A PROGRAMMING ROAD TO
LOGIC, MATHS, LANGUAGE,
AND PHILOSOPHY

A Tribute to Jan van Eijck
on the Occasion of His Retirement

A Programming Road to Logic, Maths,
Language, and Philosophy

A Tribute to Jan van Eijck on the Occasion of
His Retirement

Cover

Table of Contents

PIRIACE. s s e e A e g A T A e aume o g
Krzysztof Apt

For Jan; About the Pythagorean Theoremy 9
Matteo Capelletti

My Story with Jan, in Haskell..............oooiiii e 12
Kees Doets

Unavoidability of INduction ... 21
Malvin Gattinger

From Zero to Logic in HasKell:ccuuuumummomimmassivisssisssimesmonsiss ssssunsssss sveyiosss ssissassssiasss 26
Fengkui Ju

Normative Notions by Colored ACHONSccrssswimmsssimsssssssmemismmsossinmmsssnsssossiniass 30
Paul Klint

An Exercise in EXercises.o s 36

Barteld Kooi and Rineke Verbrugge

From Principles to Practical Pigeon Protocols.....................oooiiis 49
Bert Lisser

Alain Badiou plays the:game:of Set.........ccuimninnnmmonsumsasssmmmainesmssssss 54
Stefan Minicd

Interactive Reasonilgoioummssmssumimmio srassiiss sisssssisssiost s sonistsivssssmisassisevens 55
Reinhard Muskens

16T*P : A Toy Tableaux Theorem Prover for 16-Valued Trilattice Logics................... 57
Rick Nouwen

INOEhINE 10 AUcooncesnsmemmsnmssamnessamss iibiniboskss o b boimast ors s v 3845 Sins T SIS R S R T a6 78
Rohit Parikh

A Tribute to Jam Van B eKu s cososimnsenss s siusnineonisnso semmesie s i sssissssyviss 87
Marc Pauly

Programming Real Social Software: Matching Students to Supervisors using Perl..... 96
R. Ramanujam

A Conversation 0N MONEYccccoiviiiiiniieinieniiiiieiree st essseaeesrsssnssesssesseasaseeses 104
Hans van Ditmarsch, Ji Ruan, and Yanjing Wang

TrueLies and True LoVe...... ooy s i s s 107
Frangois Schwarzentruber

HITOKRKA'S WOTIH s cousoimsinssonuonimmmnsinmions iosissmmeis sty ihiis i soss osyhosdssossinssiosssas bs 124
Floor Sietsma

o g £y g {1 v — 130
Martin Stokhof

A Tale Of TWO JANS.......oooooieiiiiiieeeeeeeeee e et ae e e et e e e e essaeeeeeeenssaneaeeeasnnnnns 132

Elias Thijsse

Personal INOTE.........ooooviiiiiiiiii et s e 133
Christina Unger

HUP ! H U, ettt ettt ettt 135
Johan van Benthem

Working with Jan in Four Movementsoooiiiiiiiiiiii e 137
Tijs van der Storm

The Value of Alternative Semantics s ssmmsmesesimammmsws 143

Stijn van Dongen
RAMbHGE With MIBKOWSKLoo.comomsmsmmmess sposmissanysmsns s s s s sesssss s 163

Heleen Verleur

ROUTEIOD.orvcvin sssmesmassummmmssmsmnsssesscusesinssonsessssisoin o3 A4V Vs S SR TS TR 9w i 187
Jurgen Vinju

The Syntax of Truth: A Grammar-based Approximation of Satisfiability................. 188

Albert Visser
The SO 0F UNEN oo oo mmmmsmsssserssmssinsssssessaronsssistsisn sins sessssssbsssess o seisamsassinias 200

Preface

Instead of an academic Festschrift, this is a true liber amoricum — a collection of
contributions from friends. On the content level, these contributions demonstrate the
influence Jan had on each of us in a diversity of fields at the intersection of logic,
philosophy, computer science, and linguistics, as well as the inspiration we draw from it.
On a personal level, they also express our gratitude for the past and our dear wishes for the

future.

The book lives at http://jve2017 herokuapp.com in a tree-saving and dust-avoiding format
that allows for code snippets and demos to be run. As many of the contributions included
in the volume will illustrate, the choice of the online format is not so much an editorial
convenience but rather captures the spirit of the Haskell way that Jan shaped and shared
during his career. Alongside executable code, the collection comprises rigorous
formalizations, informal text, argumentative dialogs, insights, personal notes, poems, and
pictures. And as a special contribution it includes music that Heleen Verleur has composed
for this occasion (here included as non-executable code; sorry to everyone who has not

been live at the workshop to enjoy it at runtime).

We hope that the sum of all these contributions captures most of the relevant aspects of
Jan's work and personality, and we are sure we speak for everyone when we say: It has

been a great honor and an even greater pleasure to be a part of it.

Stefan Minica
Christina Unger
Yanjing Wang

on behalf of all contributors

June 2, 2017

Amsterdam

For Jan: About the Pythagorean Theorem

Krzysztof R. Apt

When my children were at a secondary school I organised for a couple of years a 2-3 days
long internship for a group of enthusiast children who wanted to learn more about
mathematics and computer science. The main problem was to find adequate speakers. Jan
never failed me and each time I asked him he gladly agreed to give a lecture followed by a
short session during which he discussed solutions in Haskell to programming problems he
posed. One time I followed his lecture out of curiosity. It started with the Pythagorean

Theorem.

Jan presented a visual proof given in 12th century by an Indian mathematician, Bhaskara.

It is based on the following two drawings:

a b b

a
b ¢

o

a

Figure 1: Bhaskara's proof of the Pythagorean Theorem

This is certainly a good start for a lecture for pupils. But recently I found another proof
that might be even more appropriate for a school presentation because of a colourful story
surrounding it. This proof was published by an American President, James Abram
Garfield. Garfield was in office only for 199 days—he died in 1881 after being shot by an
assassin. Garfield’s proof is based on a drawing of a trapezoid given in the following

figure.

B

h
Figure 2: Garfield's proof of the Pythagorean Theorem

woash

The area of the trapezoid equals the height times the average of the bases, so (¢ — h)——

, e, %(a : b)z. But it also equals the sum of the areas of the three triangles, that is,

ab+ 162 4 éab, ie,ab + L¢2. So %(a ; b)2 = ab -+ %C"’,that is,

) 5
2 2

1o —

(@ —b)* = 2ab + ¢*, from which 42 4 p2 — 2 follows. Garfield concluded his
article with this remark (see Dunham [2], page 99): "We think it something on which the

members of both houses can unite without distinction of party."

To tease the pupils one could ask them what is the use of Pythagoras' theorem. The typical
answer is that it helps one to produce a straight angle. Namely, take a rope, with equally
spaced 11 knots on it (so that 12 equal units are formed) and use it to form a triangle with
the side lengths of 3, 4, and 5. Since 32 ; 47 - 52, this triangle is right-angled. This is
apparently how Egyptians used this knowledge to produce straight angles.

But a perceptive reader will notice that we cheated here. Namely, we used the reverse of
the Pythagorean Theorem: if 42 4+ 2 — (2, then the triangle with the side lengths a, b
and ¢ is right-angled. This implication also holds and is established in Euclid's Elements

together with the proof of the original theorem.

One can go even further. Edsger Wybe Dijkstra [1] proved the following strengthening of
the Pythagorean Theorem that covers both implications and four others, and makes no

mentioning of right angles.

Theorem Consider a triangle with the side lengths a, b and ¢ and the angles ¢, ;3 and 7,
lying opposite @, b and ¢. Then the signs of the expressions 42 }? _ 2 and

v -+ 3 — -~y are the same.

For example, for the triangle with the side lengths 3, 4 and 6 we have 32 | 1? .- g2, so
o + 3 < ~.Hence 180" = « + 3 + v < 27,50 90" < ~, which means that the

triangle is obtuse.

References

[1] Edsger Wybe Dijkstra: On the theorem of Pythagoras. EWD-975, 1986. Available from

http///www.cs.utexas.edw/~EWD/ewd09xx/EWD975.PDF.

[2] William Dunham: Mathematical Universe. John Wiley & Sons, 1994.

My story with Jan, in Haskell

Matteo Capelletti

This occasion has brought back to my memory many episodes from my life as a student in
Utrecht under the supervision of Jan. I would like to use this space to recall some of them,
and to share with you all some code and ideas that I developed through the years, both as a

student and later just for fun, that in a way or another owe something to Jan.

Introduction

Jan has always been a source of inspiration for me both as a teacher and as a man. I
remember him coming to the Utrecht Institute of Linguistics on Friday. I knew that at
some point of the day he would drop by my office to see what I was up to. He would sit
next to me, listen to my explanation of the experiments I was attempting and tell me that,
well, this is very interesting, but it is difficult, and you need to prove your claims, you
need to show that what you say actually works. I was playing a bit with Prolog at the time,
but he recommended to learn Haskell, that is 'better'. That was a great advice that changed

my way of approaching research, of exploring ideas and of thinking.

In this contribution I am going to present through code examples, some results which I
find somewhat inspired by Jan. I report only parts of the code, and sometimes with some
simplification to make it fit to the informal character of this contribution. I would be
happy to share the code and also the literate version of it with whoever may be interested

in seeing more.

The Catalan number

I read interesting contributions by Jan on many subjects. I especially liked the code
accompanying most of them. When he started helping me on my linguistic research on
efficient parsing for Categorial Grammars, it was not clear to me what his first assignment
meant: "Write a function that returns all possible balanced brackets of length n". In other

words, a grammar generating the language:

S 5 (8)S ¢

Second question: "How many such strings are possible for any n?"

It took me a while to find a nice way to do it. I spent an afternoon on this, but I wanted to
be able to show something to Jan in our next meeting. Here is a revision of my solution,

and the number was the Catalan number.

¢ 8= [

T+ 1 4+ YT ++r | 1<- [0..0],
1l <- brack i,
r <- brack (n-1i)]

I banged my head for some days on this code. I had seen some Prolog, but my
programming skills were low and functional programming was a rather different
paradigm. I was so proud of this code when it finally worked, and I think Jan was happy
too that I didn't give up and that we could move on for instance with a memoized version

of this.

At the same time, with my other supervisor Michael Moortgat, we were wondering in
what way generating all brackets is useful in parsing, but that's another thing. Actually,
from this first coding experience I learned some very important things. At technical level,
recursion and list comprehension which proved to be amazingly powerful tools. I
remember the words of Jan in one of his classes on programming: "It looks like magic, but
it's the power of recursion”. And I often had the impression, in my meetings with Jan and
in my studies in the Netherlands, to be initiated to some sort of magia naturalis while
learning to use words that create and change things... At personal level, I learned not to

give up when faced with something new and maybe initially difficult.

Later in my career, I used the above approach for language generation in some
professional context. But the list comprehension approach is a simple, elegant and
powerful one, that I used in several contexts, whenever a non-deterministic behavior had
to be implemented. It has been found so simple and elegant that also other programming

languages have adopted it from Haskell.

Beyond coding

After getting acquainted (but actually I should better say addicted) to Haskell and ready to
disseminate my writings with code snippets, during one of his Friday visits Jan advised me

not to use code in my abstracts! I was pretty confused and a bit frustrated, I shall say.

The recommendation was to use code in developing ideas, but to use logical notation for

dissemination purposes. I never succeed much in the latter, but I tried. Here I present an

example.

During my studies on Type Logical Grammar, I came across a contraction procedure that
could be used to prove the theorems of the Non-Associative Lambek calculus (Lambek
1961). I present this in a sort of more logical way, but I think the similarity with the style
of the previous code with list comprehension is clear. List comprehension is perfect to

model non-determinism and generate multiple solutions.

The idea, which I present here shortly is that a sequent ¢ —: ¢ is provable in NL if and
only if the intersection of the reduction set r computed for the antecedent and of the

expansion set e computed for the succedent is non-empty:
Fyr a-—+c iff r(a) e(e) # 0.

The contraction procedure e and r work as follow:

1) ela) = {a}, if a is an atom
2) ela®b) = {a’'®b'|a’€e(a)& b ce(b)}
3) ela/b) = letmonbe{a’/b'|a c€ela) &b er(b)}in
(a) mon
U
(b) {cl{c®b’)/b' € mon }
U
(c) {c]a’/(c\a’) € mon }
1’) r(a) = {a}, if a is an atom
2) rla®@b) = letmonbe{a’'®b’"|a’er(a) &b’ er(b)}in
(a) mon
U
(b) {c]e/b"® b’ € mon }
U
(c) {ecla"®a\c € mon }

i

3’) r(a/b) {a’/b'|a’€r(a) & b’ €e(b) }

Suppose for instance that we want to prove a sequent
(s/(n's))is —» (s/(n's))\s
then we compute the reduction r of the antecedent:
r((s/(n's))is) = {(s/(n's))\s,n\s}
and the expansion e of the succedent:
e((s/(n's))is) = {(s/(n's))is.n's}

Because the intersection of the two sets is non-empty, we know that the sequent is
provable in NL. A claim that I never succeeded in proving is that the cardinality of the
(multiset) intersection is the number of proofs of the sequent, so that the procedure not
only answers the provability problem, but also tells us how many distinct proofs a sequent

has.

Beyond syntax

There are many other works by Jan on syntax and parsing that I studied with interest. I
remember his Haskel versions of the CYK and Earley algorithms, his version of the
monadic parser combinators, the proof net contraction algorithm. Not only the topics he
proposed to me in our Friday sessions were interesting and challenging, but by looking at

his code I could find clever solutions that could be reused in other contexts.

My dissertation was about syntax and theorem proving, but I was also fascinated by
semantics and after completing my studies, I had the freedom to dedicate myself to that

too, again starting from some reading of Jan's work.

I wanted to build an Haskell interpreter for predicate calculus. I ended up building an
Haskell interpreter for Prolog, which would take as input programs like the following

definition of map :

map £ [] [] :- [],
map f (y : ys) (z : zs) :- [fyz, map x ys zs]

Here the program mapping is a list of clauses, each with a left-hand side term and a list

of right-hand side terms.

The code includes several components among which a unification algorithm, some
routines to refresh variables in terms and to normalize terms (adapted from Jan's code for
lambda term normalization), ways of instatiating a query term to a program, which I am
not reporting here. More interesting, and inspired by some of Jan's code for exhausting
alternative possible combinations, the implementation of the depth-first exhaustion

procedure which I report here (with some simplification):

i1 11 OR -> Prog -> [Subs]
- [1 prog =[]
eval ((f,[1):as) prog =
f:eval as prog

eval ((f,q:qs):as) prog =
eval (os++as) prog
where

os = [(f'.f,rs ++ gs) | (f',rs) <- scan (f q) prog]

As we said above, a program is a list of pairs made of a left-hand side term and a list of

right-hand side terms:
R 3 TUTTT) v (TR B S pron W |

The eval function is called initially on the pair id function and list of query terms

s , [(id,[gs])] . The gs are AND conditions that all need to be satisfied. This
means that only when gs is empty we can return f as a substitution that provides one
solution.E However there may be more than one solution. So the first argument of eval ,

of type OR, is of the form
:(fis:(Iiw-'vq”])«'--a(f!'x QIQW)

and accumulates the right hand side of clauses that are instantiated. The list OR will
consist of alternative branchings or alternative solutions to the initial problem. The eval

function above generates all possible solutions.

The scan function, which we omit here, tries to match the current query term q under
the current variable instantiation f with the left-hand side of a clause in a program

prog . So it tries to unify f q and any 1 -term in a program.

Observe, about (f',rs) that

1. scan** returns all unifiable right-hand sides in the input program,
2. these are piled on top of the calling rhs gs as new AND conditions with new
substitution function.

3. different possible clause instantiations give rise to new OR branchings.

I had some fun testing the procedure on some typical Prolog programs. For instance, we

can define the following programs:2

add zero x x :- [],
add (succ x) y (succ z) :- [add x y z]

addition ++
[
mul zero x zero :- [],
mul (succ y) x z :- [mul y x w, add x w z]

multiplication ++
[
exp zero x (succ zero) :- [],
exp (succ x) y z :- [exp xyw, mul y w z]

Which unsurprisingly give us:

*Run> eval [add x y (num ©)] addition

COOG) (yr)1 DO), Cy,)T D0 2), (y) 10 DO) (ys) 10 DOx, 1), (ys, 1) 10 [
X,5),(Y,9)]]

*Run> eval [mul (num =) (num %) x] multiplication

[L(x,15)]]

*Run> eval [mul x (num =) (num)] multiplication

[[(x,%)]rCInterrupted.

More interestingly, the full program is also capable of handling higher order term

resolution as in the following example.

*Run> eval [map x y [3,4,5,6,7])] (mapping ++ addition)
[[(x,(add ©)),(y,[3,4,5,6,7]1)],
[(x,(add 1)), (y,[2,3,4,5,6])],
[(x,(add 2)),(y,[1,2,3,4,5])],
[(x, (add 3)),(y,[0,1,2,3,4])]]

Beyond semantics

I knew towards the end of my studies in Utrecht that Jan was approaching new areas of
investigation, that had to do with knowledge, belief, communication. It seemed all very
interesting, but I had to write my thesis. A couple of years after my Dutch period, I met
Jan at ESSLLI in Bordeaux, where he was teaching those things. Again, I found his
lectures and explanations through code fascinating, and when I went back home, I decided

to implement a MasterMind code breaker.

In the game of Mastermind at every guess the player is returned the number of colors that
are in the right position and the number of color that are present but not in the right
position. This information can be used to build a sort of propositional logic formulas that
will act as a filter on the possible states of the world. Formulas are for instance At

(x,1i) , meaning that color x isatposition i ,or In x meaning that color x should
be present. Then formulas built from connectives. The eval function below takes a
sequence of colors (a world) xs and a formula, and checks if the formula is true in that

world

gval :: String -> F -> Bool

eval xs (At (x,1)) = xs!!li==x

xs (In x) = x "elem” xs

xs (Not x) = not (eval xs x)
xs (And ys) = all (eval xs) ys
i xs (Or ys) = any (eval xs) ys

Given a set of possible colors and a predefined length of the sequence to guess, the set of

possible worlds is defined.

Subsequent guesses are used as filters. Here is an example run of the code with possible

colors [a,b,c,d,e, f] and sequence length 4:

*Main> test "aacc"

"Code: aacc"
"Guess: abcd"
"Worlds:"
1295

"Outcome: (2,0)"

"val: v[A[a®,b1,-c2,-d3,-c,-d],[a®,c2,-b1,-d3, -b, -d],~[a®,d3, -b1, -c2, -b,
-c],~[b1,c2,-a0,-d3, -a,-d], ~[b1,d3, -a0, -c2, -a, -c], [c2,d3,-a0, -b1, -a, -b]]
n

"Guess: abef"

"Worlds:"

95

"Qutcome: (1,0)"

"val: v[~[a@, -b1,-e2,-f3,-b, -e,-f],~[b1, -a0,-e2,-f3,-a,-¢,-f],A[e2,-a0, -b
1,-f3,-a,-b,-f],A[f3,-a0, -b1, -e2,-a,-b,-e]]"

"Guess: aacc"

"Worlds:"

15

"Success after 2"

In the above, outcome: (2,0) states that 2 colors that are in the right position and 0
colors are present but not in the right position. This is encoded in the formula after val:

which uses prenex notation with v for or , ~ for And and - for not. For instance:

V[A[bO, 'a]r A[-eZ,f]]
Read: b is at © and a is not in the code, or e is not at 2 and f is in th
e code

The initial guess is always "abcd". The set of possible worlds is initially 1,295 (6/4 - 1).

The first guess gives two colors in the right position, and is translated in the formula in
val . This formula is used then as a filter on the set of possible worlds and the program

randomly guesses another color from the remaining set. In two iterations the code is

broken.

Conclusion

After my studies, I didn't find a job as a Haskell programmer. Actually when asked "what
programming language do you you know?" I had a hard time explaining what Haskell was
and that yes, I can program. However, when I met some of those who can program in the
private sector, I often thought that they may benefit from learning some Haskell. I myself
have used it sometimes also at work, but more than it, it's been useful to learn to see
problems in their various components, in gaining an analytical view of the problem, and
learning to design solutions that not only do work, but are also efficient and elegant. Under
the guidance of Jan, learning Haskell has been an exciting, lively, always interesting

adventure.

Notes

. For instance mapping £ on the free variables in gs returns the variable
instantiations that satisfy the query. <
2 : a
. Observe that in the code, succ does not have the standard Haskell meaning, but

is a term constructor for integers. <

Unavoidability of Induction

Kees Doets

For Jan, at the occasion of his farewell

1

This began August 17th, 2014.

In an episode of the Dutch TV series "Zomergasten", Ionica Smeets (professor scientific
communication, Leiden University) presented a BBC production with Marcus du Sautoy

on Euclid's theorem about the number of primes.

The famous argument: whenever you have a finite list of (prime) numbers pyy, P, 1,
none of them will divide the number 11z~ 1 - ”, ,, P (the point of the construction
being that all divisions have remainder 1) and, hence, no (prime) divisor of 1. occurs on

your list.

Which inevitably entails the conclusion that the number of primes cannot be finite.

2

The exposition was meant for a general TV audience: it should be both watertight and
simple. Simple it was, but (admittedly, sometime later) I observed a hidden use of
induction. This becomes more conspicuous when asking the question: why should m

have any prime divisor at all?

The answer is: search for the least number -. 1 that divides it, by consecutively trying
2.3.4, ... (In the worst case, this search goes all the way up to rm itself if, by
coincidence, this number happens to be prime.) Finally, a least divisor obviously cannot

fail to be prime.

So we used the fact that a certain non-empty set of natural numbers has a least element.

And most of us know (cf. part 7): this is just an instance of induction.

The intended audience will probably be unfamiliar with induction. (A first year math
student at my first encounter, it took some effort before I got familiarized just a bit.) But
what about this Least number principle? A least number in a clear-cut non-empty set of
natural numbers — who of the many, watching TV on August 17th 2014, will have
doubted its existence? And if such persons do not exist, is it within reason to call this

cheating a little?

3

I wrote to Ionica. She dismissed my criticism by referring to the theorem on prime
decomposition. OK, this well-known fact is teached at primary school. Nevertheless, in

the given situation, this felt as overkill.

4

Perhaps I should have but I did not consider writing du Sautoy. Instead, I grabbed for van
Eijck and Visser [1]. The first theorem in their book concerns the irrationality of 2. And
—bingo!—the second one is Euclid's. The proof slightly deviating, but, nevertheless, there

it was: least divisors exist.

I wrote to Jan. He agreed there was a minor point here to make explicit.

5

Two years passed. The retirement of Jan was approaching and I mused about Doets and
van Eijck [2] for some handhold. Was I surprised when I noticed Euclid not as second, but
even as first theorem — be it on p. 102. However, the existence of least divisors was
somewhat carelessly mentioned already on p. 4, thereby firmly closing full circle on yours

truly.

6

Some serious answers came from an unexpected source. At some stage, I had told
Krzysztof Apt about the apparent need for induction in proving Euclid's theorem. On one
of his famous bicycle trips with fellow-mathematicians, Krzysztof mentioned this to Zofia
Adamowicz. She informed us that things were more intricate when looked at in the setting

of formalized arithmetic.

Shepherdson (f 2015)1 showed long ago that induction for quantifier-free formulas doesn't
suffice to prove the Euclid theorem. However, it isn't the existence of the least divisor
which is the bottleneck here (although the induction uses a bounded formula). It is the
existence of the number l ll .. Pi, or, at least, of large numbers with many divisors such
as factorials. In the usual formalisation the only operations are those for successor,
addition and multiplication. Others (exponentiation, factorial,...) have to be defined and it
requires proof to show they are total. This is where more serious induction is required.
Finally, Woods proved Euclid using induction for bounded formulas and the totality of

plosirl, but his proof is very different from the usual one.

7

For completeness' sake, here follow the relevant forms of induction.
The standard formulation:

(Induction) If 4 is a set of natural numbers such that (i) (} & 4 and (ii)

vn ¢ A(n + 1 ¢ A), then A contains every natural number.

Existence of the least divisor follows immediately from either of the following two

equivalents.
(Least number principle) Every non-empty set of natural numbers has a least element.

(Termination) There doesn't exist an infinite descending sequence of natural numbers

Ng > Ty 2> Ny 2> -«

Most of the six implications between these principles are easily proved. Equivalence of the
last two is remarkable, as the first one is a second-order statement whereas the second one
employs infinitary language. (The Axiom of Choice is involved, but that is a different

story.)

Only one of the implications requires a little trick:

(Induction) implies (Least number principle): Assume that /2 is a set of natural numbers

without least element. Assuming Induction, we will show it to be empty.
Define (this is the trick) () — {n ¥m < n(m ¢ P)}.
Note that () and J° are disjoint (a common element would be a least one of p?).

Thus, for J? to be empty, it suffices to show that every number is in (). Here is where we

employ induction:

First, 0 € () holds vacuously. Next, assume that 72 € Q. In order that n + 1 € Q,

choose any yn < n + 1; we have to show m & P.

Since 11 < 1 -+ 1, we have either 112 == 7. or yn <2 7. In the first case, the required

m & P follows because of 12 # P, in the second case this follows because of 12 & Q.

8

Krzysztof Apt sent me the paper [3] that lists a wealth of 147 references on Euclid's
theorem. However, induction isn't the issue here. (Nor, I suspect, is it in any of these
references.) It is the remarkable and unexplained fact that nearly all of them are
historically incorrect in stating that Euclid's is among the earliest proofs by contradiction
(that derive a contradiction from the negation of what has to be proved,; in this particular

case: that only finitely many primes exist).

Krzysztof also observed that, if \' is any natural number, the least number -. 1 that
divides N1 — 1 will be a prime greater than }\' (which, accidentally, is <= N'T + 1).

Obviously, this immediately shows there are infinitely many primes.

