1 position top left 
stack: l position bottom lef 

stack: (empty) position bottom rig 

At this point, we include the preamble from the top, the code above for draw_square 

and this code: 

0.1 setlinewidth 
1 1 5 { % this will put the numbers 1 2 3 4 5 successively on the stack 

2 div 
0 0 draw_square 

} for 

showpage 

We then obtain this image. 

[g] 
To conclude this introduction to PostScript, we introduce scale and rotate ; these 

change the graphics state and do what they promise. Combined with the simple repeat 

loop, this shows how visual effects can be easily achieved. 



0.03 setlinewidth 
60 { 

4 0 0 drawsquare 
0.94 0.94 scale 
3 rotate 

} repeat 
showpage 

Giving: 

% repeat this 60 times: 
% draw the same square 
% but change the ground 
% under its feet. 

Recently I discovered the book Mathematical Illustrations: A Manual of Geometry and 

Postscript by Bill Casselman [1], also available online. 1 It is an excellent introduction to 

PostScript, builds up sophisticated applications in geometry, and creates powerful 

PostScript idioms and abstractions. An example is the mkpath procedure that can be 

used to draw parametric curves. It creates the curve as a PostScript path of concatenated 

Bezier curves, using the derivatives of the parametric functions for the x and y 

coordinates to create appropriate Bezier control points. 

2 



Let us now turn to the Minkowski fractal. 2 It is derived by a series of transformations of 

the unit square. 

The full fractal is obtained by continuing this transformation ad infinitum. Here I am only 

concerned with the different stages of transformation. A closer look at the transformation 

undergone by each edge: 

(e,f) 

• • • 
(a,b) 

(g,h) 

The pairs ( a : b) and so on denote Cartesian coordinates in the plane. By inspecting the 

transformation we derive the following traits of the nt h Minkowski transformation. 

• The number of line segments equals 4 . ;f' . 

• Each transformation can be constructed from 5 copies of the previous transform, 

when viewed as areas. 

• The number of unit tiles in the interior hence equals 5 11
• 

• The length of a line segment is ( l / /5) n , if the start tile has side 1-

In the first of our two approaches to coding this, let us compute the necessary coordinate 

transformations. We can compute the transformations at a certain depth by iteratively 

transforming a source edge into three new edges. To this end, we need to specify the new 



coordinates ( e, /) and (g: h) in terms of the known coordinates (a, b) and ( c, d). This 

can be done by utilizing the vector ( ;, (~) for the displacement along the original edge, 

and by utilizing the vector ( / :/' ) for the displacement orthogonal to it. These 

dependencies are as follows, leaving the workings as an exercise for the reader. 

f ' 6 2 4 -2 a 

f 1 -2 6 2 4 b -
g 10 4 - 2 6 2 C 

h 2 4 - 2 6 d 

The above indicates for example that e can be computed as the inner product of the first 

row of the matrix with the vector [a , b, c, d]T, that is, 0.6a + 0.2b -'- 0.4c - 0.2d. 

Encode an edge from (:r 
1 
y) to ( u , v ) in a Postscript array [x, y, u, v] . It is handy to 

have a Postscript procedure that computes inner products, introduced below as ip4ary 

% compute inner product between two arrays of length 4. 
% expected stack: [a b c d] [ 

UV X y] 
/ip4ary { % state of stack: 

aload pop 5 4 roll aload pop % a b C d U V X y 
7 4 roll % a u V X y b C d 
5 3 roll % a U V b c d X y 
3 2 roll % a U V b c X y d 
mul 7 1 roll % y*d a U V b C X 

mul 6 1 roll % c*x y*d a U V b 

mul 5 1 roll % v*b c*x y*d a u 
mul add add add % v*b+c*x+y*d+a*u 

} def 

There may be better ways to do this, but this is certainly a stacky solution. We proceed 

with Postscript code that accepts an initial edge and a certain depth, then recursively calls 

itself to compute the Minkowski transformation to that depth. Although Postscript has a 

facility for name spaces in the form of dictionaries, rendering performance degrades 

quickly when used in conjunction with recursion. Hence we seek a solution that depends 

solely on stack operations. In this case, the desired state of the stack was written first as a 

comment, and from that the necessary code was derived - a common way to derive 

3 
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PostScript programs3. From a starting edge, the code works out the three new edges, 

pushes them onto the stack in the right order, and calls itself again on the three new edges 

until the recursion depth is reached. 

/cf - e (0.6 0.2 0.4 
/cf - f (-0.2 0.6 0 . 2 
/cf _g (0.4 -0.2 0.6 
/ cf h - (0.2 0.4 -0.2 

/minkowski_geom { 
e [] dep 

dup 
0 gt { 

-0.2] def 
0.4] def 
0.2] def 
0.6] def 

-1 add dup dup 4 3 roll 
ee instances 

dup dup dup dup 
cf_e ip4ary exch cf_f ip4ary 
2 copy 7 4 roll 
cf_g ip4ary exch cf_h ip4ary 
2 copy s 4 roll 
aload pop 
4 2 roll 
6 2 roll 4 array as tore 
12 1 roll 
6 2 roll 4 array astore 

h] 

7 1 roll 
-1 e fa b 

4 2 roll 4 array astore exch 
be f] dep-1 

minkows ki_geom 
minkowski_geom 
minkowski_geom 

} { 

pop 
dup 2 get exch 3 get lineto 

to (ad]; 
} ifelse 

} def 

% inner product coefficients for e, 
% f, 
% g, 
% and h. 

% (ab c d] depth on stack, abbreviat 

% [] dep dep 
% [] dep 
% dep-1 {3} [] - {3} indicating thr 

% dep-1 {3} [] [] [] [] [] 
% dep-1 {3} (] [] [] e f 
% dep -1 {3} e f e f [] [] [] 
% dep -1 {3} e f e f [] g h 
% dep-1 {3} e f e f g h g h [] 
% dep-1 {3} e f e f g h g h a b C d 
% dep-1 {3} e f e f g h g h C d a b 
% dep-1 {3} e f e f g h a b (g h c d] 
% (g h c d] dep-1 {3} e f e f g h a b 

% [g h c d] dep-1 {3} e f a b (e f g 

% (g h c d] dep-1 [e f g h] dep-1 dep 

% (g h c d] dep-1 [e f g h] dep-1 (a 

% (g h c d] dep-1 (e f g h] dep-1 
% (g h c d] dep-1 
% 

% lineto (c d]; previous code got us 

Noteworthy is that the Postscript primitive lineto adds to the current path. The path is 

only drawn once stroke has been issued. Thus the path is added to throughout the 

recursive traversal of the stack and completely assembled before actually being drawn, 

I()() 



illustrating that Postscript neatly separates the graphics state from computations. The 

following fragment uses this code to draw the five different Minkowski squares seen 

earlier. Fractal computing in Postscript tends to be costly. On my desktop computer the 

display software starts to struggle noticeably when the fractal depth reaches 12. At that 

stage, the path is composed of a respectable 2,125, 7G4 segments. Equally, it is no longer 

possible to visualise such a fractal such that both its (identical) macro and micro features 

are visible. 

