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We study the bit-complexity of computing boolean functions on anonymous 
networks. Let N be the number of nodes, 8 the diameter and d the maximal node 
degree of the network. For arbitrary, unlabeled networks we give a general algo­
rithm of polynomial bit complexity O(N4 • 8 • d2 - log N) for computing any boolean 
function which is computable on the network. This improves upon the previous 
best known algorithm which was of exponential bit complexity O(dN

2
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metric functions on arbitrary networks we use probabilistic techniques in order to 
give an algorithm with bit complexity O(N2 • 8 • d2 - log2 N). This same algorithm 
is shown to have even lower bit complexity for a number of specific networks. We 
also consider the class of distance regular unlabeled networks and show that on 
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1 Introduction 

A very important problem in distributed computing is the designing of efficient algo­
rithms for computing boolean functions in distributed networks of processors. For both 
practical and theoretical reasons it is useful to minimize the total number of exchanged 
bits which are necessary in order to compute a certain boolean function, but at the same 
time keeping the processors as similar to each other as possible. 

A distributed network is a simple, connected graph consisting of nodes (vertices) 
on which the processors are located, and links (edges) along which the interprocess 
communication takes place. The processors are assumed to have unlimited computational 
power but may exchange messages only with their neighbors in the network. Initially, 
each processor is given an input bit, 0 or 1. 

The processors follow a deterministic protocol ( or algorithm). During each step of 
the protocol they perform certain computations depending on their input value, their 
previous history and the messages they receive from their neighbors and then transmit 
the result of this computation to some or all of their neighbors. After a finite number of 
steps, predetermined by the initial conditions and the protocol, the processors terminate 
their computation and output a certain bit. Let BN be the set of boolean functions on 
N variables. Let N = (V, E) be a network of size N, with node set V = {O, 1, ... , N -1} 
and edge set E ~ V X V. An input to N is an N-tuple I =< bv : v E V > of bits 
bv E {O, 1 }, where processor v receives as input value the bit bv. Given a function f E BN 
known to all the processors in the network we are interested in computing the value f(I) 
on all inputs I. To compute f on input J =< bv : v E V > each processor v E V starting 
with the input bit bv should terminate its computation according to the given protocol 
and output the value b such that J(I) = b. A network computes the function f if for 
each input I, at the end of the computation each processor computes correctly the value 
f(I). The bit complexity for computing f is the total number of bits exchanged during 
the computation off. We are interested in providing algorithms that minimize the bit 
complexity of boolean functions. 

We make the following assumptions regarding the networks and their processors: 

1. the processors know the network topology and the size of the network (i.e. total 
number of processors), 

2. the processors are anonymous ( this means that they do not know either the iden-
tities of themselves or of the other processors), 

3. the processors are identical (this means they all run the same algorithm), 

4. the processors are deterministic, 

5. the network is asynchronous, 

6. the network is unlabeled (i.e., there is no global, consistent labeling ( or orientation) 
of the network links). 

Note that changing any of the above assumptions changes the computational capa­
bilities and limitations of the model. If the size of the network is not known to the 
processors then it may not even be possible to compute any nonconstant function, e.g. 
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in the ring [ASW85]. Angluin [Ang80] has shown that if the processors are anonymous 
and identical there is no algorithm for electing a leader. If we add randomization to the 
model it becomes possible to improve greatly the average and worst case bit complexity. 
In synchronous networks information can be gathered not only through message passing 
but also through the absence of communication during a particular time interval. La­
beling the edges of a network can be shown to change the set of functions computable 
on the network (see [KK90]). 

In the sequel we assume that N is the number of processors in a given anonymous 
network. The simplest topology considered in the study of the bit complexity of comput­
ing boolean functions is the ring e.g., [AAHK88], [ASW85], [AS88], [MW86], [PKR84]. 
It has been shown by [ASW85] that there is an algorithm for computing all boolean 
functions which are computable on the ring, with bit complexity 0( N 2

). Moreover, this 
bit complexity is the same on both oriented and unlabeled rings. In addition, [MW86] 
show that any nonconstant function has bit complexity O(N • log N) on the ring, and 
also construct boolean functions with bit complexity 0( N • log N) on the ring. For the 
oriented torus [B889] give an algorithm with bit complexity 0( Nl.5 ), and construct non­
constant functions with bit complexity 0( N). The case of the unlabeled and the oriented 
hypercube network is studied in [KK90]. For general graphs [YK88] and [YK87] show 
that the message complexity of computing a boolean function on an arbitrary unlabeled 
network is O(N2 • m), where mis the number of links of the network. However, these 
messages consist of trees of depth N 2 and fanout the corresponding degrees of the nodes 
of the network. For regular graphs of degree d this translates into an exponential 0( dN