Notes

. http//www-groups.des.st-and.ac.uk/history/Biographies/Shepherdson.html «

References

[1] Jan van Eijck, Albert Visser, Inzien en Bewijzen. Amsterdam University Press 2005.

[2] Kees Doets, Jan van Eijck, The Haskell Road to Logic, Maths and Programming.
King's College 2004.

[3] Michael Hardy, Catherine Woodgold, Prime Simplicity. The Mathematical
Intelligencer 31 (4) 2009, pp. 44-52.

From Zero to Logic in Haskell

Malvin Gattinger

My first contact with Jan and Haskell coincide. At the beginning of my second year as a
Master of Logic student I took his course "Functional Specification of Algorithms".

My previous programming experience had been completely outside universities.
Moreover, it was mainly in PHP which you might call the opposite of Haskell. Not just
imperative and stateful as hell, but with so many weird parts that there are cedicated
forums to make fun of them. Maybe this is why I usually did not think about connections

between my interests in mathematics and computers.

Jan easily changed this and showed me a way to merge logic and programming. The final
blow to my imperative upbringing happened towards the end of the course. Jan gave a
short introduction to DEMO, the epistemic model checker. Since then my favorite
example of how well Haskell accommodates logic is the comparison between
mathematical definitions as we write them in a paper and their implementations. For

example, consider the syntax of Public Announcement Logic (PAL):
6T pl ¢lord|Kio| (6o

This can be easily translated to a new data type:

type Prop = Char

type Agent = String

data Form = Top | P Prop | Neg Form | Con Form Form | K Agent Form | Ann
Form Form

The symmetry continues when we interpret the language. Here is the standard truth

definition for PAL, saying when formulas are true in a pointed model:

MawE1 = always

MuwEp = pe V(w)

M,w = = > not M,w = ¢
MukEory & MuwkEdandM,wkEv
MukEKe¢ & Vweo~yw:MusEo

Mow = 10l « Mywlk ¢ = M w1

How do we write this in Haskell? First we need a definition of models.

type World Int
data Model = Mo {worlds :: [World], val :: World -> [Prop], rel :: Agent
-> World -> [World]}

Now the semantics given by -~ above can be written as a function from pointed models

and formulas to booleans. The helper function ! implements the update from AA to

.;M .

¥ (Model,World) -> Form -> Bool
al (_,_) Top = True

(m,w) (P p) = p ‘elem” (val m w)
eval (m,w) (Neg phi) = not (eval (m,w) phi)
eval (m,w) (Con phi psi) = eval (m,w) phi && eval (m,w) psi
eval (m,w) (K 1 phi) = and [eval (m,v) phi | v <- rel m i w]

eval (m,w) (Ann phi psi) = eval (m,w) phi <= eval (m ! phi,w) psi

(') :: Model -> Form -> Model
(') mphi=m
{ worlds = filter (\w -> eval (m,w) phi) (worlds m)
, rel = \iw -> filter (\w -> eval (m,w) phi) (rel m i w) }

This minimalistic toy variant of DEMO can be used as follows:

11 Model

¢l = Mo [,] myval myrel where
= "pg"
= ”p”
YAnne" = [9,1]
"Anne" 1 = [¢,1]
"Bob" 6 = [¢]
“Bob" =[]
A> (myModel, 0) (K "Bob"™ (P 'g"))
True
A> . (myModel,0) (K "aAnne” (P 'g'))
False
A> vl (myModel,@) (Ann (P ‘g') $ K "Anne” (P 'g'))
True

Why would you want to use anything else to implement Logics and model checkers?

eval :: (Model,World) -> Form -> Bool

Moawhk T +» always

Mowkp & pe Viw)

Mowk ~o < not M, wE=o

MuwkEpAay & Muwkg and M,w= ¢
M, wbk Kid wr Yu~iwiMek g !

M,w = ['¢ly & MuwE¢w) > ML,wkEy

Given this background, I often look at new definitions of semantics for a new logic and
immediately wonder what they would look like in code. Can we easily translate all logics
and their semantics to Haskell? Of course not. The language is more restrictive than
mathematical notation, but this can be seen as a feature. When I started to implement the
Logic of Agent Types and Questions from {.iu & Wang 2013 one obstacle was this

definition (adapted from page 138):
M, w =, ¢ e forally: M, w b=, Lo

The intended meaning of !,|¢ is "No matter how agent a answers the current question /¢,

¢» will be true afterwards." On the right side of the definition we quantify over all formulas
to represent all possible answers. But of course we can not run through infinitely many
in an implementation that should ever be run (and finish). But in this case there is an easy
way out: The logic only formalizes binary questions £, so the only relevant answers are

equivalents of /£ and £t Thus we do not actually care about all formulas, only those two,

and the logic can still be implemented easily.

One of the things I learned from Jan is that in situations like this we can realize that
implementation is not a one-way street: we might as well go back and change the
definition that we wanted to implement (and this is actually what (Liu & Wang 2013)
already do implicitly on page 138). Haskell thus prevents us from defining something in a

non-computable or non-constructive way if there is no real reason to do so.

Normative Notions by Colored Actions

Fengkui Ju

Jan is a very nice professor. I would like to thank him for all the kind help to me and my
family. I wish Jan all the happy things. I also hope that he could visit Beijing again some
day with his family.

Jan and I like a semantic setting: labeled and colored transition systems with preference
among colors. I design a language to talk about this semantic setting. In it, a few

normative notions can be defined. The semantics is from our previous joint work.

1 Language

Let /: be a natural number and '~ {¢y,...,¢; } asetof & + 1 colors. Let = be a
reflexive and transitive order on (. ¢; =% ¢; indicates that C; is at least as good as ¢;. Let
~ be the strict version of ~. ¢; ~< €} denotes that €; is better than ¢;. Conceptually, one

has preference among colors and ~ is its preference.

Let Il be a finite set of atomic actions and a range over it. Let ¢, be a countable set of

atomic propositions and p range over it. Let § range over the set {U k} Define

mutually recursively a set [y of actions and a set ¢, of propositions as follows:
az—a d | (we) | (ada) | o a @7

pu=p | T | « | ¢ | (¢ng) | X¢ (6Uo) | A,0

Doing id is doing nothing. Doing ¢y is refraining from cx. The reading of the featured

formulas is as follows:
1. ¢;: the next transition has the color ¢;.
2. X¢ ¢ will be the case in the next moment.
3. {@Uv): ¢ will be the case until .

4. A, ¢ no matter how the agent will perform c, ¢ is the case now.

Note that ¢> in A, ¢» might contain temporal operators and ¢»> being true now might mean

something else being true in the future.
Here are some derivative expressions:

1. 1:=ayll---Ua,!tid whereIT;, - {ay,....a,}: doing it means doing a

basic action.
2. F¢p := (T Ug): ¢ will be the case.
3. G¢ := —F—¢@: ¢ will always be the case.
4. Do F(XT A ¢): ¢will be the case at the end.

5. E,¢ := — A, —¢: the agent has a way to perform cx s.t. ¢» is the case now.

6. a @ = A, D¢: no matter how the agent will perform a, ¢» will be the case after cx

is done. This is the classical box modality.

7. {aj¢p - E,Dg: the agent has a way to perform c s.t. ¢» will be the case after cx is

done. This is the classical diamond modality.
8. C¢ := E;- ¢: the agent has the ability to make ¢ true now.

¢»in C¢ might also contain temporal operators and making ¢» true now might mean
making something else true in the future. In reality, when we say that someone has the
ability to make something true, we usually mean that he has the ability to make it true in

the future.

2 Models

Let (" and < be specified as before. M = (W, {R, a ¢ Iy}, Biq,C, <,0,V)isa

model if
1. W is a nonempty set of states
2. R, W x Woranya < Il
3. Rig = {(z,z) |x € W}

4. o is a function from R to (" where R = | {R, a < Iy} L Riq

5. V/is a function from ¢, to 91’

For any transition (w, u), o(w, w) is called the color of it. We say that (1w, ') is at least
as good as (w, u) if o(w, u) ~ o{w,v), and (w, v) is better than (w, u) if

o(w,u) < a{w,v). Note that the preference order concerning colors is the same in all
models.

Let w be a state. For any u s.t. (w, u) ¢ R, (w, u) is a best transition from w if there is
no vs.t. (w,v) &€ Rando(w, v) =~ o(w,u), and (w, u) is a worst transition from
if there isno v s.t. (w, v) ¢ Rand o(w, v) < o(w,). Best/worst transitions are

relative notions.

A finite sequence w . . . W, of states is called a path if wy R ... Ru,,. Specially, w is a
path. A path wy, . . . w,, is legal if for any § < n, (w;,w,) is a best transition, and evil
if forany j < n, (w;,w,.) is a worst transition. Trivially, w is a both legal and evil

path.

(continued on next page)

Normative Notions by Colored Actions

Fengkui Ju

(continued from previous page)

3 Normative Notions

Recall that C* = {¢y,...,¢; }isasetof k + 1 colors. Forany j < k, let

Al ={e; ¢j - e fand A = {¢; ¢; < ¢ }. Inanintitive sense, \/ A , the
disjunction of the propositional constants in A;} , says that the color of the next transition
is better than the color¢;. +\/ A says that the color of the next transition is not better
thanec;. +\/ A; indicates that the color of the next transition is not worse than ¢;. With

the path quantifier A and the special action 1, we can express best/worst transitions:

Lbo (g hAy VAL)Y v (o A Ay VAL): the next transition is a

best transition.

2. (eg A AL VAL)Y -V (e A Ay VAL) the next transition s a

worst transition.

The following three constraints offer the language the power to express best/worst

transitions:
1. there are only finitely many atomic actions;
2. there are only finitely many colors;
3. the preference order among colors is the same in all models.

X ¢ —s [says that the next transition is a best one if it exists and X | - yp that the next
transition is a worst one if it exists. Fix an action «x and a proposition ¢». Some meaningful

things about ex and ¢ can be expressed by use of the ingredients from the sets { A, E },

{G,FL{XT - b6,XT - w}and{-,A,—}.

One of them is E,, (G(XT — b) / ¢). It says that there is a legal path of cv s.t. ¢» is
true at it. This in some sense means that the agent is permitted to do «x to make ¢ true. It
can also be read as that the agent can legally do ¢ to realize ¢5. Define P,, ¢» as

E,(G(X™ - b) A ¢). Quite a few normative notions can be defined in terms of 7,, ¢

1. Pcy := P, | : the agent is permitted to do a.
2. P¢ = Py ¢: the agent is permitted to make ¢) true.
3. Fo¢ := —P, ¢ the agent is forbidden to do cx to make ¢ true.
4. Fev = F, | :the agent is forbidden to do .
5. F¢ = JF7- ¢ the agent is forbidden to make ¢ true.
6. O,¢ := =Py —¢ » —P; ' : the agent is obligated to do cx to make ¢) true.
7. O« := O, :the agent is obligated to do cv.
8. ¢ := (- ¢: the agent is obligated to make ¢ true.
In an intuitive sense, what follows is the case:

1. one is permitted to do cx to make ¢) true implies he is permitted to do ¢x and he is

permitted to make ¢ true, but not vice versa.

2. one is forbidden to do c¢x to make ¢ true does not imply he is forbidden to do ¢x and

does not imply he is forbidden to make ¢ true either.

3. one is obligated to do «x to make ¢ true implies he is obligated to do cx and he is

obligated to make ¢ true, and vice versa.

As the triple negation of P,, ¢, the formula —7; —¢ is read as this: the agent is forbidden
to refrain from «x to make ¢) false. It does not imply he is forbidden to refrain from cx. It
does not imply he is forbidden to make ¢) false. Therefore, —7; —¢> does not mean that

the agent is obligated to do ¢ to make ¢ true.

Implementation

module For_Jan where

import Data.List

data Action = Ato Integer
| Com Action Action
| Cho Action Action
| Sta Action
deriving Eq

a,b,c,d :: Action

= Ato ©
Ato
Ato
Ato

instance Show Action where

show (Ato ©) = "a";
show (Ato 1) = "b";
show (Ato) = "¢";
show (Ato) = "d";
show (Ato n) = 'a' : show n

[[Action]] -> [[Action]] -> [[Action]]
Xy =1[s++t | s <-Xx, t<-y]

[[Action]] -> [[Action]]
= union x (mer x (ite x))

¢ i Action -> [[Action]]

¢t (Ato n) = [[(Ato n)]]

¢s (Com x y) mer (cs x) (cs vy)

¢s (Cho x y) union (cs x) (cs vy)
¢s (Sta x) = union [[]] (ite (cs x))

An Exercise in Exercises

Paul Klint

Abstract

It is well know that a student learns best when he or she directly applies the knowledge
that has been presented by teacher or textbook. Interactive, computer-based, exercises
have the potential of even better delivering on this promise since they can be offered,
checked and repeated anytime at the convenience of the student. However, designing and
implementing interactive exercises is difficult and it is not simple to make them both
educational and entertaining for the student. I describe an experiment—in the context of
the Rascal meta-programming language—in creating a domain-specific language for

authoring interactive exercises.

This short note is dedicated to Jan van Eijck on the occasion of his retirement. Since Jan is
a teacher at heart, he knows that exercises are essential for education and he may

appreciate this effort to achieve simpler authoring of interactive exercises.
Teaser: even random testing plays a role here!

Jan thanks for our many, pleasant, interactions over the years.

Requirements

As every software engineers knows, starting with requirements is a solid way to embark

on a project like this. So let’s begin to write them down:

R1

R2

R3

R4

R5

R6

R7

Description
The effort to describe an exercise should be small.

Exercises should be reused as much as possible. Possibly by randomly
generating exercises from a given template.

Once a student has filled in an answer to an exercise, it can be automatically
checked.

When a student enters a good answer, it is rewarded with positive feedback.

When a student enters a wrong answer, the error is explained and the student is
encouraged to make a new attempt.

Two categories of questions should be supported: knowledge questions and
source code questions.

To make exercises more entertaining, different styles of questions should be
supported.

Design

How

to design a system that satisfies these requirements? Our approach will be to create a

small domain-specific language (let’s call it EDL for Exercise Description Language) that

supports generation of random exercises (R1, R2) in various styles (R6, R7) that can be

checked automatically (R3). No particular attention will be given here to (R4, R5) but they

are h

andled by the implementation of EDL. I will present the following question

categories:

Multiple-choice question: the student has to select one (or more than one) of the
choices that are presented.

Fill-in-the-hole question: an incomplete source code fragment is presented and the
student must complete it.

Move code question: place given source code fragments in the right order.
Click-all-cases question: a text is presented and the student must click on all
occurrences of a text with a certain property.

Reorder question: a number of sentence fragments must reordered to form correct

sentences.

Multiple-choice questions

The multiple-choice question is the prototypical interactive exercise and presents a
number of choices to the student. Each question starts with the keyword question and
an introductory text. Each question ends with the keyword end . Our description of this
multiple-choice questions consists of a number of choices, where each choice (indicated
by the keyword choice) states whether it is correct or not (y or n), the actual text of

the choice, and an additional explanatory text; ||| is used as separator.

question Which means of transportation is faster:

choice n ||| Apache Helicopter ||| The speed of an Apache is 293 km/hou
¢

choice y ||| High-speed train ||| The speed of a high-speed train is 5
70km/hour

choice n ||| Ferrari F430 ||| The speed of a Ferrari is 315 km/hour

choice n ||| Hovercraft ||| The speed of a Hovercraft is 137 km/hou
r
end

This will be presented to the student as follows:

Question 1
Which means of transportation is faster:

Apache Helicopter
High-speed train
Ferrari F430

Hovercraft

- Check It

Fill-in-the-hole questions

A fill-in-the-hole question presents a text to the student and asks to fill-in missing text.
This can range from the answer to a simple arithmetic question (e.g., 2* 3 == 2)to
filling-in statements or declarations in a source code fragment. The general pattern is

either:

» A single equality. Here there are two subcases:

o An equality in which a single hole occurs on the right-hand side, e.g., 2 + 3 ==
?.
o An equality in which a single hole occurs that is nested in the left-hand side or
right-hand side of the equality, e.g. 2 + ? ==
¢ A code fragment that contains one or more holes followed by a number of tests. After

filling in the holes, all tests should pass.

Fill-in-the-hole: single equality

The general idea is not to write a separate exercise for each possible case, but to write an

exercise template from which all cases can be generated. Let's consider an exercise for

rehearsing multiplication on numbers: instead of defining exercises for a large

combination of arguments and describing the outcome for each case (e.g., 1 * 1 == 2,
2 * 3 == ? ,and so on, where ? marks the answer to be filled in by the student) we

write a single template

$gen(int, A) * $gen(int, B).

EDL can be best understood as a macro language to generate text where directives starting
with $ indicate generation-time expansion/computation actions. The abovetemplate can

be read as follows:

1. s$gen(int, A) : Generate a random integer and bind itto A .
2. s$gen(int, B) : Generate another random integer and bind itto B .
3. We are therefore looking for a value that is equal to A*B .
4. Create an exercise consisting of a test function containing the following equality test:
i. the value of A,
ii. a multiplication operator (*),
iii. the value of B,
iv. an equals operator (==),

v. atext entry field for the answer (or 2 in this text).

Although this could generate the above exercise example, it will also generate exercises
that are less suited for a beginner such as 1730304988 * 982060868 == ? . This

illustrates that we need a slightly more sophisticated type system to specify an interval of

integers (e.g., int[2,5] to denote an integer in the interval $[2,5]$) or the size of lists or
sets (e.g. not only list[int] for an arbitrary length list of integers but also 1ist[int,

2, 5] to denote lists of integer of length in the interval $[2,5]$).

Without further ado, we can now show the complete specification of a multiplication

exercise:

question Replace the text box by the result of the multiplication and mak
e the test true:

expr multiplication $gen(int[2,5],A) * $gen(int[2,5],B)
end

The keyword expr indicates that we are looking for the value of the given expression

and multiplication is the name of the test that will be generated.

Here is a screen shot showing how this question will be presented to the student:

Question 2
Replace the text box by the result of the multiplication and make the test true:

module Question2

test bool multip\liﬁcation() =
4 %6 == | :

Each question is presented as a self-contained Rascal module (possibly containing imports
and declarations of auxiliary functions or datatypes) that can also be executed outside the
tutoring environment. Also observe that even this simple exercise is framed as a test

function, which is in Rascal a Boolean function prefixed with the keyword test L

There are cases where even more control over the generated values in an exercises is
needed. A case in point is an exercise for set intersection (in Rascal denoted by &).A
naive approach would be to write: $gen(set[int],A) & $gen(set[int],B) , but due to
the random generation of the set values A and B , there is a high change that these sets
are disjoint and that the answer of the exercise is in most cases the empty set. A more

sophisticated approach is as follows:

$eval($gen(set[int]) + $gen(set[int],B)) & $eval($gen(set[int]) + $use(B)
).

This introduces two new features: $eval evaluates its argument and yields its value,
while $use inserts the value of a generated variable. We can read the above recipe as

follows. First consider the part left of the intersection operator & :

1. $gen(set[int]) :no variable is included, therefore generate an (anonymous) set
value;

2. s$gen(set[int],B) : generate set value B ;

3. s$eval($gen(set[int]) + $gen(set[int],B)) : compute the union of A and B
by evaluating the text consisting of the first set value, the symbol + (the set union
operator) and the set value B .

4. The result is a set value, call it L .
For the right operand of & a similar story holds:

1. $eval($gen(set[int]) : generate another (anonymous) set value;

2. suse(B) :reuse the previously generated set value B .

3. seval($gen(set[int]) + $use(B)) : evaluate the text consisting of the generated
set value, the symbol + and the set value B .

4. The result is set value call it R .

The exercise as a whole is now L & R, where we know (by construction) that L and
R have the set value B in common thus guaranteeing a "more interesting" answer to

the exercise.

Here is the complete description of the set intersection question:

question Replace the text box by the result of the intersection and make
the test true:
expr setIntersection $eval($gen(set[int]) + $gen(set[int],B)) &
$eval($gen(set[int]) + $use(B))
end

And here is a screen shot of the end result:

Question 3
Replace the text box by the result of the intersection and make the test true:

module Question3

test bool setIntersection() = e
{-84,57,-87,74,-44,77,56} & {-85,31,-71,92,-87,74,-44,77,56} == |

Fill-in-the-hole: source code

The single equality question is a degenerated case of a source code question. A simple

example is the case where a function name has to be inserted in a given code fragment:

question Replace the text box by a function name and make the test true:
prep import List;
expr listFunction $answer(size)($gen(list[int][1,10]))

end

Here s$answer(size) defines the required answer (needed for checking the answer) but

is replaced by a text box when presented to the student:

Question 4
Replace the text box by a function name and make the test true:

module Question4d
import List;

test bool listFunction() =
‘ ({80, -53, -92, -19, 58, -46, -25, 7, 8, -121) == 10;

The general case (not illustrated here) is arbitrary source code that contains a number of
holes to be filled in. The source code should contain one or more test functionsZ to assert

the correctness of the answers provided by the student.

Move code questions

The idea of a move code question is to present a number of source code fragments and to

ask the student to place them in the correct order with correct indentation. We illustrate

this with a simple function to print a table of squares:

question Create a function to print squares by placing all code fragments
in the grey box in the right order with the right indentation:

movable
voidsquares(int n){

The keyword movable defines this as a move code question and the fragments are
separated by lines of dashes (when the dashes are missing the code is automatically split in

2-line fragments). The result look as follows:
Question §
Create a function to print squares by placing all code fragments in the grey box in the right order with the

right indentation:

forfint 1 <= [;. a8 ¢+ 11

}
printin{i. + * sguared = " + {1 * 1));

printin("Squares from 1 to " + n);

void squares{int n){

Check It

To make this kind of question more challenging, one or more "decoy" fragments can be

defined that should not be used by the student:

question Create a function to print squares by placing all code fragments
in the grey box in the right order with the right indentation (and avoid
decoys!):

movable

void squares(int n){

println(i + " squared = " + (i + 1));
end

With the following result:

Question 6
Create a function to print squares by placing all code fragments in the grey box in the right order with the
right indentation (and avoid decoys!):

void squares(int n){

i#= 1;

}

println(i + " squared = " + (i * i}};
println(“”Squares from 1 to " + n);
for(int 1 <- [1 .. n + 1])

1=0;

println(i + " squared = " + (i + i));

Check It

Click-all-cases questions

A click-all-cases question presents a text to the student and the exercise is to click on all
text fragment with a certain property, such as "is an identifier", "is a type", "is a bug" and

the like. Each clickable area is marked with $click(...) in the question description:

question Click on all identifiers in this code fragment:
clickable
$click(x) = 1;
if($click(x)){
$click(y) = $click(x) + 2;
}

end

This is how the question will look like:

Question 7

Click on all identifiers in this code fragment:

x =1,
if(x){
y = X + 2;

| Check It

Reorder questions

A reorder question presents two columns of sentence fragments and the student is asked to
reorder the fragments until they all form true statements. In the question description the
true statements (starting with the keyword fact) are specified and they are presented to

the student in random order.

question Reorder the following items and make all statements true:

fact [1,2,3] ||| is a list[int]
fact {1,2,3} ||| is a set[int]
fact 123 ||| is an int

fact "abc" |||l is a str

end

It is presented as follows:

Question 8

Reorder the following items and make all statements true:

123 _ - is a list[int]
{1,2,3] is a str
{1,2,3} is an int
"abc" is a setint]
Check It

Implementation

EDL has been implemented as part of Rascal's Tutor, an interactive documentation and
teaching system. An EDL description is implemented using Rascal, HTML and Javascript:
the EDL description is translated by a Rascal module to HTML+Javascript and exercise
checking is done by callbacks to another component in Rascal. The version as described
here is a technology preview and is not yet available in the standard Rascal distribution at

the time of writing (but this may very well be the case at the time of publication).

Conclusions

The ideas presented here represent work-in-progress and no formal evaluation has been
done to assess the effect of this style of exercises on learning. We can, however, go back to

our original requirements and evaluate how well we have done:

R1

R2

R3

R4

R5

R6

R7

Description

The effort to describe
an exercise should be
small.

Exercises should be
reused as much as
possible. Possibly by
randomly generating
exercises from a given
template.

Once a student has
filled in an answer to an
exercise, it can be
automatically checked.

When a student enters a
good answer, it is
rewarded with positive
feedback.

When a student enters a
wrong answer, the error
is explained and the
student is encouraged to
make a new attempt.

Two categories of
questions should be
supported: knowledge
questions and source
code questions.

To make exercises more
entertaining, different
styles of questions
should be supported.

Assessment

Achieved. EDL has been designed to provide a
dense but readable question description.

Achieved. Random value generation is a built-in
feature of EDL.

Achieved. All question categories have been
designed with automatic checking in mind. Open
questions, for instance, have not been included.

Achieved but not described. Occasionally, a Zen
proverb is presented as reward. ("No snowflake
ever falls in the wrong place.")

Achieved. A diagnosis of the wrong answer is
given. Optionally, the exercise description can
provide extra feedback. Occasionally, a Zen
proverb is presented as encouragement. ("After
climbing the hill, the view will be excellent.")

Achieved. This is achieved by the various question
categories.

Achieved. This is already achieved by the various
question categories but more categories can be
considered to increase variation.

There are several systems around that offer interactive programming exercises. In most

cases, the student is provided with a general editing pane to enter his/her answer. In my

experience this is a major obstacle for beginning students since they are not aware of the

syntax and typing rules of the language they are learning (obviously!). The question

categories proposed here assume minimal knowledge and present canned source code

fragments that only have to be completed or rearranged by the student thus avoiding many

beginner's pitfalls and traps.

The ideas as presented here will be included in future releases of the Rascal language.

This paper is accompanied by a small screen cast that gives an impression how to answer

the example questions discussed here.