0.02 setlinewidth 
/maxdepth 4 def 
newpath 
0 1 maxdepth { 

/depth exch def 
gsave 

depth -2 add 3 mul 0 
translate 
newpath 0 
[0 0 0 2] 
(0 2 2 2] 
[2 2 2 0] 
[2 0 0 
stroke 

grestore 
} for 

showpage 

0] 

0 moveto 
depth minkowski_geom 
depth minkowski_geom 
depth minkowski_geom 
depth minkowski_geom 

Now for a second approach, that utilises the PostScript graphics operators to a greater 

extent and computes the Minkowski fractal inside-out, as it were. If we forget about in­

place transformations of the fractal and look at the unit square as a series of four 

connected steps, it can be observed that the Minkowski transformation turns a right step R 
into two right steps followed by a left step, that is, RRL- From the second transformation 

we see that a left step [, is transformed into LR L-

The relationship between fractals and rewrite systems is well established. Many fractals 

can be derived using T.,-systems, named after Aristid Lindenmayer.4 I know only little 

about it-the Wikipedia entry is a good place to start and has a cornucopia of pretty 

pictures. Here we simply code these rules directly into verbose Postscript code as follows, 

using the Postscript primitives translate and rotate to implement turning left and 

right. 
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/right 1 def 
/left -1 def 

% expects (r g b] x y depth on stack /minkowski_rewrite { 
/thedepth exch def 
gsave translate newpath 
/mycol exch def 
0 0 moveto 
right thedepth right thedepth right thedepth right thedepth 
{ count 0 eq {exit} if 

/d exch def 
/where exch def 

d 0 gt { 
where right eq { 

right d -1 add right d -1 add left d -1 add 
} { 

left d -1 add right d -1 add left d -1 add 
} ifelse 

} { 

0 1 lineto 
0 1 translate 
90 where mul rotate 

} ifelse 
} loop 
mycol aload pop setrgbcolor 
closepath stroke grestore 

} def 

The loop code executes indefinitely as long as the stack is not empty (more robust code 

would compare with the stack size before entering the routine) . In the figure below we 

depict successive Minkowski iterations, each starting at the exact same point, and scaled 

so that they occupy roughly the same amount of space, using the scaling factor from our 

previous exploration. The successive Minkowski transformations move around the origin 

in a clockwise manner, and after about the sixth iteration no new level of detail can be 

observed. With a little bit more code, we enter a dream-like state of Minkowski 

transformations wandering around. 



0 0 translate 
5.0 5.0 scale 
/maxdepth 10 def 

0.14 setlinewidth 
0 1 maxdepth { 

dup /mydepth exch def 
/num exch def 
/rgb num -0.08 mul 0.9 add def 
[ rgb dup dup] 0 0 mydepth minkowski_rewrite 
currentlinewidth 1.2 mul setlinewidth 
5 -0.5 exp dup scale 

} for 

showpage 



(continue . don the next page) 



Rambling with Minkowski 

Stijn van Dongen 

(continued from the previous page) 

I first noticed this wandering habit in a different context, namely when I looked into tiling 

the plane with Minkowski transformations. A simple way to tile the plane, once the code 

for a single transformation has been written, is to iterate and reuse that code at different 

( J: : y) offsets. This requires one to iterate across two dimensions if we aim to tile the 

plane. We can do better with fairly little effort, by using a staircase, say with starting 

symbols R LR!~ R L RL RLRLRL (extended to a convenient length). Such a staircase 

only needs repeating across a single dimension in order to tile the plane (and shows the 

flexibility of the rewrite approach). The first few staircase tilings of the plane are shown 

below, followed by a table listing the offsets between successive staircases in these tilings, 

for increasing depth of the Minkowski transformation. 

Iteration X-displacement Y-displacement 

0 0 1 

1 1 2 

2 4 3 

3 11 2 

4 24 -7 

5 41 -38 

When first considering these offsets they may look fairly haphazard. However, they are 

tightly constrained, as illustrated a little below. They can also be found (if we allow some 

fiddling of signs) in the On-Line Encyclopedia of Integer Sequences:) (OEIS), where one 

of the listed properties is that each pair ( x: y) in row n is the unique solution to 



;,: '.:! + y2 = 5n with x and y relatively prime. For example, 22 + 112 ........ 5:J. The value 

511 corresponds to the number of unit tiles in a Minkowski transformation, and the 

displacement (a;, y) can be viewed as the vector encoding of its side. It can be seen in the 

diagram below that the square that has {a; : y) as its side has the same area as the 

Minkowski transformation, and hence we can confirm independently that ,r.;2 + y2 = 511
• 

The fact that x and y are relatively prime translates to the fact that the vector ( x , y ) can 

not be split in identical smaller vectors with integer coordinates. This shows that the 

Minkowski curve can not be further decomposed into equal parts, confirming its fractal 

unruliness 6. We now establish a simple linear relationship between successive 

displacements. 

Observe that for the ground case of the Minkowski tiling (the unit square), a working set 

of values for the staircase displacement is ( 0 , l ) . Then, for the first iteration ( 1 , 2) can be 

taken. In the figure above, it is shown that the displacement for the second iteration (,1, ~) ) 

can be constructed as the vector sum of twice the displacement of the fi rst iteration plus a 

displacement that is orthogonal to it. In the same figure, this construction is repeated to 

reveal the displacement for the third iteration. In words, the new x displacement is twice 

the previous x displacement plus the previous y displacement. The new y displacement is 

twice the previous y displacement minus the previous x displacement. Finally, this can be 

understood by seeing that each new Minkowski iteration (viewed as an area) is 



constructed as five copies of the previous one, four of them centered around the fifth , and 

by observing that the required displacement travels a quarter of the perimeter of the new 

Minkowski transformation, starting at a juncture where four current transformations meet. 

The displacements listed above are thus related by a linear transformation: 

1] [d:rn] 
2 dy.11 

[ 
2 IF. 1 ~ [1·] r,: ., V :J ;:; · iJ < :X,n -y ;:> ,) ,) ' 

- - t \i'5 ~,/5 dyn 

= v'5 [ cos(¢) sin(¢)] [<Len] 
- sin(¢) cos(¢) dyn 

The linear transformation was rewritten as a combination of a linear scaling by a factor of 

v15 and a (clockwise) rotation matrix corresponding to an angle of rotation 

¢ · arctan( ½) .This is intriguing, as scalings and rotation matrices are intimately 

related to spirals, more specifically, logarithmic spirals. After a short introduction to 

logarithmic spirals, we shall revisit their presence in the Minkowski landscape. In 

parametric form, a right-turning logarithmic spiral is described by 

x:( t ) = a e bt cos(t ) 

y(t ) = - ait sin(t) 

The parameter b controls the growth rate. Below three spirals are shown7 with increasing 

values for b of 0.1, 0.2, and 0.3, leading to geometric growth factors every full turn of 

respectively 1.87, 3.51, and 6.59. 

The logarithmic spiral was first described by Descartes8 and later extensively investigated 

by Jacob Bernoulli, who called it Spira mirabi/is, the marvelous spiral. It has a number of 

remarkable properties. Scaling by any constant e2k;rb (where k is an integer number) 



results in the same spiral. Scaling by any other constant results in the same spiral, but 

rotated. Zooming in on the centre reveals the spiral winding its way endlessly around the 

origin, never getting there, never changing its shape. Nevertheless, the length of the path 

towards the centre is finite--a point that lies at straight-line distance r from the origin, lies 

at distance r / cos(¢) along the spiraling path. It was the self-similarity at all scales that 

fascinated Bernoulli and led him to instruct that the spiral be engraved on his headstone 

along with the inscription Eadem mutata resurgo (although changed, I shall arise the 

same). The logarithmic spiral does not budge when subjected to a plethora of further 

transformations. It is in fact its own caustic, evolute, inverse, involute, orthoptic, pedal and 

radial.
9 

On this evidence, I should like to deform the accepted history of fractals slightly and 

propose that the logarithmic spiral is perhaps the earliest known mathematical object that 

can be ascribed a (part) fractal nature and was recognised as such, instilling a sense of 

d l O Th h. ff l l l . d . . . h L .b . . . transcen ence . e 1story o racta s ·· 1s trace to stirnngs wit e1 mz, gammg 

traction with Weierstrass and Cantor, and assumes a more familiar modern form with the 

Koch snowflake, the Sierpinksi triangle and the Julia and Fatou sets. Minkowski lived in 

the era that produced these last fractals, but it is surprisingly hard to find exactly when and 

where he proposed the eponymous fractal. It is not mentioned in his collected works [2]. 