2
) 

bit complexity ( d = 4 for the torus, and d = log N for the hypercube). 
In the present paper we study the bit complexity for boolean functions on arbitrary 

unlabeled networks and on distance regular networks. We show in section 2 that for any 
unlabeled N-node network of maximal node valency d and diameter 8, every boolean 
function which is computable on the network can be computed in O(N4 -8-d2-log N) bits, 
thus significantly improving the previous 0(dN

2
) upper bound of [YK87]. This bound 

can be significantly improved for computing symmetric functions . In section 3 we give an 
algorithm for computing symmetric functions with bit complexity O(N2 • 8 • d2 - log2 N). 
This same algorithm provides even more efficient algorithms when applied to specific 
networks. For the case of distance regular networks we show in section 4 how to compute 
any symmetric function in 0( N · 8 · d · log N) bits. We conclude in section 5 with some 
discussion and open problems. 

2 Unlabeled Networks 

In this section we give a general algorithm which computes any boolean function com­
putable on a given network using polynomial bit complexity. One of the results that will 
be used very frequently in the sequel concerns the computation of certain simple oper­
ations, like maximum and set-union on general unlabeled networks. To facilitate and 
simplify our discussion and avoid unnecessary repetition we state our main algorithm for 
computing such functions as a separate theorem. First we need a few definitions. 

Let ◊ be a · commutative, associative and idempotent binary operation on a set A, 
i.e. ◊ : A x A ---t A satisfies the following axioms for all a, b, c E A, 

• ◊(a,b) = ◊(b,a) (commutativity), 
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• ◊(a,◊(b,c)) = ◊(◊(a,b),c) (associativity), 

• ◊(a, a)= a (idempotency). 

Such operations include maximum, minimum, set-union and set-intersection. For sim­
plicity from now on we will abbreviate ◊( a, b) by a◊b. 

Let N = (V, E) be an unlabeled network and let ◊ be an operation satisfying the 
above three conditions. Let AN be the set of all N-tuples from elements of A. For any 
input I=< iP: p E V >E AN to the network we can define a function◊: AN - A by 
the following equation 

◊(I) = io◊i1 ◊ · · · ◊iN-1· 
(By an abuse of notation we use the same symbol for the binary operation◊ : Ax A -
A and the function ◊ : AN - A.) In view of the associativity of◊ this function is 
well defined. As a first step in our goal for providing an algorithm for computing all 
( computable) boolean functions we will show that functions, like ◊, which arise from 
such binary operations give rise to computable functions. 

Theorem 2.1 LetN be an unlabeled network with maximal node valency d and diameter 
8 and let ◊ be a commutative, associative and idempotent binary operation. There is an 
algorithm for computing ◊(I) for any input I =< ip: p E V >E AN with bit complexity 
0( N • a • 8 • d) , where a denotes the number of bits necessary to represent an element of 

A . 

Proof. The idea of the algorithm is rather simple. Each processor sends its initial input 
value to all its neighbors. After receiving a value from its neighbors it applies the oper­
ation ◊ to the value it already has and the values it receives. Every processor executes 
these steps 8 many times. Eventually every input value to a node of the network will be 
distributed and accounted for by every other processor. More formally the algorithm is 
as follows. Let J =< ip: p E V > be the input to the network. 

Algorithm for procesor p: 

Initialize: valuep[O] := ip ; 
for i := 0, 1, ... , 8 - l do 

send valuep[i] to all neighbors of p; 
receive valueq(i] from all neighbors q of p; 
compute valuep[i + l] := ◊( { valuep[i]} U { valueq[i] : q is a neighbor of p} ); 

od; 
output valueP := valuep[8]. 

The proof of correctness of the algorithm is not difficult. By commutativity and 
associativity it is immaterial the order in which the operation ◊ is applied to the given 
values. It can happen that in the course of the execution of the above algorithm by 
processor p the operation ◊ is applied more than once to some element a, which is the 
initial input value to a certain processor q. The number of times ◊ is applied depends 
on the number of walks of length less than 8 from p to q through the network. However 
because of the idem potency of the operation◊ we have that a◊a◊ • ••◊a= a. It follows 
that all processors will compute exactly the same value ◊(I), namely valueP = ◊(I), for 
all p. 
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It remains to determine the bit complexity of the algorithm. The processors receive 
through their neighbors elements of A, apply the operation ◊, create new elements of A 
and transmit them to their neighbors. The cost of transmitting each of these elements is 
o:, the number of bits necessary to represent an element of A. Each of the N processors 
transmits a value to its d neighbors once in each of the 8 phases of the above algorithm. 
This gives the desired bit complexity. D 

An obvious corollary of the theorem concerns the bit complexity of the ORN function. 
This is worth stating separately. 