Notes

. Although we will not illustrate this here, the full power of random testing is

available while writing and running exercises: a test may have formal parameters and
these will get random values assigned for each execution. By default, a random test is

executed 500 times, <

. Even full random tests as observed before. «

From principles to practical pigeon
protocols

Barteld Kooi and Rineke Verbrugge
Dramatis personae:

Jan van Eijck

Hans van Ditmarsch

Barteld Kooi

Rineke Verbrugge

Yanjing Wang

Setting: neomedieval Amsterdam. After the calls of Jan van Eijck to reduce carbon
emissions and energy consumption, the world has gone back to using only sustainable
energy and technology [7, 3, 6]. Air travel is only allowed with hot air balloons. Only
sailing ships are allowed on the oceans. The Internet has collapsed. Scientists are
struggling to maintain their international networks. Many logicians have flocked to

Amsterdam to be able to continue collaborating.

Google still provides the fastest communication possible, because it has been converted
into the largest carrier pigeon company in the world. The range of Google pigeons is
limited and they often lose their way or are shot down with bows and arrows for

consumption.

In the city center, Barteld Kooi and Yanjing Wang are working on a new logic with which

PCP (Pigeon Communication Protocols) can be verified (cf. [8, 4]).

Yanjing: This is fascinating stuff. Who would have thought that such simple technology
could lead to such deep logical insights. I wonder whether anyone has worked on this

before? If only we could search the library quickly.

Barteld: Indeed! Last time I spoke to Jan and Rineke, they were heading to CWI where
they are trying to get a computer to run. Perhaps they succeeded and can actually consult

the library catalogue.

Yanjing: How would they get a computer to run? You need electricity for that and the only
way to generate it is by hooking up a bicycle to a generator. Only very few people are

prepared to bike fast and long enough to be able to use a computer.

Barteld: What I heard, is that they sent a pigeon to Nancy to invite Hans to make an
important contribution to this project. He may have arrived. Let's send a pigeon to Jan and

Rineke and ask whether Hans has arrived.
Yanjing: It's worth a try. I'll send them a pigeon.

Barteld: Good. But I propose that we use a protocol for sending pigeon messages, how
about something like this—and let's send this protocol in our pigeon message too, together

with our question about Hans:

Sender

1:=0;
while true do
begin read ur;;
send z;
until KgKp(x;);
send ‘‘KgKp(x;)’’
until KsKpKsKg(x;);
i:=i+1
end

Receiver

when Kp(rg) set i:=0;
while true do
begin write(x;);
send ‘‘Kp(x;)?’
until KpKsKp(x;);
send ‘‘KpKsKp(xr;)’
until IX']'((.’l',j+ i) 5
i:=i+1;
end

Yanjing: Yes. That should do the trick, because the Google pigeon service comes with a
guarantee of fairness and no other errors than deletions, and those only happen when

pigeons get lost or shot.

Barteld: So, there it goes, our first pigeon message to Jan and Rineke. Godspeed!

Figure 1: White carrier pigeons in The Netherlands

An hour later, at CWI:

Rineke: Look, Jan, a pigeon has just flown into your window. It has a message for us.
Barteld and Yanjing ask us whether Hans has arrived yet, and they also propose an
"original" pigeon communication protocol for us to use, which they dub PCP... Mmm, to
me it looks suspiciously like good old protocol A by Halpern and Zuck [2], which I teach

my students every year.

Jan: Barteld and Yanjing should know. These thirty- and forty-somethings have become
so used to looking up everything on the Internet instead of remembering the literature,
unlike us fifty- and sixty-somethings. I'm happy for my daughters that their generation is

developing good memory and other skills again.

Rineke: A downside is that this PCP communication is really inefficient: it would take

four messages just to get this 4-way handshake thing going.

Jan: Yes, and it's common knowledge that this protocol will never lead to common
knowledge [5]. At each point in time, only /5" o for some n < N, n > 1 is achieved,

where is "at least one message was delivered".

Rineke: I have a suggestion for our pigeon posts. For an infinitary epistemic proof system
[1], wehave { E" n ¢ N,n = 1} I ('y. Now we only need the pigeons to fly
twice as fast in every new round as in the previous one; the first round takes one hour, the
second round half an hour, and so on, ad infinitum. Summing the series, after two hours all
the { E"¢ | n © N,n > 1} are achieved, whereby (¢ holds.

Jan: If you want to try to make the pigeons do that, be my guest. But it doesn't sound

sustainable to me.

Three quarters of an hour later, Hans arrives at the CWI on his bicycle, all the way from

Nancy.
Hans: I was almost hit by a pigeon, flying about 300 miles an hour.
Rineke (looking guilty): Really?

Jan: I have a much better idea. let's all bike to the Vondelpark and meet Yanjing and

Barteld there. Live. Hans, I hope you aren't too tired to bike some more?
Hans: Of course not! But first a cup of black coffee, please.

An hour later, all five researchers are sitting around in a circle in the Vondelpark. Some

pigeons are sitting in their midst, looking exhausted.

Jan: Dear friends, now this is clearly the best way to create common knowledge, sitting in

a circle, looking one another deep into the eyes... Who's in for some meditation practice?

References

[1] Gerard Renardel de Lavalette, Barteld Kooi, and Rineke Verbrugge. A strongly
complete proof system for propositional dynamic logic. In AiML2002: Advances in Modal
Logic, pages 377-393, 2002.

[2] Joseph Y Halpern and Lenore D Zuck. A little knowledge goes a long way:
Knowledge-based derivations and correctness proofs for a family of protocols. Journal of
the ACM, 39(3):449-478, 1992.

[3] David JC MacKay. Sustainable Energy—Without the Hot Air. UIT Cambridge,
England, 2009.

[4] Hans Van Ditmarsch, Sujata Ghosh, Rineke Verbrugge, and Yanjing Wang. Hidden
protocols: Modifying our expectations in an evolving world. Artificial Intelligence,
208:18-40, 2014.

[5] Hans van Ditmarsch, Jan van Eijck, and Rineke Verbrugge. Common knowledge and
common belief. In Discourses on Social Software, volume 5 of Texts in Logic and Games,

pages 99-122. Amsterdam University Press, Amsterdam, 2009.

[6] Jan van Eijck. Over het kerst-essay van Rob Wijnberg, 2016. See

hitp://vaneijck.org/posts/2016-12-24-wijnberg.html.

[7] Jan van Eijck, Rohit Parikh, Marc Pauly, and Rineke Verbrugge. Social software and
the ills of society. In Discourses on Social Software, volume 5 of Texts in Logic and

Games, pages 219-226. Amsterdam University Press, Amsterdam, 20009.

[8] Yanjing Wang, Lakshmanan Kuppusamy, and Jan van Eijck. Verifying epistemic
protocols under common knowledge. In Proceedings of the 12th Conference on
Theoretical Aspects of Rationality and Knowledge, pages 257-266. ACM, 2009.

Alain Badiou plays the game of Set

Bert Lisser

Push the button Start Truth Procedure. Drag some symbols into the intuition so that the
intuition becomes a truth. Badiou calls such an action a truth procedure. After the intuition
has become a truth the intuition lights up, you receive match points, and the accepted set is
displayed in the history panel. After clicking on the intuition this will be empty again and
a new truth procedure can be started. The purpose of this game is to obtain the highest

possible score. The button restart starts a new game and reset resets the existing game.

In this case the set of symbols which transforms an intuition into a truth are the symbols

placed on the three cards which form a set. (see Game of Set")).

Alain Badiou is a French contemporary philosopher. His key concept is event. Events arise
in a situation (art, love, politics, or science). An event happens often unexpectedly and is
in first instance unexplainable. An event must be first recognized by a subject. This subject
have the choice of ignoring this event or accepting this event. In the later case a truth
procedure will be started in the hope this event becomes a truth. For the definition of truth

he turns to mathematics, specially set theory.

For simplicity the term event is here replaced by intuition, situation is replaced by mind,

factors is replaced by symbols.

Dear Jan, success with your future work in philosophy and mathematics.

Interactive Reasoning (paper version)

Stefan Minica

Abstract

The paper will present DEMO_S5 interactive code together with its personal/historical

context and code for visualizing interactive logical reasoning tasks in games.

From Prisoners and Lightbulbs to Epistemic
Probability

My first memories of Jan go back to ...

RUNTIME ERROR: "MEMORY OVERFLOW"
your program has run out of memory ...
stack trace below:
i is not a function at ()

Sorry about that, ... Obviously, I should have used a pure function . Let me start over ...

My first memories of Jan go back to the years spent as a Ph.D. student ...

TIMEOUT ERROR: "THIS REQUEST HAS TIMED OUT"
(moved permanently i, redirecting ...)
vour program has run out of time ...

“k trace below:
too much time has passed since the last request at (line i, col)

Sorry again ... I might have used an async call ... Let me refresh and try again ...

My first memories of Jan go back to the years spent as a Ph.D. student at University of

Amsterdam starting from 2007. ...

FORMAT ERROR: "“YCQUR CODE USES THE WRONG FORMATY
(unrecognized syntax ...)
‘our program has encountered an unparseable token

stack trace below:
You should never use code in a paper format
implementation is not meant for reading (line %, column %)

Oh, I must have forgotten to compile the source. One more time ...

hits SHIFT + CTRL + C

My first memories of Jan go back to the years spent as a Ph.D. student at University of
Amsterdam starting from 2007. I was just starting the work on my thesis on dynamic

epistemic logics of questions (DELQ) ...

UNRECOVERABLE ERROR: "YOUR PROGRAM CAN NEVER BE RECOVERED ANYMOREY
your program has moved to a virtual location

yu

¢k trace below:

This is NOT an error

It seems that a deliberate choice has occurred at (line =4, column /).
Your code will probably run on the on-line version of the Festschrift

1y generated message

1ls please contact the

I don't understand !? ... This must be a paper bug !? ...

I really hope the on-line version works ...

167'P: A Toy Tableaux Theorem Prover for
16-Valued Trilattice Logics

Reinhard Muskens

Introduction

Jan van Eijck and I go back a very long time. We have known each other since the 1970s,
when we were both philosophy students in Groningen. The Groningen Philosophy
Department was in a large house at Kraneweg at that time and I must have met Jan there in
1974 when I arrived, or a bit later—the mists of time do not reveal a first meeting. I don't
think we ever followed the same courses in those early years—Jan had started earlier than
[had and was in another phase of the program altogether—but we certainly had a lot of
contact after Johan van Benthem had become a 'lector' at the institute and had started
livening things up. Jan and I participated in reading groups organised by Johan and there
was also a lot of political activity within the institute that we took part in. Jan was admired
by all for his ability to write. He could explain things as no-one could. And he also wrote

some biting satire under the pseudonym 'Hein Egel'. Sweet memories.

Contacts became less regular after [had moved to Amsterdam late in '79, but increased in
frequency again ten years later when Jan accepted a position at CWT and I was still living
in Amsterdam (but working in Tilburg as Jan's successor there...). More reading group
meetings, now organised by Jan. And more sweet memories. I also remember a trip to
Saarbriicken Jan and I made in his car. It was in the late 1990s and we were scheduled to
talk about dynamic semantics there. For some reason I remember Jan's car as a 2cv, which
is a near impossibility, but a low-hanging sun in the almost deserted Eupen-Malmédy area

seems real.

Enough of the reminiscing already! Let us ask ourselves a question: Who were the people
who created the intellectual atmosphere in the Netherlands in which people like Jan and I
—people who combine interests in logic and computer science with an interest in
philosophy and the humanities—could thrive? There are many who can be named, and our

common teacher Johan van Benthem played a central role. But if we go back a bit further

in time another name also stands out—Evert Willem Beth. Beth stood at the cradle of the
Centrale Interfaculteit, based on the idea that philosophy should be a kind of central hub
between other disciplines. This took philosophy out of its all too narrow context of
humanities only. Beth likewise created the Amsterdam Instituut voor
Grondslagenonderzoek en Filosofie der Exacte Wetenschappen, ILLC's precursor (even in
a formal sense). The Centrale Interfaculteit is no more, but ILLC is alive and kicking (or
certainly seems to be from my short distance) and Beth's idea that philosophy can be a
bridge between science and the humanities, to the advantage of both, may be under some

threat but is far from dead.

Beth brings me to the real topic of the contribution I want to make to this festive
Festschrift, which combines two interests of Jan's—coding (not in Haskell, alas) and Beth
Tableaux. I have written a little toy theorem prover 1741 p for 16-valued trilattice logics
(Shramko & Wansing [9]). The theorem prover itself is at the following url:

http://swish.swi-prolog.org/p/sixteentap.pl.

167! pis based on a calculus for 16-valued trilattice logics that is described in Muskens
& Wintein [5]. I wrote it just for the heck of it, about two years ago, and have now brushed
it up so that it will actually display trees and generate counterexamples to sequents if there

are any.

In order to explain what the prover does and why I must say a few things about 16-valued
trilattice logics and about our calculus, but I shall be quite informal, as all these things
have been explained in detail and with great formal precision elsewhere. For more
information on the logics one could do worse than to start with Wansing [11] or the
original Shramko & Wansing [9]. An important precursor in a constructivist setting is

Shramko et al. [8], while Shramko & Wansing [10] offers a full monograph.

In order to understand trilattice logics we must start with the well-known four-valued
Belnap-Dunn logic (Belnap [2,3], Dunn [4]). This logic is based on the values T' - {1}
(true and not false), F' == {()} (false and not true), N = ¢ (neither true nor false), and
B -~ {0, 1} (both true and false) and can be viewed as a generalisation of classical logic
—Belnap and Dunn move from {(), 1} with its usual ordering to P({0, 1}) with—as
[2,3] stress in particular—two lattice orders (which actually form a bilattice). Shramko and

Wansing (and Shramko, Dunn, and Takenaka before them) in fact repeat this move, going

16 — P({T,F,N,B}), now with three lattices (as we shall see). While the four-

valued logic is meant to model the reasoning of a computer that is fed potentially
incomplete or conflicting information, the 16-valued logic that results models the
reasoning of a central server that is connected to a network of such computers. Each
computer in the network is a Belnap-Dunn reasoner on information that is potentially
incomplete or inconsistent and the central server must now reason with the 16 possible

outcomes of their reasoning.

Let us define the three lattice orders with the help of four auxiliary orderings. For each
x ¢ {T,F.N, B}, we define the relation <, on 16 by letting, fora,b < 16,

a<,b=rca=zxcb

Using this, and writing =~ for the converse of <, (z ¢ {T,F, N, B}) we define the

truth ordering <, , the nonfalsity ordering <. ; and the information ordering =, as follows.

e “BI1Z2F 127 (1 2N
mf = 2pN>pN<y N <y
~ _1 = <pg F <M< _N

Figure 1 depicts 16 with the <2, order (left) and with the < ; order (right; in both cases
one actually needs to take the reflexive transitive closure of what is indicated with the

arrows), while Figure 2 gives the information order <;.

Figure 1 The trilattice SIXTEEN:; with the truth order =, (left) and with the nonfalsity
order = ¢ (right). Vertices are accompanied by L, ;; formulas denoting them. The top and

bottom elements of <, are tb and nf, while those of = ; are nt and fb.

tb

ftb o o ntb

FEEL
w%

Figure 2 The trilattice SIXTEEN: with the information order <:; (top: nftb, bottom:).

Each ordering <. (k ¢ {t, f,1}) comes with obvious meet and join operations, denoted
as! ;. and L. (Clearly, | /; is (yand L; is [_i.) SIXTEEN: can now be defined as
1() y Ly [l U gy I J‘.

It can be verified that, for any o, 0 { Lyl b g, Tl L }, we have
ac(bec)— (aocb)e(acc)(seealso Rivieccio [7]). This makes SIXTEEN; into a
distributive trilattice, from which it can be shown to follow that the structure is interlaced,
in the sense that all six lattice operations are monotone with respect to the three lattice

orders.

It is also possible to add three unary operations ~;, — s, and - that can be taken to be

the semantic correlates of negation connectives. We do this by letting, for any ¢ < 16:

Te —ae NE TE~-jaeBea: Te—-iae F¢a:
Be—as Fea; Be—ja&Tca Be—-jaeN¢a;
Fe-aeBEa; Fe—-jae>NEaq; Fe—-aeTd¢a
Ne—aeTcea Ne—jaeFea Ne—-jaeBda

Inspection will show that, for each pairwise distinct k, £ < {t, f.i},

ifa<pb, then —.b <) —a;
ifa<;b, then —pa <y, —1.b:

a=——ga.
(Again see Rivieccio [7].)

Having defined SIXTEEN: and the operations we need on it, we now turn to a
propositional language that will be interpreted in this structure. The language l:,_f,- is
defined by the following BNF (where p» comes from some countably infinite set of

propositional constants).
pumpl~pl~ppl~ip plhplohreleng

This language now receives an entirely expected interpretation by letting a valuation
function be a function /" from the sentences of E;f,- to 16 such that, for each
k < {t, f.i}, the following hold.

V(g e) = V(p) M V(¥);
1//(‘ ~p ’:) == - ‘," (\;)
If o V) t is then defined as ~. (~. @ A ~ ¥), one also gets
V(e vi ¥) = Vip) Ly V(¥).

Muskens & Wintein [5] show that Cgf,‘ is functionally complete. £ ¢ fi is more expressive
than Shramko & Wansing's [9] original language £, ¢, which is based on

{A4, Ve, Mg, Vg, ~eg, ~ g} It is also more expressive than the language £ fj;f

defined in [5], and hence our toy prover, works for all such sublanguages of the

functionally complete language.

Let us define notions of entailment based on each of the three lattice orderings. Using I_I.f.-
for greatest lower bound in the <. order (k ¢ {t, f, i}) and L] ;. for least upper bound,
let the relations -, == ¢, and -~ ; between sets of sentences " and /\ be defined in the

following way.

for all valuations V'

I”‘h.l«—*»ﬂl{ <’,|_jt (&)

SeA
for all valnations V'

Flep A= ﬂ Vi)VU V(
(‘it—.}
I' =i A 4= ﬂ V(v) £ U V(d) for all valuations V'
~fI’ dcA

= y. Since =+, is an entailment relation based on

We also let - be the intersection =
is based on transmission of nonfalsity, this seems a natural

transmission of truth and - ¢

notion.
X:@/Nv X:ohtyp
- (M) - (A7)
X:p, Xt X:@|x:¢
where x € {f,f,t. b} where x € {n,f,t,b}
X1 Ap ¥ X:pAfu
———(A}) (n%)
X;¢lx:v¢

X1 X1y
where x € {n,f,t. b} where x € {n,f,t,b}

X1 AN xXiohY
X, Xy X:@lx: ¢
where x € {n,f.t,b}

where x € {n.f,t, b}
X1 @ _
—— (~¢) where {x.y} € {{n.t}, {f.b}, {n.t}, {f,b}}

y:¢

XL~

mmmif:f (~5) where {x,y} € {{n.f}, {t'b.}*{ﬁ’?}‘ {E"B}}

X - ” -
— (~i) where {x.y} € {{n.b}. {f,t}.{n.b}, {f.t}}
Yy ¥
Table 1: Tableau expansion rules for PL16
It is also expedient to have—auxiliary—entailment relations based on the relations <= . (

{T,F.N.B }) considered above. These we define as follows

[A e Vo V) 0 Us-a VI(9), for all valuations V

For each -, entailment relation defined in this way, write =+ for its converse. It is not
difficult to verify that the -, == ¢, -, and - relations can be characterised in the

following way.

=y = EpngnkErn=n
Fr = =HpN=frNErNEN
F« = FBNErNETNEN

F = FeN=ABN=ArNFrNENN=N

This means that a syntactic characterisation of the -+, relations (where
z ¢ {T,F. N, B}) will automatically provide us with a syntactic characterisation of

g, :"f, 5 ;-,a[ld::'.

This is where our tableau calculus—dubbed PL16—comes in. Entries in this calculus are
signed formulas X : , where ¢ is an L;;; formula and x is one of the signs b, f, t, n, b
£, t- and . The role of these signed sentences is purely formal, as far as the calculus is
concerned, but they also have an intuitive meaning. b : ¢, for example, can be read as

saying that |3 is an element of the value of ¢?; the meaning of |, - s that |3 is not an

element of the value of . The other signs are interpreted in an entirely similar fashion.

X:@ Vit

- (Vi)
X, X:¢

where x € {n.f,t, b}

X ¢ Vf _.":' i
- (V§)

Xi, X: ¢

where x € {f.f,t, b}

X:@Viy
b (v}

XI@, XY
where x € {n,f,t, b}

X:@|x:¢

X:o Ve
s et L 1.
X:@|x:¢

where x € {n.f.t,b}
X:gVry |
“‘”“—i”—. (\/‘})
X:p|x:v¢

where x € {n.f.t,b}

x:oViy

(V7)

where x € {n,f,t,b}

Table 2: Derived tableau expansion rules for disjunctions.

Table 2 gives the expansion rules of PL16, but only for the official £, ;; connectives.
Expansion rules for the three defined disjunctions are shown in Table [der]. Note that each
of the conjunctions (disjunctions) comes with two rule schemas while each of the
negations comes with one, and that each of these schemas is similar to a rule in a standard
formulation of a signed tableau calculus for classical propositional logic. Only the side

conditions are different.

The procedure to obtain tableaux from these expansion rules, given an initial set of signed
sentences, is entirely standard. A tableau branch is closed if it contains signed sentences
x:@andx : pforx ¢ {n,f, t,b}. Abranch thatis not closed is called open. And a

tableau is closed if all its branches are closed.

We can now characterise the four auxiliary entailment relations. Let | and A be finite sets

of L;; sentences. Then

F'EerAe{t:¢|lpeltuit: ¢ | € A} has a closed tableau;
FErpA e {f:p|peltu{f:p|¢e A} has a closed tablean;
FeEnAs{n:p|leellU{f:¢| ¢ e A} has a closed tableau;
FEBA <= {b:¢|eeT}u{b:¢|¢ € A} has a closed tableau.

(continued on next page)

167'P: A Toy Tableaux Theorem Prover for
16-Valued Trilattice Logics

Reinhard Muskens
(continued from previous page)

This requires a proof, of course, but the proof is straightforward and given in [5]. Note that

a single calculus is used to characterise each of these four entailment relations.

It can now be concluded that if we want to check whether any of the -, =, =, or :
relations holds between given [* and A we can do that by developing several tableaux. For

example, if we want to verify I" -~ A we can do it by making tableaux forI" - g A,

' A holds, otherwise there is a counterexample. The relations =, , = f»and k= each
require four tableaux. (In general, not always in practice. It can be shown, for example,
that if /; does not occur in any of the formulas, we need only two tableaux in order to

check -, and - s relations.)

Working out all these tableaux by hand is no real fun of course and here is meant to come
to the rescue. The prover is loosely based on the propositional part of Beckert & Posegga's
[LeanTaP]l“’mn"}:‘ap, but is considerably less lean. On the other hand, it was programmed to
give some feedback to the user, so that it might conceivably give them some insight in
what is and what is not valid in 16-valued trilattice logics (and why). In particular, it will
print out any counterexample it may find and it will graphically display the tableaux it

constructs (with closed branches marked x and open ones marked o).

Any query about the -, == ¢, =, or - relations will be translated into several subgoals
that relate to the four auxiliary relations. These are then each satisfied by signing the

formulas in question and developing a tableau.

The prover is programmed in SWISH (SWI-Prolog for SHaring), which implements a
subset of SWI-Prolog, but comes with a nice interface and a tree renderer (svgtree—
originally meant for rendering syntax trees). The following predicates are meant to be used

in queries.

entailst(+Premises, +Conclusions, -T1,-T2,-T3,-T4)

This predicate implements -, (or rather its syntactic equivalent ;). Premises and
conclusions are lists of formulas,and T1, T2, T3 ,and T4 are the tableaux that

are returned.

entailsf(+Premises, +Conclusions,-T1,-T2,-T3,-T4)
entailsi(+Premises, +Conclusions,-T1,-T2,-T3,-T4)

Similar to entailst/6 , but now == ¢ and -, are modeled.

entails(+Premises, +Conclusions, -T1,-7T2,-T3,-T4, -T5,-T6)

The - relation. Six trees are returned.

equiv(+Formulal, +Formula2, -T1, -T2, -T3, -T4, -T5, -T6,-T7, -T8)

The predicate tests whether the formulas Formulai and Formula2 are logically

equivalent by developing eight trees.

thmt (+Formula, -T1, -T2, -T3, -T4)
thmf(+Formula, -T1, -T2, -T3, -T4)
thmi(+Formula, -T1, -T2, -T3, -T4)
thm(+Formula, -T1,-T2,-T3,-T4, -T5, -T6)

thmt is a version of entailst/6 with an empty set of premises while the three other
predicates bear the same relation to entailsf/6 , entailsi/6é ,and entails/8 ,

respectively.

Formulas can be entered with binary connectives as infix operators, as usual, but I have
not been able to persuade SWISH to also render their occurrences in trees in this way, so
we get their internal Prolog representation there. An overview of the way connectives are

represented as Prolog operators is given in Table 3.

Ay ¢ at Ap @ af N 1 Al

Vi : ot Vi of V; . ol
~¢ . nt ~yf . nf ~; : ni
—¢ ¢ 1t —f a e —; ¢+ ii
- lneg

Table 3: Connectives and the Prolog operators representing them.

It was a joy to write 17" p. I hope that Jan and others find pleasure in playing with it.

References

[1] B. Beckert and J. Posegga. leanTAP : Lean71 p: Tableau-based deduction. Journal of
Automated Reasoning, 15(3):339-358, 1995.

[2] N. D. Belnap. How a Computer Should Think. In G. Ryle, editor, Contemporary
Aspects of Philosophy, pages 30-56. Oriel Press, Stocksfield, 1976.

[3] N. D. Belnap. A Useful Four-Valued logic. In J.M. Dunn and G. Epstein, editors,
Modern Uses of Multiple-Valued Logic, pages 8-37. Reidel, Dordrecht, 1977.