According to Mandelbrot the origin of the curve is uncertain and dates back at least to 

Minkowski. 

The concept of the continuum allows self-similarity at all scales. The logarithmic spiral 

embodies this using a singular singularity. In the last century, fractals erupted into the 

public consciousness, perhaps none more so than the Mandelbrot set, dense with 

singularities everywhere. Pleasingly, logarithmic spirals are found in this set 12. 



We return to the Minkowski displacements found earlier, and consider the associated 

scaling plus rotation 

V5 [ cos(</>) 
- sin( </>) 

sin ( <i> ) ] 
cos(</>) 

where the angle <j> has the value arctan ( ½) .It is known that the right combination of 

scaling and rotation leaves a logarithmic spiral invariant, that is, a spiral with growth 

parameter b is left invariant by any matrix of the form : 

bet [ cos( o: ). 
e . ( ) - Slil Q 

sin(a)] 
cos( <x) 

This follows from working out the matrix product for the :i:-component as 

(u/ 11 e1,'1 
( cos( l ) cos( o:) - sin ( l) sin ( o:) ), which simplifies to aebit · n} cos( t l· n) 

using the cosine addition trigonometric identity. The y-component is similarly computed. 

It follows that the matrix maps any point on the spiral to another point on the spiral that is 

obtained by rotating over the angle cl'. whilst moving along the spiral. Now we seek to find 



the logarithmic spiral that is left invariant by our Minkowski rotary expansion matrix. To 

this end, we need to equate our known growth rate (which equals \/5 across an angle of 

arctan( ½) ) with that of a logarithmic spiral. 

This yields the following suitably brutalist constant, where b ;::::: l. 7356-The growth rate 

per spiral turn is thus e:2:rb ::::::: 54462-

b -

These considerations raise the question, can we arrange different Minkowski 

transformations into a spiraling arrangement? This is indeed possible. 

Below a single spiral arm is shown 13, composed of transformations of increasing size. 

The Australia-like shape on the right is a close-up of the centre of the spiral. 

Figure 1 has four such spiral arms interlocking and filling space. To add some interest a 

certain amount of recursion was introduced to re-insert smaller transformations into larger 

ones, still leaving each individually coloured area to be a Minkowski transformation. 



Figure 1: A spiraling flock of Minkowski transformations 



Each turn fits slightly less than 14 Minkowski transformations, calculated as 

21r/ arctan( ½) ·:::::::: 13.55 . However, the figure only shows eight different levels of 

transformations. The last one is partially shown in the top right corner and belongs to the 

arm starting at the tile south to the spiral centre. 

To arrive at the logarithmic spiral parameter a for the Minkowski spiral, the tile in the 

centre is fixed equidistantly around the origin at coordinates ( l.. ½, l.. ½), yielding with a 

bit of work: 

a = 

The following Python code uses these values for a and l> to compute spiral coordinates for 

the Minkowski logarithmic spiral at angle increments of arctan( ½ ), starting at 

coordinate ( ½: -½) . Additionally it computes the offsets of the Minkowski 

transformations using the linear transformation to verify that the two approaches yield the 

same values. 

IHJ 



import math 

qpi = math.atan( 1) 
b = n , * math.log(', ) / math.atan (O 'l ) 

a= I (math.exp(b*qpi) * math.sqrt( )) 

phi= math.atan( G ~) 

on matrix. 
startangle = qpi 
ns right). 

(pxt, pyt) = ( !l , ) 

(xm, ym) 

for i in range ('J, t ): 

~ The angle distance covered by our rotary expansi 

# Corresponds 11ith (0.5, -0.5) (because spiral tur 

# Previous x(t), previous y(t) 

# x matrix-based, y matrix-based 

t = startangle + i * phi 
xt = a* math.exp(b * t) * math.cos(t) # 

yt = - a* math.exp(b * t) * math.sin(t) #Aright-turning spiral (he 

nee minus) 

if i == !'.) : 

(xm, ym) = ( 0.') , 0.5 ) 

else : 
(xm, ym) = ( *xm + ym, - xm + 2*ym) 

(dxt, dyt) = (xt - pxt, yt - pyt) 
(pxt, pyt) = (xt, yt) 

print "%1d %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f'' % (i, xt, yt, xm, ym, 

dxt, dyt) 

The code produces the following values, agreeing with the increments that were tabulated 

earlier (allowing sign differences). 



:1: - y_ ;z; - y_ 
Iteration x(t) y(t) 

Minkowski Minkowski increment incremen 

0 0.50 -0.50 0.50 -0.50 

1 0.50 -1.50 0.50 -1.50 0.00 -1.00 

2 -0.50 -3.50 -0.50 -3.50 -1.00 -2.00 

3 -4.50 -6.50 -4.50 -6.50 -4.00 -3.00 

4 -15.50 -8.50 -15.50 -8.50 -11.00 -2 .00 

5 -39.50 -1.50 -39.50 -1.50 -24.00 7.00 

6 -80.50 36.50 -80.50 36.50 -41.00 38.00 

The centre tile in the spiral in Figure 1 is not accounted for by any of the four arms. 

Zoomed in and de-cluttered it looks like this14: 

The central tile is the genesis tile of the Minkowski transformation, indivisible, the Planck 

limit of the Minkowski landscape. The logarithmic spiral associated with it knows no such 

limitations however, and will forever dreamily wind its way towards the origin. Using the 

inverse of the rotary expansion matrix, we can even plot the coordinates where the 

Minkowski transformations of negative index should be found. The area of such a 

transformation of negative index -· n should have 5 11 tiles (doable) but it should 



additionally have 4 . 3 11 line segments (tricky). Nonetheless, fractals are the domain of 

fractional dimensions where concepts such as area and length transcend their everyday 

meaning. Perhaps there is a way. 

■ ■ 

■ 

• 
■ 

• • 
• • • 

■ 

• 

■ 

■ ■ 

Jan, het ga je goed, ik hoop dat onze wegen zich weer kruisen! 
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Epilogue Spirals are one possible key to understanding the full Minkowski fractal. The 

line segments are really a distraction. The two new points introduced in each edge 

transformation persist throughout all subsequent transformations. The infinite union of all 

these points forms the Minkowski fractal. Each edge transformation induces two spirals 

that approximate the end points defining the edge, as indicated in the figure. These spirals 

have the same growth rate as derived above, except that we observe it as a shrinkage rate. 

This principle applies to all the end points of all the edge transformations at every level. 

Every point in the fractal is the singularity of a spiraling arrangement of other points in the 

fractal, each of which ... it's spirals all the way. 

