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Abstract

There exist several theorems which state that when a matroid is repre-
sentable over distinct fields F1, . . . ,Fk, it is also representable over other
fields. We prove a theorem, the Lift Theorem, that implies many of these
results.

First, parts of Whittle’s characterization of representations of ternary
matroids follow from our theorem. Second, we prove the following theo-
rem by Vertigan: if a matroid is representable over both GF(4) and GF(5),
then it is representable over the real numbers by a matrix such that the
absolute value of the determinant of every nonsingular square submatrix
is a power of the golden ratio. Third, we give a characterization of the 3-
connected matroids having at least two inequivalent representations over
GF(5). We show that these are representable over the complex numbers.

Additionally we provide an algebraic construction that, for any set of
fields F1, . . . ,Fk, gives the best possible result that can be proven using
the Lift Theorem.

1 Introduction

Questions regarding the representability of matroids pervade matroid the-
ory. They underly some of the most celebrated results of the field, as well
as some tantalizing conjectures. A famous theorem is the characterization
of regular matroids due to Tutte. We say that a matrix over the real num-
bers is totally unimodular if the determinant of every square submatrix is
in the set {−1, 0,1}.

Theorem 1.1 (Tutte [Tut65]). Let M be a matroid. The following are
equivalent:

(i) M is representable over both GF(2) and GF(3);

(ii) M is representable by a totally unimodular matrix;

(iii) M is representable over every field.
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grant 613.000.561.
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Whittle [Whi95, Whi97] proved very interesting results of a similar
nature. Here is one example. We say that a matrix over the real numbers
is dyadic if the determinant of every square submatrix is in the set {0} ∪
{±2k | k ∈ Z}.

Theorem 1.2 (Whittle [Whi97]). Let M be a matroid. The following are
equivalent:

(i) M is representable over both GF(3) and GF(5);

(ii) M is representable by a dyadic matrix;

(iii) M is representable over every field that does not have characteristic 2.

A third example is the following result. We say that a matrix over the
real numbers is golden ratio if the determinant of every square submatrix
is in the set {0} ∪ {±τk | k ∈ Z}. Here τ is the golden ratio, i.e. the
positive root of x2 − x − 1= 0.

Theorem 1.3 (Vertigan). Let M be a matroid. The following are equivalent:

(i) M is representable over both GF(4) and GF(5);

(ii) M is representable by a golden ratio matrix;

(iii) M is representable over GF(p) for all primes p such that p = 5 or
p ≡±1 mod 5, and also over GF(p2) for all primes p.

The common feature of these theorems is that representability over
a set of finite fields is characterized by the existence of a representation
matrix over some field such that the determinants of square submatrices
are restricted to a certain set S. Semple and Whittle [SW96] general-
ized this idea. They introduced partial fields: algebraic structures where
multiplication is as usual, but addition is not always defined. The condi-
tion “all determinants of square submatrices are in a set S” then becomes
“all determinants of square submatrices are defined”. In this paper we
present a general theorem on partial fields from which results like Theo-
rems 1.1–1.3 follow. We employ a mixture of combinatorial and algebraic
techniques.

We start our paper, in Section 2, with a summary of the work of Sem-
ple and Whittle [SW96]. We note here that we have changed the def-
inition of what it means for a sum to be defined, because with the def-
inition proposed by Semple and Whittle a basic proposition, on which
much of their work is based, is false. We give numerous additional def-
initions and basic results, and introduce notation to facilitate reasoning
about representation matrices of a matroid. The ideas behind our defi-
nitions are ubiquitous — they capture the way Truemper [Tru92] relates
matroids and representation matrices, they occur in Section 6.4 of Ox-
ley [Oxl92], and even the “representative matrices associated with a den-
droid” in Tutte [Tut58] are essentially the same thing. There appears to
be no consensus about notation.

Section 3 contains the main theorem of this paper, the Lift Theorem
(Theorem 3.5). It gives a sufficient condition under which a matroid that
is representable over a partial field P is also representable over a partial
field bP. The condition is such that it can be checked for classes of matroids
as well.
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In Section 4 we give applications of the Lift Theorem. First we give
alternative proofs for a significant part of Whittle’s [Whi97] characteri-
zation of the ternary matroids that are representable over some field of
characteristic other than 3. We also prove Theorem 1.3 and two new re-
sults, namely a characterization of the 3-connected matroids that have at
least two inequivalent representations over GF(5), and a characterization
of the subset of these that is also representable over GF(4).

Another result by Vertigan, Theorem 2.16, states that every partial
field can be seen as a subgroup of the group of units of a commutative
ring. We give a proof of this theorem in Section 5. We show that a ma-
troid representable over some partial field is in fact representable over
a field. This complements the theorem by Rado [Rad57] that every ma-
troid representable over a field is also representable over a finite field. We
also show that for every partial field homomorphism there exists a ring
homomorphism between the corresponding rings.

We use these insights to define a ring and corresponding partial field
for which, by construction, the premises of the Lift Theorem hold. With
this partial field we can formulate a result like Theorems 1.1–1.3 for any
finite set of finite fields. We show that our construction gives the “best
possible” partial field to which the Lift Theorem applies.

Finally we present, in Section 6, a number of unsolved problems that
arose during our investigations.

In a related paper [PZ] we show that in some instances the Lift The-
orem can be pushed a little further. In particular we show that for a 3-
connected matroid M it may happen that only a sub-partial field is needed
to represent M .

The statements of Theorems 1.3 and 2.16 were mentioned in Geelen
et al. [GOVW98] and in Whittle [Whi05] as unpublished results of Verti-
gan. This work was started because we wanted to understand Vertigan’s
results. Our proofs were found independently. Vertigan informs us that
he proved Theorem 1.3 through a general construction similar to Defini-
tion 5.6.

2 Preliminaries

2.1 Notation

If S, T are sets, and f : S→ T is a function, then we define

f (S) := { f (s) | s ∈ S}. (1)

We denote the restriction of f to S′ ⊆ S by f |S′ . We may simply write e
instead of the singleton set {e}.

If S is a subset of elements of some group, then 〈S〉 is the subgroup
generated by S. If S is a subset of elements of a ring, then 〈S〉 denotes the
multiplicative subgroup generated by S. All rings are commutative with
identity. The group of elements with a multiplicative inverse (the units)
of a ring O is denoted by O∗. If O is a ring and S a set of symbols, then
we denote the free O-module on S by O[S].
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Our graph-theoretic notation is mostly standard. All graphs encoun-
tered are simple. We use the term cycle for a simple, closed path in a
graph, reserving circuit for a minimal dependent set in a matroid. An
undirected edge (directed edge) between vertices u and v is denoted
by uv and treated as a set {u, v} (an ordered pair (u, v)). We define
δ(v) := {e ∈ E(G) | e = uv for some u ∈ V}.

For matroid-theoretic concepts we follow the notation of Oxley [Oxl92].
Familiarity with the definitions and results in that work is assumed.

2.2 The partial-field axioms

The following definitions are taken from Semple and Whittle [SW96].

Definition 2.1. Let P be a set with distinguished elements called 0, 1. Sup-
pose · is a binary operation and + a partial binary operation on P. If
p, q ∈ P then we abbreviate p · q to pq. A partial field is a 5-tuple

P := (P,+, ·, 0, 1) (2)

satisfying the following axioms:

(P1) (P \ {0}, ·, 1) is an abelian group.

(P2) For all p ∈ P, p+ 0= p.

(P3) For all p ∈ P, there is a unique element q ∈ P such that p+q = 0. We
denote this element by −p.

(P4) For all p, q ∈ P, if p+ q is defined, then q+ p is defined and p+ q =
q+ p.

(P5) For all p, q, r ∈ P, p(q+ r) is defined if and only if pq+ pr is defined.
Then p(q+ r) = pq+ pr.

(P6) The associative law holds for +.

We write p + q
.
= r if we mean “the sum of p and q is defined and

is equal to r”. The group in Axiom (P1) is denoted by P∗, and we write
p ∈ P if p is an element of the set P underlying the partial field.

Given a multiset S = {p1, . . . , pn} of elements of P, a pre-association
is a vertex-labelled binary tree T with root r such that the leaves are
labelled with the elements of S (and each element labels a unique leaf).
Moreover, let v be a non-leaf node of T − r with children labelled u, w.
Then u+ w must be defined and v is labelled by u+ w. If u, w are the
labels of the children of r and u + w is defined, then the labelled tree
obtained from T by labeling r with u+w is called an association of S.

Let T be an association for S with root node r, and let T ′ be a pre-
association for the same set (but possibly with completely different tree
and labeling). Let u′, w′ be the labels of the children of the root node of
T ′. Then T ′ is compatible with T if u′ + w′

.
= r. The associative law is the

following:

(P6) For every multiset S of elements of P for which some association T
exists, every pre-association of S is compatible with T .
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We say that the expression p1+ · · ·+pn is defined if there exists a finite
multiset Z of the form {z1,−z1, z2,−z2, . . . , zk,−zk} such that there exists
an association for {p1, . . . , pn}∪Z . The value of p1+· · ·+pn is then defined
as the value of r for any association T of S. Note that this definition
differs from the one given by Semple and Whittle. A justification for this
modification is given in Appendix A.

Partial fields share several basic properties with fields. We use the
following implicitly in this paper:

Proposition 2.2. Let P be a partial field. The following statements hold for
all p, q ∈ P:

(i) 0p = 0;
(ii) pq = 0 if and only if p = 0 or q = 0;

(iii) (−1)2 = 1;
(iv) if p2 = 1, then p = 1 or p =−1;
(v) if p+ q

.
= r, then r − q

.
= p.

The proofs are elementary.

2.3 Partial-field matrices

Recall that formally, for ordered sets X and Y , an X × Y matrix A with
entries in a partial field P is a function A : X × Y → P. Let A be an n× n
matrix with entries in P. Then the determinant of A is, as always,

det(A) :=
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n). (3)

We say that det(A) is defined if this sum is defined.

Proposition 2.3 ([SW96, Proposition 3.1]). Let P be a partial field and
let A be an n× n matrix with entries in P such that det(A) is defined.

(i) If B is obtained from A by transposition, then det(B)
.
= det(A).

(ii) If B is obtained from A by interchanging a pair of rows, then det(B)
.
=

−det(A).
(iii) If B is obtained from A by multiplying a row by a non-zero element

p ∈ P∗, then det(B)
.
= p det(A).

(iv) If B is obtained from A by adding two rows whose sum is defined, then
det(B)

.
= det(A).

An X × Y matrix A with entries in P is a P-matrix if det(A′) is defined
for every square submatrix A′ of A. For such a matrix we define the rank

rank(A) :=max{r | A has an r × r submatrix A′ with det(A′) 6= 0}. (4)

Let A be an X ×Y P-matrix, and let x ∈ X , y ∈ Y be such that Ax y 6= 0.
Then we define Ax y to be the (X \ x ∪ y)× (Y \ y ∪ x) matrix given by

(Ax y)uv =











A−1
x y if uv = y x

A−1
x yAx v if u= y, v 6= x
−A−1

x yAuy if v = x , u 6= y
Auv − A−1

x yAuyAx v otherwise.