[4] J.M. Dunn. Intuitive Semantics for First-Degree Entailments and 'Coupled Trees'.
Philosophical Studies, 29:149-168, 1976.

Philosophical Logic, 44(5):473-487, 2015.

[6] S. Odintsov. On Axiomatizing Shramko-Wansing's Logic. Studia Logica, 91:407—428,
2009.

[7] U. Rivieccio. Representation of Interlaced Trilattices. Journal of Applied Logic,
11:174-189, 2013.

[8] Y. Shramko, M. Dunn, and T. Takenaka. The Trilattice of Constructive Truth Values.
Journal of Logic and Computation, 11(6):761-788, 2001.

[9] Y. Shramko and H. Wansing. Some Useful 16-Valued Logics: How a Computer
Network Should Think. Journal of Philosophical Logic, 34:121-153, 2005.

[10] Y. Shramko and H. Wansing. Truth and Falsehood: An Inquiry into Generalized
Logical Values, volume 36 of Trends in Logic. Springer, 2011.

[11] H. Wansing. A Non-Inferentialist, Anti-Realistic Conception of Logical Truth and
Falsity. Topoi, 31:93-100, 2012.

Static code

£ %
!(

16TaP~--Tableaux for 16-valued Trilat

Logic
Reinhard Muskens

16TaP 1s a simple propositional tableau prover/model generator for a
functionally complete extension of the 16-valued Shramke-Wansing
logi The prover implements the tableau calculus PL_{16} defined in
Reinhard Muskens and Stefan Wintein, Analytic Tableaux for all of

SIXTEEN_3, Journal of Philosophical Logic 44 (5):473-487 (2015)

{http://1link.springer.com/article/10.16007/518992-014-9337-3}). It is
loosely based on Beckert and Posegga'’s LeanTaP prover for predicate
logic, but unlike that little marvel it is not very lean,

The calculus is hased on signed formulas and there are eight signs,

which we represent here as, nl, fi, t1, bil, ng, fo, te, and

v, 'ni:F' means 'n is an element of the value of F' and

b@. Intuitively,

‘nO:F' stands for 'n 1is not an element of the value of F'. A similar

interpretation can be given to the other signs.

There are several notions of entaillment that are modelled by the
calculus, and in fact the notions of entailment that are of most
for example those corresponding to one of the orderings in
the trilattice SIX
certain sets of auxiliary entailment relations that the calculus can

3, can bhe obtained as the intersections of

characterize. Checking whether a sequence is correct often involves
making several tableaux---four 1f an entailment relation based on one
of the orderings in the trilattice is considered, and six when a

ent based on two of these orderings is in

natural notion of entail
focus.

The calculus is based on a functionally complete set of connectives,
which we write here as {nt, nf, ni, at, af, ai, ot, of, oi}. The

connectives whose names start with 'n' are negations; one for the
truth lattice ('t'}, one for the (non-)falsity lattice {'f'}, and one

/

for the information lattice ('i'). The other connectives are
conjunctions {names starting with 'a') and disjunctions (To').

unlike LeanTaP, the prover does not presuppese that formulas are in
negation normal form. Counterexamples to an argument are given if they
exist and graphical representations of the tableaux that are generated
are given. If a tableau branch is closed, this is marked with an

‘x'; open branches are marked with an 'o'.

Speed of execution or compaciness of code have not been primary aims
in writing this prover/generator,. The basic aims of the program are
demonstration of the calculus and providing a tool for further
analysis of the logic.

As in Beckert and Posegga's LeanTap, the prover searches through the
branches of a tableau in Proleg's left-right depth-first manner,

% f
4

:- use_rendering(svgtree).

/‘A‘

Operators

nr

% connectives we take to be primitives
,fy,nt). %negation in t lattice
+ By nf)i %negation in f lattice
5 Ty, ni). %negation in 1 lattice

i- op(
t- op(“
i- op(4

XFyat)s %conjunction in t lattice

1- op(&o9,xfy,af). %conjunction in f lattice

1= op(508,xfy,ai). %conjunction in 1 lattice

i- op(seg,xfy,ot). %disjunction in t lattice
- op(@

= op(

pX Py 0f) . %disjunction in f lattice
a4, xFy;01). %disjunction in 1 lattice

% connectives defined from the primitives

,fy,neg). %Cdintsov's classical negation
1 XTY,1iE). %0dintsov's t implication

&, xfy, i) . %0dintsov's f implication

Sy Al %an analogous 1 implication

- op(
t- op(s
t-oop(at
i~ op(s

11 your own}.

andum to

indendum, Definis
he rewritten as Definiens,

define(neg F,nt nf ni F).

define(F1 it F2,neg F1 ot F2).
define(F1 if F2,neg F1 of F2).
define(F1 ii F2,neg F1 oi F2).

elght signs, which we represent here as
L omdY, Chit, Cter, fe', ‘nd’,

', The predicate opposite/2 defines an obvious notion

and :
of incompatibility. Branches close if they contain signed formulas

S1:F and S2:F, with 81 and 82 opposite signs.
opposite(tl,to).
opposite(to,tl1).
opposite(f1,f0).
opposite(fo,f1l).
opposite(ni,n0@).
opposite(n®,nl).
opposite(b1,bo).
opposite(bo,b1).

/{»

Next we give the predicate tableauw/4, which is the heart of the
program. tableau{$Signedformulas,Atoms, 8, Trees) develops a tableau from
a tableau branch containing the signed formulas in Signedformulas

If a model is found it will be described

and the signed ato

{in the form of a

of formulas in Signedformulas + Atoms 1s inconsistent., The § argument
sed to bulld a graphical

while the Trees argument 1is

contains a
representation of the tableau. It is a list of {one or two) terms that
sach represent a subtree of the tableau directly dominated by the root.

hie dve connegtives, for defined connectives,

There will for pri

oy

for closure, and for writing out sets of signed atoms,
Rules of the Tirst kind take the Tirst element of the Signedformulas 1ist

and de pose 1f according to the tableau expansion rules. Bottom

formulas of a rule are added as roots to subtrees of the term

under o«

tableau([Sign:nt F|Rest],Atoms,S,[Tree]) :-
ntcond(Sign,Sign1), !,
tableau([Signl:F|Rest],Atoms,S,Subtrees),
addroot(Signil:F,Subtrees,Tree).

tableau([Sign:nf F|Rest],Atoms,S, [Tree]) :-
nfcond(Sign,Signl1), !,
tableau([Signl:F|Rest],Atoms,S,Subtrees),
addroot(Signi:F,Subtrees,Tree).

tableau([Sign:ni F|Rest],Atoms,S, [Tree]) :-
nicond(Sign,Sign1), !,
tableau([Signl:F|Rest],Atoms,S,Subtrees),
addroot(Signi1:F,Subtrees,Tree).

tableau([Sign:(F1 at F2)|Rest],Atoms,S,[Tree]) :-
member (Sign, [nO, fO, t1,b1]), !,
tableau([Sign:F1,Sign:F2|Rest],Atoms,S, Subtrees),
addroot(Sign:F2,Subtrees, Treel),
addroot(Sign:F1, [Treel], Tree).

tableau([Sign:(F1 at F2)|Rest],Atoms,S,[Treel, Tree2])
member (Sign, [n1, f1,t0,b0]), !,
tableau([Sign:F1|Rest],Atoms,S,Subtreesl),
tableau([Sign:F2|Rest],Atoms, S, Subtrees2),
addroot(Sign:F1,Subtrees1, Treel),
addroot(Sign:F2,Subtrees2,Tree2).

tableau([Sign:(F1 af F2)|Rest],Atoms,S, [Tree]) :-
member (Sign, [n1, fO, t1,bo]), !,
tableau([Sign:F1,Sign:F2|Rest],Atoms,S,Subtrees),
addroot(Sign:F2,Subtrees,Treel),
addroot(Sign:F1, [Treel],Tree).

tableau([Sign: (F1 af F2)|Rest],Atoms,S,[Treel, Tree2])
member (Sign, [nO, f1,t6,b1]), !,
tableau([Sign:F1|Rest],Atoms,S,Subtreesl),
tableau([Sign:F2|Rest],Atoms, S, Subtrees2),

addroot(Sign:F1,Subtrees1,Treel),
addroot(Sign:F2,Subtrees2,Tree2).

tableau([Sign:(F1 ai F2)|Rest],Atoms,S,[Tree]) :-
member (Sign, [n1,f1,t1,b1]), !,
tableau([Sign:F1,Sign:F2|Rest],Atoms,S,Subtrees),
addroot(Sign:F2,Subtrees,Treel),
addroot(Sign:F1, [Treel], Tree).

tableau([Sign:(F1 ai F2)|Rest],Atoms,S, [Treel, Tree2])
member (Sign, [nO, fO, t0,bo]), !,
tableau([Sign:F1|Rest],Atoms,S,Subtreesl),
tableau([Sign:F2|Rest],Atoms,S,Subtrees2),
addroot(Sign:F1,Subtreesi, Treel),
addroot(Sign:F2,Subtrees2,Tree2).

Disjunction rules

tableau([Sign:(F1 ot F2)|Rest],Atoms,S, [Tree]) :-
member (Sign, [n1,f1,t0,b0]), !,
tableau([Sign:F1,Sign:F2|Rest],Atoms,S,Subtrees),
addroot(Sign:F2,Subtrees, Treel),
addroot(Sign:F1, [Treel],Tree).
tableau([Sign:(F1 ot F2)|Rest],Atoms,S, [Treel, Tree2])
member (Sign, [nO, fO, t1,b1]), !,
tableau([Sign:F1|Rest],Atoms,S,Subtreesl),
tableau([Sign:F2|Rest],Atoms, S, Subtrees2),
addroot (Sign:F1,Subtreesi,Treel),
addroot (Sign:F2,Subtrees2,Tree2).

tableau([Sign:(F1 of F2)|Rest],Atoms,S,[Tree]) :-
member (Sign, [nO, f1,t0,b1]), !,
tableau([Sign:F1,Sign:F2|Rest],Atoms,S,Subtrees),
addroot(Sign:F2,Subtrees,Treel),
addroot(Sign:F1, [Treel], Tree).

tableau([Sign:(F1 of F2)|Rest],Atoms,S,[Treel,Tree2])
member (Sign, [n1,f0, t1,b0]), !,
tableau([Sign:F1|Rest],Atoms,S,Subtreesl),
tableau([Sign:F2|Rest],Atoms, S, Subtrees2),
addroot(Sign:F1,Subtreesl, Treel),
addroot(Sign:F2,Subtrees2,Tree2).

tableau([Sign:(F1 oi F2)|Rest],Atoms,S,[Tree]) :-
member (Sign, [nO, fO, tO,b0]), !,
tableau([Sign:F1,Sign:F2|Rest],Atoms,S,Subtrees),
addroot(Sign:F2,Subtrees,Treel),

addroot(Sign:F1, [Treel],Tree).

tableau([Sign:(F1 oi F2)|Rest],Atoms,S,[Treel,Tree2]) :-
member (Sign, [n1,f1,t1,b1]), !,
tableau([Sign:F1|Rest],Atoms, S, Subtreesl),
tableau([Sign:F2|Rest],Atoms, S, Subtrees2),
addroot(Sign:F1,Subtreesl, Treel),
addroot(Sign:F2,Subtrees2, Tree2).

"or defined connectives

tableau([Sign:F|Rest],Atoms,S, [Tree]) :-
define(F,F1), !,
tableau([Sign:F1|Rest],Atoms, S, Subtrees),
addroot(Sign:F1,Subtrees, Tree).

nent of the Si

If its

tableau([Sign:Atom|_],Atoms, _, [x]) :-
opposite(Sign,Sign1l),
member (Signl:Atom,Atoms), !.

Vi
Otherwise, we add the atom to the list of atoms already

nd continue.

found

tableau([Sign:Atom|Rest],Atoms,S,Trees) :- !,
tableau(Rest, [Sign:Atom|Atoms], S, Trees).

*
If all signed formulas have been reduced to signed atoms and there

which is

is no conflicting pair of signed atoms, we have a model,

a counterexample 1if we are testing for validity.

s

tableau([],Atoms,S, [o]) :- !,
write('counterexample:’), nl,
write(Atoms), nl, write('no transmission of '),
write(S), nl, nl.

ntcond(ni, t1).
ntcond(t1,n1).
ntcond(f1,b1).
ntcond(b1,f1).
ntcond(no, to).
ntcond(to,no0).
ntcond(f0,b0).
ntcond(bo, f0).

nfcond(ni,f1).
nfcond(f1,n1).
nfcond(t1,b1).
nfcond(b1,t1).
nfcond(no,fo).
nfcond(f0,n0).
nfcond(t0, bo).
nfcond(bo, to).

nicond(ni, bo).
nicond(bo,n1).
nicond(f1,t0).
nicond(to,f1).
nicond(no,bl).
nicond(b1,n0).
nicond(fo,t1).
nicond(t1,f0).

entailsaux(Sign, Premises, Conclusions,Tree) :-
sign(Premises, Conclusions, Sign, SignedFormulas), !,
tableau(SignedFormulas, [],Sign, Trees),
initialbranch(SignedFormulas, Trees, [Tree]).

entailst(Premises, Conclusions,Treel,Tree2,Tree3,Tree4) :-
entailsaux(tl, Premises, Conclusions,Treel),
entailsaux(bl, Premises, Conclusions,Tree2),
entailsaux(f0, Premises, Conclusions,Tree3),
entailsaux(n®, Premises, Conclusions,Tree4).

entailsf(Premises, Conclusions,Treel,Tree2,Tree3,Tree4) :-
entailsaux(t1, Premises, Conclusions,Treel),
entailsaux(b®, Premises, Conclusions,Tree2),
entailsaux(f®, Premises, Conclusions,Tree3),
entailsaux(ni, Premises, Conclusions,Tree4).

entailsi(Premises, Conclusions,Treel,Tree2,Tree3,Treed) :-
entailsaux(t1, Premises, Conclusions,Treel),
entailsaux(bi, Premises, Conclusions,Tree2),
entailsaux(f1, Premises, Conclusions,Tree3),
entailsaux(nil, Premises, Conclusions,Tree4).

entails(Premises, Conclusions,Treel,Tree2,Tree3,Tree4,Tree5,Tree6) :-
entailsaux(tl, Premises, Conclusions,Treel),
entailsaux(bl, Premises, Conclusions,Tree2),
entailsaux(b®, Premises, Conclusions,Tree3),
entailsaux(f0, Premises, Conclusions,Tree4),
entailsaux(ni, Premises, Conclusions,Tree5),
entailsaux(n@, Premises, Conclusions,Tree6).

equiv(Formulal, Formula2,Treel, Tree2, Tree3, Tree4,Tree5, Tree6, Tree7,Tree8)
entailsaux(tl, [Formulal], [Formula2],Treel),
entailsaux(bi, [Formulal], [Formula2],Tree2),
entailsaux(fl, [Formulal], [Formula2],Tree3),
entailsaux(ni, [Formulal], [Formula2],Tree4),
entailsaux(t®, [Formulal], [Formula2],Tree5),
entailsaux(b@, [Formulal], [Formula2],Tree6),
entailsaux(fe@, [Formulal], [Formula2],Tree7),
entailsaux(n@, [Formulal], [Formula2],Tree8).

thmt (Formula, Treel, Tree2,Tree3,Treed4) :-

entailst([], [Formula],Treel,Tree2,Tree3,Tree4).
thmf(Formula, Treel, Tree2,Tree3,Tree4) :-

entailsf([], [Formula],Treel, Tree2,Tree3,Tree4).
thmi(Formula, Treel,Tree2,Tree3,Treed4) :-

entailsi([], [Formula],Treel,Tree2,Tree3,Tree4).
thm(Formula, Treel, Tree2,Tree3,Tree4,Tree5,Tree6) :-

entails([], [Formula], Treel,Tree2,Tree3,Tree4,Tree5,Tree6).

i

Some predicates to do with the ntation of the
free

adds a root (functo

ferm repres

ang

1

so that the result is a single

initialbranch/3 uses this to provide a collection of trees
with a common initial branch.
x 4

/
7

addroot(Signedformula, Trees,Tree) :-
term_to_atom(Signedformula, Quoted),
Tree =.. [Quoted|Trees].

initialbranch([],Trees,Trees).

initialbranch([Signedformula|Rest], Trees, [Tree]) :-
initialbranch(Rest, Trees, Treesl),
addroot(Signedformula, Treesl, Tree).

£

£

sign{Premises, Conclusions, Sign, SignedFormu signs

the formulas in ses with Sigh and those in >lusions

with 1ts opposite. The signed formulas are collected in

e

SignedFormulas,

% &
/

sign([1,[1, - [1).

sign([], [F|Rest],Sign, [Sign2:F|SignedRest]) :-
opposite(Sign,Sign2), sign([],Rest,Sign,SignedRest).

sign([F|Rest],Conclusions, Sign, [Sign:F|SignedRest]) :-
sign(Rest, Conclusions, Sign, SignedRest).

/PF <examples>

we valid, s not
s{ip at g],[p ot g], Treel,Tree2,Treeld, Treed4, Trees, Treed).

?=~ ental

7~ anta

st{[p at q],[p ot ql,Treel,Tree2, Tree3, Tree4).

?- entails({p at g]

7 entalls{[p at q],[p of g],Treel, Tree2, Tree3, Treed, Treed, Treed).

P
7= uiv{p at (g of r o1 s8},(p at q) of {p at r) ol {(p at 3),Treel,Tre
Treed, Treed, Trees, Tree§, Ir

?- equiv{p at g af r ai s,s 1, Tree2, Treed, Tre

Treed, Tree?, Tree8).

ee2, Treed, Treed, Trees, Tread, Tree?, Tree8).,

?- equivinf (p at (g af (r ai s))),nf p at {(nf g of (nf r ail nf §)),Treel
,Treez2, Tree3, Treed, TreeS, Treed, Tree7, Tree8).

?- thet{{p it (g it r)) it {({p it g) it (p it r)), Treel, Tree2,Treeld,Treed
:

2~ thm{{p it (g it r)) it {{p it g) it (p it r)),Treel, Tree2, Tree3, Treed,
Tree5,Treef),

v‘v/

For further details see: Analytic Tableaux for all of SIXTEEN3

Nothing to add

Rick Nouwen

Context

Jan van Eijck taught me to be precise. As with models in any discipline, semantic analyses
only make sense if we have a detailed understanding of how they work and what their
predictions are. Jan often insisted on the value of implementation for this purpose: it
allows the exploration and rigorous testing of an analysis, and it creates a fuller
appreciation of the complexity of a proposed system. He was ultimately unsuccessful in
convincing me that my dissertation should contain a Haskell implementation of the system
I was proposing, but we did collaborate on a joint paper in which we presented a semantic
analysis of plural discourse anaphora alongside Haskell code implementing that analysis
(van Eijck and Nouwen 2002). In this brief note, I want to reconsider one of the design

choices we made in that paper.

No doubt the most important line of code in our analysis is the line that determines the

view taken on what exactly a context is.

type Context = ...

It is clear what a context is for, that it has a double function in interpretation. On the one
hand it provides the necessary background that makes intepretation possible. On the other
hand, it is being manipulated by interpretation: by interpreting natural language, we are
changing the context. To determine what a context is, we then need to ascertain what it is

that interpretation potentially depends and impacts on.

Doing this, a dual view on context emerges. When you read or listen, you don't just gain
potential new beliefs, you also create a memory of the topics and things that are being
discussed. In other words, by interpreting natural language we keep track of (i) the topics
of conversation and (ii) the information that is being shared on those topics. This way of

looking at interpretation is the central philosophy behind dynamic semantics (Kamp 1981,

Groenendijk and Stokhof 1991, van Eijck 2001, Nouwen et al. 2016), a family of theories
of how ordinary semantics can be extended to take into account the basic dynamics of

information processing.

In line with this view, Jan van Eijck's Incremental Dynamics (van Eijck 2001) takes a
context to be a stack of entities (the list of entities that are discussed, if you want) and
interpretation is a function from such stacks to sets of such stacks (those sets that comply
with the given information). Different positions in a stack correspond to different
discourse referents, the entities under discussion. Introducing a new referent in the

discourse amounts to simply adding an entity to the conlext.E
[Bl(¢) = {¢"d | d € D}

There are no ordinary variables, only indices, corresponding to locations in the context:

c n| returns the entity stored on the 72th position in ¢. Predication tests are defined as

follows
{c¢} ¢[n] € I(P
[P(m)]() = { otherwise
Dynamic actions are combined using [; [(¢) = {[v¢]c'|¢" < ¢}- And, so, the

(in)famous A man came in. He sighed. gets the followmg analy51s in Incremental

Dynamics, where ; is the length of the input context.
3; man(i); sighed(i)

One major advantage of this view on context is that it is absolutely explicit about what the
anaphoric potential of the context is: the context is the set of accessible discourse
referents. As we will see next, this has an interesting consequence once we add quantifiers

and plurals to the system.

Context and Quantification

In van Eijck and Nouwen (2002), generalised quantifiers work quite similarly to = in that
they push entities to the stack. This is different from the traditional take on quantifiers in

the dynamic semantic literature, most notably different from Kamp (1981), Kamp and

Reyle (1993) and Groenendijk and Stokhof (1991). In line with van den Berg (1996), we
took quantifiers to simply push the so-called reference set, 4 | J3 for a statement
(Q(A)(B), to the context. For instance, Most students passed the test, if true, will push
the set of all students that passed the test to the input context. The semantic mechanism
behind this need not concern us here. Here, I want to focus on the question what the

addition of plural discourse referents means for our notion of context.

Since van den Berg (1996), it is standardly assumed that plural referents are not just stored
in the context as complex individuals, but that they are rather distributed over that context
(see also: Nouwen 2007, Brasoveanu 2008). This is because quantifiers do not just add
potentially plural referents to the context, they also store dependencies between referents.

For instance,
1. Every farmer owns exactly one donkey. And most of them beat it.

Here, the first sentence introduces the set of (all) donkey-beating farmers, and the set of all
donkeys owned by a farmer. The second sentence shows that we do not just have access to
these pluralities, we also have access to which farmer goes with which donkey. This is
because the second sentence can only be interpreted as saying that for most farmers, the
farmer in question beats the donkey he or she owns. If the context is a stack just
containing a set of farmers and a set of donkeys, then we have not kept track of this
dependency. Instead, we need to say that the context is a set of stacks, each containing one

farmer and one donkey:

{fldh foda, fads, .. }

The set of entities occurring on the first position in these stack is the relevant set of
farmers. The set of entities in second position is the set of donkeys. The dependency is

captured by the way these sets are distributed over the set of stacks.

Using my rather rusty Haskell skills, here is what this setup could look like:

import Data.lList

data Entity =A | B | C | D | E| F| G| H]I|J|K|]L]|M
deriving (Eq,Bounded, Ord, Enum, Show)

type StringEnt = [Entity]
type Context = [StringEnt]
type Coll = [Entity] -- a ¢ollection is a set of entities

StringEnt -> Int -> Entity
[1 1 = error "undefined context element™
x (x:xs8) & = x
ix (x:xs) i1 = lookupIdx xs (i-1)

xCtxt ! Context -> Int -> Coll
xCitxt [1 1 =[]

txt (x:xs) i = [lookupIdx x i] ++ lookupIdxCtxt xs i

Context -> Entity -> Context

[le=1[]

strib (x:xs) e = [x ++ [e]] ++ distrib xs e

push :: Context -> Coll -> Context

push x [] = x

push x [e] = distrib x e

push x (e:es) = distrib x e ++ push x es

Context -> Int -> Coll
£ X 1 = nub (lookupIdxCtxt x 1)

:: Context -> Int -> Int
x i = length (project x i)

To illustrate how this works, here is an example of some operations on an input context
{AB, AC'}. This is a context with two discourse referents, one of which is simply 4 and
the other is the plural individual with /3 and (" as its parts (usually written as /3 | | ().
The first line shows how this context was created.

*Main> push (push [[]] [A]) [B,C]
[[A,B],[A,C]]

*Main> push [[A,B], [A,C]] [D,E,F]
[[A,B,D],[A,cC,D], [A,B,E],[A,C,E], [AB,F], [AC,F]]
*Main> project (push [[A,B],[A,C]] [D,E,F]) =
[A]

*Main> project (push [[A,B],[A,C]] [D,E,F])
[B,C]

*Main> project (push [[A,B],[A,C]] [D,E,F]) =
[D,E, F]

*Main> cardi (push [[A,B],[A,C]] [D,E,F])

As setup like this will now allow us to provide a general recipe for the dynamic semantics
of quantifiers. In general, quantifiers are operators that take two sets and perform a
cardinality test on these two sets. If successful, the intersection of the two sets, the
reference set, will then be pushed to the stack. Here I give a schematic interpretation of

3

2
most as an example.

push ¢ XNY IXNY|>|X\Y]

[most] = AX.AY.Ac 0 otherwise

Nothing to add

An issue arises as soon as downward entailing quantifiers come into the picture. A
quantifier is downward entailing if for any 4, /3 and B’ such that B _ B’ itis the case
that Q(A)(B') =+ Q(A)(B). The issue concerns the fact that {)(A)(() is true for any

downward entailing () and any 4. Van Eijck and Nouwen remark:

"Anl...] unsolved problem is the treatment of downward entailing quantifiers. There
are essentially two issues. First of all, since we have chosen to make quantifiers
dynamic by existentially introducing a new index, we presuppose the existence of a
set of individuals satisfying the vestrictor and scope of the quantifier relation. Of
course, in case the determiner is downward monotone in its right argument, this
relation is satisfied even if no such individual exists.” {van Eijck and Nouwen, 2002,

p.22)

In my dissertation (Nouwen 2003), I offered a way out of this dilemma. In case the
reference set is empty, then incrementing is vacuous and consequently there will be

nothing to refer to. Pronouns simply won't have the chance to refer back.