Notes 

1
. http://w\vW.lll<llh.ubc.ca/"'Cass/graphics/manuali ....., 

') 

"'. I! is often called the Minkowski sausage. This seems an untortunate case of 

entrenched confusion with the method of approximating a fractal curve with 

overlapping circles (i.e. with a 1v1inkowski cover or Minkowski sausage) lO arrive at 

rhe Minkowski dimension. -' 

3. Sadly. the specification is not the program . ....., 

4 I ., ·1 . 1· / .k./L . 1ttps:1;en.w1 Gpec 1a.org w1 1 -system....., 

~'. https://oeis.org/A09H122....., 

6. In this case, I see no easy ,vay to confirm the relative primeness of :r and Y by just 

considering the Minkowski transformation . ....., 

7 

1 fl , 



7. 'T'he mkpath procedure from [1] was used to create these.µ 

8. https://en. wikipedia.orgiwiki!Logarithn1ic ___ spiral µ 

9. http://www.2clcurves.com/spiral!spiraI1o.html ...., 

10. An interesting contrast wirh the horrors and non-disclosure agreements visited 

upon the Pythagore,111s when they discovered Pandora's hox of irrational numbers. µ 

11 . https://en.wikipcdia.org/wiki/Fractal ._.., 

12. https:/ /commons. wikimedia .org/wiki/File:Mandel_zoorn_04_seehorse_tail.jpg ._.., 

13. There is a small technicality, in that the spiraling Minkowski coordinates are 

partial sums of the displacements. not the displacements thernse.lves. However, these 

partial sums are still related by the same linear transformation . ....., 

14. This figure also shows how the Minkowski spiral is easily understood by seeing 

how each transformation sits inside its successor transformation . ....., 
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The syntax of truth: a grammar-based 
approximation of satisfiability 

Jurgen J. Vinju 

Dear Jan, I have written this essay for you, because the topic fits very well with three of 

your expertises: language [11), functional programming [13] and logic [12). It entails a 

purposefully ambiguous context-free grammar for true Boolean formulas, which can be 

used to produce derivation trees in expected linear time, worst-case cubic time. The 

derivation trees are then processed again in worst case exponential time to decide 

satisfiability, but the expected execution time is much less. Due to the acyclic graph 

structure of the representation of the ambiguous derivations, which exploits sharing, often 

polynomial behavior can be expected. Another interesting aspect of this encoding is that it 

works without the traditional canonical conjunctive normal form; the algorithm maintains 

the "natural" decomposition of the input formula throughout the entire process. This 

property can perhaps lead to some unexpected short-cuts to deciding satisfiability. The 

code in this paper is complete and fully executable on Rascal version 0.8.4. Thanks for 

being a great colleague at CWI. 

A grammar for all Boolean formulas 

For the sake of reference and before we dive into further detail, Figure 1 defines an 

extended context-free grammar (in Rascal notation [8]) for open Boolean formulas to 

unambiguously define their syntax. I leave the definition of what an extended context-free 

grammar in Rascal notation is to your imagination. In the next section we will specialize 

this grammar, such that only closed formulas which evaluate to true can be accepted, 

ceteris paribus. 

Lemma 1 (Unambiguity) We claim without further proof that, given the explicitly defined 

priority relation and associativity relations [2], and the reservation of the True and 

False literals from the language of atoms, the extended context-free grammar in Figure 
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1 is unambiguous for all Boolean formulas containing atomic words, True and False 

terminals, the negation, the two operators or and and , and arbitrary brackets around 

formulas. 

In the following, we will discuss input sentences for other grammars which describe 

appropriate sub-languages of £ (Formula). The notation £ (nonterminal) is used to 

identify the set of sentences generated from a non-terminal in an extended context-free 

grammar. Unless otherwise stated, we assume each input sentence we discuss in this essay 

is a member of £(Formula). 

1 module AllBooleans 

3 syntax Formula 
" true " 
" false " 
l\tom 
"( .. Formu la " ) " 
" not " Formula 

9 > left Formula "and" Formula 
10 > left Formula "or " Formula 
II 

12 

13 layout \•Jhitespace = [\t\n\ ] * ; 

i; lexical Atom= [a-z ]+ \ "true " \ " false "; 

Figure 1: An unambiguous extended context-free grammar for Boolean formulas in 

Rascal. 

A grammar for true Boolean formulas 
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, module ClosedBooleans 

1 syntax True 
11 true n 
" ( " True ") " 

" not " False 
> left True "and " True 
> left True "or " True 

I False uor " True 
JO I True "or " False 
II ) ; 

11 

1.1 syntax False 

'" "false " 
,~ n ( " False " ) II 

lb "not " True 
17 > left ( False "and " False 
lk I True "and " False 
19 I False "and " True 

"' ) 

21 > False "or " False ; 

n layout Whitespace= [\t\n\ J• ; 

Figure 2: A context-free grammar for true and false closed Boolean formulas 

Figure 2 describes a derived grammar for the same textual language of Boolean formulas, 

but without any atomic words, and without any false formulas, nota bene! By introducing 

separate non-terminals for True and False formulas, and by encoding standard 

axioms for Boolean logic as context-free production rules, we constructed a grammar for 

the True non-terminal which only accepts true Boolean formulas and does not accept 

any false formulas. Vice versa, the False non-terminal accepts only false formulas and 

no true formulas. 

Lemma 2 (Language inclusion) The rules for True and False in Figure 2 are 

constructed such that L (True) C L (Formula) and L (False) C L(Forrnula). 

I leave the proof of this lemma to you Jan, but QuickCheck [SJ for Rascal can also be a 

effective way of finding out whether I was wrong. Nonterminal types in Rascal range over 

the derivation trees for the given non-terminal. The square brackets notation generates and 

calls a parser for a specific non-terminal on an input string, and the angular brackets in a 

string "unparse" a derivation tree back to the input string: 

import AllBooleans ; 
import ClosedBooleans ; 

i test Fo r mula TrueSubFormula (True x) • [Formula] " <x> " ; 
• test Formula FalseSubFormula (False x) = [Formula] " <x> "; 

10n 



To evaluate a closed formula, to tests its trivial satisfiability so to say, we can run a parser 

for the True non-terminal on a given formula input sentence. For example: 

1 r ascal>[True] " true and true " 
True: ' true and true ' 
rascal>[True] " true and false " 

4 ParseError (prompt://// (0 , 2 3, <1 , O> , <l , 23> )) 
at $root$ ( 1prompt : //// (0 , 22 , <1 , 0> , <l , 22>)) 

Lemma 3 (Soundness) The parser for True accepts an input sentence 

s C L (Formula) if and only if the Boolean valuation of s is _true and it produces a 

parse error if and only if the valuation of s is false._ 

The grammar for True is not ambiguous, but it is rather "non-deterministic", as they say: 

it is not an element of the deterministic LL or LR classes of grammars. A parser generated 

from this grammar would need to be backed by an algorithm which branches or backtracks 

when faced with non-deterministic choice in order to search for the single acceptable 

derivation . There is no need for alarm though, since we will first make this grammar even 

more non-deterministic and also even ambiguous before doing anything useful with it. 

Given an appropriately smart parser generator and parsing algorithm [6], this grammar can 

be used to test the truth of any closed Boolean formula in linear time (in the length of the 

formula) . The generator may discover shared prefixes of the rules and the parser will avoid 

double work to arrive at this linear behavior, but this is neither the topic nor the 

contribution of the current essay. In any case, a hard upper-bound for any appropriately 

general context-free parser architecture [3,10] is that sentences for this grammar can be 

parsed in O(n 1) where n is the length of the input formula . If the grammar rules are 

brought in Chomsky normal form internally by the parsing algorithm ("binarised") the 

worst case execution time can be bound by O(n3 ) [7,9]. For this particular grammar in 

Figure 2, a (much) tighter bound may exist given a specific parsing algorithm, but let's 

leave this open question to the interested reader. 

An ambiguous grammar for open true 
formulas 

To make matters more interesting we now extend the previous grammar to include words 

for atoms again, rendering satisfiability of the generated formulas a lot more interesting 

(see Figure 4). Note that the extend keyword can be read as literally including the 

l()J 



contents of the other grammar module here. 