(5)
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We say that Ax y is obtained from A by pivoting over x y . In other words,
if X = X ′ ∪ x , Y = Y ′ ∪ y , and

A=
�

y Y ′

x a b
X ′ c D

�

, (6)

where a ∈ P∗, b is a row vector, c a column vector, and D an X ′ × Y ′

matrix, then

Ax y =
�

x Y ′

y a−1 a−1 b
X ′ −a−1c D− a−1cb

�

. (7)

Definition 2.4. Let A be an X × Y P-matrix. We say that A′ is a minor
of A (notation: A′ � A) if A′ can be obtained from A by a sequence of the
following operations:

(i) Multiplying the entries of a row or column by an element of P∗;
(ii) Deleting rows or columns;

(iii) Permuting rows or columns (and permuting labels accordingly);

(iv) Pivoting over a nonzero entry.

Be aware that in linear algebra a minor of a matrix has a different
definition. We use Definition 2.4 because of its relation with matroid
minors, which will be explained in the next section. For a determinant of
a square submatrix we use the word subdeterminant.

Proposition 2.5 ([SW96, Proposition 3.3]). Let A be a P-matrix. Then AT

is also a P-matrix. If A′ � A then A′ is a P-matrix.

If X ′ ⊆ X and Y ′ ⊆ Y , then we denote by A[X ′, Y ′] the submatrix of
A obtained by deleting all rows and columns in X \ X ′, Y \ Y ′. If Z is a
subset of X ∪ Y then we define A[Z] := A[X ∩ Z , Y ∩ Z]. Also, A− Z :=
A[X \ Z , Y \ Z]. The following observation is used throughout this paper:

Lemma 2.6. Let A be an X×Y matrix with entries in P such that |X |= |Y |.
If det(Ax y − {x , y}) is defined then det(A) is defined, and

det(A) = Ax y det(Ax y − {x , y}). (8)

Let A be an X × Y P-matrix, and let A′ be an X ′× Y ′ P-matrix. Then A
and A′ are isomorphic if there exist bijections f : X → X ′, g : Y → Y ′ such
that for all x ∈ X , y ∈ Y , Ax y = A′f (x)g(y).

Let A,A′ be X × Y P-matrices. If A′ can be obtained from A by scaling
rows and columns by elements from P∗, then we say that A and A′ are
scaling-equivalent, which we denote by A∼ A′.

Let A be an X × Y P-matrix, and let A′ be an X ′ × Y ′ P-matrix such
that X ∪ Y = X ′ ∪ Y ′. If A′ � A and A � A′, then we say that A and A′

are strongly equivalent, which we denote by A′ ≈ A. If ϕ(A′) ≈ A for some
partial field automorphism ϕ (see below for a definition), then we say A′

and A are equivalent.
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2.4 Partial-field matroids

Let A be an r × E P-matrix of rank r. We define the set

BA := {B ⊆ E | |B|= r, det(A[r, B]) 6= 0}. (9)

Theorem 2.7 ([SW96, Theorem 3.6]). BA is the set of bases of a matroid.

We denote this matroid by M(A) = (E,BA). Conversely, let M be
a matroid. If there exists a P-matrix A such that M = M(A), then we
say that M is P-representable. These matroids share many properties of
representable matroids.

Lemma 2.8 ([SW96, Proposition 4.1]). Let A be an r × E P-matrix, and
B a basis of M(A). Then there exists a P-matrix A′ such that M(A′) = M(A)
and A′[r, B] is an identity matrix.

Conversely, let A be an X×Y matrix with entries in P, where X∩Y = ;.
Let A′ be the X × (X ∪ Y ) matrix A′ = [I |A], where I is an X × X identity
matrix. For all X ′ ⊆ X ∪ Y with |X ′| = |X | we have det(A′[X , X ′]) =
±det(A[X \ X ′, Y ∩ X ′]). Hence A′ is a P-matrix if and only if A is a P-
matrix. We say that M = M([I |A]) is the matroid associated with A, and
that [I |A] is an X -representation of M for basis X .

If N is a minor of a matroid M , say N = M\S/T , then a B-representation
displays N if B ∩ T = T and B ∩ S = ;; then N = M([I ′|A′]), where
A′ = A− S − T . Likewise we say that A displays A′ if A′ = A− U for some
U ⊆ X ∪ Y .

Lemma 2.9. If M = M([I |A]), then N � M if and only if N ∼= M([I ′|A′])
for some A′ � A.

2.5 Partial-field homomorphisms

A function ϕ : P1 → P2 is a homomorphism if, for all p, q ∈ P1, ϕ(pq) =
ϕ(p)ϕ(q) and, when p + q is defined, then ϕ(p) + ϕ(q)

.
= ϕ(p + q). A

homomorphism is trivial if its kernel is equal to P1. This happens if and
only if ϕ(1) = 0.

Proposition 2.10 ([SW96, Proposition 5.1]). Let P1,P2 be partial fields
and let ϕ : P1→ P2 be a homomorphism. Let A be a P1-matrix. Then

(i) ϕ(A) is a P2-matrix.
(ii) If A is square and det(A) = 0 then det(ϕ(A)) = 0.

(iii) If A is square and ϕ is nontrivial then det(A) = 0 if and only if
det(ϕ(A)) = 0.

This leads to the following easy corollary:

Corollary 2.11 ([SW96, Corollary 5.3]). Let P1 and P2 be partial fields
and let ϕ : P1→ P2 be a nontrivial homomorphism. If A is a P1-matrix then
M(ϕ(A)) = M(A). It follows that, if M is a P1-representable matroid, then
M is also P2-representable.

A partial field isomorphism ϕ : P1 → P2 is a bijective homomorphism
with the additional property that ϕ(p+ q) is defined if and only if p+ q
is defined. If P1 and P2 are isomorphic then we denote this by P1

∼= P2. A
partial field automorphism is an isomorphism ϕ : P→ P.
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2.6 Constructions

For a general partial field the associative law is hard to wield. Semple
and Whittle get around this difficulty by constructing partial fields as re-
strictions of bigger partial fields, starting their construction with a field.

Definition 2.12. Let P be a partial field, and let S be a set of elements of
P∗. Then

P[S] := (〈S ∪−1〉 ∪ 0,0, 1,+, ·), (10)

where multiplication and addition are the restriction of the operations in P,
i.e. p+ q is defined only if p+ q

.
= r in P and r ∈ 〈S ∪−1〉 ∪ 0.

Proposition 2.13 ([SW96, Proposition 2.2]). P[S] is a partial field.

We need −1 ∈ P[S] to ensure that 1 has an additive inverse.
Instead of constructing a partial field as the restriction of a field, one

can also take a ring as starting structure.

Definition 2.14. Let O be a commutative ring, and let S be a subset of O∗.
Then

P(O, S) := (〈S ∪−1〉 ∪ 0, 0,1,+, ·), (11)

where multiplication and addition are the restriction of the operations in O,
i.e. p+q is defined only if the resulting element of O is again in 〈S∪−1〉∪0.

Proposition 2.15. P(O, S) is a partial field.

Proof. First remark that 1 ∈ P and that −1 is invertible in O. The other
axioms are then inherited from the corresponding ring axioms.

In fact, Proposition 2.13 is a special case of this result. This follows
from the following theorem:

Theorem 2.16 (Vertigan). If P is a partial field, then there exists a ring O
and a set S ⊆O∗ such that P∼= P(O, S).

We present a proof of this theorem in Section 5. A third source of
partial fields is the following. If P1,P2 are partial fields, then we define
the direct product

P1 ⊗ P2 := (P,+, ·, (0, 0), (1,1)), (12)

where

P = {(p1, p2) ∈ P1 × P2 | p1 6= 0 if and only if p2 6= 0} (13)

and addition and multiplication are defined componentwise, i.e. (p1, p2)+
(q1, q2)

.
= (p1+ q1, p2+ q2) if and only if both p1+ q1 and p2+ q2 are de-

fined and p1 + q1 = 0 if and only if p2 + q2 = 0.

Lemma 2.17. P1 ⊗ P2 is a partial field.

Proof. This follows from an application of Proposition 2.14: if Pi = P(Oi , Si)
then P1 ⊗ P2 = P(O1 ×O2, S1 × S2).
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Suppose P,P1,P2 are partial fields such that there exist homomor-
phisms ϕ1 : P → P1 and ϕ2 : P → P2. Then we define ϕ1 ⊗ ϕ2 : P →
P1 ⊗ P2 by (ϕ1 ⊗ϕ2)(p) := (ϕ1(p),ϕ2(p)).

Lemma 2.18. ϕ1 ⊗ϕ2 is a partial field homomorphism.

The proof is straightforward and therefore omitted.
Let X , Y be finite, disjoint sets, let A1 be an X × Y P1-matrix, and let

A2 be an X × Y P2-matrix. Let A := A1⊗A2 be the X × Y matrix such that
Auv = ((A1)uv , (A2)uv).

Lemma 2.19. If A1 is a P1-matrix, A2 is a P2-matrix, and M([I |A1]) =
M([I |A2]) then A1⊗A2 is a P1⊗P2-matrix and M([I |A1⊗A2]) = M([I |A1]).

Proof. Let X ′ ⊆ X , Y ′ ⊆ Y such that A′ := A[X ′, Y ′] is a square submatrix
of A. Since M([I |A1]) = M([I |A2]), det(A1[X ′, Y ′]) = 0 if and only if
det(A2[X ′, Y ′]) = 0. This holds for all 1× 1 submatrices as well, so all
entries of A are from P1 ⊗ P2. By Lemma 2.6, a determinant can be com-
puted by a sequence of pivots. It follows that det(A′) is defined, which
completes the proof.

The following corollary plays a central role in this paper.

Corollary 2.20. Let M be a matroid. M is representable over each of
P1, . . . ,Pk if and only if it is representable over the partial field

P := P1 ⊗ · · · ⊗ Pk. (14)

2.7 Cross ratios and fundamental elements

Let B = [ p q
r s ] be a P-matrix with ps 6= 0. We define the cross ratio of B as

cr(B) :=
qr

ps
. (15)

The motivation for this name comes from projective geometry. If cr(B) 6∈
{0,1} then the matroid M([I |B]) is the four-point line. In projective ge-
ometry the cross ratio is a number defined for any ordered set of four
collinear points. It is invariant under projective transformations. For a
fixed set of points this number can take six different values, depending
on the order.

Let A be an X × Y P-matrix. We define the cross ratios of A as the set

Cr(A) :=
¦

cr
��

1 1
p 1

��

|
�

1 1
p 1

�

� A
©

. (16)

The following is obvious from the definition:

Lemma 2.21. If A′ � A then Cr(A′)⊆ Cr(A).

Note that det
��

1 1
p 1

��

= 1− p. This prompts the following definition.
An element p ∈ P is called fundamental if 1 − p ∈ P. As remarked by
Semple [Sem97], p+ q is defined if and only if p−1(p+ q) = 1− (−q/p)
is defined. For most partial fields that we consider, the equation 1− p =
q has only finitely many solutions. This is convenient if one wants to
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compute in partial fields (cf. Hliněný [Hli04]). We denote the set of
fundamental elements of P by F (P).