This idea already happens to be in place in the short Haskell fragment above (which is

different from our 2002 paper):

*Main> push [[A,B], [A,D], [AE]] []
[[A,B], [A,D], [AE]]

That is, pushing the empty set onto the stack simply returns the input stack. No new
position is created and, consequently, no new anaphoric potential has been added. This is
fully in line with the philosophy of contexts in Incremental Dynamics: contexts are fully
explicit about what the anaphoric potential of the context is. Whether or not downward
entailing quantifiers introduce a discourse referent depends on the model. Only in models
in which the intersection between restrictor and scope is non-empty will there be a new
index. Using a pronoun to refer back to the quantifier presupposes that there is such an
index and, as such, it presupposes that we are in a model in which that intersection is not

empty.

This is an elegant solution to the problem, but one which I am now no longer fully
convinced of. The reason is that this solution depends on a standard assumption about
collections of entities that is often made in the literature, but which I now think is wrong.
It is often assumed that there are two kinds of entities, namely atoms and pluralities, and
that the latter are built the former. More precisely, the full set of entities is built by taking
the powerset of the set of atomic entities and then removing the empty set. More
commonly, the set of entities is actually thought to be only structurally similar to this:
plural individuals are not sets but sums and the set of entities is a complete join semi-
lattice with the atomic entities as smallest elements (Landman 1989). Explicitly, the
assumption is that the structure is a semi-lattice and not a lattice: there is no unique bottom
element, that is a part of any other element in the lattice. This is the detail that I now

question.

There are (as far as I know) two arguments in the literature that natural language semantics
needs to take a bottom element, i.e. an element with cardinality 0, into account. Bylinina
and Nouwen (2017) provide a complex argument that the fact that most languages have a

word for "0" (for instance, zero), entails that there has to be an full-fledged entity with 0

cardinality. The other is Landman (2011), which is more relevant to our discussion of
dynamics. Landman notices that some plural definite descriptions appear to refer, even

though the referent is empty:

1. Of the ten students in my class I would say that the students that studied for the test

got a good grade (but nobody did).

The parenthetical continuation does not appear contradictory, and so the description the
students that studied for the test must have referred to the empty individual. Note,
especially the contrast with (3), where the singular morphology forces the definite

description to refer to an atom, and hence to something that is not empty.

1. Of the ten students in my class I would say that the student that studied for the test
got a good grade (#but nobody did).

On a conceptual level, this observation already goes against my assumption above that
empty sets are referentially void. More generally, I believe it is not impossible that

Landman's observation extends to pronouns.

1. Of the ten students in my class I would say that the students that studied for the test
got a good grade and that they are likely to do well in the next course. Unfortunately,

none of my students studied for the test.

2. Of the ten students in my class I would say that the student that studied for the test
got a good grade and that he is likely to do well in the next course. #Unfortunately,

none of my students studied for the test.

I will leave a detailed discussion of these examples for a future occasion. Potentially, they
indicate that there can be empty discourse referents. In the terms of Incremental Dynamics
this would mean that the operation of adding nothing to the stack does not simply return
the input stack, but rather returns a stack with an empty value pushed on top of it. In fact,
had we chosen not to implement the dependency phenomenon illustrated by (1) but
instead taken a simpler view on context as a stack of collections, then we would have

arrived at that behaviour straightforwardly. Take the following simpler code:

push2 :: Context -> Coll -> Context
push2 x e = x ++ [e]

and how it functions:

*Main> push2 [[A], [B,C]] []
[[A],[B,C1,[1]

Here, a context is not a collection of stacks, but a stack of collections. Each position in that
stack is a potentially plural and potentially empty entity (represented by a list). In such a
setup, pronouns point to positions in the stack and come with a non-emptiness implicature,

one that is cancelled in (3).

Of course, the simple push2 operation above leaves no room to account for examples
involving quantificational dependencies like (1). But I have no reason to believe that the
absence of an empty element follows from adopting a view of context in which pluralities
are distributed over stacks. It just so happened that my crude way of implementing this
idea resulted in this behaviour. I leave it as an easy exercise for the reader to come up with
a Haskell program that at the same time implements the idea of contexts with distributed

pluralities and the idea that pluralities are potentially empty.

Notes

For those familiar with the literature: what in Dynamic Predicate Logic amounts to
a random reset is a random push in Incremental Dynamics, <

..\

Here and in what follows I am ignoring undefinedness cases when Tt exceeds the
i{*ngzh of €.«

3

~. This is a simplification. The arguments of most need to be interpreted in context
too, for they may for instance have dynamic effects themselves. In fact, it is this
dynamic interpretation of the XandY argument that ultimately results in the storage
of quantificational (i(};’}(?ﬂd(?l}(i(.’S. See van den Berg (1996), Nouwen (2003) and

Brasoveanu (2008) for discussion. «

References

Brasoveanu, Adrian. 2008. Donkey Pluralities: Plural Information States Versus Non-
Atomic Individuals. Linguistics and Philosophy 31 (2): 129-209.

Bylinina, Lisa, and Rick Nouwen. 2017. The Semantics of 'Zero'.

Groenendijk, J.A.G., and M.J.B. Stokhof. 1991. Dynamic Predicate Logic. Linguistics and
Philosophy 14: 39-100.

Kamp, H. 1981. A Theory of Truth and Semantic Representation. In Formal Methods in
the Study of Language, edited by J. A. G. Groenendijk, T. M. V. Janssen, and M. J. B.
Stokhof. Amsterdam: Mathematical Centre.

Kamp, H., and U. Reyle. 1993. From Discourse to Logic. Dordrecht: D. Reidel.
Landman, Fred. 1989. Groups. Part I, II. Linguistics and Philosophy 12: 559-605;723-744.

Landman, Fred. 2010. Boolean Pragmatics. In This Is Not a Festschrift, edited by Jaap van

der Does and Catarina Dulith Novaes.

Nouwen, Rick. 2003. Plural Pronominal Anaphora in Context. Netherlands Graduate
School of Linguistics Dissertations 84. Utrecht: LOT.

Nouwen, Rick. 2007. On Dependent Pronouns and Dynamic Semantics. Journal of
Philosophical Logic 36 (2): 123-54.

Nouwen, Rick, Adrian Brasoveanu, Jan van Eijck, and Albert Visser. 2016. Dynamic

Semantics. Stanford Encyclopedia of Philosophy.

van den Berg, M.H. 1996. Some Aspects of the Internal Structure of Discourse: The
Dynamics of Nominal Anaphora. PhD thesis, ILLC, Universiteit van Amsterdam.

van Eijck, Jan. 2001. Incremental Dynamics. Journal of Logic Language and Information
10 (3): 319-51.

van Eijck, Jan, and Rick Nouwen. 2002. Quantification and Reference in Incremental
Processing. Unpublished Manuscript, CWI, ILLC and UiL-OTS. Presented at the

(Preferably) Non-Lexical Semantics Conference.

A tribute to Jan van Eijck

Rohit Parikh

I have known Jan for eleven years, at least since the NIAS project in 2006. He is a very
soft and polite person who has shared several interests with me. Among them is of course
Epistemic reasoning in which both he and I have worked, and Social Software where we

collaborated on a paper—more a dialogue than an essay.

Another interest we share is language, but in spite of strong interest on both our parts, we
have not actually worked together. I hope this will change because his interest and

expertise in language is truly impressive.

But we still have a lot in common which was the reason why I suggested to Sergei

Artemov that Jan be invited to give the keynote talk for my 80th birthday conference.

Let me now proceed to some remarks that I would like to make and hope that Jan will

approve.

Introduction

Epistemic logic started as a child of modal logic and Kripke structures were the usual
tools for a long time. But of two classical books, one by Hintikka and one by David
Lewis, only the first was primarily in the modal direction. Lewis' work was more game
theoretic and it is widely believed that he was influenced by the Nobelist Thomas
Schelling. Lewis died some years ago and Schelling only recently, but their influence has

been strong.

The difference in these two approaches is between the one person case and the many
person case. Descartes was interested in what he knew and we, part time solipsists, are
still his children in a way. It is hard to escape being a Cartesian. Much work in epistemic

reasoning is Cartesian in spirit.

But Lewis' notion of common knowledge (anticipated by Robert Nozick, see the paper by
Cubitt and Sugden) is fundamentally a many person or social notion. Even a psychologist

like Pinker is aware of common knowledge as is Herb Clark. And since common

knowledge has been important in distributed computing since the classic paper by Halpern

and Moses, it is inevitable that computer scientists will come to play a large part.

This insight inevitably leads us to game theory, based on the notion of the super rational
homo economicus. But as Kahneman and Tversky pointed out, the actual homo is not
super rational. He (she) is quite often irrational, and even when rational, rational in a
different way from what the classical theory of von Neumann and Morgenstern, and

Savage presumes.
hitp://www.nobelprize.org/mediaplayer/index php?id=531

We reveal our beliefs in action, and even answering yes or no is an action. As we know,
an utterance may or may not supply the truth value of a proposition, but even when it
does, it says something about the speaker (and what the speaker thinks about the
listener) as well as about the world. The speaker wants to bring about a change in the
mental state of the listener and the desired change may be something different from, or

more than merely a change in her state of beliefs about the world.

A related issue is that we need devices for converting a game theoretic problem into a
decision theoretic one. When an agent is playing a game with another, she thinks what the
other might do. And having decided, she has converted the game theoretic problem into a
decision theoretic one, "since he is going to do x, what shall I do?"" Thus suppose there
are two restaurants A and B and Bob might want to go to the same restaurant as Ann. Then
if he knows that Ann is going to B, his best decision will be to go to B himself. If she is
going to A then his best decision will be to go to A. If she usually goes to A, then also his
best bet is to go to A. So once he has resolved his doubts about Ann's action, he has a

decision theoretic problem.

If he wants to go to the same restaurant as Ann he too should go to A. If he wants to go to

a different one, then once he decides that she is going to A, he should go to B.

So once he has an idea about her beliefs, her preferences and hence her probable action,
his game theoretic problem becomes a decision theoretic one. But knowing others'
preferences and beliefs is not always easy. We often know their ordinal utilities but not

their cardinal ones and Savage’s method of eliciting responses will not work in real life.

Here is an example.

Ann lives in San Francisco and Bob is visiting her from out of town.

After giving him dinner, Ann asks, "Would you like some ice cream?”

"Do you have chocolate?” says Bob.

"I am sorry I do not but I do have vanilla and strawberry” says Ann.
"Vanilla, then" says Bob.

Now Ann knows that for Bob the utilities have the order chocolate > vanilla >

strawberry.
But she does not know the cardinal utilities. So she proceeds.

"Oh, I am sorry, I do have chocolate. Would you like vanilla or a 50-50 chance of

chocolate and strawberry?"
Bob is puzzled but says, "Vanilla."

1474

" And how about vanilla versus a 70% chance of chocolate and 30% chance of

strawberry?”

What is the matter with Ann? says Bob to himself and then says aloud,
" Actually the doctor told me to avoid ice cream. How about just coffee?”

Ann now knows that that she will not find out more without being rude.

So we live in a world where we know something about the beliefs and preferences of
others but do not and cannot know more precisely. Constraints of time and politeness

prevent us from finding out everything. And yet we get along by and large.

It is clear that if we are to have a theory of people which is realistic and yet allows us to
say something more than bare common sense then we need to move away from the overly

precise models of classical epistemic logic and Homo Economicus.

Logic and Society

One of the strange things about us Homo Sapiens is that evidence reveals that we are more
clever than wise. We have settled the entire globe, developed the internet and sent

expeditions to the moon and to Mars.

Given this, how is that we have not achieved the condition that most or all humans are
happy and well taken care of? We look at war movies with dismay and pain but we should

also be amazed that humans are doing such things to other humans.
Here is joke about two aliens in a space ship discussing humans.
One says, "They have even developed missiles!”
The other says, "Then they must be very advanced.”

The first says, "Not really-—they have aimed them at themselves!”

What we humans need now is the ability to be amazed that we are so poor at taking care of
ourselves. According to legend, Newton was amazed that the apple fell on his head rather
than away from his head. And that the moon revolved around the earth even though there
was no rope tying the moon to the earth. This amazement eventually led to his theory of

gravitation, amended by Einstein in the early XXth century.

What was the big deal that the Michelson-Morley experiment did not reveal the "speed at
which the earth travels through the ether?" That information is not going to help us to pay
our taxes. And yet, being amazed at our inability to detect that speed led to the theory of

Relativity.

So we need to be amazed that we are so poor at taking care of our species and other
species whom, for whatever reason, we seem to love. We should not say, "It has always
been so." Many things have always been so and are not any longer. A hundred years ago

we did not have airplanes, telephones, let alone the internet.

Also, the major wars in 1914-18 and 1939-45 did not lead to any further major wars in
Europe and the furthest we have come from war in Western Europe is Brexit! So progress

is possible.

A usual explanation for why things are bad is "some bad guy" (it is usually a guy). That
guy can be Hitler or Trump or whoever. But we do not ask where these bad guys get so
much power. And we do not ask whether putting Trump in the same boat with Hitler might

not be a result of our need to look for "bad guys".

It was not Trump who invaded Iraq or who bombed that hospital in Kunduz.

Sages like Jesus or Dalai Lama look to personal transformation. If we become
compassionate and loving then there will be no bad guys and the world will be better—

perhaps even perfect. (See the book by Thich Nhat Hanh.)

I am skeptical. The tendency to cooperate is built into us humans. See the little essay by

Tomasello.
hitp//www.nytimes.com/2008/05/25/magazine/25wwln-essay-t. html

But aggression and excessive ambition are also built into us. The millionairess, for
whatever reason, does not want to share any excess wealth. She wants to become a

billionaire and "break the glass barrier"!

And people keep having more and more children, creating ever greater demands on the
planet. Ditto for the illusion that the more energy we consume, the better off we are.

Certainly individual human failings are behind our problems.

But I do not want to make a moral lesson. I disagree with the Dalai Lama much as I
admire him. I want to look for techniques which will allow us imperfect humans to create
a good society. So I look for systems where even selfish people will act so as to make
everyone happy. Adam Smith had this idea long ago but we all agree that his idea does not

work invariably. So we need systems which harness self-interest into the good of society.

Economic Design is in a way a contribution in this direction. The Vickrey auction is an
example of an auction where being honest with one's bid is a winning strategy. In the
Vickrey auction, the highest bidder wins but only pays the bid of the second highest
bidder. Then it turns out that being honest about one's own preferences is a dominant

strategy.

Perhaps we can set up social software which encourages people to act in a rational way

which helps other people as well.

Where does logic come in?

Ultimately, economists are practical logicians. They are not concerned as much with truth
as with what works. So they are more in the realm of practical reason. But practical reason

and theoretical reason are not unconnected. We have game theoretic accounts of truth in

first order logic. And backward induction is a logical argument telling us how a certain

game will be played.

So logicians can help by coming up with systems which encourage people to act in ways

which are good not only for them but also for other human beings.

Criminal law has this function. "Harm others and society will harm you!" But politicians
who enact laws are not logicians. They tend to come up with "remedies" which do not

work.

The US incarcerates at a rate 4 to 7 times higher than other western nations such as the
United Kingdom, France, Italy, and Germany and up to 32 times higher than nations with

the lowest rates such as Nepal, Nigeria, and India.

https://www.ncedglobal.org/sites/default/files/publication_pdf/factsheet-us-

incarceration.pdf

Cleverer devices are needed to encourage people to help themselves by helping others.
And the right way is an analysis using tools from social psychology, Economic Design and

the logic of programs to ask what will work with actual people.

Once we have such a solution, then the problem will arise of getting the politicians to go

along. But that part of the project is, luckily, far from our work.

Language

One reason why we have misunderstandings is that language is too poor to express the
complexities of the world. Suppose that the "natural language" for the world consists of
ten unary predicates. But the average person can only deal with five at one moment. Then
there will be a many one homomorphism which will conflate 32 different states of the
world into a single description. And moreover, not everyone will use the same

homomorphism. Thus words like "feminist", "fascist", "progressive" mean different things

to different people.

Is Bernie Sanders a communist? Is Trump a fascist? Different people with the same facts

will come up with different judgments.

A related problem is that of multiple identities. For instance Mohammad Ali Jinnah, the
founder of Pakistan was a Muslim, whereas Gandhi was a Hindu. But they were both

Guijaratis and both lawyers. So are they opponents or were they fellow travelers?

Amartya Sen goes into this issue of the conflict between different identities. And it can
well be true that professional identities which usually have less emotions attached to them,
can overcome national or religious identities which are more invested with passion. Thus
at the CUNY Graduate Center where I teach there is nothing unusual about someone from

Israel being the doctoral supervisor of someone from Iran.

Perhaps if we remember our multiple identities, then some of the anguish of the world can
be resolved. In the US currently, it is political identities which have become most
passionate and a white Democrat would have no problem with his daughter marrying a
black man, but would be very upset at her marrying a Republican. So let me end with a

joke from my undergraduate days.

Girls from a Catholic school are graduating and one by one, each goes to the Mother
Superior to receive her diploma. The Mother Superior asks each of them what she is

going to do now that she has graduated.

One girl says, “Mother, [am going to be a prostitute.”

The Mother faints and is revived with cold water and smelling salts.
"What did you say my dear?" asks the Mother Superion.

"Mother, I am going to be a prostitute,” is the reply.

“Thank God,” says the Mother. "I thought you said a Protestant.”

References

Clark, Herbert H., and Catherine R. Marshall. Definite reference and mutual knowledge.
In Joshi, Webber and Sag, Elements of discourse understanding. (1981).

Cubitt, Robin P., and Robert Sugden. Common Knowledge, Salience and Convention: A
Reconstruction of David Lewis' Game Theory. Economics and Philosophy 19.02 (2003):
175-210.

Van Ditmarsch, Hans, et al. On the logic of lying. Games, actions and social software.
Springer Berlin Heidelberg, 2012. 41-72.

Eijck, Jan. Discourses on social software. Ed. Rineke Verbrugge. Amsterdam University
Press, 2009.

Hanh, Thich Nhat. Peace is every step: The path of mindfulness in everyday life. Bantam,
1991.

Halpern, Joseph Y., and Yoram Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM (JACM) 37.3 (1990): 549-587.

Hardin, Garrett. The Tragedy of the Commons:. Journal of Natural Resources Policy
Research 1.3 (2009): 243-253.

Hayek, Friedrich August. The use of knowledge in society. The American economic
review (1945): 519-530.

Hintikka, Jaakko. Knowledge and belief. (1962).
Hintikka, Jaakko, and Gabriel Sandu. Game-Theoretical Semantics, Chapter 6. (1997).

Kahneman, Daniel, and Amos Tversky. Prospect theory: An analysis of decision under

risk. Econometrica: Journal of the econometric society (1979): 263-291.
Lewis, David. Convention: A philosophical study. John Wiley & Sons, 2008.

Parikh, Rohit. D-structures and their semantics. Appeared in a volume dedicated to Johan

van Benthem, University of Amsterdam (1999).
Parikh, Rohit. Social software. Synthese 132.3 (2002): 187-211.

Parikh, Rohit, Cagil Tasdemir, and Andreas Witzel. The power of knowledge in games.
International Game Theory Review 15.04 (2013): 1340030.

Parikh, Rohit, and Jouko Viindnen. Finite information logic. Annals of Pure and Applied
Logic 134.1 (2005): 83-93.

Pinker, Steven, hitps://www.youtube.com/watch?v=3-son3EITrU
Savage, Leonard J. The foundations of statistics. Courier Corporation, 1972.

Schelling, Thomas C. Micromotives and macrobehavior. WW Norton & Company, 2006.

Sen, Amartya. Identity and violence: The illusion of destiny. Penguin Books India, 2007.

Van Benthem, Johan. Games in Dynamic-Epistemic Logic. Bulletin of Economic Research
53.4 (2001): 219-248.

Programming Real Social Software:
Matching Students to Supervisors using
Perl

Marc Pauly

Introduction

Thinking back of my time as a PhD student with Jan van Eijck, programming is not one of
the things that immediately comes to my mind. My PhD thesis was about the connection
between logic, game theory and social choice theory, and coding was not part of the work
I did for my thesis. But when I was thinking back a bit further, I remembered that Jan
taught a course I took during my Master of Logic program in 1996 or 1997 that dealt with
the semantic foundations of programming. I do not remember the title of the course, but
the book we used for the course was called "Semantics with Applications: A Formal
Introduction" (Nielson & Nielson, 1992). T am still very fond of this book: In a very clear
way, it covers operational semantics, denotational semantics and axiomatic program
verification for a simple language called the while-language. The book also contains an
implementation in the functional language Miranda, a predecessor of the later Haskell
language that Jan worked with. As I think back, I realize that it was also thanks to this
course that I was able to extend some ideas about program semantics and verification to a

programming language for games (Pauly, 2005).

Ever since my move from computer science to philosophy, I am not surrounded any more
by people who can (or at least at some point were able to) program. Still, it turns out that
this ability comes in handy even for somebody working at a philosophy department. I
would like to illustrate this with a short code snippet we use to solve a specific two-sided

matching problem.

The Problem: Matching Students to
Supervisors

At the philosophy department of the university of Groningen, between 50 and 100 students
per year write their bachelor theses under the supervision of some staff member. In the
past, students would approach a teacher and ask him or her to become their supervisor.
Two problems led us to change this. On the one hand, this way of doing things led to
certain staff members to attract many students while other staff members supervised
almost nobody. This unequal distribution was not too problematic at a time when student
numbers were low, but with more than 50 students per year especially the popular
supervisors felt that we needed a new system. Given my own interest in social choice
theory and game theory, I suggested to use the well-known Gale-Shapley algorithm for
two-sided matching (Gale & Shapley, 1962). In this algorithm, each student submits a
preference list of possible supervisors, saying who their 1st choice, 2nd choice, etc. for
supervisor is. Similarly, each supervisor submits a list of possible students who they could
imagine supervising, also ranked in order of preference. Also, each supervisor is
associated with a given capacity of students to supervise, usually somewhere between 0
and 5. Given these preference lists of the two groups, the Gale-Shapley algorithm works as
follows: First, every student applies to their first choice supervisor. If a supervisor has no
more applicants than his or her supervision capacity, nothing happens. If, on the other
hand, a supervisor has more applicants than capacity, the supervisor rejects those
applicants which rank lowest on his or her preference list. In the second round, those
students who have been rejected apply to their second choice supervisor, and again the
supervisors reject depending on their capacity those applicants they least prefer. This
process continues until all students are assigned. The process is guaranteed to terminate as
long as the supervisor capacities when added together are at least as high as the number of
students who need a supervisor. A well-known property of this algorithm is that it will
result in a student-supervisor matching that is stable: Whenever a student 4 is matched to
a supervisor [3, there will never be another student ;' matched to supervisor B’ such that
A prefers B’ to J3 and B also prefers 4 to 4.

So much for the theory. As always, the devil is in the detail. In the concrete situation of the
philosophy department, there is one important extra complication to the basic setup: Not
all supervisors speak Dutch, and many students want to write their thesis in Dutch. So my
task was to first think of an extension of the algorithm that can handle this more

complicated situation, before actually coding it.

As for the input, we now need to ask for additional pieces of information. We ask the
students what language they want to write their thesis in. The options are Dutch, English,

or Any (meaning: Dutch or English are both fine). Similarly for the supervisors, we ask

them what language they can supervise in, and here the options in practice are only

English (only) or Any.

As for the algorithm, note that we first need to make sure that there are enough supervisors
who speak Dutch to cater to the students who want to write in Dutch. In the past years, this
fortunately has not been a problem, although with a continuing inflow of academics who
do not speak Dutch, this problem may arise in the future. For now, we will assume that

this problem does not arise.

How to modify the original Gale-Shapley algorithm? My first attempt was to do a
language check during each round of the matching algorithm, making sure that each time
we tentatively match a student with a supervisor, we make sure that the languages do not
conflict. However, this attempt did not work. The problem can be illustrated with a simple
example: Suppose that supervisor Jan speaks Dutch and English and prefers Marc to
Sanne. Marc has Jan as his most preferred supervisor and does not care about the language
he writes his thesis in, but Sanne wants to write her thesis in Dutch. Now we can imagine
a stage in the matching algorithm where Marc is matched to Jan and Sanne is yet
unmatched. From the perspective of Jan and Marc, everything is fine, and the languages
match. However, if Sanne cannot find a supervisor who speaks Dutch it may turn out that
we have to unmatch Marc and Jan in order to match Sanne to a supervisor (Jan) who is
able to speak Dutch, even though Jan prefers Marc to Sanne. Clearly, in terms of
preferences, this is a bad move, but due to hard language constraint, the move seems

unavoidable.

Given this difficulty, I decided to match supervisors and students in two phases: First, only
the supervisors who only speak English are considered. Their slots are filled first, using
the Gale-Shapley algorithm. Second, the students who remain because they have not been
matched to the English-only supervisors are matched to the remaining supervisors. This
algorithm is not ideal for a number of reasons, but given the language constraint I do not
think that we can do much better. The most important property we lose is the property of
stability: As the example above with Jan and Marc already illustrates, the new algorithm
can give rise to situations where an ideal couple (a student and a supervisor who have each

other as their first choice) does not end up being matched to each other.