Now, as opposed to the previous unambiguous grammar for closed formulas, this new 

grammar with open formulas is very ambiguous. We define ambiguity of a context-free 

grammar as the existence of multiple derivations for the same input sentence. Consider the 

input string "p or q" it can be interpreted by either of the three rules for or and to 

derive p on the left-hand side or q on the right-hand side via either the True atom or 

the False rule for an Atom . Figure 3 graphically illustrates the ambiguity. 

Figure 3: The ambiguous derivations of True for the input p or q . On the left the full 

derivation trees are shown and on the right a graph which illustrates the possible sharing 

of sub-derivations between alternates. 

1 module OpenBooleans 
extend ClosedBooleans 

4 syntax True ~ Atom ; 
1 syntax False Atom; 

7 lexical Atom [a - z]+ \ " t rue " \ " false "; 

Figure 4: Extending the closed Boolean formulas (Figure 2) with atoms again. 

There exists an exponential number of derivations for arbitrary open Boolean formulas 

with this ambiguous grammar (in the length of the formula) . Since satisfiability is NP­

complete anyway, so far I'm not to worried to make matters worse. 

Lemma 4 (Completeness) For the grammar in Figure 4 it holds that: 

L (True ) ,J L (False) - £ (Formula), and still Lemma 2 holds as well. 
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Luckily, the algorithms for general context-free parsing, i.e. Earley's algorithm (with fixed 

parse tree production [ 4]), or the fixed and binarized Tomita algorithm [9] or top-down 

general LL parsing (GLL [1]) can produce derivation trees or parse errors for any input for 

this grammar in polynomial time and space. The intuition on how this works is that the 

parser uses a smart dynamic programming trick (a call-stack structured as a directed 

acyclic graph) to avoid doing the same work twice, and derivation trees are stored as 

directed acyclic graphs as well (see Figure 3). 

Both graphs have guaranteed enough sharing to keep within the polynomial bound, while 

they encode in fact an exponential amount of derivation trees. It is important to know that 

ambiguous sub-sentences in the derivation trees are represented using "ambiguity nodes" 

holding sets of alternative derivations for each sub-sentence. 

Lemma 5 (Unsoundness) Alas, Lemmo 3 does not hold for the grammar in Figure 4. E.g. 

the unsatisfiable sentence "p and not p" is accepted by True without further ado by 

simply deriving True for the first instance of p and False for the second instance of 

p . The reason is the parser has no notion of a consistent valuation of the some atoms 

throughout a single formula: there is no context in a context-free parser. 

In the following we will complete the parser with a functional program to filter all the 

unsatisfiable interpretations due to inconsistent valuations of atoms from the derivation 

graph. The result should again be a sound decision procedure for satisfiability with some 

interesting aspects. 

When we parse syntactically correct formulas with the parser generated from Figure 4 

there are three possible categories of outcomes: 

1. The first possibility is that the parser does not accept the sentence, in which case the 

formula is not satisfiable. Incidentally, this may happen for both open and closed 

formulas, but "enough" constants must be present in order to make the parse fail. In 

general, for a set of uniformly randomly breadth-first generated sentences, this 

amounts to about 25% of a sufficiently large set. However we expect that in real 

application scenarios, when formulas are generated by other means and the booleans 

constants are much more rare, the number comes closer to 0% than to 25%. 

2. The second possible outcome is a single unambiguous derivation tree, which 

indicates the formula may be satisfiable. It is not 100% guaranteed to be satisfiable 

yet, because there could be contradictory valuations where in the same formula a 

Atom Pis derived both by True and False . Unambiguous sentences are even 



more rare as the previous unacceptable sentences, since unambiguity would only be 

possible with closed formulas or "almost closed" formulas with atoms only in very 

specific harmless positions, such as "true and p" . 

3. The third and final option is when the parse produces an ambiguous forest of 

derivations where for each nested derivation of True and False non-terminals 

several possibilities exist. This is the common case. For each of the derivations 

represented by this packed and compressed directed acyclic graph, there could exist 

contradictory valuations of the previous kind. 

Ergo, the parser for True simulates a polynomial over-approximation of satisfiability 

which in most cases says "maybe" ( cases ( 3) and ( 2 ) ), or "unsatisfiable" ( case ( 1 ) ). 

For the second case (2) the algorithm in Figure 5 decides satisfiability in linear time. For 

any given atomic letter, if it is derived by the rule True = Atom it is interpreted as being 

valued true, while if it is derived by False = Atom it is interpreted as being valued false. 

If in any derivation tree a single letter is valued both true and false, the entire formula is 

necessarily not satisfiable. The Rascal code uses the deep match operator / to search in all 

sub-trees to find a match, detecting atoms produced by either the True or False non­

terminal. 

The rest of the essay we explore the practicalities of checking satisfiability of formulas 

which fall in the hard third category ( =~ ), for which we naturally need a generalization of 

the algorithm in Figure 5. 

1 module UnambiguousSatisfiability 

import ParseTree ; 
• import OpenBooleans ; 

6 bool satisfiable(False f) = false ; 
bool satisfiable(True f) I 

assert /a:nb(_) ! : = f ; // f is not ambiguous anywhere 

10 trues = {p I /(True) ' <Atom p> ' : = f} ; // collect true atoms 
11 falses = {p I / (False) ' <Atom p> ' : = f) ; /I collect false atoms 
ll 

u return trues & falses == { ) ; // intersection is empty 
1• l 

Figure 5: Satisfiability of unambiguous True formulas 

Satisfiability of ambiguous formulas in L(True ) 
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Remember the ambiguous formula is stored as a cubic-sized directed acyclic graph, with 

internal "ambiguity nodes" wrapping sets of alternative derivation trees for sub-formulas. 

Such ambiguity nodes may be arbitrarily nested. Figure 6 graphically depicts such a 

"derivation forest" for the input sentence p and ( q or not p) , which to us is obviously 

satisfiable but nevertheless the generated forest contains one unsatisfiable derivation. 

Figure 6: True derivations for p and ( q or not p) , non-shared and shared. 

Now imagine any ambiguous sub-sentence derived by True : each such alternative 

derivation represents a formula valued as true, but internally each alternative will value the 

same atomic letters differently. 

Lemma 6 (Alternatives) We will make use of the following insights in creating a decision 

procedure for satisfiability of derivations for True : 1. Each alternative derivation for the 

same sub-sentence uses exactly the same atoms. This is by virtue of what an ambiguous 

derivation for a context-free grammar is: a derivation of the same sub-sentence for the 

same non-terminal using different rules. 2. For each pair of (different) alternatives in the 

same cluster, at least one of the valuations for a given atomic letter is different between the 

two derivations, but not all of them have to be different. 3. Each separate alternative may 

be internally inconsistent in the sense of category (2), which can be decided (if this 

alternative contains no nested ambiguity) using the procedure of Figure 5. 

1 (j r:; 
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The Rascal function satisfiable in Figure 7 defines a direct decision procedure for 

True derivation trees, by filtering all inconsistent valuations. If any derivation remains, 

the formula was satisfiable and the derivations represent possible valuations. 

• We define the intermediate language Val to encode valuations derived from sub­

formulas. A simple valuation maps atomic letters to their Boolean value, while a 

complex valuation captures alternative valuations which need to be filtered in a 

later stage. 

• The rewrite rules for the complex constructor are essential: they flatten out arbitrary 

nesting, filter intermediate contradictions in the presence of satisfying valuations and 

bubble up contradictions in case no valid valuations remain. 