Suppose F ⊆F (P). We define the associates of F as

asc F :=
⋃

p∈F

Cr
��

1 1
p 1

��

. (17)

We have

Proposition 2.22. asc{p} ⊆ F (P).

The following lemma gives a complete description of the structure of
asc{p}.

Lemma 2.23. If p ∈ {0, 1} then asc{p}= {0,1}. If p ∈ F (P) \ {0, 1} then

asc{p}=
�

p, 1− p,
1

1− p
,

p

p− 1
,

p− 1

p
,

1

p
	

. (18)

The proof consists of a straightforward enumeration. By Lemma 2.21,
asc{p} ⊆ Cr(A) for every p ∈ Cr(A).

2.8 Normalization

Let M be a rank-r matroid with ground set E, and let B be a basis of M .
Let G(M , B) be the bipartite graph with vertices V (G) = B ∪ (E \ B) and
edges E(G) = {x y ∈ B × (E \ B) | (B \ x) ∪ y ∈ B}. For each y ∈ E \ B
there is a unique matroid circuit CB,y ⊆ B ∪ y , the B-fundamental circuit
of y .

Lemma 2.24. Let M be a matroid, and B a basis of M.

(i) x y ∈ E(G) if and only if x ∈ CB,y .

(ii) M is connected if and only if G(M , B) is connected.

(iii) If M is 3-connected, then G(M , B) is 2-connected.

Proof. This follows from consideration of the B-fundamental-circuit inci-
dence matrix. See, for example, Oxley [Oxl92, Section 6.4].

Let A be an X×Y matrix. With A we associate a bipartite graph G(A) :=
(V, E), where V := X ∪ Y and let E := {x y ∈ X × Y | Ax y 6= 0}.

Lemma 2.25. Let P be a partial field. Suppose M = M([I |A]).

(i) G(M , X ) = G(A).

(ii) Let T be a spanning forest of G(A)with edges e1, . . . , ek. Let p1, . . . , pk ∈
P∗. Then there exists a matrix A′ ∼ A such that A′ei

= pi .

The proof of the corresponding theorem in Oxley [Oxl92, Theorem
6.4.7] generalizes directly to partial fields.

Let A be a matrix and T a spanning forest for G(A). We say that A is
T-normalized if Ax y = 1 for all x y ∈ T . By the lemma there is always
an A′ ∼ A that is T -normalized. We say that A is normalized if it is T -
normalized for some spanning forest T , the normalizing spanning forest.
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The following definitions are needed for the statement and proof of
Theorem 3.5. As usual, a walk in a graph G = (V, E) is a sequence W =
(v0, . . . , vn) of vertices such that vi vi+1 ∈ E for all i ∈ {0, . . . , n − 1. If
vn = v0 and vi 6= v j for all 0≤ i < j < n then we say that W is a cycle.

Definition 2.26. Let A be an X × Y matrix with entries in a partial field P.
The signature of A is the function σA : (X × Y )∪ (Y × X )→ P defined by

σA(vw) :=
�

Avw if v ∈ X , w ∈ Y
1/Avw if v ∈ Y, w ∈ X . (19)

If C = (v0, v1, . . . , v2n−1, v2n) is a cycle of G(A) then we define

σA(C) := (−1)|V (C)|/2
2n−1
∏

i=0

σA(vi vi+1). (20)

Observe that the signature of a cycle does not depend on the choice
of v0. If C ′ is the cycle (v2n, v2n−1, . . . , v1, v0) then σA(C ′) = 1/σA(C).
The proof of the following lemma is straightforward. The last property
exhibits a close connection between the signature and determinants.

Lemma 2.27. Let A be an X × Y matrix with entries from a partial field P.

(i) If A′ ∼ A then σA′(C) = σA(C) for all cycles C in G(A).

(ii) Let C = (v0, . . . , v2n) be an induced cycle of G(A) with v0 ∈ X and n≥
3. Suppose A′ := Av0 v1 is such that all entries are defined. Then C ′ =
(v2, v3, . . . , v2n) is an induced cycle of G(A′) and σA′(C ′) = σA(C).

(iii) Let C = (v0, . . . , v2n) be an induced cycle of G(A). If A′ is obtained
from A by scaling rows and columns such that A′vi vi+1

= 1 for all i > 0,
then A′v0 v1

= σA(C) and det(A[V (C)]) = 1−σA(C).

Corollary 2.28. Let A be an X × Y P-matrix. If C is an induced cycle of
G(A) then σA(C) ∈ Cr(A)⊆F (P).

2.9 Examples

We can now give a very short proof of Theorem 1.1. First we restate it
using our new terminology. We define the regular partial field

U0 := P(Q,;). (21)

It has just three elements: {−1,0, 1}. Clearly a U0-matrix is a totally
unimodular matrix.

Theorem 2.29 (Tutte [Tut65]). Let M be a matroid. The following are
equivalent:

(i) M is representable over GF(2)⊗GF(3);

(ii) M is U0-representable.

(iii) M is representable over every partial field.
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Proof. Every partial field P contains a multiplicative identity and, by Ax-
iom (P3), an element −1. Therefore there exists a nontrivial homomor-
phismϕ : U0→ P, which proves (ii)⇒(iii). The partial field GF(2)⊗GF(3)
has fundamental elements {(0,0), (1, 1)}. We have an obvious homomor-
phism ϕ′ : GF(2)⊗GF(3)→ U0, which proves (i)⇒(ii). (iii)⇒(i) is triv-
ial.

We define the sixth roots of unity partial field S := P(C,ζ), where ζ is
a root of x2 − x + 1 = 0, i.e. ζ is a primitive sixth root of unity. Whittle
proved the following theorem:

Theorem 2.30 (Whittle [Whi97]). Let M be a matroid. The following are
equivalent:

(i) M is representable over GF(3)⊗GF(4);

(ii) M is S-representable;

(iii) M is representable over GF(3), over GF(p2) for all primes p, and over
GF(p) when p ≡ 1 mod 3.

Proof. Note that S is finite, with F (S) = {0,1,ζ, 1 − ζ}. Let ϕ : S →
GF(3)⊗GF(4) be determined by ϕ(ζ) = (−1,ω), whereω ∈ GF(4)\{0, 1}
is a generator of GF(4)∗. Then ϕ is a bijective homomorphism, which
proves (i)⇔(ii).

(i)⇒(iii) is again trivial. We will use results from algebraic number
theory to prove (ii)⇒(iii). See, for example, Stewart and Tall [ST87] for
the necessary background. For (ii)⇒(iii), remark that S∗ is the group of
units of Z[ζ], the ring of integers of the algebraic number field Q(ζ) =
Q(
p
−3). If I is a maximal ideal then Z[ζ]/I is a finite field. We find the

values q = pm for which there exists a prime ideal I with norm N(I) :=
|Z[ζ]/I | = q. If I is a principal ideal, i.e. I = (a + b

p
−3)Z[ζ] with

a, b ∈ 1
2
Z, then N(I) = a2 + 3b2.

Suppose I = (
p
−3)Z[ζ]. Then N(I) = 3 which is prime, so Z[ζ]/I ∼=

GF(3). This gives a ring homomorphism ϕ : Z[ζ]→ GF(3). Suppose I =
pZ[ζ]. Then N(pZ[ζ]) = p2. Either I is prime, in which case Z[ζ]/I ∼=
GF(p2), or I splits and there exists a prime ideal J with Z[ζ]/J ∼= GF(p).
A well-known result in number theory (see e.g. Hardy and Wright [HW54,
Theorem 255]) states that I splits if and only if p ≡ 1 mod 3.

Whittle gave characterizations for several other classes of matroids.
However, the proofs of these are more complicated, because the partial
fields involved are no longer isomorphic. In the next section we develop
a general tool to overcome this difficulty.

3 The lift theorem

Let P,bP be partial fields and let ϕ : bP → P be a homomorphism. Let A
be an X × Y P-matrix. In what follows we would like to construct an
X × Y bP-matrix bA such that ϕ(bA) = A. To that end we make the following
definitions.
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Definition 3.1. Let P,bP be partial fields, and let ϕ : bP → P be a partial
field homomorphism. A lifting function for ϕ is a function ↑ : F (P) → bP
such that for all p, q ∈ F (P):

• ϕ(p↑) = p;

• if p+ q
.
= 1 then p↑ + q↑

.
= 1;

• if p · q = 1 then p↑ · q↑ = 1.

Hence a lifting function maps asc{p} to asc{p↑} for all p ∈ F (P).

Definition 3.2. Let P,bP be two partial fields, let ϕ : bP→ P be a homomor-
phism, and let ↑ : F (P)→ bP be a lifting function for ϕ. Let A be an X × Y
P-matrix. An X × Y matrix bA is a local ↑-lift of A if

(i) ϕ(bA) = A;

(ii) bA is an X × Y bP-matrix;

(iii) for every induced cycle C of G(A) we have

σA(C)
↑ = σ

bA(C). (22)

First we show that, if a local ↑-lift exists, it is unique up to scaling.

Lemma 3.3. Let P,bP be two partial fields, let ϕ : bP → P be a homomor-
phism, and let ↑ : F (P)→ bP be a lifting function for ϕ. Let A be an X × Y
P-matrix, and suppose bA1, bA2 are local ↑-lifts of A. Then bA1 ∼ bA2.

Proof. Suppose the lemma is false and let A, bA1, bA2 form a counterexam-
ple. Let T be a spanning forest of G(A) and rescale bA1, bA2 so that they are
T -normalized. Let H be the subgraph of G(A) consisting of all edges x ′ y ′

such that (bA1)x ′ y ′ = (bA2)x ′ y ′ . Let x y be an edge not in H such that the
minimum length of an x − y path P in H is minimal. Then C := P ∪ x y
is an induced cycle of G(A). We have

σA(C)
↑ = σ

bA1
(C) = σ

bA2
(C). (23)

But this is only possible if (bA1)x y = (bA2)x y , a contradiction.

It is straightforward to turn this proof into an algorithm that con-
structs a matrix bA satisfying (i) and (iii) for a subset of the cycles such
that, if A has a local ↑-lift, bA is one. Next we define a stronger notion of
lift, which commutes with pivoting.

Definition 3.4. Let P,bP be two partial fields, let ϕ : bP→ P be a homomor-
phism, and let ↑ : F (P) → bP be a lifting function for ϕ. A matrix bA is a
global ↑-lift of ϕ(bA) if bA′ is a local ↑-lift of ϕ(bA′) for all bA′ ≈ bA.

We now have all ingredients to state the main theorem.

Theorem 3.5 (Lift Theorem). Let P,bP be two partial fields, let ϕ : bP→ P
be a homomorphism, and let ↑ :F (P)→ bP be a lifting function for ϕ. Let A
be an X × Y P-matrix. Then exactly one of the following is true:

(i) A has a global ↑-lift.

(ii) A has a minor B such that
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(a) B has no global ↑-lift;
(b) B or BT equals







0 1 1 1
1 0 1 1
1 1 0 1






or
�

1 1 1
1 p q

�

(24)

for some distinct p, q ∈ F (P) \ {0, 1}.

In the proof of this theorem we use techniques similar to those found
in, for example, [Ger89, Tru92, LS99]. First we prove a graph-theoretic
lemma.