The Code

The main program first retrieves student and supervisor data from files. Since students and
supervisors will have submitted only partial preference lists (e.g., a student may have only
mentioned her top 5 supervisors), we first complete everyone's preference list by randomly
ordering the candidates that have not been explicitly mentioned below these that have
been mentioned explicitly. Note that this is what introduces an element of nondeterminism
into the algorithm (in fact, the only nondeterminism). Next, we first match those
supervisors who only speak English to those students who are willing to write their thesis
in English using the Gale-Shapley algorithm. Afterwards, the unmatched students and
supervisors are matched in a second round of Gale-Shapley matching. The Perl
implementation of the Gale-Shapley matching algorithm is given below.

teacher-preferences, students, student pref

sub gs_algoe (\@\%\@\%) {

(1]

print “\nExecuting Gale-Shapley algorithm...\n";
Y g

my $round=¢; . of the round of t

my %student_apply;

the current
applying to

in case student

my %assigned; # has value 1 for a st

g currentliy
H LUl PRI LY

my $some_unassigned = °; WS rema

gd tosubrout

my $teachers_ref = shift; # first refer

my @teachers = @{$teachers_ref}; # dereferencing;
my $teacher_prefs_ref = shift;

my %teacher_prefs = %{$teacher_prefs_ref};

my $students_ref = shift;

my @students = @{$students_ref};

my $student_prefs_ref = shift;

my %student_prefs = %{$student_prefs_ref};

my %match;

for my $name (@teachers) {
@{$match{$name}}=(); # initialize matchi

iy ey
e ef

enang

}

for my $name (@students) {

$student_apply{$name} = =; # ¢

first choice

$assigned{$name} = ; # and

while ($some_unassigned) {
$round++;
print "\nRound 3round:\n";

s apply to thelr next ¢

for my $stu (keys %assigned) {
if ($assigned{$stu} == =) {

my @prefs = @{ $student_prefs{$stu} };

my choice = prefs[$student_apply{$stu}];

if (defined $choice) {
push@{match{$choice}}, stu;
$assigned{$stu}= i;
$student_apply{$stul++;

}

else # the student has run oul of options

drops out

{$assigned{$stu}= :}

}

$some_unassigned = ;

print "After application by students we have:\n";
print_matching(@teachers,%match);

i teachers reject students beyend their capacity,

sir preferences

for my $tea (@teachers) {
my cur_capacity = teacher_caps{$tea};

my @new_match = (); # new preference 1ist of supe

alized

ol

for my $stu (@{S$teacher_prefs{$tea}}) {
my $is_present = o ;
for my $j (@{$match{$teal}}) # ¢«

to teacher

if (stu eq j) {$is_present = i};
}
if ($is_present) {

if ($cur_capacity > @) {

to apr

TE

iy to and

according to th

$cur_capacity--;
push@new_match, $stu;

}
else
{
$assigned{$stu} = ©;
$some_unassigned = ;
}

}
@{$match{$tea}}= @new_match;

print "After rejections by teachers we have:\n";
print_matching(@teachers,%match);

return %match;

}

Due to the nondeterminism, the matching produced will differ depending on how the
initial preference profiles of students and supervisors were completed. For this reason, I
usually run the program 1000 times and see which matching is best in terms of minimizing
the number of total mismatches, i.e., the number of student-supervisor pairs (s, S') where
& did not mention § in her initial preference list and S did not mention § in her initial
preference list either. Those pairs will be listed explicitly by the algorithm, and together
with a colleague I look at these cases to see whether these cases present real problems. In
some cases, the problem will have arisen because a student applied late and did not submit
any preference list and hence also the supervisors did not take this student into account
when submitting their preferences. Hence, the application of the algorithm comes down to
a combination of deterministic algorithm, nondeterministic preference completion, and

human interpretation and selection of the results produced by the algorithm.

Conclusions

There are a number of lessons I learned from working on this problem. First, when applied
to actual situations, algorithms often need to be modified and complicated to take account
of all the relevant features of the situation. Second, such a complication can (and I suspect

often will) lead to the loss of nice theoretical properties which the original algorithm had.

Third, practice has the tendency to lead to an ever increasing series of complications of
initially simple algorithms, which leads not only to a loss of nice theoretical properties but
also to a loss of transparency, the understandability of the algorithm decreases. Having
said that, my impression is that my colleagues do consider the current situation of
alogrithmic matching an improvement over the initial situation where this process was not
centralized. So while algorithmic justice leaves many things to be desired, there are
situations where it can improve the world we live in. A hopeful message to end with in a

Festschrift devoted to coding. Thank you, Jan!

Further reading

Jan van Eijck has edited a volume on games, actions and social software (van Eijck
&Verbrugge, 2012), which gives more food for thought concerning some of the issues that
came up in this contribution. In this volume, there is also an article by Rohit Parikh and
myself (p.3-13) that introduces the notion of social software. Also, this article discusses
another practical two-sided matching problem, the problem of the Stanford Housing Draw

where students need to be matched to dormitories.

Another practical example of a social software problem is designing the competition
schedule of sports tournaments. At the 2012 London Olympics, strategic play led to the
disqualification of badminton teams. In order to meet a supposedly easier opponent in the
next round of a round-robin tournament, these teams both wanted to lose rather than win
their match. While this led to hilarious badminton, the public felt cheated. This raises the
question whether it might not be possible to design a tournament schedule that avoids all
possibilities for strategic manipulation. Besides the paper containing the technical result
(Pauly, 2014), there is also a more accessible exposition of the problem and the result
(Pauly, 2015). As it turns out, the technical result involves a computer-assisted proof: At
some point in the proof, a C-program is used to verify that of the 65,536 possible functions
to consider, none has a particular combination of properties. The program can be accessed

at this link.

References

van Eijck, J. & R. Verbrugge, eds. (2012). Games, Actions and Social Software:
Multidisciplinary Aspects. Heidelberg,Germany: Springer.

Gale, D. & L. Shapley (1962). College admissions and the stability of marriage. American
Mathematical Monthly 69:9-15.

Nielson, H.R. & F. Nielson (1992). Semantics with Applications: A Formal Introduction.
Chichester, UK: Wiley.

Pauly, M. (2005). Programming and Verifying Subgame-Perfect Mechanisms, Journal of
Logic and Computation 15(3): 295-316.

Pauly, M. (2014). Can strategizing in round-robin subtournaments be avoided? Social
Choice and Welfare, 43(1):29-46.

Pauly, M. (2015). Winning Isn't Everything: How Sports Competition Rules Can Make
You Want to Lose, The Mathematical Intelligencer, 37(3):66-71.

A conversation on money

R Ramanujam

December 2016. A logician, a philosopher and a computer scientist are travelling by car
from Chennai to Tiruvannamalai in southern India. All of them are European and terrified
by the Indian highway. The only way the travellers can keep sane is to keep their minds

occupied. As it happens, there is something that is bothering them: money.

Philosopher: Did you know before you left home that getting hold of cash would be a big

problem in India?

Logician: 1 did, and a fat lot of good it did me. But I realised I better find some cash at the
airport as soon as I landed, be it at 3 AM. And I managed to get cash too!

Computer Scientist: 1 had heard, but thought it mattered little since I could use my credit
card. And what happens when I try the card here? The connectivity is no good and the

connection keeps getting timed out.

Logician: All this because the Indian government announced one day last month, out of
the blue, that the 500 and 1000 rupee currency notes would be worthless from that day.
Given that 85 percent of circulating cash was in these notes, it demonetised the economy

in one stroke.

Computer Scientist: People have until year-end to change the notes they have, but the
queues in banks are horrendously long, and most ATMs are dead. Naturally, since printing

the new notes and getting them to banks is a logistical nightmare.
Really, if our societies would get used to digital cash, all these problems would disappear.

Philosopher: The trouble is that we tend to think of money as a thing, that we can possess.
It is not only something to use, but also something to have. Digital money is fine for using,

but I am not sure human beings will be happy to lose the element of possession.

Logician: Currency notes are mere statements of contract. How does having currency

notes give you the sense of possession you refer to?

Philosopher: Good question. We tend to think of money as a projective space, as a means
of linearly ordering the value of all goods—material goods, at least. This is important for
trading so that rather than exchanging a cermaic vase for a table, we can talk trade using

monetary value. Unfortunately, the abstraction then starts applying to non-material goods,

like labour, and then it becomes a thing in its own right.

Computer Scientist: But we now have cryptocurrencies like the bitcoin. These are
spontaneously generated, simply by evidence of work. After that it is all blockchains of

transactions.

Logician: You are saying that a currency note is simply a historical record of all the
transactions it has been used in, are you? The central bank spontaneously generates its

value, and afterwards its further value is determined by the transactions it participates in.

Computer Scientist: Yes, but not quite. This applies only to the money value that the
currency note carries, not to the currency note itself. The note is exchangeable with

another freshly issued by the bank, one that carries no history.
Philosopher: So then we are back to the original question. Is money a thing?

The driver asks if they would like to stop for a coffee. They would, but nobody has
anything smaller than a 2000 Rupees note, and the driver is not sure whether the small
coffee place would take credit cards. They stop anyway, but the credit card payment is

unsuccessful.

Computer Scientist: I am really puzzled why the card didn't work. Ah I am getting internet

connection on my phone, let me check

Ohmygod, my bank has sent a message that they have blocked my card since they were
getting a suspicious transaction request! Now I have neither cash nor a usable card! I will

also need to make an international call to unblock it.

Philosopher: Currency does not need trust but credit does. Banks, as holders of trust, are
naturally distrustful. (Laughter. Computer scientist gives a dirty look.) Oh sorry, I hope

your card gets activated soon.

Logician: Interesting. We have talked of money as a thing, as value, as history, as a trust-
carrier. Is it all of these in some haphazard manner, or is it an abstraction that somehow

underlies all this?

Computer Scientist: It is mainly an enabler of economic transactions.

Philosopher: That is a very interesting formulation. It enables not only economics but also

social status, pride, distrust, many such things.

Logician: Rohit Parikh makes a plea for social software, an enterprise that tries to figure
out the software underlying society. Money is of course a crucial component of such

software.
Computer Scientist: With currency being the hardware? Isn't that too simplistic?

Philosopher: We are looking for an abstraction that enables and shapes the functioning of

society.

Logician: Yes, an abstraction that can then be also manipulated in its own right.
Computer Scientist: That is easy, that is exactly what we call a data structure !
Logician: This is very interesting. Money as data structure underlying social algorithms?

Philosopher: Yes, I agree. Thinking of money as a structuring device is useful. It helps to
explain how algorithms in society create value as well as measure value using it, and how
the structure carries memory of transactions. But how can a data structure reflect epistemic

attitudes and social status?

Computer Scientist: One basic feature of a data structure is that it is essentially defined by
what operations are allowed on it. A queue and a stack are similar, but the former is first-
in-first-out and the latter is last-in-first-out. It carries social memory, but how that memory

is accessed and updated is what we need to understand.

Logician: That it is collective memory is important, I think. This is shaped by what each

person knows, what each knows about the other, what is common knowledge in society...

Philosopher: You have got knowledge, dynamics, data structures, social algorithms...

Aren't we entering Jan van Eijck territory?

The driver informs them that they are reaching Tiruvannamalai, where Jan has reached

previously and is even now climbing the hill.

True Lies and True Love

Hans van Ditmarsch, Ji Ruan, and Yanjing Wang

The famous Zen master Gaiarosa wants to make two friends Heleen and Jan attend a
Buddhist meditation retreat. She knows that they are dying to get close to each other. Thus
one will come if and only if (s)he believes that the other will come. Obviously, they do not
yet wish to admit this to each other, because they are uncertain about each other's
feelings. Given the uncertainty about the other attending, both in fact intend not to go to
the retreat. Gaiarosa now lies to Heleen that Jan will come to the retreat and she lies to
Jan that Heleen will come to the retreat. As a result, they both come to the retreat, declare
their love to each other (in between meditation sessions), and live happily ever after.
Sadly, shortly afterwards Gaiarosa passed away, but in her next incarnation, she was

reborn as twins.

Introduction

You lie if you say something that you know to be false with the intention to make the
listener believe that it is true. This analysis of lying goes back to Augustine [2], and every
serious work on lying, including Jan van Eijck's [17], starts with this citation. Lying has
been a thriving topic in the philosophical community [12, 5, 9], and typically more recent
modal logical analyses that can be seen as a continuation of this philosophical tradition
include [3, 13, 7, 17, 11, 8, 15]. In modal logics with (only) belief operators one cannot

model the intentional aspect of lying.

How do we model a lie in a dynamic epistemic logic? In dynamic epistemic logic a lie is a
dynamic operation (with a corresponding dynamic modality) transforming an information
state (that encodes the beliefs or the knowledge of the agents) into another information
state (wherein they may consequently have different beliefs or knowledge). In truthful
public announcement logic [10] we cannot announce something false thus making it true.
The announced formulas are supposed to be true. "Truthful' is actually a misnomer, new
information is simply assumed to come from an outside, reliable, source. Or, rather more
precisely: in this logic we only model the consequences of incorporating new information

abstracting from the process that made it reliable in the first place. So in truthful public

announcement logic we cannot model that the source of information is unreliable (because
an agent is mistaken or lying). In an alternative semantics for public announcement logic,
that of conscious update [6], and that is also known as believed (public) announcement
logic, the announcement of a formula is independent of its truth. In that logic, we can call
an announcement a lie if the announced formula is false. The term 'lie' is justified because
the observing/listening agents consider this false announcement to be true, and may

therefore incorrectly revise their beliefs. This analysis of lying has been pursued in [17].

What is missing in this analysis of lying in dynamic epistemic logic is that the announcing
agent itself is not modelled: in [17], a lie is simply an announcement that is false, not an
announcement that is believed to be false by an announcing agent. But there is a solution
for that. In public announcement logic, it is common to model the truthful announcement
that ¢» by agent @ who is modelled in the system, as the truthful public announcement of
'agent a knows ¢'. This analysis also extends to believed public announcement logic and
to 'agent a believes ¢)' (knowledge and belief are both formalized in our setting as [1, ¢).
A precondition for that epistemic action should then be that agent a believes —¢)
(formalized as [1, —¢)). Still, the lie that ¢) by agent a cannot simply be the believed
public announcement of [1, ¢, because agent a is also addressing herself with that
announcement and surely does not believe her own lie. In a variation on the [17] semantics
for lies in believed announcement logic, a lie by agent a to agent(s) |, can then be
modelled as an epistemic action wherein agent }, believes that a truthfully informs him of
¢», whereas agent a herself does not change her beliefs. This agent lie (from a to })) is
presented in [15]. In this setting, agent a is lying, when saying ¢> but believing —¢ (thus,
the precondition for the action is [1, —¢5), whereas agent a is telling the truth (is truthful),
when saying ¢» and believing ¢ (thus, precondition [], ¢»). A third option in this setting is
when agent a is saying ¢, and thus acting as if she believes ¢, but really is ignorant about
¢»: such an action has precondition (L, ¢ /L],). We can call that bluffing. When
modelling individual agents lying to other agents, we can thus distinguish agents that are
lying from agents that are bluffing or agents that are truthful (or more, such as
randomizing agents saying anything whatsoever based on throwing a dice). This approach

wherein different types of agents behave in different ways is pursued in [8].

Among public lies there are different sorts of lies. First, let the lie ¢) be that of a
propositional variable p. In believed public announcement logic, a public lie that p, with
therefore precondition that p is false, results in the agents incorrectly believing that p is
true. So, before the lie that ¢, ¢ is false, and after the lie that ¢, ¢ is still false. Now

consider a public lie that pp '/ |p. Consider a model with designated state (a pointed

Kripke model) wherein the negation of this formula is true: —~p / — Ip, and such that the
agent considers it possible that p, so the model contains accessible p-states. If this a

K D45 model (a Kripke model wherein all accessibility relations are serial, transitive, and
euclidean; which is said to encode the beliefs of agents with consistent beliefs), then none
of the accessible states satisfy [1p. The result of the believed public announcement that

p % pin our model will therefore only preserve accessibility links to p states, such that
after this update [Ip is true in the designated state, and therefore p v . _p. So, in this case,
where ¢» = p */ [Ip, before the lie that ¢, ¢ is false, and after the lie that ¢, ¢» has

become true. One can call this a true lie. This is investigated in [1].

The lie by Gaiarosa to Jan and Heleen can be viewed as a true lie in general, since it
eventually makes the lie true. However, it is a true lie of a different sort than the above,
and on two counts. Firstly, it is not a public lie, to all agents, but a private lie (namely to
Jan only, or to Heleen only). Secondly, it involves agents changing their mind (namely
Jan, and Heleen), which in dynamic epistemic logic is modelled as ontic change, i.e., as an
assignment of different values to certain variables. And apart from that, this assignment is
done in private: Jan changes his mind without Heleen knowing, and vice versa. Only the
combination of these various events can be interpreted as making something true by lying
about it. Such more complex epistemic actions can most elegantly be modelled in action
model logic [4], such that we can eventually model check their consequences in Jan van
Eijck's DEMO [19].

Action model logic

In this section we present action model logic (with factual change). Its language,
structures, and semantics are as follows. For more details, see [4, 14, 16] (our presentation
follows [16]). Given are a finite set of agents ,4 and a countable set of propositional

variables J°.
The language /£ is inductively defined as
du=pl|l d|(¢Nrd) ULs,p M,s|pwherepe P,q ¢ A,

and where epistemic action (M, s) is defined below (and assumed to be simultaneously
defined with the language). Other propositional connectives are defined by abbreviation.
For[1, ¢, read 'agent a believes formula ¢». If there is a single agent only, we may omit

the index and write [¢ instead. Agent variables are a, b, ¢, For M, s|t/, read after

execution of epistemic action (M, s}, 4. If [], —¢, we say that ¢ is unbelievable (for)
and, consequently, if =[], —¢, for which we write {},, ¢, we say that ¢ is believable (for a

). This is also read as 'agent a considers it possible that ¢J.

We continue by defining the structures. An epistemic model A - (S, R, V') consists of
a domain § of states (or 'worlds), an accessibility function R : A-+P(S = §), where
each [?(a), for which we write R,,, is an accessibility relation, and a valuation

V. P-»P(S), where each V(p) represents the set of states where p is true. For ¢ < §,

(M, s) is an epistemic state.

An epistemic state is also known as a pointed Kripke model. We often omit the
parentheses in { M/, s). Without any restrictions we call the model class fC. The class of
models where all accessibility relations are transitive, euclidean and serial is called

K D45, and the class of models where all accessibility relations are equivalence relations
is §5. Class) 345 is said to have the properties of belief, and S5 to have the properties
of knowledge.

each R(a), for which we write R, is an accessibility relation, a precondition function
pre : S — [, that assigns to each action its executability precondition, and postcondition
function post : S —+ P -» L, where it is required that each post(s) only maps a finite
subset of all atoms to a formula. For T C S, (M, T) is an epistemic action (or multi-

pointed action model). For (M, {s}) we write (M, s).

For epistemic models and for action models we assume the usual visual conventions for
JC D45 models: all directed arrows point to clusters of indistinguishable nodes for that
agent (i.e., for all states ¢ = S'and ¢ = 4, (s, s) ¢ R, unless there is astate { « §
such that (s, ¢) ¢ R, but (¢, s) ¢ I?,); where a cluster is a set of indistinguishable
nodes, such that transitivity, reflexivity, and symmetry can be assumed: instead of directed
arrows it suffices to connect indistinguishable nodes with undirected arrows, i.e., links. In

the next section we use such visualizations.

Assume an epistemic model Af — (.5, I?, V'), astate ¢ = S, an action model
M - (S,R, pre, post) with an action 5 £ S. The interpretation of formulas ¢» & £ is

defined by induction (simultaneously with that of action model execution).

M,skE=p it seV,

M,s = —¢ iff M.s ¢

MsEony il MskEdand M,s=vy

M, skED,0 iff forall teS: R,(s,t) implies M,t = ¢
M, s = [M.sly iff M, s = pre(s) implies M @ M, (s,s) = v

where AMf &2 M = (§', R', V") (known as update of \{ with M, or as the result of
executing M in Af) is such that S = {(s,s) | M, s = pre(s)}; ((s.s), (¢, 1)) = R,
iff(s,t) ¢ R, and (s,t) € R,;and (s,s) ¢ V'(p)iff M,s - post(s)(p) forall p
in the domain of post(s), and otherwise (s, s) © V'(p) iff s © V(p). The semantics of
multi-pointed action models is (purely for convenience) defined by abbrevation as

M,s b M Tiff (foralls ¢ T, M, s = [M,sly).

Throwing all further explanations and justifications to the wind, we can now define the
action models corresponding to the epistemic actions already referred to in the informal
introductory section and that will be used in the continuing analysis of the story on true

lies and true love.

Consider an epistemic action (M, T), where M - (S, R, pre, post). We distinguish the
following types of epistemic actions. Obviously, postconditions for actions (partial
functions) are only specified on their finite domain of propositional variables, that also

may be empty.

(continued on next page)

True Lies and True Love

Hans van Ditmarsch, Ji Ruan, and Yanjing Wang
(continued from previous page)

e private lie that ¢ to agent a

S {s,t,u}and T ~ {t}; R, = {(t,s),(s.s),(u.u)} and forall
be A {(l-}, Rf' {(S, U)_, (tu U) (U-. U)}; prE(S) =z o, pi’E(t) ag'), and
pre(u) = T.

o public assignment that variable p becomes ¢»
S v T oo {S}; R” {(.S.._ S)} for all ae 14; pre(s) T; pOSt(S)(})) fJ

e private assignment for agent « that variable p becomes ¢» (agent @ changing her

mind)

S {s,t}and T == {s} R, = {(t,t),(s,s)},and R}, = {(s,t), (t,t)} forall
be A {a}; pre(s) = pre(t) = T; post(s)(p) = ¢and post(t)(p) = p.

e lie that ¢ by agent a

S = {s,t,utand T = {t}; R, = {(t,t),(s,s),(u,u}}, and
R, = {(t,s).(s,s).(u,s)}forallb ¢ A% {a}; pre(s) = _, ¢,
pre(t) = L1, ~@, pre(u) = (1, ~¢ v L1, ¢).

e private announcement of ¢» to agent «

S {s,t}and T = {s} R, = {(s,s),(t,t)},and R, = {(s,t), (t,t)} forall
be A {a}; pre(s) = ¢and pre(t) = 7

e truthful public announcement of ¢»

e believed public announcement of ¢

S=T={s.th R, = {(t,s),(s,s)} forallqg = 4;pre(s) = ¢ and
pre(t) = o

e public lie that ¢>

S = {s,t}, T = {t}; R, = {(t,s),(s,s)} forallg = A;pre(s) — ¢ and
pre(t) = ¢

Only the private assignment for agent & and the private announcement to agent ¢ will be
used in the continuation (and their meaning may only become intuitively clear in that

continuation).

Private lies and private assignments

We recall the introductory lying story about true lies and true love. What Gaiarosa tells to
Jan and Heleen can be considered an example of a true lie, because when Gaiarosa is
telling to Heleen that Jan plans to come, in fact Jan is not planning to come, and when she
is telling to Jan that Heleen plans to come, in fact Heleen is not (yet) planning to come.
(For modelling convenience we assume that Heleen is slow in making up her mind after
Gaiarosa informs her about Jan.) After that, they both change their mind, and both lies

have become true.

For an initial model, we assume that Heleen and Jan know of themselves whether they
intend to go to the retreat but do not know it of the other one (and that this is known, that
this is the background knowledge). This comes with the following model, wherein solid
access represents the uncertainty of Heleen and dashed access represents the uncertainty of
Jan, and where worlds are named with the facts r;, (‘Heleen comes to the retreat') and 7*;
(‘Jan comes to the retreat') that are true there, where ()] stands for '7j, is false and 7' is
true', etc. The designated point of the model is boxed: initially both do not intend to go to

the retreat.

LI | = mmimnm 10

Gaiarosa now lies to Heleen, in private, that Jan goes to the retreat. For the convenience of
the reader informed about action model logic, we can model this as a three-pointed action
model as follows, on the left—where for convenience we have put the similar private lie to
Jan about Heleen next to it, on the right. (We recall that we consequently use the }C45

visualization where for all states x, (z, z) ¢ R, unless there is a state ¥ such that

T T

i | ——7; |- > Th

-y -
- g - -

- - - - - -
o - - ~

00" (11 R ' P

Now Gaiarosa lies privately to Jan that Heleen goes to the retreat. The result of that action
is shown in Figure 1. For the convenience of the reader we also depict (on the right) the

restriction of this model to the submodel generated by the point 00.

[00]" 1077

210 BT

Figure 1: The resulting model after two lies and its generated submodel under bisimulation
\label{modelresult:twolies} This model formalizes that: Heleen is not going to the retreat,
believes that Jan goes to the retreat, and believes that Jan is uncertain whether she goes to
the retreat; and that: Jan is not going to the retreat, believes that Heleen goes to the retreat,
and believes that Heleen is uncertain whether he goes to the retreat. See the DEMO
implementation in the next section. We now let first Heleen and then Jan change their
mind. Heleen changing her mind can again be formalized as an action model, namely as a
private assignment to Heleen; and similarly, Jan changing his mind as a private assignment
to Jan. It is important here that a *public* assignment is an improper way to formalize this
action: a public assignment of Heleen going to the retreat if she believes that Jan goes to
the retreat would be informative to Jan in case he were to believe that she believed that he
was going to the retreat. Because in case he was uncertain if she would go to the retreat, he
would then learn from this public assignment that she would come to the retreat for his
sake. Boring. Because exactly the absence of this sort of knowledge of the other's
intentions makes first lovers' meetings so thrilling. That kind of uncertainty should *not*
be resolved. Therefore, we formalize it as a private assignment. Interestingly, in the
current model the result of a public and of a private assignment (the result of Heleen
privately changing her mind or publicly changing her mind) is the same. But that is
because both Heleen and Jan believe that the other is uncertain whether they go to the
retreat. We will of course again corroborate this in DEMO. Below on the left is the action
model for Heleen changing her mind, and on the right, the one for Jan changing his mind.
(So, for example, according to our conventions, in the left action model the solid relation,
that of Heleen, has identity access, and the dashed relation, for Jan, has only a reflexive

arrow in the point that the dashed arrow is pointing to.)

L R R > T rj = 051y > T

We now depict in Figure 2, from left to right, once more the model before they change
their minds, the model resulting from executing the action of Heleen changing her mind,
and the model resulting from Jan changing his mind, where once again we restrict the

actually resulting models to the point-generated subframes.