Corollary 2.1 On an unlabeled N -node network with maximal node valency d and di­
ameter 8 the ORN function can be computed with bit complexity O(N • 8 • d). 

Proof. Apply theorem 2.1 to the operation of binary or, i.e. a◊b = a Vb. □ 
A simple extension of the lower bound for ORN on the ring in [ASW85] shows that if 
the network is regular then ORN requires 0( N • 8) bits to compute. Thus for this case 
the above algorithm is optimal to within a factor of d. 

Another corollary will be useful in the proof of our general theorem 2.2 about the bit 
complexity of computable boolean functions on general networks. 

Corollary 2.2 Let N be an unlabeled N-node network with maximal node valency d 
and diameter 8. There is an algorithm for computing the set { ip : p E V} for any input 
I = < ip : p E V > E AN with bit complexity 0( N 2 

• o: · 8 • d), where a denotes the number 
of bits necessary to represent an element of A. 

Proof. Here we apply the main theorem 2.1 to the binary operation union, ◊(a, b) = aUb 
where the input to node pis the singleton set {ip}- The elements transmitted in the 
course of the algorithm are subsets of the set {ip: p EV}. Each element can be coded 
with a bits, and therefore such sets can be coded with N · a bits. D 

We are now ready to give our algorithm for computing arbitrary boolean functions 
on a given unlabeled network. We will prove the following theorem. 

Theorem 2.2 Let N be an unlabeled N -node network with maximal node valency d 
and diameter 8. There is an algorithm that computes any boolean function which is 
computable on the network with bit complexity 0( N 4 

• 8 • d2 • log N). 

Proof. Our algorithm relies on several cost efficient adjustments and improvements of 
the algorithm of [YK88] using Theorem 2.1. Let f E BN be any computable boolean 
function on the anonymous network N. Let J =< bP : p E V > be the input to the 
network, where bp is the input to node p. We present the algorithm in three phases. 

Phase 1. Each processor chooses an arbitrary labeling for all its incident edges, i.e., 
the links of p are labeled with the numbers 1, 2, ... , deg(p ), where deg(p) is the degree 
of p. Now each processor transmits to each neighbor the label it has chosen for the link 
connecting them. Let £ be the resulting labeling of the network N. Next, each pair 
(p, q) of processors labels their corresponding link with 

l(p,q) = (£(p,q),£(q,p)). 
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The processors keep this labeling fixed throughout the algorithm. It should be pointed 
out that this is only a local labeling and not a global orientation of the network; the pro­
cessors know only the labeling of their corresponding links, and are completely unaware 
of the choice of labeling by the other processors in the network. 

Phase 2. In this phase each processor gathers as much information as possible from 
the rest of the processors about the input to the network in order to be il hle to compute 
correctly the value J(I). Each processor p computes its view, Te,,I(p) [YK87]. Since £ 
and I are fixed below we will denote the view of p by Tp. This is a vertex and edge 
labeled tree of depth N 2 • In a sense, each node p "unwraps" the network and forms a 
tree with itself as root. Since the network is anonymous it cannot use names for the 
processors, instead it can only label the vertices of the tree with the input bits it receives 
in the course of the interprocess communication. Thus, the root of TP is labeled with 
the input bit bP and the node corresponding to the node q is labeled with the bit bq. 
However it needs to be stressed here that when the processors label a node with the bit 
bq they do not necessarily know that the name of the processor they are labeling is q. 

The processors need to exchange enough information in order to compute correctly 
each TP- They do this by exchanging the views they have constructed. However, trees of 
depth i have exponential bit complexity 0( i) and transmitting them is rather expensive. 
Therefore we must be careful if we want to achieve an algorithm with polynomial bit 
complexity. In the sequel we concentrate on the issue of coding and transmission of the 
trees concerned. Processor p computes a sequence of trees r; of depth i, i = 0, 1, .. . , N 2 , 

by executing the following algorithm. 