• The val function simply recurses over the formula and collects valuations. Most 

cases trivially fold over the formula structure, but the case for amb captures that 

ambiguous derivations correspond to alternate valuations, and the cases for all 

boolean connectors tie together consistency between the left part of a formula and the 

right part of the formula. 

• The merge function finally has the responsibility for computing the cartesian 

product on complex valuations and detecting any inconsistent valuations. 

Given that the original tree structure in memory can be expected to be an acyclic graph 

with a lot of sharing, and that Rascal functions can memo-ize results, the current 

implementations might perform reasonably well on "naturally occurring" formulas. 

Still, there is room for improvement: 

• The cross-product does not employ the symmetries of the commutative and and 

or operators yet, which could half the work. Similarly the algebraic laws of 

idempotence and associativity may be used to avoid redundant work. 

• The work now splits over all 8 possible instances of and and or , while their 

semantics is not different. An intermediate pass to introduce more sharing between 

these 8 cases would have significant impact on efficiency. 

Let's conclude this paper with the following claim: 

Lemma 7 We claim that the satisfiable function of Figure 7 is a sound 

implementation of SAT, when composed with a correct context-free general parser for the 

True non-terminal. 
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module AmbiguousSatisfiability 

import ParseTree ; 
import OpenBooleans ; 

bool satisfiable(False _) 
bool satisfiable(True f) 

data Val 

= false ; 
val (f) ! • concradiccion() ; 

10 = simple (map [ str atom , bool val] m) 

11 lcomplex( set [Val] alts) I contradict.ion() ; 
l, 
1.1 Val complex({*Val a , complex( set[ Val] b)}) 
1, Val co'Tiple x ( { *Val a , contradiction ()}) 
1; Val complex ( { ) ) 

complex ( { ~a , *b}) ; 
complex(a); 
contradiction() ; 

J(, 

11 Val val(amb( set (ValJ alts)) 
J~ 

19 Val val ( (True) 'true ' ) 
Val val ( (False) ' false ' l 

complex({val(ci) I a .-alts}) ; 

simple ( () l ; 
simple ( ()) ; 

Val val ( (True) ' <Atom p> ' ) simple ( ( " <p> " : true)) ; 

Val val ( (False) ' <Atom p> ' ) simple(( " <p> ": false)) ; 

23 

30 
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Val 
Val 
Val 
Val 
Val 
Val 
Val 
Val 
Val 
Val 

Val 
Val 

val ( (True ) 
val ( (False) 
val ( (True) 
val ( (False) 
val ( (True) 
val ( (True) 
val ( (True) 
val ( (True ) 
val ( (Jc'alse) 
val ( (False) 
val ( (False) 
val ( (False) 

' (<True f>) ' ) val {f) ; 
' (<r"alse E>) ' ) val {f) ; 

' not <False f> ' ) val (f) ; 

' not <True t> ' ) val (t) ; 
'\ <True l> and <True r> , ) merge (val (l) , 

' <True l> or <True r> , ) merge(val(l) , 
' <True l> or <Fa.lse r> ' ) merge (val (l) , 

' <False l> or <True r> ' ) merge(val(l) , 

' <False l> or <False r> ' ) merge (val (1) , 
' <True l> and <False r> ' ) merge(val(l) , 

' <F<1lse l> and <True r> ' ) merge(val(l) , 

' <False l> and <False r> , ) merge (val (1) , 

• Val merge(Val a , \contradiction()) 
n Val merge(\contradiction() , Val a) 
.~!'; 

contrad.iction () ; 
contradiction() ; 

D Val merge(complex( set [Val] lm) , complex{ set [Val] rm)) 
.iJ complex({merge(a , b) I <Val a , Val b> .-lm * rm}) ; 
41 

,2 Val merge (simple (map [str atom , bool val] lm) , 
, .1 simple (map [str atom , bool val] rm)) 
"" (a i- (lm<atom> & rm<atom>) && lm[a] 1= rm[a]) 
~ ? contradiction() 
~ simple(lm + rm) ; 
47 

,s Val merge(Val s : simple(map [str, bool ] _) , 

val (.r)) ; 

val (r)) ; 
val (r)) ; 
val (r)) ; 
val (r)) i 

val (r) l ; 
val (r)) ; 
val (r)) ; 

,9 Val a : complex(set [Val] _)) = merge(complex({s}) , a) ; 
,o 'J4l merge(Val a : complex( set [Val] _) , 
s1 Val s : simple(map [str, bool ] _)) = merge(a, complex({sf)) ; 

Figure 7: Filtering inconsistent pairs of ambiguous derivations to decide satisfiability. 
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Conclusion 

I admit this essay may contain the most roundabout route to deciding satisfiability ever 

conceived. Also I must admit that I am still not well-versed in the literature on 

satisfiability. Yet, it was a fun essay to write, and I hope you have had fun in reading it as 

well, Jan. 

The algorithm first over-approximates satisfiability using context-free general parsing. 

Alternate valuations are simulated as ambiguous derivation trees by this process. A 

subsequent filtering phase removes all contradicting valuations, and if at least one remains 

the formula was satisfiable. The filter was implemented as a functional program in Rascal. 

The presented "algorithm" retains the natural shape of an input formula without a priori 

normalization until the very latests moment. If different parts of large formulas have 

cohesion in terms of the set of variables they use and low coupling to other parts in the 

same sense, then this algorithm benefits by detecting contradictions only on the quickly 

computed common set of variables. I believe that typically formulas generated from 

statically analyzing program semantics have such modular sub-structures. 

The practicality of first over-approximating SAT with a context-free general parser and 

subsequently filtering the inconsistent valuations remains to be seen. 
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* The Story of Urgh 

Albert Visser 

This contribution is dedicated to Jan van Eijck on the occasion of his retirement. Jan and I 

share a long-standing interest in the interrelated subjects of dynamic semantics and the 

philosophy of language. 

1 Urgh Mammoth Death 

Urgh mammoth death said Grmph. The members of the Oowaoo tribe cheered. Urgh 

himself stood beaming to the side. Several Oowaoo hugged him. Killing a mammoth was 

no mean feat even among such accomplished hunters as the Oowaoo. 

Urgh mammoth death said Grmph. The members of the Oowaoo tribe started wailing. 

Urgh's mangled body was carried by Fralp and Grad. The effects of mammoth tusks could 

be horrible. Urgh would be deeply missed among the Oowaoo. He was a capable hunter 

with a substantial contribution to the tribe's food supply. Moreover, his sunny character 

helped making the harsh life of the tribe more bearable. 

Urgh mammoth death said Grmph. The members of the Oowaoo tribe looked with awe at 

Urgh while he made his triumphant entrance seated on top of his favorite mammoth 

Cecilia. The two of them had played a decisive role in a pitched battle between the 

Oowaoo and the neighboring tribe of the Frksuml. 

Urgh mammoth death said Grmph. The members of the Oowaoo tribe looked somewhat 

jealously at Urgh. To be assigned the leading role in the mammoth hunt is a rare honor, 

especially for one so young. In spite of his excitement Urgh managed to keep a stern and 

dignified demeanor, worthy of the important task just given him. 

Urgh mammoth death said Grmph. The members of the Oowaoo tribe sat around the fire. 

It was a dark and stormy night. The Oowaoo listened attentively to the story about their 

favorite mythical hero Urgh who allegedly killed a mammoth with his bare hands. Later 



Urgh would become a god and most members of the tribe would convert to Urghism. But 

that was many years in the future. For now they just enjoyed the warmth of the fire and 

savored the gripping story. 

Urgh mammoth death said Grmph. The members of the Oowaoo tribe burst out laughing. 