01 ===# QL =====~ 11 L1 vt [= e 11 11 ===# 01 ====== 11

00 --=vn 10 00 ------ 10 00 --=---. 10

00]---------~-- » 10 Helgen |10]---=--==-=-- 210 gan [11]-------mn--- > 11
= =

Figure 2: The models before and after Heleen and Jan changed their minds Now that
Heleen and Jan have changed their minds, the lies have become the truth! They both go to
the retreat, and they both expect the other to be surprised to find them at the retreat.[/2]
They declare their love to each other and they both live happily ever after. We conclude
this section with two further technical observations on the model constructions and the
analysis. Firstly, one can imagine Heleen already changed her mind before Gaiarosa
informs Jan that Heleen is going to the retreat—in which case Gaiarosa would no longer
have been lying. But that is a modelling artifact. To avoid such a scenario we simply
assume that Gaiarosa simultaneously sends two *letters* to Heleen and to Jan containing
the lies. At that moment both are indeed lies. Then again, the information change affected
in Heleen and Jan depends on the moment the letter is opened... It does not greatly matter:
Heleen changing her mind can be modelled both before and after Gaiarosa talking to Jan.
But lying twice is far more interesting than lying once only. Secondly, as mentioned, when
executing the private assignments we restricted ourselves to point-generated subframes.
Without that restriction, for example, based on the model on the left above, the model in

the middle above would look as follows:

-

Y -

1" ot 1177 01 ---301 -----2 11
00" 107 TR0 -----2 10
0] 10 Off »=smnmenusness L)

Clearly the simplified visualization is better.

DEMO implementation

We implement the above modelling and verify the proposed properties in the DEMO
(short for Dynamic Epistemic MOdelling) [19], which is a model checking tool developed
mainly by Jan van Eijck, with contributions from his students since 2004. Our code runs
on a slightly modified version of DEMO Light [18] and the Glasgow Haskell Compiler
GHC, version 8.0.2.

Here is the declaration of the module.

module Truelieslove where

import Data.lList

import ModelsVocab hiding (m@)

import ActionVocab

import ChangeVocab hiding (public, preconditions, voc)
import ChangePerception

We first define two special agents h and j and the atomic propositions that
representing their come to the retreat. We omit the Zen master Gaiarosa as her knowledge

and belief are not the focus of the modelling.

i, heleen, j, jan :: Agent
i = Ag ; heleen = Ag =
P = Ag ©; jan = Ag ©

rh, rj :: Form
PR = Prp (RH) - this renreqents Helesen coames
ri = Prp (RJ) -- this re {

The initial epistemic model is defined as mode .

modd = (Mo [#. . 2] [h,j] [RH, RJ] val accs points)
where
val = [(¢,[1), (5, [RIT), (7, [RH]), (%, [RH,RI])]
accs = [(hlxly) I X <= [IEIZ]I y &= [l]] +*

[(h,x,y) I X <= [\I{]I ¥ = [I:]] ++
[, xy) | x <= [8,2], vy <- [8,2]] ++
[(G,xy) | x <= [3,5], ¥y <- [i,%]]

points = [¢]

The private lie to Heleen that Jan goes to the retreat is encoded in the action model

amlie2h .

amiisZh :: FAM State
anliezh ags = Am [0, 1, 7] ags [(%, (Neg rj)), (1,r3), (7, Top)]
[(h,&,2), (h,1,1), (h,2,2), (3,9,2), (3,%2), (3,2,2)] [®

| - 3]

The private lie to Jan is encoded in action model amlie2j in a similar fashion.

it i :: FAM State
wlie2j ags = Am [¢,1,2] ags [(¢,(Neg rh)), (i,rh), (2, Top)]
[(3,20), (3,0,0), (3,2,2), (hyo,2), (h,5,2), (h,2,2)] [

d]

The resulting epistemic models of two lies are then kept in mod1 and mod2 . The

corresponding mod1' and mod2' are the submodels generated under bisimulation:

up mod@ amlie2h
bisim modi
up modl' amlie2j
bisim mod2

The following shows mod2' , which corresponds to the generated submodel in Figure 1.

*Truelieslove> mod2'

Mo [0,1,2,3,4,5,6] [h,j] [rh,rj]

(o, 1, (,01),(2,[ril),(3,[ri1), (4,[rh]1), (5, [rh1), (6, [rh,ril)]
[(h,0,2),(h,1,1),(h,1,3),(h,2,2),(h,3,1),(h,8,8),(h,4,5),(h,4,6),(h,5,5),
(h,5,6),(h,6,5),(h,6,6),(j,0,4),(3,1,1),(3,1,5),(3,2,3),(3,2,6),(3,3,3),
(3,3,6),(3,4,4),(3,5,1),(3,5,5),(3,6,3),(3,6,6)] [0]

We formalize in heleenbelief the following statement "Heleen is not going to the
retreat, believes that Jan goes to the retreat, and believes that Jan is uncertain whether she
goes to the retreat". Similarly we have janbelief for Jan. Here the operator K

represents belief as it is interpreted over ${\mathcal KD45}$ models.

Conj [Neg rh, K h rj, K h januncertain]
conj [Neg rj, K j rh, K j heleenuncertain]

A
%
1l

Neg (Disj [(K j rh), (K j (Neg rh))])
Neg (Disj [(K h rj), (K h (Neg rj))])

We verify that the above two properties are both true in the model mod2 . The results with

respect to mod2' are the same due to bisimulation.

*Truelieslove> isTrue mod2 heleenbelief
Just True

*Truelieslove> isTrue mod2 janbelief
Just True

*Truelieslove> isTrue mod2' heleenbelief
Just True

*Truelieslove> isTrue mod2' janbelief
Just True

We now turn to the mind changing actions. The following action model acm4h encodes

that Heleen changes her mind privately, and acm4j encodes Jan's private mind changing.

.. FACM State
v ags = Acm [, 1] ags [(“, (Top, [(RH, K h rj)])), (,(Top,[]))]
[(hr‘r”)l(hl IE)I (jlfl‘)l (jlil)] [“]

:: FACM State
4j ags = Acm [©,:] ags [(%,(Top, [(RI, K h rh)])), (7, (Top,[1))]
[(3+6,9): (J+Lst)s (h;8,1), (h,31,%) 1 [®]

The resulting epistemic models from these two actions are kept in mod3 and mod4 .
Their generated submodels mod3' and mod4' refer to the second and third models

depicted in Figure 2.

upc mod2' acm4h
bisim mod3

upc mod3' acm4j

bisim mod4

Both Heleen and Jan now believe that the other comes to the retreat. But Heleen believes
that Jan does not believe that she plans to come, and further more, she believes that Jan
believes that Heleen is uncertain whether Jan comes. This can be encoded in the following

formula heleenbeliefnew . Similarly Jan's belief is encoded in janbeliefnew .

Conj [K h rj,Kh (Neg (K j rh)),K h (K j heleenuncertai

janbeliefnew = Conj [K j rh,K j (Neg (K h rj)),Kj (K h januncertain)]

We can verify that they are both true in mod4 .

*Truelieslove> isTrue mod4 heleenbeliefnew
Just True

*Truelieslove> isTrue mod4 janbeliefnew
Just True

Acknowledgements

We dedicate this little piece of analysis to Jan van Eijck, in grateful acknowledgements for

many different interactions over many years.

e Hans van Ditmarsch recalls Jan van Eijck from an ESSLLI summer school in
Barcelona, in 1998, where he was impressed by Jan going around on a bicycle (and
where Jan still had a mop of black curly hair; those were the days), and he recalls that
this bicycle later was stolen. However, we did not really know each other at that time,
I think. Not so long afterward, it must have been in 1999 (or maybe even before
ESSLLI, it is all mixed up in my mind), we had a joint meeting in Johan van
Benthem's office at ILLC (at Plantage Muidergracht), at a time when I was much
struggling with my PhD. Jan then made the memorable statement that I had learnt
swimming but apparently was afraid to plunge and go for it, and kept standing on the
shore or hold my hands to the railing while in the water. No progress! Well,
something to that effect, in Dutch, involving fear of flying and swimming. He was
right! Shortly afterwards, I plunged. Since then, we have collaborated on many
occasions (a shared ESSLLI course, publications on the riddle of 100 prisoners, the
Logic in Action project, two Lorentz Center workshops, etc., etc.). Last but not least,
[have also been Jan and Heleen's guest on many occasions, both in Amsterdam and
in Lavidalle (arriving, of course, on bicycle), which has always been greatly

stimulating for my musical state of mind. Thanks to you both! To all four of you!

e Ji Ruan was introduced to Jan by Johan van Benthem when Ji was working on his
master thesis in 2004. I became very interested in Jan’s DEMO project and we
worked on a structural characterization of two action models being equivalent. Jan
was the person leading the direction and I felt very fortunate for being inspired and
encouraged by him. On finishing my thesis, Jan then introduced me to Hans van
Ditmarsch, who at the time was working at University of Otago in New Zealand.
Hans subsequently supported me to work with him in Otago for three months, and
that was my first time to the home of middle-earth, as a fan of The Lord of the Rings!
Like Hans, I have also been Jan and Heleen’s guest on several occasions, when Gaia
and Rosa were still little. I really enjoyed the time with you and the homemade dutch
soups were tasty. Now that I live and work in Auckland, you will be my guest if you

visit this beautiful country someday.

e Yanjing Wang did his Ph.D. with Jan, but he met Jan for the first time long before that
(and it was actually due to Ji). On the second day after I arrived in Amsterdam for my
master study in 2004, Jan kindly helped Ji to move (lots of stuff) to my place by his
car. Both Ji and I were clearly last-minute people, in particular on that day, but Jan
has been such a patient and optimistic person, who encouraged and helped us in all

kinds of moves in our lives. I still remember vividly that after my Ph.D. interview,

Jan took me to one of those coffee machines at CWI and proposed to share an Earl
Grey tea bag with me (my first time to share that!). Indeed, in the next couple of
years, we shared much more than tea. Besides work, I especially enjoyed the
philosophical conversations with Jan and Heleen in their lovely house. Even after my
Ph.D., we still witnessed many important moments in each other's lives. I am looking

forward to hearing exciting stories from Jan after his moving to a new stage of life.

E. This is a story adapted from an example in [1]. «

5
“. In the actual world 11 of the third model in Figure 2, Heleen believes that Jan does

not know that she plans to come, and vice versa for Jan, although they both in fact

believe that the other is coming. <

References

[1] T. Agotnes, H. van Ditmarsch, and Y. Wang. True lies. Synthese, 2017. to appear.

[2] St. Augustine. De Mendacio. In P. Schaff, editor, A Select Library of the Nicene and
Post-Nicene Fathers of the Christian Church, volume 3. Eerdmans, 1956, 1988.

[3] A. Baltag. A logic for suspicious players: Epistemic actions and belief updates in
games. Bulletin of Economic Research, 54(1):1-45, 2002.

[4] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announcements, common
knowledge, and private suspicions. In Proc. of 7th TARK, pages 43—56. Morgan
Kaufmann, 1998.

[5] S. Bok. Lying: Moral Choice in Public and Private Life. Random House, New York,
1978.

[6] J.D. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal of

Logic, Language, and Information, 6:147-169, 1997.

[7] B. Kooi and B. Renne. Arrow update logic. Review of Symbolic Logic, 4(4):536-559,
2011.

[8] F. Liu and Y. Wang. Reasoning about agent types and the hardest logic puzzle ever.
Minds and Machines, 23(1):123-161, 2013.

[9] J.E. Mahon. Two definitions of lying. Journal of Applied Philosophy, 22(2):21-230,
2006.

[10] J.A. Plaza. Logics of public communications. In Proc. of the 4th ISMIS, pages 201—
216. Oak Ridge National Laboratory, 1989.

[11] C. Sakama. Formal definitions of lying. Proc. of 14th TRUST, 2011.
[12] F.A. Siegler. Lying. American Philosophical Quarterly, 3:128-136, 1966.

[13] D. Steiner. A system for consistency preserving belief change. In Proc. of the ESSLLI
Workshop on Rationality and Knowledge, pages 133—144, 2006.

[14] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change.
Information and Computation, 204(11):1620-1662, 2006.

[15] H. van Ditmarsch. Dynamics of lying. Synthese, 191(5):745-777, 2014.

[16] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic, volume

337 of Synthese Library. Springer, 2007.

[17] H. van Ditmarsch, J. van Eijck, F. Sietsma, and Y. Wang. On the logic of lying. In
Games, Actions and Social Software, LNCS 7010, pages 41-72. Springer, 2012.

[18] J. van Eijck. Demo light for composing models. Technical report, CWI, 2011.

[19] J. van Eijck. DEMO—a demo of epistemic modelling. In J. van Benthem, D. Gabbay,
and B. Lowe, editors, Interactive Logic—Proc. of the 7th Augustus de Morgan Workshop,
pages 305-363. Amsterdam University Press, 2007. Texts in Logic and Games 1.

Hintikka's world

Frangois Schwarzentruber

Abstract

We present an online software for playing with higher-order knowledge of agents.
Playgrounds (muddy children, Sally and Anne, etc.) are described in Dynamic Epistemic

Logic.

1 Introduction

Higher-order knowledge of agents is relevant in many applications: game theory [3],
robotics ([14], [9]), specifications of distributed systems [11], etc. Dynamic Epistemic
Logic (DEL) ([4], [17], [16]) extends epistemic logic ([13], [12]) for describing and
reasoning about epistemic properties and information change. Recently, model checking in
DEL has been proven to be possible in practice [18] via the tool DEMOj', even in with
symbolic techniques [15].

Nevertheless, none of these tools have a graphical interface that may be used by
roboticians, game theorists, psychologists, etc. In this paper, we present such a tool called

Hintikka's world along the lines of Tarski's world [5] and Kripke's worlds [10].

Section 2 presents the graphical user interface. Section 3 explains the architecture of the
software and how new examples can easily be implemented. Section 4 discusses the

perspectives.

2 Graphical user interface

Figure 1 shows the graphical user interface of Hintikka's worldz. The example taken here
is the muddy children where two agents a and b are muddy and it is common

knowledge one sees the state of the other agent while not knowing its own state.

Figure 1: Graphical user interface of *Hintikka's world*

By clicking on agents, the interface shows the possible worlds for that agent and it shows

the unfolding of the current pointed Kripke model that models the current situation.

On the right, the software shows buttons for possible actions (public announcement, public
actions, private actions, etc.). Actions are modeled by pointed event models. By clicking
on a button, the corresponding action is executed: the product of the pointed Kripke model

and the pointed event model becomes now the current pointed Kripke model.

3 Architecture

Figure 2 shows the main part of the architecture of Hintikka's world. The interesting part is
the fact that the graphical user interface (GUI) is independent from the current example
that is running (muddy children, Sally and Anne, etc.). In particular, adding a new
example only requires to add a new class that inherits from world and to implement the

method for drawing the scene from data (valuations, numbers, etc.) that are members of

the class.
Graph
GUI EpistemicModel EventModel
1 *
*
1
World
MuddyChildrenWorld Sally And AnneWorld

Figure 2: Architecture of *Hintikka's world*

4 Perspectives

Improving the reasoning tool inside Hintikka's world.

We believe that Hintikka's world should embed the model checker DEMO ([18], [15]). We
also want to extend the tool by implementing algorithms for epistemic planning (even
bounded epistemic planning because epistemic planning is undecidable in the general case

([6], [2], [7])) and arbitrary public announcements, also in the succinct cases ([8]).

Improving the graphical user interface.

By clicking on agents, the interface shows some possible worlds. We want to implement
heuristics for displaying the most relevant epistemic worlds when there are too many

possible worlds for a given agent.

Applications of the tools.

We plan two kind of applications. First, the tool may help children for learning to reason
about higher-order knowledge (see [1]). Secondly, the tool may be an interface for

displaying mental states of real human-aware robots ([14], [9]).

Notes

1

. httpi/homepages.cwi.nl/~jve/software/demo_sb/,
http://homepages.cwinl/~jve/software/prodemo/ «

. http://people.irisa.fr/Francois.Schwarzentruber/hintikkasworld/ <

References

[1] Burcu Arslan, Rineke Verbrugge, Niels Taatgen, and Bart Hollebrandse. Teaching
children to attribute second-order false beliefs: A training study with feedback. In
Proceedings of the 37th Annual Meeting of the Cognitive Science Society, CogSci 2015,
Pasadena, California, USA, July 22-25, 2015, 2015.

[2] Guillaume Aucher and Thomas Bolander. Undecidability in epistemic planning. In
IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, 2013, 2013.

[3] Robert J. Aumann. Interactive epistemology I: knowledge. Int. J. Game Theory,
28(3):263-300, 1999.

[4] Alexandru Baltag, Lawrence S Moss, and Slawomir Solecki. The logic of public
announcements, common knowledge, and private suspicions. In Proceedings of the 7th
conference on Theoretical aspects of rationality and knowledge, pages 43-56. Morgan
Kaufmann Publishers Inc., 1998.

[5] David Barker-Plummer, Jon Barwise, and John Etchemendy. world: Revised and
expanded. 2007.

[6] Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for single and
multi-agent systems. Journal of Applied Non-Classical Logics, 21(1):9-34, 2011.

[7] Tristan Charrier, Bastien Maubert, and Frangois Schwarzentruber. On the impact of
modal depth in epistemic planning. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IICAI 2016, New York, USA, July 12-15, 2016,
2016.

[8] Tristan Charrier and Francois Schwarzentruber. Arbitrary public announcement logic
with mental programs. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8,
2015, pages 1471-1479, 2015.

[9] Sandra Devin and Rachid Alami. An implemented theory of mind to improve human-
robot shared plans execution. In The Eleventh ACM/IEEE International Conference on
Human Robot Interation, HRI 2016, Christchurch, New Zealand, March 7-10, 2016, pages
319-326, 2016.

[10] Olivier Gasquet, Andreas Herzig, Bilal Said, and Francois Schwarzentruber. Kripke’s
Worlds - An Introduction to Modal Logics via Tableaux. Studies in Universal Logic.
Birkhduser, 2014.

[11] Joseph Y. Halpern and Ronald Fagin. Modeling knowledge and action in distributed
systems. Distributed Computing, 3(4):159-177, 1989.

[12] Jaakko Hintikka. Reasoning about knowledge in philosophy: The paradigm of
epistemic logic. In Proceedings of the 1st Conference on Theoretical Aspects of Reasoning
about Knowledge, Monterey, CA, March 1986, pages 63—80, 1986.

[13] Saul A Kripke. Semantical analysis of modal logic | normal modal propositional
calculi. Mathematical Logic Quarterly, 9(5-6):67-96, 1963.

[14] Brian Scassellati. Theory of mind for a humanoid robot. Auton. Robots, 12(1):13-24,
2002.

[15] Johan van Benthem, Jan van Eijck, Malvin Gattinger, and Kaile Su. Symbolic model
checking for dynamic epistemic logic. In Logic, Rationality, and Interaction - 5th
International Workshop, LORI 2015 Taipei, Taiwan, October 28-31, 2015, Proceedings,
pages 366378, 2015.

[16] Johan van Benthem, Jan van Eijck, and Barteld P. Kooi. Logics of communication
and change. Inf. Comput., 204(11):1620-1662, 2006.

[17] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic. Springer, Dordecht, 2008.

[18] Hans van Ditmarsch, Jan van Eijck, Ignacio Hernandez-Antén, Floor Sietsma, Sunil
Simon, and Fernando Soler-Toscano. Modelling cryptographic keys in dynamic epistemic
logic with DEMO. In Highlights on Practical Applications of Agents and Multi-Agent
Systems - 10th International Conference on Practical Applications of Agents and Multi-
Agent Systems, PAAMS 2012 Special Sessions, Salamanca, Spain, 28-30 March, 2012,
pages 155— 162, 2012.

Beste Jan,

Vandaag vieren wij de voltooiing van een prachtige loopbaan. Tk weet zeker dat je met
jouw sprankelende persoonlijkheid velen hebt geinspireerd. Mij in ieder geval wel. Tijdens
mijn promotieonderzoek stond jij altijd voor me klaar, en je bent een grote steun voor me
geweest zowel op inhoudelijk gebied als met alles eromheen. Jong als ik was had ik het
gevoel dat jij op de achtergrond een oogje in het zeil hield, en mij tegelijkertijd de vrijheid
gaf om het op mijn eigen manier te doen. Ik hoop dat de komende jaren je veel plezier
gaan brengen en de start van een prachtige nieuwe reis, wat de bestemming ook mag zijn.
Als bijdrage aan dit Festschrift heb ik twee gedichten uitgezocht, die me doen denken aan
jou en aan de fase waarin jij je nu bevindt. Ik ben erg benieuwd om te zien welk vervolg je

nu zult kiezen, en ik wens je veel wijsheid en geluk toe in de komende jaren.

Lieve groet,

Floor

Zo'n gelukkige dag.
De mist was vroeg gezakt, ik werkte in de tuin.
De kolibries stonden stil boven de bloeiende kamperfoelie.

Er was geen ding op aarde dat ik zou willen hebben.

Ik kende niemand die het benijden waard was.
Wat aan kwaad was geschied, had ik vergeten.
Tk schaamde me niet bij de gedachte dat ik was wie ik ben.

Ik voelde nergens in mijn lichaam pijn.

Toen ik mij oprichtte, zag ik de blauwe zee en de zeilen.

I have heard what the talkers were talking, the talk of the beginning and the end,
But I do not talk of the beginning or the end.

There was never any more inception than there is now,

Nor any more youth or age than there is now,

And will never be any more perfection than there is now,

Nor any more heaven or hell than there is now.

A Tale of Two Jans1

Martin Stokhof

There is the formal Jan, there is the informal Jan, there is the Jan of the Haskell Road to
Logic Programming, there is the Jan of Filosofie: Een Inleiding, there is the analytic Jan
who wants nothing to do with Heidegger, there is the Jan who studies buddhism and
practises aikido, there is the Jan at the CWI research centre, there is the Jan who once
considered teaching philosophy to prison inmates, there is the Jan who writes highly
specialised and technical papers, there is the Jan who writes books for high-school
students and philosophy for the millions, there is the Jan who proves theorems, there is the
Jan who paints and makes music, there is the Jan who organises scientific conferences,
there is the Jan who is still restoring a farm house in France—in short, there is Jan van
Eijck: there is his curiosity and enthusiasm, in exploring and investigating, in sharing and
communicating, there is his relativism and self-irony, in evaluating and combining work &
life, there is his inspiration and knowledge, shared with students and fellow scientists

alike, and there is his optimism and trustworthiness, as a colleague and as a friend.

Two Jans, many Jans, but still one Jan: the one I am proud and happy to have known and

worked with, and that I hope to know for many more years, in all his many guises.

Notes

b
i . ; i _
. With sincere apologies to the estate of Charles Dickens, <

Personal Note

Elias Thijsse

I owe a lot to Jan. Few people have been more important for my academic career than Jan
van Eijck. Although, due to our shared interest in Montague Grammar, we might have met
earlier, my first clear recollection of Jan's influence was a course on recent developments
in linguistics, given by him and Nico van der Zee at Groningen University in 1979 or
1980. One paper, written by Barwise and Cooper, by then only available in manuscript
form, was explained by Jan in his typical well-informed and enthusiastic manner. Since I
considered myself to be a die-hard Montagovian by that time, I was quite sceptical about
this paper: it seemed partly a reformulation of Montague Grammar, partly an empirically
weak account of linguistic universals some of which were tautological and some were
incorrect. I expected a negative comment by Jan on my critical review, but he encouraged
me to carry on. Looking deeper into the matter, the research on Generalized Quantifiers
proved to reveal various new logical, mathematical and linguistics aspects. Moreover, the
open culture and the intensive interaction (students, lecturers, professors discussing
matters on an almost even terms) during the Groningen semantic wave of the eighties
made it fun to work in this area. To cut a long story short, I managed to publish several
papers and write a Master Thesis on Generalized Quantifiers, and Jan was certainly not to

blame for me not getting a PhD scholarship for pursuing this research.

Before I finished studying, Jan left Groningen for Tilburg University and I became a
maths teacher. But it was no coincidence that some years later, I followed Jan's
professional move and became a research assistant in Tilburg. Only a few years later Jan
left Tilburg again, now heading for SRI Cambridge and I succeeded Jan as teacher of
several of his courses on logic, semantics and grammar. This also paved the way for
converting Jan's lecture notes to a joint Dutch text book on logic for students in linguistics
and computer science. Since I left academia some years ago to become a maths teacher

again, contacts have dropped but good memories survived.

Unfortunately, I did not share Jan's enthusiasm in programming, so it may not be a
coincidence that I have not been able to retrieve my old and fairly simple ALGOL, Pascal

and Prolog programs for the present occasion.

Jan's good spirit and humour should be emphasized here. Jan's hospitality in Groningen,
Tilburg, Cambridge and Amsterdam should be praised and one wishes many more
colleagues to act in such a friendly matter. And I consider it a privilege that Jan asked my
advice, also on rather personal matters, and even seemed to consider the advice valuable.
Jan is very good person and I hope he can enjoy his retirement for many more years to

follow.

Hup! Hup!

Christina Unger

-~ 'But one nmust be car

mor

type Poem [String] --

String
String

type Dank
type Wens

1

Harte -> [Dank] -> Jan
Harte -> [Wens] -> Jan

type VoorAlles
type VoorDeToekomst

type Harte = [Int] -- sligh

tabil

1 s
1y

data Jan = Janl | Jan2 -- |

«« TTwo Jans, many Jans, but still one Jan’

cf, Martin Stokhof's contribution

Maybe Poem
= let best = head
in Just $ replicate ‘¢ $ best $ wishes
++ take (repeat "Hup! Hup!")

s = "altijd geluk en plezier®
joy ("life" ++ "rest")
helemaal_niets_slechts

Christina Unger

IR

Working with Jan in Four Movements

Johan van Benthem

I feel that I just met Jan van Eijck yesterday, in the turbulent revolutionary Groningen of
1976—but now, the editors of this festschrift are telling me that I have not kept track of
time, and that we live 40 years later, our long hairs gone, close to retirement. Academic

life is a sheltered cave. We Dutch are all Rip van Winkles if it comes to it.