Lemma 3.6. Let G = (V, E) be a 2-connected bipartite graph with bipar-
tition (U , W ). Then either G is a cycle or there exists a spanning tree of G
with set of leaves L, such that |L| ≥ 3 and L ∩ U 6= ;, L ∩W 6= ;.

Proof. Suppose G is a counterexample. By 2-connectivity G has a cycle
C . If V (C) = V (G), then C must have a chord f . Let v be one of the end
vertices of f . Then T := (C \ δ(v)) ∪ f is a spanning tree as required.
Therefore we may assume that V (G) \ V (C) 6= ;. Let f be an edge such
that f ∈ δ(C), say f = uv with v 6∈ C . Since C has at least 4 vertices,
there is an edge e ∈ C disjoint from f . T ′ := (C \ e)∪ f is a tree satisfying
the conditions of the theorem, but may not yet span all vertices.

Let T ′ ⊂ G be a tree with at least three leaves, not all in the same ver-
tex class, and V (T )maximal. Let v ∈ V (G)\V (T ′). By Menger’s Theorem
there exist two internally vertex-disjoint v − T ′ paths P1, P2. Choose an
edge e ∈ P1 ∪ P2 as follows. If one of the end vertices of P1 ∪ P2 is the
unique leaf in U or in W , choose e equal to the edge incident with this
vertex. Otherwise choose e arbitrarily. Then (T ′∪P1∪P2)\e is again a tree
with the required property. Indeed: adding P1 and P2 to T ′ destroys at
most two leaves. However, deleting e creates equally many leaves again,
and if there are two such new leaves, then there is one in each of U and
W . T ′ had a third leaf which remains unaffected by this construction. But
this contradicts our initial choice of T ′, and the proof is complete.

Whittle [Whi95] proves that, if M is 3-connected, elements e, f , g ∈
E(M) can be chosen such that the cosimplification of M \S/T is again
3-connected for all S ⊆ {e, f }, T ⊆ {g}. He called such elements a distin-
guished triple. The leaves in the lemma correspond to three elements of
the matroid M = M([I |A]) with properties similar to, yet weaker than, a
distinguished triple. Lemma 3.6 suffices for the results in this paper, and
its proof is much shorter.

We also need the following lemma. Semple and Whittle [SW96]
proved that the 2-sum of two P-matrices is again a P-matrix. We need
something slightly stronger.

Lemma 3.7. Let A be a P-matrix, and X1, X2, Y1, Y2 partitions of X and Y
such that

A=
�

Y1 Y2

X1 A′1 a1a2
X2 0 A′2

�

, (25)
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where A′1, A′2 are submatrices, a1 is a column vector, and a2 is a row vector.
If both

A1 :=
�

A′1 a1
0 1

�

and A2 :=
�

1 a2
0 A′2

�

(26)

have a global ↑-lift then A has a global ↑-lift.

The following proof sketch omits some details, but the remaining dif-
ficulties are purely notational.

Sketch of proof. Let A, A1, A2 be as in the lemma, and let bA1, bA2 be global
↑-lifts of A1, A2. We define

bA :=

�

Y1 Y2

X1
bA′1 ba1ba2

X2 0 bA′2

�

. (27)

By Lemma 2.6 every subdeterminant of bA is of the form det(bD1)det(bD2),
where bD1 � bA1 and bD2 � bA2, from which it follows easily that bA is a local
lift of A. Pick an x ∈ X , y ∈ Y with Ax y 6= 0. Then Ax y has a minor
equivalent to A1 (up to relabelling of rows and columns) and a minor
equivalent to A2 (up to relabelling of rows and columns). Moreover Ax y

can be obtained from these minors in the same way A was obtained from
A1 and A2. Therefore bAx y must be a local lift of Ax y . It follows that A has
a global lift.

Proof of Theorem 3.5. (i) and (ii) can not hold simultaneously. Suppose
the theorem fails for partial fields P,bP with homomorphism ϕ and lifting
function ↑. Then there exists a matrix A for which neither (i) nor (ii)
holds.

Claim 3.5.1. If A is a counterexample to the theorem with |X |+|Y |minimal
then G(A) is 2-connected.

Proof. If G(A) is not connected then one of the components of A has
no local ↑-lift, contradicting minimality of |X |+ |Y |. If G(A) has a cut
vertex then A is of the form of Lemma 3.7 with one of a1, a2 equal to a
unit vector. Again minimality of |X |+ |Y | gives a contradiction.

A pair (A, {e, f , g}), where A is an X × Y P-matrix and {e, f , g} ⊆ X ∪ Y , is
called a bad pair if

(i) A is a counterexample to the theorem with |X |+ |Y | minimal;

(ii) There exists a spanning tree T of G(A) such that {e, f , g} are leaves
of T ;

(iii) e, f ∈ X and g ∈ Y .

Claim 3.5.2. If (A, {e, f , g}) is a bad pair then there exists a matrix bA such
that bA− U is a global lift of A− U for all U such that U ∩ {e, f , g} 6= ;.
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Proof. Without loss of generality A is T -normalized for a tree T in
which e, f , g are leaves. Note that T − U is a spanning tree of A− U
for all nonempty U ⊆ {e, f , g}. By Lemma 3.3 there exists a unique
T −U-normalized global ↑-lift ×A− U for A−U . Hence there is a unique
matrix bA such that bA− U =×A− U for all nonempty U ⊆ {e, f , g}.

We say that bA is a lift candidate for (A, {e, f , g}).

Claim 3.5.3. If (A, {e, f , g}) is a bad pair with lift candidate bA and x ∈
X , y ∈ Y are such that Ax y 6= 0 and {x , y}∩{e, f , g}= ;, then (Ax y , {e, f , g})
is a bad pair with lift candidate bAx y .

Proof. Obviously Ax y must be a minimal counterexample to the theo-
rem. Since G(A− U) is connected for all U ⊆ {e, f , g}, Lemma 2.24(ii)
implies that G(Ax y − U) is connected for all U ⊆ {e, f , g}. A spanning
tree T ′ for Ax y with leaves {e, f , g} is now easily found, so (A, {e, f , g})
is indeed a bad pair. Pivoting commutes with deleting rows and columns
other than x , y . From this and the fact that bA− U is a global ↑-lift of
A−U for all nonempty U ⊆ {e, f , g} it follows that bAx y is a lift candidate
for (Ax y , {e, f , g}).

We say that (A, {e, f , g}) is a local bad pair if a lift candidate bA is not a
local lift of A. In that case there exist X ′ ⊆ X , Y ′ ⊆ Y , |X ′| = |Y ′|, such
that either

(i) det(bA[X ′, Y ′]) is undefined, or

(ii) G(A[X ′, Y ′]) is a cycle C but σ
bA(C) 6= σA(C)↑.

We call (X ′, Y ′) a certificate.

Claim 3.5.4. If there exists a counterexample A to the theorem with |X |+|Y |
minimal such that A has no local lift then there exist e, f , g ∈ X ∪ Y such
that one of (A, {e, f , g}) and (AT , {e, f , g}) is a bad pair.

Proof. Let A be a counterexample to the theorem with |X |+|Y |minimal
such that A has no local lift. By Claim 3.5.1 G(A) is 2-connected. From
Lemma 2.27(iii) it follows that G(A) is not a cycle. By Lemma 3.6 there
exists a spanning tree T of G(A) which has leaves e, f , g, with e, f ∈ X
and g ∈ Y or e, f ∈ Y and g ∈ X . Clearly if A is a counterexample then
so is AT . The claim follows.

Claim 3.5.5. Let (A, {e, f , g}) be a local bad pair with certificate (X ′, Y ′)
such that |X ′| is minimal. Then |X ′| = 2 and all entries of A[X ′, Y ′] are
nonzero.

Proof. By Claim 3.5.2 we have X ′ ∪ Y ′ ⊇ {e, f , g} so |X ′| ≥ 2. If
there is an x ∈ X ′ \ {e, f }, y ∈ Y ′ \ g with Ax y 6= 0 then it fol-
lows from Claim 3.5.3 and one of Lemma 2.6 and Lemma 2.27(ii)
that (Ax y , {e, f , g}) is a bad pair with lift candidate bAx y and certificate
(X ′ \ x , Y ′ \ y), which contradicts minimality of |X ′|+ |Y ′|.
If there is an x ∈ X ′ \ {e, f } then Ax y = 0 for all y ∈ Y ′ \ {g}. Then
det(bA[X ′, Y ′]) = bAx g det(bA[X ′ \ x , Y ′ \ g]). But bA− {x , g} is a square
submatrix of bA− g so its determinant is defined, a contradiction.
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If some entry of bA[X ′, Y ′] equals 0 then det(bA[X ′, Y ′]) is the product of
entries in bA, a contradiction.The claim follows.

Suppose (A, {e, f , g}) is a local bad pair with minimal certificate (X ′, Y ′).
Suppose X ′ = {e, f }, Y ′ = {g, h}. Since all four entries of bA[X ′, Y ′] are
nonzero, clearly σ

bA(C) 6= σA(C)↑ for C = (e, g, f , h, e).

Claim 3.5.6. If (A, {e, f , g}) is a local bad pair with minimal certificate
then there exist p, q, r, s ∈ P such that A is scaling-equivalent to one of the
following matrices:

A1 :=







h g

i 1© 1©
e 1© p
f 1© q






, A2 :=











j h g

i 1© 0 1©
k 1© 1© 0
e p 1© r
f q 1© s











. (28)

Proof. Let (X ′, Y ′) be a minimal certificate, say X ′ = {e, f } and Y ′ =
{g, h} for some g ∈ Y . Since G(A− {e, f }) is connected, there exists
a g − h path P in G(A− {e, f }). Let P be a shortest such path. Then
G(A[V (P)]) = P. Then T := P ∪ {he, hf } is a spanning tree for A′ :=
A[V (P) ∪ {e, f }] with leaves {e, f , g}. But then (A′, {e, f , g}) is a local
bad pair with certificate ({e, f }, {g, h}), so by minimality of |X |+|Y | we
have A= A′.
If |V (P)| ≥ 7 then P has an edge x y with x ∈ X such that Ax g =
Axh = 0. By Claim 3.5.3 we have that (Ax y , {e, f , g}) is a local bad pair
with minimal certificate. But Ax y has a shorter g−h path, which again
contradicts minimality of |X |+ |Y |. Therefore |V (P)|= 3 or |V (P)|= 5,
from which the claim follows.

Claim 3.5.7. There does not exist a local bad pair.

Proof. Suppose (A, {e, f , g}) is a local bad pair with minimal certificate.
Since (ii) does not hold we have A 6∼ A1. Therefore A ∼ A2. Assume,
without loss of generality, that A= A2 for some p, q, r, s. Let bp,bq,br,bs be
the entries of bA corresponding to p, q, r, s.

Claim 3.5.0.1. p and q are not both zero.

Proof. Ai j − {i, j} is scaling-equivalent to a matrix of the form A1, a
contradiction.

Claim 3.5.0.2. Either p = 0 or q = 0.