Grmph's rueful tone made clear who he thought would be the dealer and who the recipient 

of death. Everybody had been somewhat annoyed by Urgh who, shaking his spear, had 

boastfully claimed Urgh mammoth death at the beginning of the hunt. Grmph's playful 

reversal of the interpretation of Urgh's words released the tension. Chuckling the Oowaoo 

continued on their way to the hunting ground. Only Urgh was a bit of a grump for the rest 

of the day. 
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2 A Brief Introduction to Oowaoo 

In the beginning was the meaningful word. 
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The Oowaoo language has no syntax. It is a holophrastic language. There are no sentences 

in our sense. Single words have as much claim to being sentence analogues as certain 

natural word groupings like Urgh mammoth death. As a consequence, Oowaoo has 

nothing like recursion. On the other hand, the language is not finite. Any string of words 

can occur as the subsequent words of a discourse1 and there are potentially infinitely 

many strings. The Oowaoo manage to say a lot with their discourses. 

Speaking a word in Oowaoo is making the thing it stands for present.2 Saying mammoth 

brings a mammoth before the mind's eye. Oowaoo has no distinction between verbs, 

nouns and adjectives (qua syntactical categories). The word death signals the presence of 

death. In context, it can take the role of our verb kill or our noun death or our adjective 

dead. The word Urgh does function as a name semantically in the sense that, when we 

paraphrase an Oowaoo discourse, our word corresponding with an Oowaoo use of Urgh 

will be our name Urgh. 3 However, there is nothing in Oowaoo like the syntactical role of 
. 4 

a name m a sentence. 

Saying a word can have many functions. Which function depends heavily on context. 

Suppose Urgh approaches Grmph who is talking to a group of people. Grmph says Urgh. 

If the members of the group do not know Urgh, Grmph's pronouncement serves to make 

Urgh-qua-Urgh present for these members. If Urgh is known, Grmph's pronouncement 



serves as a greeting and an acknowledgment. It makes Urgh present in the shared attention 

of the group, a group that now includes Urgh himself. 

Suppose Grmph says Urgh when no Urgh is anywhere in sight. This could have all kinds 

of meanings and its interpretation can make a substantial demand on the contextual 

knowledge of the receiver of this short message. If Grmph is sitting opposite to Xixia and 

is, while pronouncing Urgh, looking expectantly at her, the pronouncement could well 

mean: bring Urgh. Here the imagined situation of Urgh's presence should be made real: 

adequatio rei ad intel/ectum. Alternatively, the cave could have been a mess. It is known 

that Urgh was just in the cave. Also Urgh is known to be not a great fan of cleaning up. 

Perhaps, Grmph says Urgh with resignation in his voice. In this case surely a situation is 

envisaged in which Urgh made a mess and left without cleaning up. The criterium of 

correctness of Urgh's utterance in this case is that Urgh indeed made a mess: adequation 

intellectus ad rem. 

But what connects the words? What makes a Oowaoo discourse more than just a bunch of 

disconnected words? What is the intra-word-glue? 

Let us look at our primary example Urgh mammoth death. The crucial thing is that the 

closeness of the words suggests co-presence of the meanings. Of course, Urgh mammoth 

death allows us to imagine completely disjoint Urgh-, mammoth- and death-situations, but 

the contiguous utterance of Urgh mammoth death makes an interpretation where Urgh, a 

mammoth and death are brought together, so to say on one tray or in one location, an 

obvious choice. There we have it: a situation containing Urgh and a mammoth and death. 

The Oowaoo know many such situations: Urgh finding a dead mammoth, Urgh killing a 

mammoth, Urgh being killed by a mammoth; take your pick. Which situation to choose? 

Here context kicks in, as illustrated in the examples of Section 1. 

If two sequences of words are uttered by Grmph with some time-distance between them, 

in many cases the obvious choice will be to imagine the meaning of each sequence to be 

on a different trays. So, something a bit like syntax is emerging in Oowaoo. Word 

sequences that are viewed as pertaining to copresent situations are grouped together by 

being temporally contiguous. However, this minimal kind of syntax is perhaps more like 

discourse structure then like sentence structure. Still one can imagine that sentences could 

grow out of word sequences with co-present interpretation in a further development of 

Oowaoo. 



There is the possibility that in hearing a discourse consisting of a long sequence of words, 

the Oowaoo will reset an internal time parameter, thus making the event associated to a 

word uttered later occur later then an event associated to a word uttered earlier. 

The various readings of Urgh mammoth death invite some further reflection . We have 

three copresent situations: an Urgh-situation, a mammoth-situation and a death-situation. 

The Oowaoo will know that the copresent situations really form one inclusive situation in 

which the three sub-situations are each contained in their own way. For example, if Urgh 

killed the mammoth, then Urgh is the agent, the Mammoth is the patient and death is the 

Mammoth 's fate . Thus, the way the overall situation is built-up from its 'constituents' 

foreshadows the thematic roles in sentences in more familiar languages. 

The intellectual ability to assemble various partial situations into one whole is the 

converse of a basic ability needed for language: the ability to disassemble the given 

reality-as-a-whole into different meaningful parts. 

The interword glue is founded in the fact that words ab initio only reflect partial situations, 

situations that are part of a more encompassing one. 

3 Linking 

Diachronic samenesses are at the heart of language. We will denote the process of 

identifying things as the same across time by the expression linking. 

When are two uses of a word uses of the same word? There should be something 

identifiable in reality to help us identify uses as uses of the same word. In spoken language 

this is a sound. We note that the story about what precisely constitutes a sound(-type) is far 

from easy. This story is studied in phonetics and phonology. We will ignore all 

complexities here. 

There can be considerable variation in the sounds activating the same word. Moreover, if 

an individual sound only accidentally conforms to the sound-type connected with a given 

word, then that individual sound does not 'carry' or 'label' or 'activate' the word at hand. (*) 

For an individual sound :i; of a sound-type X to activate the word ( we need intentional 

production: the speaker must intend to say, using the sound ::r of type X, the word ( that is 

for her connected with earlier uses a;' of type x.5 We note the circularity in our 

description : to be an occurrence of ( , the intention to produce ~ is needed. This circular 



identity is typical for objects of the social ontology: for an occurrence to be an occurrence 

of it, the occurrence has to be intentionally produced to be an occurrence of it. There can 

be considerable variation in the sounds activating the same word. Moreover, if an 

individual sound only accidentally conforms to the sound-type connected with a given 

word, then that individual sound does not 'carry' or 'label' or 'activate' the word at hand. ( *) 

For an individual sound :r of a sound-type X to activate the word ( we need intentional 

production: the speaker must intend to say, using the sound a: of type X, the word ( that is 
r: 

for her connected with earlier uses :1:' of type x : ) We note the circularity in our 

description: to be an occurrence of(, the intention to produce ( is needed. This circular 

identity is typical for objects of the social ontology: for an occurrence to be an occurrence 

of it, the occurrence has to be intentionally produced to be an occurrence of it. 

Consider the following discourse Urgh seeing mammoth death. This could, in the right 

context, be interpreted as Urgh first sees and then kills a mammoth. Now suppose that 

Grmph says Urgh seeing mammoth .. . Urgh mammoth death. In this case the first use of 

mammoth and the second one are linked with each other as the same word. But under a 

reasonable interpretation there is also an additional linking in which the hearer 

understands that the second occurrence of mammoth stands for the same mammoth 

situation or for a mammoth situation that is the temporal successor of the first one. Thus 

we could paraphrase the discourse as Urgh sees a mammoth. He kills it. 