Over those years, Jan turned from a student into a colleague, ally, and friend whose vigor
and continued growth kept impressing me. I could write about his dissertation on
quantifiers, his work on natural logic in natural language, his record in computational
semantics and computational logic, in dynamic-epistemic logics, or in broad social
software. I could write about his didactic gifts, leading to a string of textbooks, all the way
to our most recent collaboration on the internet course "Logic in Action". I could write
about his broad intellectual interests, from general philosophy where he wrote a widely
used and often reprinted textbook in his early years to the austere world of computer
programming in his mature period. I could write about his stylistic talents, from technical
papers to engaging public dialogues. And finally, I could write about his leadership in the
national research program "Semantic Parallels in Natural Language and Computation", the
Education team of my Spinoza Award project, or the "Games, Action and Social
Software" project at the Netherlands Institute for Advanced Studies NIAS. And all this
from someone who, when I first met him, sported a luxuriant black hairstyle presaging

Marx and Engels rather than Hilbert and Godel.

This string of laudatory modalities is not just my own personal view, or that of a local
circle. Even Jan's relatively short foreign stays left their traces. Just a few years ago I met
the somewhat intimidating CEO of a well-known internet start-up in San Francisco who
became positively warm and jubilant the moment Jan's name came up. They had worked

together in Cambridge, and his appreciation had stayed ever since.

But for this festschrift, [want to look at something else, namely, the public record of my

collaborations with Jan. What did we write together, and what became of it?

The first paper we wrote, called "The Dynamics of Interpretation”, appeared in 1982 as the
first item in the first volume of the new Journal of Semantics. 'Dynamics' is a popular term
these days (it may already be past its prime, as youth turns into cliché), but we may have
been among the first to use it. By that time, classical Montague Grammar was challenged
by new richer semantic frameworks for natural language, and these frameworks were busy
developing content and attracting followers. Instead of adding one more, Jan and I wanted
to understand what was going on. In the paper, we mention a conference in Cleves that
brought together leading innovators of the time like Jaakko Hintikka and Hans Kamp, but
also, in another tradition, Pieter Seuren. In our paper, we try to bring logical clarity to
these approaches, including then current views of discourse representations as schematic
pictures of the real world and connections with semantic tableaux, and we explore
consequences for logical theory. Specifically, we show that a picture metaphor can only
work for a small existential fragment of a language: in more modern terms, the domain of
model-checking methods for inference in knowledge representation. We also analyze to
which extent semantic tableaux can be viewed as generalized pictures, with not just
individual facts but also rules, and prove in which precise sense tableaux manipulate open
branches as schematic representations of (classes of) standard models. Finally, we question
the conservative tendency of much semantic innovation at the time of insisting on tight
connections with complete classical models, and suggest that a more radical approach

would just stick with partial models as one's semantic universe.

Looking back at these themes, we were too early. Pictures and diagrams as a vehicle for
reasoning only became a big topic in the 1990s, and partial possibilities semantics in its
own right did not sweep the world, although it is making a comeback these years.
Moreover, we made a tactical mistake in giving an extensive comparison between
Hintikka's game-theoretic semantics and Kamp's discourse representation theory and
suggesting that these frameworks could learn from each other. This is of course anathema

to founders of new religions that are on the march.

Despite this irenic tendency, there are also striking critical undertones in the paper. For
instance, on the status of representations, we write "some view them as syntactic
constructs, some as psychological ones, and some just prefer to remain confused on this
issue." Nowadays, several decades later, I would never write anything like that, having
learnt to sugarcoat criticism for thin academic skins, suppress emotion, count to 10, 100 or
whatever power of 10 it takes, and realizing that every ironical remark will come back to

haunt you. But oh my, how I enjoy the barbs in this paper!

All in all, I believe that methodological clarity and a cooperative stance are crucial for a
healthy field: but one can overdo it. Competition between schools, including unfair

propaganda, may well be a prime mover that we should not stifle.

Are there still things to think about for Jan and me? Our paper is about the dynamics of
interpretation, not about dynamifying meanings, and this distinction in locus for capturing
the dynamics of language use still seems relevant. I wonder what Jan thinks about it,

decades later, as a much more experienced computational semanticist.

In the 1980s, our interests turned from natural language by itself to include action and
computation in general. Computer science became a new source of inspiration, in its fast
development of new paradigms for sequential and parallel computation. This fit is natural
given the many parallels between the study of language and computation, a trademark
item at the ILLC. Our second paper came some ten years later, written with Vera
Stebletsova from Moscow. Again, our goal was comparative and systematic. We
contribute to connecting two realms that were already interacting: the tradition of labeled
transition systems in computer science, in particular process algebra, and polymodal and
dynamic logic over relational models. We give a general perspective on the proliferation
of process equivalences at the time in terms of matching logical languages, showing how
classical results on definability go through. Going beyond that, we introduce the notion of
safety for bisimulation, a logical take on program or process operations that fit a chosen
invariance notion—though a full first-order characterization theorem came only later in
the 1990s. And finally, we take parallel processing seriously by proposing a new notion of

bisimulation for concurrent PDL.

I could say more (the paper is 45 pages long), but these points are of course mainstream by
now. Computer science and modal logic have drawn ever closer, and qua methods, the
paper is typical Amsterdam School in its emphasis on model theory as a source of
generality. So, no story of unjust neglect here: we were just helping build a highway, and

the computer science influence stayed in our own later work.

An open end for Jan to ponder today is our treatment of concurrency. Modeling parallel
action is a very live issue — unless you think your religion has solved it all (sects also
abound at the interface of logic and CS). With some colleagues, I am puzzling over natural

bisimulations for games these days, and questions from our paper return.

But Jan and I did not always just streamline what was already happening: we also
ventured into new territory. In a 1993 report "Changing Preferences", written together with
Alla Frolova from Moscow (again a Russian logician, the Moscow connection was strong
in those days), we point out how, in addition to action and information, preference is
crucial to agency. True to form, we then propose a general logic of order minimization for
analyzing various notions of consequence proposed at the time in Al and semantics of
natural language, that combined information and preference (be it as the rather bleak
notion of what would nowadays be called relative plausibility). We show how many
further notions of consequence can be defined in our framework, demonstrating the free
spirit that comes with logical abstraction. There is also an extensive discussion of
dynamics of new information, and of technical translations for laws of dynamic scenarios
into the language of static logics, in the spirit of things Jan and I were doing separately at

the time for systems of dynamic semantics.

Again, this sort of approach is mainstream by now. However, the period is pre-DEL, and
the technique of the paper is the one we used back then, inspired by the work of Edsger
Dijkstra, the only Dutch winner of the Turing Award to date. We use transformations of
propositions as sets of worlds, connecting pre-and postconditions recursively. Nowadays
this would be seen as a 'lifted version' of DEL-style update, I guess, though the
proposition-transformer approach is more general in principle — and it did feature
prominently in the work of our joint student Marc Pauly. It is a long time since I have
discussed this methodological shift with Jan, and I sometimes wonder why we gave up the
Old Way (or did it just happen?). Of course, there must be an answer, since we are talking

logic and mathematics, and if there is one, Jan is sure to have it.

But to me the most striking part of the report comes toward the end. We propose two
operations that change preference order, that would nowadays be called 'suggestion' and
'radical upgrade', and suggest that these are central notions to study. But we did not. We
did not even publish this paper. Why? Perhaps the reason can be found at the start of the
paper: we apologize for taking preference seriously, as being subjective and fleeting (a
shallow objection one still finds in some circles today). This was a mistake. Only some 10
years later, preference became crucial to my own work on logic and games, and I am sure
that Jan, too, has seen the light. And our operations for preference change turned out to be
central to the creation of dynamic-epistemic preference logic in the work of Fenrong Liu

around 2006. So, we missed our chance.

But to those who stay afloat, the great stream of research always carries fresh
opportunities. The emergence of dynamic-epistemic logic in our community around 2000
affected us deeply, as it was an ideal vehicle for pursuing the dynamic and computational
themes that had been there in our work from the start. Here, too, a modeling challenge
plus a search for systematization combined to produce my final example, the 2006 paper

"Logics of Communication and Change", written with Barteld Kooi.

This paper arose from the needs of group knowledge, and in particular, finding the right
recursion laws for common knowledge after update. I had already found one solution for
the special case of public announcement logic: extending the base logic with conditional
common knowledge, and next, with Barteld, I had found a solution for the much harder
case of DEL product update in terms of finite product automata. However, joining forces
with Jan made us see the power and elegance of making two further changes in the set up:
working with an epistemic version of propositional dynamic logic in the base, and using a
beautiful algorithm for finding recursion laws based on the proof of Kleene's Theorem for
finite automata. In addition, we showed how factual change can be taken on board in DEL,
as long as it can be modeled by changing truth values for proposition letters according to

some definable recipe.

I believe that this is still about the most elegant formulation of DEL in its generality,
though some friends feel we either did too much (the base language becomes hyper-
baroque) or too little (we did not arrive at generalized dynamics in the style of Girard, Liu
& Seligman, and we did not cover the modal mu-calculus, something I did later with
Daisuke Ikegami). I do not think our paper got the attention it deserved, and in fact, in the
years since 2006, I have seen many publications on DEL reinventing the wheel (or even
worse, square or polygonal versions thereof) that do not seem to be improvements.

However, truth is a slow but sure traveler, and our time will come.

That does not mean that our paper is the last word: the road goes on. Right now, I am
interested in fixpoint logics where DEL programs can be defined by recursion (for
cognoscenti: the way things happened in PAL*), and then we need to spring the bounds of
all this. However, these logics are highly complex computationally, at least in their current

versions, so I am not sure if the programmer in Jan will approve.

These four papers show what working with Jan van Eijck produces. I believe that their
methodology and content are still alive, with new questions if you add up all asides in the
above. But the process was as pleasant as the product. Here are some qualities one

experiences when working with Jan. He likes to be broadly informed across a topic, and

then shed light by seeing patterns across notions, results, and schools. He likes to ascend
to well-tested logical abstraction levels where things become clear and comparable, rather
than engage in ad-hoc modeling. And in his approach to both ideas and the people creating

them, he tends toward generosity, and collaboration.

Of course, Jan also has habits that are more alien to me, such as his insistence on practical
programming skills. These are like prowess in jogging: I admire people who do it, but I
find it hard to follow. But I do marvel at how the programmer in Jan turns abstract logic
into concrete methods, say, when he computed recursion laws for difficult communication
scenarios that I could never keep straight with just brain power. And I have seen with my
own eyes how adding programming to logic courses, another recommendation of his, can

turn hostile mobs into engaged students.

Jan's academic road has many more milestones than the four I have placed in this short

piece, but I am sure that this festschrift in total will reveal a long scenic road.

It will be clear that Jan and I have been travel companions for a long time. There are many
more personal things one could say about success and failure, hope and fear. But not
everything that is announced is valuable, and not everything that is valuable should be
announced. I wish Jan all the best with designing a meaningful life beyond retirement,

avoiding the trap he dreads of 'more of the same'. Now is the time!

References

J. van Benthem & J. van Eijck, 1982, 'The Dynamics of Interpretation’, Journal of
Semantics 1:1, 3—-19.

J. van Benthem, J. van Eijck & A. Frolova, 1993, 'Changing Preferences', Report CS-
R9310, Center for Mathematics and Computer Science CWI, Amsterdam.

J. van Benthem, J. van Eijck & V.Stebletsova, 1994, 'Modal Logic, Transition Systems and
Processes', Journal of Logic and Computation 4:5, 811-855.

J. van Benthem, J. van Eijck & B. K00i,2006, 'Logics of Communication and Change',
Information and Computation 204:11, 1620-1662.

The Value of Alternative Semantics

Tijs van der Storm

Abstract

Starting his return to philosophy, Jan wrote an interesting blog about alternative facts. In
the article he writes that "Alternative facts do not exist". A statement is considered a fact,
when it corresponds to reality, otherwise, it's a falsehood (or a lie if dishonesty is
involved). In a certain sense this is a matter of dependency: a statement's being a fact
depends on the world, but the reverse is not true: you can have different states of the world
or different possible worlds compatible with the same facts. In programming language
design, there seems to be a similar dependency between semantics on the one hand, and
syntax on the other: it's not possible to have different kinds of syntax for the same
semantics since semantics is defined in terms of syntax. It is, however, very well possible
to have different (imagined) semantics for the same syntax. In short: alternative syntax

does not exist, but alternative semantics do.

In this essay I'd like to explore the value of alternative semantics for the benefit of the
programmer. Value here has two meanings: value as in "useful”, or "a good thing", but also
value in the functional programming sense, where values are immutable data objects
resulting from evaluating expressions. The idea is to partition a language according to
different but related concerns, and then have different interpretations for the whole
language, where each interpretation addresses only one concern. I'll illustrate with a
simple domain-specific language (DSL) for Web-based user interface programming, called

TwoStones
TwoStones :

All the code can be found online here: htips://github.com/cwi-swat/TwoStones.

Introduction

The "Right View"

The idea of using two interpretations to untangle what's going on in typical web-based Uls
is inspired by Evan Czaplicki's work in Elm. Elm is a functional programming language
that separates a UI app into two parts: a view function that takes an immutable application
model and produces an HTML tree structure for rendering, and an "update" function,
interpreting events into a (functional) modifications of the application model. These
functions are called alternatingly, providing an clean model of stepping through an

application.

Recently, I've ported the Elm architecture to the Rascal language, resulting in the Salix
library. Both update and view functions can be written in Rascal, but the UI is executed in
the browser. Observing the amount of boilerplate I had to write to evolve a model in the
update function, I revisited an idea originally applied in the Ens6 system and Recaf:
instead of having two functions for render and update, we'll use a single program, but with
two semantics, effectively turning the EIm model inside out. As a result, the programmer
writes a single "function" addressing both concerns at once, but the runtime will separate
these concerns in different executions of the program. My goal here is to show how this

can be achieved without losing the benefits of functional programming.

To make this more concrete, here are two function signatures describing the two

semantics. The first is "rendering":
render : Program x Model — Node

So the render semantics takes a program, an application model, and produces a HTML

node, which can subsequently be rendered in a browser.
The handling concern is captured by the following signature:
handle : Program < Model x Fvent — Model

In this case, the function takes a program, a model, and an event value, and produces an

updated model.

A UI program then consists of an (infinite) top-level driver loop calling render and

handle in alternating fashion, like this:

view_0 = render(p, m_0);
. event e_0 happens ...
m_1 = handle(p, m_0, e_0)
view_1 = render(p, m_1)
= etc.

The sequence starts with rendering an initial model m_e . Then some event e_o
happens, which is fed into handle . The function handle is invoked with the original
model (m_o), and produces the new model (m_1). The new model is then rendered

producing the new view view_1 , and the cycle repeats.

(Aside: this might look very expensive in terms of computation; however, rerendering the
whole GUI "virtually" and then patching the actual GUI based on the difference ("diff")
between $view_{i+1}$ and $view_i$ is what state of the art frameworks like Facebook
React, Om, and Elm all do. The approach represented here is fully compatible with this

technique.)

As a result, the programmer only writes a single program, but may still enjoy the benefits
of functional programming with immutable values. Next I'll describe a simple prototype
language, called TwoStones in more detail. Basically, we'll be filling in the definitions of

both render and handle .

Rendering Views with TwoStones

Let's start with the first concern: constructing the visual presentation of the user interface,
or: rendering. In the following I'll use the Rascal to present the abstract syntax of
TwoStones, as well as the definitions of standard interpreters to represent the semantics.
Most code snippets will be easy to follow for anyone familiar with functional

programming idioms; where needed, I'll explain Rascal specific constructs.

The core of TwoStones is captured in the following abstract syntax definition of

statements (Stm):

data Stm

elt(str name, Stm body)

ifThenElse(Expr cond, Stm then, Stm els)
foreach(str x, Expr 1lst, Stm body)
output (Expr text)

block(list[Stm] stms);

The elt statement produces an HTML element node, tagged with name and containing
child nodes produced by body . The construct ifThenElse is used for conditional
evaluation. To loop through a list, one can use fortach which iterates over the elements,
and binds each element to the variable x in scope of body . The leaves of the node tree
are represented by text nodes, produced by the output statement. Finally, statements can

be grouped using the block construct.

For now we assume we have a standard expression language (Expr) which is used in
ifThenElse , forEach and output . We assume further that there's an eval function
to evaluate expressions to values of type value . Values include primitives (int, str, bool;
wrapped in constructor prim), as well as lists (array(list[value])) and records
(JSON-like sets of properties; record(map[str,value])). The expression language
contains constructs for accessing list elements by index (x[i]) and fields of records

(x.f), and the usual operations on booleans, integers, and strings.

The result of rendering a TwoStones statement will be a Node , which represents a
simplified version of HTML. For now, node attributes are omitted, except for a map
associating identities (integers) to event types (strings). This events map is a keyword
parameter which makes it optional; retrieving the keyword parameter from a constructor

will return the default value if it hasn't been explicitly set. Here's the definition of Node :

data Node
= element(str name, list[Node] kids, map[int,str] events = ())
| text(str text);

The render signature introduced above takes a model value and a program and produces a
Node ; this is the signature of the main entry point as shown earlier. The render

function I'll introduce next has a slightly different signature, consuming a statement, and

environment (containing the model), a parent Node , and an identity generator function
next (which will be explained below). The parent argument allows nested statements

to append new nodes to their enclosing element.

Here's the definition of render for TwoStones statements:

Node render(elt(str name, Stm body), Env env, Node parent, int() next)
= parent[kids = parent.kids + [n]]
when
Node n := render(body, env, element(name, []), next);

Node render (output(Expr e), Env env, Node parent, int() next)
= parent[kids = parent.kids + [text("<v>")]]
when
prim(value v) := eval(e, env))

Node render(ifThenElse(Expr cond, Stm then, Stm els), Env env, Node paren
t, int() next)
= render(v ? then : els, env, parent, next)
when
prim(bool v) := eval(cond, env)

Node render(forEach(str x, Expr 1lst, Stm body), Env env, Node parent, int

() next)
= (parent | render(body, env + (x: v), it, next) | Value v <- vals)
when
array(list[value] vals) := eval(lst, env);

Node render(block(list[Stm] body), Env env, Node parent, int() next)
= (parent | render(s, env, it, next) | Stm s <- body);

Some notes on Rascal notation: := represents pattern matching, postfix assignment t[x
= e] is used to functionally update a component of a tuple or constructor; the construct

(init | accu | gen) issugar for reduce , where init is the initial value, accu
the accumulator, and gen represents an arbitrary sequence of generators, like in list
comprehesions. In each iteration the intermediate result is bound to the keyword it in

the context of accu .

Rendering the elt statement simply renders the body statement with a new parent
node, and the result is added to the current parent. Same for output , except that the

argument expression is converted to a string (using Rascal's string interpolation) and

wrapped ina text node. Note that only primitive values can be output. Conditional
execution selects either then or else based on the result of evaluating cond . To
render each element of a list individually, the forEach statement accumulates child
nodes through the use of a "reducer" by executing the body of the loop in the context of
a new environment binding x to consecutive values of the list 1st . Finally, the

block statement executes each statement in its body, appending child nodes to the

current parent .

The definition of render can be used to produce passive nodes from TwoStones
programs, but what about interaction? This is where the next function starts to be
relevant. First, however, we extend the syntax with one more statement to specify the

effect of an event:

data Stm

| on(str kind, Expr X, Expr v);

The on statement states that when an event of type kind happens (where kind could be
"click", or "change", etc.), it should update the location in the model designated by
expression x to be the value of v . In other words, the on statement associates an
event occurrence to some update of a sub tree of the model. How this is realized is outside
the scope of render . Nevertheless, in order for handle to know which effect to apply
when an event occurs, render leaves a small trace in the node structure of UI, by
associating a unique identity to the node surrounding the on statement, as well as the

type of event:

Node render(on(str kind, Expr _, Expr _), Env env, Node parent, int() nex
t)
= parent[events = parent.events + (next(): kind)];

So the only thing render does, is getting the next id, and linking it to the event type in the
events map of the surrounding element. The identity will later be used in handle to

identify where in the node tree a particular event occurred.

The next function is a stateful closure that gives a unique integer on every invocation.
Purists might consider this to be a violation of functional programming, but I could have

threaded an integer through the whole computation just as easily, at the cost of additional

boilerplate. Another way to simulate node identity is to use a canonical representation of

the execution trace up till the point it is needed (i.e., a path).

Time to look at an example: a simple counter app. This app shows an integer value with
two buttons labeled " A " and " ¥ " respectively. Clicking on those buttons increases resp.
decreases the counter value. The application model is a simple integer, and we'll assume it

resides in the variable "model".

Here's the AST representing the counter app:

elt("div", block([
elt("button", block([
on("click", var("model"), add(var("model"), integer(1))),
output(string("a"))
1)),
output(var("model")),
elt("button", block([
on("click", var("model"), sub(var("model"), integer(1))),
output(string("v"))
1))
1)

Rendering this program produces the following node structure:

element("div", [
element("button", [text("a")],events=(0: "click")),
text("o"),
element("button", [text("v")],events=(1: "click"))

1

Such node values can be converted to HTML and rendered in the browser. For instance
like this:

Each element that has an events map will have Javascript event handlers for each kind
of event in the map. These handlers are all of the same type: they return an object

capturing the id , the type of event, and any additional data (e.g., the text entered in a

text box). In turn, these event objects are then fed into the event handling process, which

I'll describe now.

Handling Events and Updating Models

As seen above, the render semantics simply skips any event-handling logic, except for
leaving a tiny trace in the view so that the handle semantics knows where in the node
tree an event has occurred. This context is found by having handle execute the exact
same control-flow as the render code, when given the same model value (see the trace
above), and providing it with a fresh id generator as next . Because the control-flow is
exactly the same and TwoStones programs are purely functional, the function next will
be invoked in the exact same context as render called it. As a result, if a generated id

matches the id of the event given to handle , we'll know we're at the right place.

The handle function not only consumes a TwoStones statement, an environment and an
id generator, but also an event object. Events carry the id of the originating element and
their kind; they are defined as data Event = event(int id, str kind) . For now we
abstract from the actual additional data that events may carry, such as entered text, or

mouse coordinates.

Handling an event results in a list of zero or one updated value ; I'm using 1list s here

as the Optional monad so that I can use Rascal's splicing (using *) in combination with

list comprehensions to simulate the monadic operations bind and return . When
handle returns the empty list, the event was not handled; otherwise, the single element

in the list is the updated version of the model.

Here's the definition of handle :

list[value] handle(elt(str name, Stm body), Env env, Event event, int() n
ext)
= handle(body, env, event, next);

list[value] handle(ifThenElse(Expr cond, Stm then, Stm els), Env env, Eve
nt event, int() next)
= handle(v ? then : els, event, next)
when
prim(bool v) := eval(cond, env);

list[value] handle(forEach(str x, Expr 1lst, Stm body), Env env, Event eve
nt, int() next)
= [*handle(body, env + (x: v), event, next) | Value v <- vals]
when
array(list[value] vals) := eval(lst, env);

list[value] handle(block(list[Stm] body), Env env, Event event, int() nex
t) {

= [*handle(s, env, event, next) | Stm s <- body];

list[value] handle(output(Expr e), Env env, Event event, int() next) = [];

J -1 3]

The code looks very similar to the code of render . Note, however, that this time the
output and elt constructs are skipped, since they should not contribute to the result.

Conversely, however, the on statement is now the place where the actual work is done:

list[value] handle(on(str kind, Expr x, Expr v), Env env, Event event, in
t() next)
=[... | event.id == next(), event.kind == kind]

Here, we check if the event that occurred (event) is of the right type and that it is the
event that should be handled at this point of execution via the next function and the
event's id . But what should be done at the ellipsis in this code? Somehow, the location
designated by x needs to be updated to the new value v , but how should this be
propagated up to the top-level to obtain a complete new model? The answer is zippers.

Originally invented by Gérard Huet["iiﬂ}pm‘

Marcottage

(but at a time that Henry Lieberman was
exploring similar ideas), a zipper represents a sub element of a data structure

that is somehow in focus, together with functions to update this element in its context and

to move around further in the data structure. Zippers are widely used in functional
programming (cf. HaskellWiki)}—below I'll describe a simplified, "untyped" version of the

zipper, dubbed "cursors", to avoid buying into too much detail of Huet's original.

Cursors to the Rescue

A cursor can be represented using the following type aliases:

alias Put = Value(Value);
alias Cursor = tuple[Value get, Put put];

A cursor thus encapsulates a value indicated by the get component of the tuple, and a
function to "update" this value in its context, using the put component of the tuple. How
this works will be clear when discussing how values are traversed during evaluation. But
first, we have to change the standard eval function and Env data type to reflect that
we won't be processing bare values, but actually values of type cursor . So we'll assume
Env is a map from string to cursor , and eval returns Cursor instead of value .
(Note that render defined above could also reuse this new eval, by simply always
projecting out the first component of a cursor, and binding values with the identity

function as put in the environment.)

The relevant expressions that traverse data are indexing of a list using a subscript index

(e.g., like x[i]), or accessing a field of a record value (like x.f):

data Expr

| field(Expr rec, str name)
| index(Expr 1lst, Expr idx);

The eval function for these cases:

Cursor eval(field(Expr rec, str name), Env env)
= <props[name], Value(Value v) { return put(record(props + (name: v)));
}>
when
<record(map[str,value] props), Put put> := eval(rec, env);

Cursor eval(index(Expr lst, Expr expr), Env env)
= <vals[idx], Vvalue(Vvalue v) { return put(array(replaceAt(vals, idx, v)

)): 3>
when
<array(list[value] vals), Put put> := eval(lst, env),
<prim(int idx), _><ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>