Proof. Suppose p 6= 0, q 6= 0. Then bp = p↑,bq = q↑,br = (r/p)↑p↑, and
bs = (s/q)↑q↑. Since σ

bA(C) 6= σA(C)↑ for C = (e, g, f , h, e) it follows
that

br

bs
6=
� r

s

�↑
. (29)
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A is minor-minimal, so A[{e, f }, { j, h, g}] has a local ↑-lift. This ma-
trix is scaling-equivalent to the following normalized matrices:

�

j h g

e 1© 1© r/s
f q/p 1© 1©

�

,

�

j h g

e 1© 1© 1©
f 1© p/q ps

qr

�

. (30)

Since these matrices have a local ↑-lift we conclude, using (1/p)↑ =
1/(p↑), that

�

p

q

�↑� s

r

�↑
=
�

ps

qr

�↑

. (31)

Likewise A[{i, e, f }, { j, g}] has a local ↑-lift. This gives
� p

r

�↑� s

q

�↑

=
�

ps

qr

�↑

. (32)

Finally, A1[{k, e, f }, { j, h}] has a local ↑-lift. This gives

p↑

q↑
=
�

p

q

�↑

. (33)

But then
� r

s

�↑
=
�

r

p

�↑

p↑/

�

�

s

q

�↑

q↑
�

=
br

bs
, (34)

a contradiction.
By symmetry we may assume p = 0.

Claim 3.5.0.3. q = 1.

Proof. Suppose p = 0, q 6= 0, q 6= 1. Then Akh is scaling-equivalent to

A′ :=











j k g

i 1© 0 1©
h 1© 1© 0
e p′ 1© r ′

f q′ 1© s′











(35)

with p′ = 1, q′ = 1 − q, r ′ = −r, s′ = −s. A spanning tree T ′ has
been circled. Let bA′ be a T -normalized lift candidate for (A, {e, f , g}).
By Claim 3.5.3 bA′ ∼ bAkh. But bA′[{e, f }, {h, g}] ∼ bA[{e, f }, {h, g}], so
again σ

bA(C) 6= σA(C)↑ for C = (e, g, f , h, e). But this is impossible by
Claim 3.5.0.2.

Now p = 0, q = 1. Then bs = s↑ and br = −(−r)↑. Scale row e of A by
1/r and then column h by r. After permuting some rows and columns
we obtain

A′ :=











g j h

e 1© 0 1©
i 1© 1© 0
k 0 1© r
f s 1© r











. (36)
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A spanning tree T ′ has been circled. Let bA′ be the T ′-normalized lift
candidate for (A′, {k, f , h}). Then bA′kh = −(−r)↑ and bA′f h = (r/s)

↑s↑.

But then σ
bA(C) 6= σA(C)↑ for C ′ = (k, j, f , h, k). By Claim 3.5.0.3 we

have s = 1. We can now repeat the argument and conclude that also
r = 1. Hence (ii) holds, contradicting our choice of A. This ends the
proof of Claim 3.5.7.

A pair (A, x y), where A is an X ×Y P-matrix and x ∈ X , y ∈ Y is such that
Ax y 6= 0, is called a bad-pivot pair if

(i) A is a counterexample to the theorem with |X |+ |Y | minimal;

(ii) A has a local lift bA, but bAx y is not a local lift of Ax y .

Claim 3.5.8. There exists a bad-pivot pair.

Proof. Let A be a counterexample to the theorem with |X |+ |Y | mini-
mal. By Claim 3.5.7 A has a local lift bA. Suppose bA is not a global ↑-lift
for A. Then there exist sequences A0, . . . , Ak and bA0, . . . , bAk such that
A0 = A, bA0 = bA, and for i = 1, . . . , k, Ai = (Ai−1)x i yi and bAi = b(Ai−1)x i yi ,
such that bAk is not a local ↑-lift of Ak. Choose A and these sequences
such that k is as small as possible. But then k = 1, so there is an edge
x y ∈ G(A) such that Ax y 6= 0 and bAx y is not a local ↑-lift of Ax y .

By Claim 3.5.3 we have

Claim 3.5.9. If (A, {e, f , g}) is a bad pair and (A, x y) is a bad-pivot pair,
then {x , y} ∩ {e, f , g} 6= ;.

Let T ′ be a tree such that x , y ∈ T ′ and T ′ has three leaves {e′, f ′, g ′},
not all rows and not all columns, such that {x , y} ∩ {e′, f ′, g ′} = ;. From
the proof of Lemma 3.6 we conclude that we can extend T ′ to a spanning
tree of G(A) with three leaves {e, f , g}, not all rows and not all columns,
such that {x , y} ∩ {e, f , g} = ;. We call T ′ “good for x y”. It follows that
there is no good tree for x y in G(A).

Claim 3.5.10. There exists a bad-pivot pair (A, x y) such that, for some
p, q ∈ P, we have

A=







y g h

x 1© 1© 0
e 1© p 1©
f 0 1© q






. (37)

Proof. Let (A, x y) be a bad-pivot pair. By Claim 3.5.1 G(A) is 2-connected,
so there exists a cycle C containing x y . By Lemma 2.27(ii),(iii) G(A) is
not a cycle. Then there exists an edge x ′ y ′ not in C . Find two vertex-
disjoint x ′ y ′−C paths P1, P2, and set P := P1∪P2∪{x ′ y ′}. If some vertex
v ∈ P ∩ C is not in δ({x , y}) then we delete the two edges of C adjacent
to v and obtain a good tree for x y , a contradiction. If P∩C = x y then we
delete an edge of C not adjacent to x y and an edge of P not adjacent to
x y to obtain a good tree for x y , a contradiction. Since G(A) is simple and
bipartite, both C and P ∪ {x y} have girth at least 4, so such edges exist.
Therefore we may assume that all such paths P have the neighbours of
x y as end vertices. If P has length at least 3 and C has length at least 6
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then again a good tree for x y can be found. Therefore, without loss of
generality, P has length 1.

Assume a bad-pivot pair (A, x y) was chosen such that the length of
P is 1 and the length of C is as small as possible. Suppose C has length
more than 6. Let x ′ y ′ be the edge of C at maximum distance from x y .
We can find a good tree for x ′ y ′, so bA′ := bAx ′ y ′ is a local ↑-lift of A′ := Ax ′ y ′ .
But in G(A′) there is a good tree for x y , so (bA′)x y is a local lift for (A′)x y .
But ((bA′)x y)y

′ x ′ = bAx y , so there is no good tree for y ′x ′ in (A′)x y . This
is only the case if Ax y is a cycle. But it is easily checked that in this case
dAx y = bAx y , a contradiction. The claim follows.

Suppose (A, x y) is a bad-pivot pair with A as in (37) for some p, q ∈ P.
The normalized local ↑-lift bA of A has bAeg = p↑ and bA f h = (pq)↑/p↑. After
a pivot over x y and renormalization we have

A′ =







x g h

y 1© 1© 0
e 1© 1− p 1©
f 0 1© −q






. (38)

The normalized local ↑-lift bA′ of A′ has bA′eg = (1− p)↑ and bA′f h = (q(p −
1))↑/(1− p)↑. By definition of the lifting function (1− p)↑ = 1− p↑ and
�

p
p−1

�↑
= p↑

p↑−1
. Since bA′ is not scaling-equivalent to bAx y , we must have

−(pq)↑/p↑ 6= (q(p− 1))↑/(1− p)↑. (39)

Consider

Ax g =







y x h

g 1 −1 0
e 1− p p 1
f −1 1 q






. (40)

Since A is minor-minimal, Ax g[{e, f }, {y, x , h}] has a global ↑-lift. If we
normalize with respect to tree T ′ = {e y, ex , eh, f y} then we find

�

p− 1

p

�↑

(pq)↑ = ((1− p)q)↑ (41)

which contradicts (39). Therefore A does have a global ↑-lift. It follows
that no counterexample exists, which completes the proof of the theorem.

We remark here that for most of our applications, including all exam-
ples in the next section, ϕ|F (bP) is a bijection between F (bP) and F (P).
Then (ϕ|F (bP))

−1 is an obvious choice for the lifting function. We did not
specify this lifting function in the theorem statement because we need the
more general version for the proof of Lemma 5.8.

We have the following corollary:
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Corollary 3.8. Let P,bP,ϕ,↑ be as in Theorem 3.5. Suppose that

(i) If 1+ 1
.
= 0 in P then 1+ 1

.
= 0 in bP;

(ii) If 1+ 1
.
= 2 in P then 1+ 1

.
= 2 in bP;

(iii) For all p, q, r ∈ F (P) such that pqr = 1, we have p↑q↑r↑ = 1.

Then a matroid is P-representable if and only if it is bP-representable.

Proof. Consider the following P-matrix:
�

1 1 1
1 p′ q′

�

. (42)

This matrix has a local ↑-lift if and only if

�

p′

q′

�↑

=
(p′)↑

(q′)↑
. (43)

Pick p := p′, q := (q′)−1, and r := q′/p′. Then (43) holds if and only if
p↑q↑r↑ = 1, which proves (iii). (i) and (ii) arise from the first matrix in
(24) by similar considerations.

4 Applications

4.1 Ternary matroids

Our first applications of the Lift Theorem consist of new proofs of three
results of Whittle [Whi97].

First we prove Theorem 1.2 from the introduction. A matroid is called
dyadic if it is representable over the partial field D := P(Q, 2).

Lemma 4.1. F (D) = asc{1,2}= {0, 1,−1,2, 1/2}.

Proof. We find all solutions of

1− p = q (44)

where p = (−1)s2x and q = (−1)t2y . If x < 0 then we divide both sides
by p. Likewise if y < 0 then we divide both sides by q. We may multiply
both sides with −1. After rearranging and dividing out common factors
we need to find all solutions of

2x ′ + (−1)s
′
2y ′ + (−1)t

′
= 0 (45)

where x ′, y ′ ≥ 0. This equation has solutions only if one of 2x ′ , 2y ′ is odd.
This implies that we just need to find all solutions of

2x ′′ + (−1)s
′′
+ (−1)t

′′
= 0. (46)

There are finitely many solutions. Enumeration of these completes the
proof.
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Theorem 4.2 (Whittle [Whi97]). Let M be a matroid. The following are
equivalent:

(i) M is representable over GF(3)⊗GF(5);

(ii) M is D-representable;

(iii) M is representable over every field that does not have characteristic 2.

Proof. Let ϕ3 : D → GF(3) be determined by ϕ(2) = −1. Let ϕ5 : D →
GF(5) be determined by ϕ(2) = 2. Clearly both are partial field ho-
momorphisms. But then ϕ = ϕ3 ⊗ ϕ5 is a partial field homomorphism
D→ GF(3)⊗GF(5). ϕ|F (D) : F (D)→F (GF(3)⊗GF(5)) is readily seen
to be a bijection. Taking (ϕ|F (D))−1 as lifting function we apply Corol-
lary 3.8, thereby proving (i)⇔(ii). For (ii)⇒(iii), use again a suitable
homomorphism. The implication (iii)⇒(i) is trivial.

A matroid is called near-regular if it is representable over the partial
field U1 := P(Q(α),α).

Lemma 4.3. F (U1) = asc{1,α}.

Proof. We find all p = (−1)sαx(1− α)y such that 1− p
.
= q in U1. Con-

sider the homomorphism ϕ : U1 → D determined by ϕ(α) = 2. Since
fundamental elements must map to fundamental elements, it follows that
x ∈ {−1,0, 1}. Likewise, ψ : U1 → D, determined by ψ(α) = −1, shows
that y ∈ {−1, 0,1}. Again, a finite check remains.