The default is that there is no linking of the additional kind . Distinct word uses on their 

own tend to present mutually distinct situations. A reason is needed to decide that two uses 

exhibit a tighter link. Giving the discourse more structure demands cognitive labour. 

For example, Urgh mammoth mammoth death could very well mean: Urgh kills two 

mammoths and Urgh mammoth mammoth mammoth death could either mean: Urgh kills 

three mammoths, or: Urgh kills many mammoths.6 We note that in some situations 

mammoth, mammoth, mammoth could mean presence of the same mammoth but over an 

extended time. 

Daniel Everett [1, p227] discusses the following conversation from father to son in 

(translated) Piraha, a language that is supposed to have no (or very little) recursion. 

liey, Poira. Bring boch some nails. Don brought those very noils. They ore the some. 

We would render this in English as: 

Hey Pai ta. Bring back [he nails tlwc Dan brought. 7 



We note that the example illustrates that tighter linking can take over the role of recursion. 

The example makes it rather plausible that language with finitely many sentences can do 

anything a language with infinitely sentences can do. One simply transfers work done by 

sentence structure to less regimented discourse structure. 

The sentence in our kind of language is just a clever pre-programmed local way to convey 

information. 

I tend to think that words being on the same tray, thus signaling a co-present situation, is 

also a form of tighter linking. Viewed in this way syntactic structure becomes a special 

case of linking. 

Remark: Once a philosopher remarked to me that he considered the discourse referent to 

be as problematic as possible worlds. My feeling is that the discourse referent can hardly 

be more problematic than the notion of word. It is a tighter sameness accross uses of 

various uses of words. A man ... he and Xixia ... she. There is a sameness preserved from 

the use of a man to the use of he and similarly from Xixia to she. A discourse referent is 

just like a word only somewhat less faithful to a sound-type. Like the word, the discourse 

referent should be a respected citizen of the social ontology. 

4 Eccentricity 

One thing the Oowaoo's need in order to have language is something like Plessnerian 

eccentricity. Eccentricity is the ability to see oneself as part of the world, as located in and 

limited in space and time. To be able to do this we need to be able to place ourselves in a 

position outside ourselves. 

Eccentricity is needed for language. The basic function of saying a word is making a thing 

present. We could as well say imaging oneself as being present where the thing is. 

Language is a form of mental travel, in space, in time and even in worlds of fantasy. 

In saying something we intend to bring the thing mentioned into our common space. This 

involves seeing the other person as something just like oneself. We understand that the 

other sees us just like we see the other. The eccentric position lies at the basis of the 

possibility of such reciprocity. 8 

Language, in its turn, strengthens our eccentric position. Language is great vehicle for 

space-, time- and worlds-of-fantasy-travel. 



5 The Primacy of Semantics & the Nature of 
Syntax 

The language creation myth about the Oowaoo stresses the idea of the primacy of 

semantics. In the beginning was the meaningful word. The meaning associated with the 

utterance of a word is not just a denotation, but rather primarily (the type of) the act of 

making the reference present. 

Syntax develops from semantics. Moreover syntax cannot be clearly separated from 

semantics. I already hinted at the genesis of the argument place. Argument places are, or 

so I believe, derived from the constitution of total situations in reality. For example, the 

agens and the patiens roles are anchored in the constitutive structure of action. 

But what about the embedding of sentences in sentences? Here is my speculative view 

about embedding. The brain supports a massively parallel process. It can easily produce 

several sentences at the same time. Urgh he was very angry came in shouting. We speak 

thus when we are agitated, trying to pronounce several sentences at once. When we do 

that, we have several trays or locations where situations are brought together in the air. 

Our short-term memory is good enough to keep track of them as long as we do not stack 

too many. Embedded sentences are a ritualized frozen way to put one sentence on top of 

another. The embedded location does not even have to consist of contiguous words. For 

example, if we say Hob believes that a witch has made the milk sour and Nob thinks that 

she also made his dog sick, then Hob believes and Nob thinks are on one level, but the 

witch is in the fictional world where witches exist that is introduced in the discourse. This 

is what makes the anaphoric reference to the non-existent witch possible. 

Certain local patterns of linking and certain patterns of embedding get frozen into syntax. 

We can understand syntax by formulating rules. However syntax is not caused by or 

preprogrammed via some set of rules in the brain-supposing such an idea would be 

understandable at all, which I doubt. 

6 The Functions of Language 

What is language for? The question has a misleading reading. It suggests a user (we) and a 

tool (language). The user, in some sense, has to precede the tool. However, language is a 

constitutive element of what we are. It is just as senseless to ask what use we are for 



language. One could say that Man and Language are causae mutuae. 

If we do not interpret the for as for us, we may pinpoint some functions of language. We 

have: 

• Contentual communication. Information about what is going on is essential for 

survival. 

• Phatic communication. This is sometimes translated as small talk. But it contains 

much more. When Grmph says Urgh to acknowledge Urgh's presence, this helps 

consolidate relations in the group. It plays a role in the creation of a we. The stories 

told by Grmph diminish boredom and therewith mischief. 

One of the important features of the growth of humanity is the ability to live together 

in larger groups. Language helps to make this possible. 

• Reasoning. Reasoning in language can take place independent of the communicative 

functions. 

It was my original hunch that the first function, to wit contentual communication, 

provided the first selective pressure in favor of language. However, our examples suggest 

that language needs reasoning. Some of that reasoning could itself employ language. Also 

the very idea of an assertion presupposes a lot of reciprocity. We say things with the 

intention to share something. Reciprocity is strengthened by phatic communication. So, 

perhaps, all three functions where present from the beginning and all played a role in the 

selective pressure, both for genetic and cultural change. Thus, language could grow both 

in complexity and in the size of its group of users. Thus, persons, we, came into being. 

7 Happiness 

It seems that Oowaoo is only suitable for wishes straight from the heart. So: 

Jan friend Albert wishing happiness happiness happiness. 

Notes 

"' ·. Joeri Niels comment comment comment thanking thanking thanking. f--' 



1. Obviously the same string of words can be associmed lo different discourses. String 

individuation is coarser than discourse individuation. +-> 

2. The English expression to present a thing does not do quite what I want. The Dmch 

expression oonwezig moken captures the idea rather 11eatly. <c-> 

3 Of course. a word group like this is Urgh may be our translation of Uryh. This at 

least contains our name Urgh . ...., 

4. In historical languages the semantical role of a name is never just to refer to the 

object. To think this would be to confuse narnes with constants in predicate logic. The 

making present function of names is preserved in historical languages. Saying a name 

makes the named salient in the discourse. ,._, 

5. Of course, the story is more complicated. If we take(*) too literally, there could. 

for example. be no automatic production of ,vords by a computer. However, for the 

purposes of this note, I will leave it at this first altempt to describe word-idemity. ,._, 

:>_ Of course, the story is more complicated. If we tahc (*) too literally, there could. 

for example. be no automatic production of words by a computer. However, for the 

purposes of this note, I will leave it at this first alte1npt to describe word-identity. ,._, 

6. So, the default would be lihe the use of variables in the Backus-Naur fonn . ...., 

7. If you try to approximate the SC'ntC'nce in Oowaoo, you see how complex it really 

is. The switch fron1 an imperative to a past tense, the plural nails: these are all 

difficult to present in Oowaoo. Don bringing nail nail nail Puita bringing is the 

closest I sre1n to be able to get. This discourse seems to be rather demanding on the 

interpretative powers ol (the Oowaoo version of) Paita. +-> 

8
. The genesis of language is, according to Tomasello, part of the more encompassing 

genesis of human cooperation. It seems to nw that eccentricity is one of the 

preconditions for the possibLLi ty of cooperation. ,._, 
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