Theorem 4.4 (Whittle [Whi97]). Let M be a matroid. The following are
equivalent:

(i) M is representable over GF(3)⊗GF(4)⊗GF(5);

(ii) M is representable over GF(3)⊗GF(8);

(iii) M is U1-representable;

(iv) M is representable over every partial field with at least 3 elements.

Proof. Let ϕ : U1 → GF(3) ⊗ GF(4) ⊗ GF(5) be determined by ϕ(α) =
(−1,ω, 2). Again ϕ|F (U1) : F (U1) → F (GF(3) ⊗ GF(4) ⊗ GF(5)) is a
bijection, so we use (ϕ|F (U1))

−1 as lifting function and apply Corollary
3.8 to prove (i)⇔(iii). For (iii)⇒(iv), use a homomorphism ϕ′ such that
ϕ′(α) = p for any p ∈ P\{0, 1}. Similar constructions prove the remaining
implications.

Let Y := P(C, {2,ζ}), where ζ is a primitive complex sixth root of
unity.

Lemma 4.5. F (Y) = asc{1,2,ζ}= {0, 1,−1,2, 1/2,ζ, 1− ζ}.

Proof. Clearly all these elements are fundamental elements. The complex
argument of every element of Y is equal to a multiple of π/3, from which
it follows easily that no other fundamental elements exist.

Theorem 4.6 (Whittle [Whi97]). Let M be a matroid. The following are
equivalent:
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(i) M is representable over GF(3)⊗GF(7);

(ii) M is Y-representable;

(iii) M is representable over GF(3), over GF(p2) for all primes p > 2, and
over GF(p) when p ≡ 1 mod 3.

Proof. Let ϕ : Y → GF(3) ⊗ GF(7) be determined by ϕ(2) = (−1,2)
and ϕ(ζ) = (−1,3). Again ϕ|F (Y) : F (Y) → F (GF(3) ⊗ GF(7)) is a
bijection, so we use (ϕ|F (Y))−1 as lifting function and apply Corollary 3.8
to prove (i)⇔(ii). For (ii)⇒(iii) we use an argument similar to the proof
of Theorem 2.30. Note that the ring Z[ 1

2
,ζ] is not the ring of integers of

an algebraic number field, but every element is of the form 2k x for some
k ∈ Z, x ∈ Z[ζ]. Hence, in contrast to the partial field S, there are no
homomorphisms to finite fields of characteristic 2. (i) is a special case of
(iii).

4.2 Quaternary and quinary matroids

Our next example is a proof of Theorem 1.3. A matroid is called golden
ratio (in [Whi05] “golden mean” is used) if it is representable over the
partial field G := P(R,τ), where τ is the golden ratio, i.e. the positive
root of x2 − x − 1= 0.

Lemma 4.7. F (G) = asc{1,τ}= {0,1,τ,−τ, 1/τ,−1/τ,τ2, 1/τ2}.

Proof. Remark that for all k ∈ Z, τk = fk + fk+1τ, where f0 = 0, f1 = 1,
and fi+2− fi+1− fi = 0, i.e. the Fibonacci sequence, extended to hold for
negative k as well. If p = (−1)s( fk + fk+1τ) is a fundamental element,
then {|(−1)s fk − 1|, | fk+1|} has to be a set of two consecutive Fibonacci
numbers. We leave out the remaining details.

Theorem 4.8 (Vertigan). Let M be a matroid. The following are equivalent:

(i) M is representable over GF(4)⊗GF(5);

(ii) M is G-representable;

(iii) M is representable over GF(5), over GF(p2) for all primes p, and over
GF(p) when p ≡±1 mod 5.

Proof. Let ϕ :G→ GF(4)⊗GF(5) be determined by ϕ(τ) = (ω, 3). Again
ϕ|F (G) : F (G)→F (GF(4)⊗GF(5)) is a bijection, so we use (ϕ|F (G))−1

as lifting function and apply Corollary 3.8 to prove (i)⇔(ii).
For (ii)⇒(iii) we use an argument similar to the proof of Theorem 2.30.

(i) is a special case of (iii).

A matroid is called Gaussian if it is representable over the partial field
H2 := P(C, {i, 1− i}), where i is a root of x2 + 1= 0.

Lemma 4.9.

F (H2) = asc{1,2, i}=
¦

0,1,−1,2, 1
2
, i, i+ 1, i+1

2
, 1− i, 1−i

2
,−i
©

. (47)
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Proof. First note that the complex argument of every element of H2 is a
multiple of π/4. It follows that if p = i x(1 − i)y is a fundamental ele-
ment, then 1p

2
≤ p ≤

p
2. Therefore there are finitely many fundamental

elements in C \ R. It is easily checked that all numbers on the real line
are powers of 2. The result follows.

Our next result requires more advanced techniques. The following
lemma is a corollary of Whittle’s Stabilizer Theorem [Whi99].

Theorem 4.10 (Whittle [Whi99]). Let M be a 3-connected quinary ma-
troid with a minor N isomorphic to one of U2,5 and U3,5. Then the repre-
sentation of M over GF(5) is determined up to strong equivalence by the
representation of N.

Lemma 4.11. Let M be a 3-connected matroid.

(i) If M has at least 2 inequivalent representations over GF(5), then M is
representable over H2.

(ii) If M has a U2,5- or U3,5-minor and M is representable over H2, then
M has at least 2 inequivalent representations over GF(5).

Proof. Let ϕ :H2→ GF(5)⊗GF(5) be determined by ϕ(i) = (2, 3). Then
ϕ(2) = ϕ(i(1− i)2) = (2,2). Let ϕi : GF(5)⊗ GF(5) → GF(5) be deter-
mined by ϕi(x) = x i for i = 1, 2. Let

A :=
�

1 1 1
1 p′ q′

�

(48)

for some, p′, q′ ∈ H2. If A is a H2-matrix then p′, q′ ∈ F (H2). A finite
check then shows that for each of these, ϕ1(ϕ(A)) 6= ϕ2(ϕ(A)). This
proves (ii).

Let M be a 3-connected matroid having two inequivalent representa-
tions over GF(5). Then there exists a GF(5)⊗ GF(5)-matrix A such that
M = M([I |A]) and ϕ1(A) 6∼ ϕ2(A).
ϕ|F (H2) : F (H2) → F (GF(5) ⊗ GF(5)) is a bijection. If we apply

Theorem 3.5 with lifting function (ϕ|F (H2))
−1 then Case 3.5(ii) holds only

for GF(5)⊗GF(5)-matrices A having a minor

�

1 1 1
1 p q

�

or







1 1
1 p
1 q






, (49)

where p, q ∈ {(2, 2), (3,3), (4, 4)}. But Theorem 4.10 implies that if A has
such a minor, then ϕ1(A)∼ ϕ2(A), a contradiction. (i) follows.

Theorem 4.12. Let M be a 3-connected matroid with a U2,5- or U3,5-minor.
The following are equivalent:

(i) M has 2 inequivalent representations over GF(5);

(ii) M is H2-representable;

(iii) M has two inequivalent representations over GF(5), is representable
over GF(p2) for all primes p ≥ 3, and over GF(p) when p ≡ 1 mod 4.
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Proof. (i)⇔(ii) follows from the previous lemma. For (ii)⇒(iii) we use
an argument similar to the proof of Theorem 2.30 where, like in the proof
of Theorem 4.6, every element of H2 is of the form 2k x for some k ∈ Z,
x ∈ Z[i]. (i) is a special case of (iii).

A matroid is called k-cyclotomic if it is representable over the partial
field

Kk := P(Q(α), {α,α− 1,α2 − 1, . . . ,αk − 1}). (50)

Lemma 4.13. If M is Kk-representable, then it is representable over every
field that has an element x whose multiplicative order is at least k+ 1. In
particular, M is representable over GF(q) for q ≥ k+ 2.

Let Φ0(α) := α and let Φ j be the jth cyclotomic polynomial, i.e. the
polynomial whose roots are exactly the primitive jth roots of unity. A
straightforward observation is the following:

Lemma 4.14. Kk = P(Q(α), {Φ j(α) | j = 0, . . . , k}).

In particular K2 = P(Q(α), {α,α− 1,α+ 1}).

Lemma 4.15. F (K2) = asc{1,α,−α,α2}.

Proof. Suppose p := (−1)sαx(α−1)y(α2−1)z is a fundamental element.
Every homomorphism ϕ : K2 → G and every homomorphism ϕ : K2 →
H2 gives bounds on x , y, z. After combining several of these bounds a
finite number of possibilities remains. We leave out the details.

We conclude this section with the following result:

Theorem 4.16. Let M be a matroid. The following are equivalent:

• M is representable over GF(4)⊗H2;

• M is representable over K2.

The proof consists, once more, of an application of Corollary 3.8.

5 An algebraic construction

With a theorem as general as the Lift Theorem, an interesting question
becomes whether we can construct suitable partial fields bP to which a
given class of matroids lifts. In this section, we find the “most general”
or “algebraically most free” partial field to which all P-representable ma-
troids lift, a notion that we will make precise soon. Our starting point
is Theorem 2.16, which we prove now. For convenience we repeat the
theorem here.

Theorem 5.1 (Vertigan). If P is a partial field, then there exists a ring O
and a set S ⊆O∗ such that P∼= P(O, S).
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Proof. Given a partial field P, we define the following group ring on the
multiplicative group G := P∗:

Z[G] := {
∑

p∈G

ap · p | ap ∈ Z, finitely many ap are nonzero}, (51)

where addition of two elements is componentwise and multiplication is
determined by

(
∑

p∈G

ap · p)(
∑

p∈G

bp · p) =
∑

p,q∈G

ap bq · pq. (52)

We identify z ∈ Z with
∑z

i=1 1P, where 1P is the unit element of G. We
drop the · from the notation from now on. For clarity we write p ⊕ q if
we mean addition in P, and p+ q if we mean (formal) addition in Z[G].
Consider the following subset of Z[G]:

IF :=
�

p+ q+ (−r) | p, q, r ∈ P, p⊕ q
.
= r
	

. (53)

Let I be the ideal generated by IF . We define the ring O := Z[G]/I . Note
that r + (−r) ∈ IF , so we identify (−r) with (−1) · r in O.

Claim 5.1.1. If q ∈ I then q =±s1 ± · · · ± sn, where s1, . . . , sn ∈ IF .

Proof. By definition q = r1s1+· · ·+rksk for some r1, . . . , rk ∈O, s1, . . . , sk ∈
IF . We consider one term.

risi = (
∑

p∈G

ap p)(t + u− v) =
∑

p∈G

(ap p(t + u− v)). (54)

Since p(t ⊕ u⊕ (−v)) = pt ⊕ pu⊕−pv
.
= 0, we have p(t + u− v) ∈ IF

for all p ∈ G. Combining this with the identification of z ∈ Z with
1P + · · ·+ 1P we see that risi is of the desired form. Summing over i
yields the claim.

Claim 5.1.2. Suppose s1, . . . , sn ∈ IF . Then s′1 ⊕ · · · ⊕ s′n
.
= 0, where s′i :=

t ⊕ u⊕ (−v) for si = t + u− v.

Proof. t ⊕ u
.
= v by definition of IF , so ((t ⊕ u) ⊕ −v)

.
= 0, with an

association as indicated by the parentheses. Using 0⊕0
.
= 0 we find an

association of the desired sum.

Claim 5.1.3. 1 6∈ I .

Proof. Suppose that 1 ∈ I . Then 1= s1+· · ·+sn for some s1, . . . , sn ∈ IF .
We create two different associations of s′1 ⊕ · · · ⊕ s′n. First note that
s′1 ⊕ · · · ⊕ s′n

.
= 0 by Claim 5.1.2. Furthermore note that si ∈ {−1,0, 1}G

with a nonzero in at most 3 positions. n is finite, so we can interpret
s1+· · ·+sn as a finite sum over a finite-dimensional vector space, where
each element occurs with coefficient +1 or −1. Clearly if p 6= 1 then
for every term p in the sum there must be a term −p. Only the number
of times a 1 occurs should exceed the number of times a −1 occurs by
one. By repeatedly grouping terms p,−p, we find a pre-association of
s′1 ⊕ · · · ⊕ s′n with 1 and 0 as children of the root, a contradiction.
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Claim 5.1.4. If p ∈ G, then p+ I is a unit of O.

Proof. Let p−1 be the inverse of p in G, then (p+ I)(p−1+ I) = 1+ I .

It follows that we can view G as a subgroup of the group of units of O.
Let P′ := P(O,G). Consider the following map:

ϕ : P→ P′ : p 7→ p+ I . (55)

Claim 5.1.5. ϕ is a nontrivial homomorphism.

Proof. Clearly ϕ(pq) = ϕ(p)ϕ(q). For addition, note that if p⊕ q
.
= r,

then p+q− r ∈ IF , so (p+ I)+(q+ I) = p+q+ I = r+ I , and therefore
ϕ(p) +ϕ(q)

.
= ϕ(p⊕ q). ϕ is not trivial since 1 6∈ I .

Claim 5.1.6. ϕ is a bijection.

Proof. Suppose this is not the case, so there are p, q ∈ P, p 6= q, but
p + I = q + I . Then p − q ∈ I , so p − q = s1 + · · · + sn for some
s1, . . . , sn ∈ IF . By Claim 5.1.2, s′1 ⊕ · · · ⊕ s′n

.
= 0. As before, note that

for every term t 6= p,−q in s′1 ⊕ · · · ⊕ s′n there must be a corresponding
term −t, and elements p,−q occur with a surplus of one (after terms
−p, q are discounted). It follows that there exists a pre-association
of s′1 ⊕ · · · ⊕ s′n such that the children of r are labelled p,−q, from
which it follows, by the associative law, that p⊕−q

.
= 0, i.e. p = q, a

contradiction.

Claim 5.1.7. If p+ I + q+ I
.
= r + I in P′, then p⊕ q

.
= r.

Proof. Since p+q− r ∈ I , there are s1, . . . , sn ∈ IF such that p+q− r =
s1 + · · · + sn. Using the same argument as in the previous claim we
construct two associations for s′1⊕ · · ·⊕ s′n⊕ r: the obvious one with as
children of the root r, 0, and the one where the children of the root are
p, q.

It follows that ϕ is a partial field isomorphism, by which the proof is
complete.

Note that we have not guaranteed that P′ = P(O,O∗). It could be that
there are other units besides the elements of G.

Corollary 5.2. If M is representable over a partial field P then M is repre-
sentable over a field.

Proof. Let P = P(O, S), and let A be a P-matrix such that M = M([I |A]).
If every x ∈ O \ 0 is invertible then O is a field. If some x ∈ O \ 0
is not invertible then xO is a proper ideal of O. A standard result from
commutative ring theory implies the existence of a maximal ideal I ⊇ xO,
and then O/I is a field (see, for example, Page 2 of Matsumura [Mat86]).
There is a nontrivial ring homomorphism ϕ : O → O/I , and therefore
M = M([I |ϕ(A)]).

Clearly every ring homomorphism yields a partial field homomor-
phism. On the other hand, not all partial field homomorphisms extend
to ring homomorphisms. The following example shows this. Let O :=
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GF(2) × GF(7), and let P := GF(2) ⊗ GF(7). Let ϕ : P → U0 be de-
termined by ϕ(1,1) = ϕ(1,2) = ϕ(1,4) = 1 and ϕ(1, 6) = ϕ(1, 5) =
ϕ(1, 3) = −1. This is a partial field homomorphism. However, in O we
have (1,2) + (1,4) = (1,3) + (1,3) = (0,6). It follows that ϕ can not
be extended to a homomorphism ϕ′ : O → Q. The following theorem
overcomes this problem.

Theorem 5.3. Let P1,P2 be partial fields such that P1 = P1[F (P1)] and
P2 = P2[F (P2)]. If there exists a partial field homomorphism ϕ : P1→ P2
then ϕ can be extended to a ring homomorphism ϕ′ : O1 → O2 for some
rings O1,O2 such that Pi = P(Oi , Si) for some sets Si .

Proof. Let O1,O2 be the rings constructed in the proof of Theorem 5.1.
Every element of Pi can be expressed as a product of fundamental ele-
ments and −1. From this it follows that there exists a ring homomor-
phism ϕ′′ : Z[P∗1]→ O2. But IF1

⊆ ker(ϕ′′). It follows that there exists a
well-defined homomorphism ϕ′ :O1→O2.

The restriction on P1,P2 in this theorem is rather light, as the follow-
ing propositions show. We prove the first in [PZ]. The main idea is to look
at induced cycles in the bipartite graph of a normalized representation.

Proposition 5.4. If a matroid M is representable over a partial field P, then
M is representable over P[F (P)].

Proposition 5.5. Let P1,P2 be partial fields and ϕ : P1 → P2 a partial
field homomorphism. Then there exists a partial field homomorphism ϕ′ :
P1[F (P1)]→ P2[F (P2)].

Proof. Let P′1 := P1[F (P1)] and let P′2 := P2[F (P2)]. Then ϕ′ := ϕ|P′1 :
P′1 → P2 is a partial field homomorphism. Clearly ϕ(−1) = −1. Let p =
p1 · · · pk ∈ P′1, where p1, . . . , pk ∈ F (P′1). Then ϕ(p) = ϕ(p1) · · ·ϕ(pk) ∈
P′2. Hence the image of ϕ′ is contained in P′2, which completes the proof.

The above paves the way for a construction of partial fields bP satisfying
the conditions of Corollary 3.8.

Definition 5.6. Let P be a partial field. We define the lift of P as

LP := P(OP/IP, eFP), (56)

where eFP := {ep | p ∈ F (P)} is a set of symbols, one for every fundamen-
tal element, OP := Z[eF] is the free Z-module on eFP, and IP is the ideal
generated by the following polynomials in OP:

(i) e0− 0; e1− 1;

(ii) Ý−1+ 1 if −1 ∈ F (P);
(iii) ep+ eq− 1, where p, q ∈ F (P), p+ q

.
= 1;

(iv) epeq− 1, where p, q ∈ F (P), pq = 1;

(v) epeqer − 1, where p, q, r ∈ F (P), pqr = 1.

A partial field P is level if LP∼= P.
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We show that a matroid is P-representable if and only if it is LP-
representable. First we need a lemma.

Lemma 5.7. Let P be a partial field. There exists a nontrivial partial field
homomorphism ϕ : LP→ P such that ϕ(ep+ IP) = p for all p ∈ F (P).

Proof. LetO be a ring such that P= P(O, S) for some S. Thenψ :OP→O
determined byψ(ep) = p for all ep ∈ eFP is obviously a ring homomorphism.
Clearly IP ⊆ ker(ψ), so ϕ′ :OP/IP→O determined by ϕ′(ep+ IP) =ψ(p)
for all ep ∈ eFP is a well-defined ring homomorphism. Then ϕ := ϕ′|LP is
the desired partial field homomorphism. Since 1 6∈ IP, ϕ is nontrivial.

Lemma 5.8. Let P be a partial field. A matroid is P-representable if and
only if it is LP-representable.

Proof. Let bP := LP and let ϕ be the homomorphism from Lemma 5.7. We
define ↑ : F (P) → F (bP) by p↑ = ep + IP. By 5.6(iii),(iv) this is a lifting
function for ϕ. Now all conditions of Corollary 3.8 are satisfied.

The partial field LP is the most general partial field for which the lift
theorem holds, in the following sense:

Theorem 5.9. Suppose P,bP,ϕ,↑ are such that all conditions of Corollary 3.8
are satisfied. Then there exists a nontrivial homomorphism ψ : LP→ bP.

Proof. Let ψ′ : OP → bP be determined by ψ′(ep) = p↑ for all p ∈ F (P).
This is clearly a ring homomorphism. But since all conditions of Corol-
lary 3.8 hold, IP ⊆ ker(ψ′). It follows that there exists a well-defined
homomorphism ψ : LP→ bP as desired.

The definition of a level partial field makes sense, as can be seen from
the following proposition whose straightforward proof is omitted.

Proposition 5.10. L2P∼= LP.

Homomorphisms between level partial fields are more well-behaved
than homomorphisms between arbitrary partial fields:

Lemma 5.11. Let P1,P2 be partial fields, and let OP1
/IP1

,OP2
/IP2

be the
rings as in Definition 5.6. Let ϕi : LPi → Pi be the homomorphisms from
Lemma 5.7. Suppose that there exists a nontrivial partial field homomor-
phism ϕ : P1 → P2. Then there exists a nontrivial ring homomorphism
ψ :OP1

/IP1
→OP2

/IP2
such that the following diagram commutes:

LP1
ψ

−−−−→ LP2

ϕ1





y





y

ϕ2

P1
ϕ

−−−−→ P2

(57)

Proof. We define ψ′ : OP1
→ OP2

/IP2
by ψ′(ep) = eq + IP2

, where eq is
such that ϕ(p) = q. Again, this is obviously a ring homomorphism, and
IP1
⊆ ker(ψ′). The homomorphism ψ :OP1

/IP1
→OP2

/IP2
determined by

ψ(ep+ IP1
) =ψ′(ep) is therefore well-defined. The diagram now commutes

by definition, and therefore nontriviality of ψ follows from that of ϕ.
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P GF(2)⊗GF(3) GF(3)⊗GF(4) GF(3)⊗GF(5)

LP U0 S D

P GF(3)⊗GF(7) GF(3)⊗GF(8) GF(4)⊗GF(5)

LP Y U1 G

P GF(5)⊗GF(7) GF(5)⊗GF(8) GF(4)⊗GF(5)⊗GF(7)

LP GF(5)⊗GF(7) GF(5)⊗GF(8) G⊗GF(7)

Table 1: Some level partial fields.

The importance of Lemma 5.8 is that we can now construct partial
fields for which the conditions of Corollary 3.8 hold. We use algebraic
tools such as Gröbner basis computations over rings to get insight in the
structure of LP. In particular, we adapted the method described by Baines
and Vámos [BV03] to verify the claims in Table 1.

The obvious question is now: is LP 6∼= P for other choices of P =
GF(q1) ⊗ · · · ⊗ GF(qk)? The last three entries in Table 1 indicate that
sometimes the answer is negative. In these finite fields there seem to be
relations that enforce LP ∼= P. But Theorems 4.12 and 4.16 indicate that
there are other uses still for the Lift Theorem. We conclude this section
with a modification of Definition 5.6 that accommodates the characteri-
zation of the Gaussian partial field.

Definition 5.12. Let P be a partial field and A a set of P-matrices. We
define theA -lift of P as

LAP := P(OP/IP, eFP), (58)

where eFP := {ep | p ∈ F (P)} is a set of symbols, one for every fundamen-
tal element, OP := Z[eF] is the free Z-module on eFP, and IP is the ideal
generated by the following polynomials in OP:

(i) e0− 0; e1− 1;

(ii) Ý−1+ 1 if −1 ∈ F (P);
(iii) ep+ eq− 1, where p, q ∈ F (P), p+ q

.
= 1;

(iv) epeq− 1, where p, q ∈ F (P), pq = 1;

(v) epeqer − 1, where p, q, r ∈ F (P), pqr = 1, and
�

1 1 1
1 p q−1

�

� A (59)

for some A∈A .

We omit the proof of the following lemma.

Lemma 5.13. Let P be a partial field and A a set of P-matrices, and
let M be a matroid. If M = M([I |A]) for some A ∈ A then M is LAP-
representable.
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6 A number of questions and conjectures

While writing this paper we asked ourselves numerous questions. To
some the answer can be found in this paper or in [PZ], but in this section
we present a few that are still open.

Theorems such as those in Section 4 show the equivalence between
representability over infinitely many fields and over a finite number of
finite fields. The following conjecture generalizes the characterization of
the near-regular matroids:

Conjecture 6.1. Let k = pm, p prime, m > 0. There exists a number nk
such that, for all matroids M, M is representable over all fields with at least
k elements if and only if it is representable over all finite fields GF(q) with
k ≤ q ≤ nk.

To our disappointment the techniques in the present paper failed to
prove this conjecture even for k = 4. We offer the following candidate:

Conjecture 6.2. A matroid M is representable over all finite fields with at
least 4 elements if and only if M is representable over

P4 := P(Q(α), {α,α− 1,α+ 1,α− 2}). (60)

Originally we posed this conjecture with K2 instead of P4. This would
imply that all such matroids have at least two inequivalent representa-
tions over GF(5). But consider M8591 := M([I |A8591]), where A8591 is the
following P4-matrix:

A8591 :=











1 1 0 α 1
0 1 1 α α−1

1 0 α α 1
0 0 1 1 0











. (61)

This matroid was found by Royle in Mayhew and Royle’s catalog of small
matroids [MR08] as a matroid representable over GF(4),GF(7), GF(8)
and uniquely representable over GF(5). M8591 is not representable over
K2 (a fact that can be proven using tools from our forthcoming paper [PZ]).

Question 6.3. To what extent is a partial field P determined by the set of
finite fields GF(q) for which there exists a homomorphism ϕ : P→ GF(q)?

The previous example shows that P is certainly not uniquely deter-
mined: both K2 and P4 have homomorphisms to all finite fields with at
least 4 elements, but M8591 is only representable over the latter.

Question 6.4. Are there systematic methods to determine the full set of
fundamental elements for (certain types of) partial fields?

Semple [Sem97] determined the set of fundamental elements for a
class of partial fields that he calls the k-regular partial fields. In this
paper we computed F (P) using ad hoc techniques, the only recurring
argument being the fact that a homomorphism ϕ : P→ P′ maps F (P) to
F (P′). We give two further illustrations. First, consider the partial field
P(Q, {2,3}). This innocent-looking set, reminiscent of the dyadic partial
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field, has a finite number of fundamental elements, the least obvious of
which are obtained from the relation 32 − 23 = 1. That there is indeed
no other such relation is a classical but nonobvious result. It was proven
by Gersonides in 1342 (see, for example, Peterson [Pet99] for a modern
exposition). Consideration of P(Q, {x , y}) for other pairs x , y brings us
into the realm of Catalan’s Conjecture. This conjecture was posed more
than 150 years ago and settled only in 2002.

Second, consider the partial field

U(2)1 := P(GF(2)(α), {α, 1+α}). (62)

F (U(2)1 ) has infinite size, since α2k
− 1= (α+ 1)2

k
for all k ≥ 0.

The partial field LP gives information about the representability of the
set of P-representable matroids over other fields. An interesting question
is how much information it gives.

Question 6.5. Which partial fields P are such that whenever the set of P-
representable matroids is also representable over a field F, there exists a
homomorphism ϕ : LP→ F?

In [PZ] we will show that each of U0,S,D,U1,Y,G,H2 has this prop-
erty.

Question 6.6. Let ϕ : LP→ P be the canonical homomorphism. For which
partial fields P is ϕ|F (LP) :F (LP)→F (P) a bijection?

This bijection exists for all examples in this paper and results in an
obvious choice of lifting function. If there is always such a bijection then
it is not necessary to introduce an abstract lifting function. In that case
the proof of the Lift Theorem can be simplified to some extent.

We end with two conjectures that seem to be only just outside the
scope of the Lift Theorem:

Conjecture 6.7. A matroid is representable over GF(2k) for all k > 1 if and
only if it is representable over U(2)1 .

Conjecture 6.8. A matroid is representable over GF(4)⊗R if and only if it
is representable over G.

Perhaps a starting point for the latter is finding an alternative proof
for Whittle’s theorem that a matroid is representable over GF(3)⊗Q if
and only if it is dyadic.

Acknowledgements We thank Hendrik Lenstra for suggesting the k-
Cyclotomic partial field. We also thank Christian Eggermont for some
helpful comments on rings of integers in algebraic number fields. Fi-
nally we thank Gordon Royle for his quick and friendly responses when
we asked him for data from the catalog of small matroids [MR08]. His
examples prevented the authors from embarking on several wild goose
chases.
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A When should we call a sum “defined”?

The notion of a sum p1+ · · ·+pn being defined appears somewhat compli-
cated. Semple and Whittle [SW96] give a simpler definition: p1+ · · ·+ pn
is defined if there exists some association of {p1, . . . , pn}. Unfortunately,
this simpler definition has a problem. Consider the following matrices:

A :=















1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 b+ a c d − a −1
0 −a 0 a 1















,B :=















1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 b c d 0
0 −a 0 a 1















, (63)

where B is obtained from A by adding the last row to the next to last.
Then det(A) = (b + a) + c + (d − a)− a + a and det(B) = b + c + d. In
both sums no cancellation has taken place: all terms missing from the
formal determinant are 0. Now consider the following instantiation over
O := Z/51Z:

a = 37, b = 7, c = 23, d = 11. (64)

Then none of b + c, b + d, c + d are invertible, yet a, b, c, d, 1,−1, (b +
a), ((b + a) + c), d − a, ((b + a) + c) + (d − a) are. It follows that in
P(O,O∗), det(A) is defined in the sense of Semple and Whittle [SW96],
whereas det(B) is not.

This is a counterexample to Proposition 2.3(iv), which is therefore
false under the old definition. This proposition is used for pretty much
everything that comes after it in Semple and Whittle [SW96], so it is
important to find a way to fix it. The proposed change in the meaning of
a sum being defined is one way to do that. To make absolutely sure that
this is indeed the case, we give a proof of Proposition 2.3 using the new
definition.

Proof of Proposition 2.3. Assume B was obtained from A by transposition.
Then

det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bnσ(n) (65)

=
∑

σ∈Sn

sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n (66)

which is nothing but a permutation of the terms of det(A).
Assume B was obtained from A by swapping rows 1 and 2. Then

det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2)b3σ(3) · · · bnσ(n) (67)

=
∑

σ∈Sn

sgn(σ)a2σ(1)a1σ(2)a3σ(3) · · · anσ(n) (68)

=
∑

σ′∈Sn

sgn(σ′)a2σ′(2)a1σ′(1)a3σ′(3) · · · anσ′(n) (69)
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where σ′ = σ◦(1,2) (in cycle notation; cycles act from the right). There-
fore sgn(σ′) = − sgn(σ), from which the second part of the proposition
follows.

For the third part, assume we multiply row 1 by a constant p. Then

det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bnσ(n) (70)

=
∑

σ∈Sn

sgn(σ)pa1σ(1)a2σ(2) · · · anσ(n) (71)

= p det(A). (72)

Here the last line follows from Axiom (P5).
For the final part we prove the following, more general lemma:

Lemma A.1. Let A= [a|X ] and B = [b|X ] be n×n matrices with entries in
P such that A[n, {2, . . . , n}] = B[n, {2, . . . , n}] = X . If det(A), det(B), det(A)+
det(B) and all entries of the vector a+ b are defined, then det([a+ b|X ]) .

=
det(A) + det(B).

Proof. Set C = [a+ b|X ]. Then

det(C) =
∑

σ∈Sn

sgn(σ)c1σ(1)c2σ(2) · · · cnσ(n) (73)

=
∑

σ∈Sn

sgn(σ)(a+ b)1σ(1)c2σ(2) · · · cnσ(n) (74)

=
∑

σ∈Sn

sgn(σ)(a+ b)1σ(1)c2σ(2) · · · cnσ(n)

−
∑

σ∈Sn

sgn(σ)b1σ(1)c2σ(2) · · · cnσ(n)

+
∑

σ∈Sn

sgn(σ)b1σ(1)c2σ(2) · · · cnσ(n) (75)

=
∑

σ∈Sn

sgn(σ)a1σ(1)c2σ(2) · · · cnσ(n)

+
∑

σ∈Sn

sgn(σ)b1σ(1)c2σ(2) · · · cnσ(n). (76)

For (76) we used the fact that, if (a + b) is defined, then (a + b) −
b

.
= a (an easy consequence of Axioms (P2) and (P6)), together with

Axiom (P5). For the final expression it is easy to provide an association:
take associations TA, TB for det(A), det(B); add a new root vertex r and
edges rAr, rB r. This is a pre-association for det(C). Since rA is labelled
by det(A) and rB by det(B), we have that r is labelled by det(A)+det(B),
which was defined by assumption.

Returning to the proof of the proposition, let B be obtained from A by
adding row i to row 1, where we assume that a1 j + ai j is defined for all
j. Let A′ be the matrix obtained by replacing the first row of A by the ith
row, and leaving all other rows unaltered. Since the first and the ith row
of A′ are identical, det(A′) = 0 (it is easy to find an association, since the
terms of the determinant cancel pairwise). Applying the lemma to A, A′

we conclude that det(B)
.
= det(A) + det(A′) = det(A), as desired.
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Since the proposed change occurs at the fringes of the definitions re-
lated to partial fields, it does not cause much damage. In fact, all other
propositions, lemmas and theorems of [SW96, Sections 1–6] are true un-
der the new definition.

As a final remark we note that, even with our definition, the following
occurs. Consider the sum 1+1+1 inO := Z/4Z. The units of this ring are
1,3, and the only nontrivial sum that is defined in P(O,O∗) is 1+ 3

.
= 0.

It follows that 1+1+1 is undefined in P(Z/4Z, (Z/4Z)∗) yet a unit in O.
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