Algorithm for procesor p: 

Initialize: ri := bP and set~:= {Ti}; 
for i := 0, ... , N 2 do 

compute the set set~:= {T; : q E V}; 
code the elements of the set set~ with integers 1, ... , k, where k :S N is 
the number of elements of set~, by ordering the set set~ lexicographically 
and letting code(T;) = j, if r; is the jth tree in this ordering; 
form the tree r;+ 1 ; it is a tree of depth 1 with root labeled bp; 
for each neighbor q of p there is an edge labeled l(p, q); its leaves are labeled 
code(T;), where q is a neighbor of p; 
send the tree r;+1 to all the neighbors of p; 

od; 
output set:

2
• 

After the trees of level i have been constructed the processors use the set algorithm 
given in corollary 2.2 to compute the set {T; : p E V}. Once all processors know all 
the trees of depth i there is no need to transmit to each other the decoded full trees 
themselves. It is sufficient to transmit the codes of the trees, and these can be just 
integers from 1 up to N. The processors themselves can decode the trees in order to 
generate the views. To code the trees the processors order them lexicographically and 
let the code of the tree T be j, if T is the jth tree in this ordering. The processors then 
form new trees of depth i + 1, namely r;+ 1 . The tree has a root which is labeled with 
p's input bit. The leaves of the tree consist of the above codes of the corresponding trees 
of depth i and the edges have the corresponding labeling. Now the processors transmit 
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these new trees to all their neighbors, etc. As indicated above we iterate this algorithm 
N 2 times. 

P hase 3. At this point all processors have computed the set of all views of depth N 2 , 

namely the set {T/;2 : p E V}. As in [YK87] we define an equivalence relation among 
trees. Two trees T and T' are equivalent if they are isomorphic including vertex and edge 
labels, but ignoring names of the vertices . By lemma 3.3 in [YK87] for any two trees if 
their restrictions to depth N 2 are isomorphic then the full trees themselves must also be 
isomorphic. Let [T]1,.c denote the equivalence class of T, where the subscript is to stress 
the dependence of the equivalence class on the input and the chosen labeling. It follows 
from the above discussion that each processor will be able to find representatives of all the 
equivalence classes of the full trees. Further, it follows from theorem 4.1 in [YK87] that 
since f is computable on the network its value depends only on the equivalence classes 
of the trees above, i.e. for any inputs I, I' and any labelings £,£',if [T] 1,.c = [T'] 1,p, for 
any trees T, T', then J(I) = J(I'). The processors want to compute f(I), but they do 
not know the input I. To resolve this problem the processor uses its knowledge of the 
network topology to construct a labeling {,' and an input I' such that [T]1 ,.c = [T] 1,p, 
for all trees T. Certainly, each processor may choose a different input I' and labeling 
{,'. However by exchanging information using corollary 2.2 the processors can agree on 
a unique input I' and labeling £'. Since the value off depends only on the equivalence 
classes of the trees we conclude that f(I) = f (I'). Thus it is sufficient to output f (I') 
and this will be the desired, correct value assumed by f on input I. 

This concludes the description of the algorithm. It remains to determine its bit 
complexity. Phases 1 and 3 either involve local computations which do not require any 
bit exchanges or simple low cost bit exchanges. The main bit exchanges take place in 
phase 2. There we have N 2 iterations of the algorithm in corollary 2.2. We need d -log N 
bits to represent each of the corresponding trees. This means that the bit complexity of 
the algorithm is 0( N 4 

• 8 • d2 • log N). □ 

3 Symmetric Functions 

In this section we give an algorithm which computes any symmetric function on an 
unlabeled network, improving upon the algorithm given above in this case. 

Let N = (V, E) be an unlabeled network of size N, with node set V = {0, 1, ... , N -
1} and edge set E ~ V x V. To simplify the analysis below we will consider the network 
N' = (V, EU { ( i, i)li = 0, ... , N -1}) (i.e., N with self loops added to each vertex). Let 
deg( i) and deg'( i) = deg( i) + 1 be the valency of node i in N and N'', respectively. Let 
A = (ai,j) be the adjacency matrix of N'. We associate the stochastic matrix P = (Pi,J, 
where Pi,j = ai,1/deg'(i), with N'. For each node i, define 1ri = deg'(i)/(N + 2M), where 
M is the number of edges of N. Note that 7ri can be computed by each processor i from 
knowledge it has of the topology of the network. We will prove the following theorem. 

Theorem 3.1 Let N be an unlabeled N -node network with maximal node valency d and 
let N' be the network N with self loops added to each node. Let p be the second largest 
eigenvalue (in absolute value) of the stochastic matrix P associated with N'. There is an 
algorithm that computes any symmetric function on the network N with bit complexity 
o(- 10gN. N -logN -d). 

logp 
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Proof. The idea of the algorithm is the following. Each processor sends its initial input 
value to all its neighbors. After receiving the values from all its neighbors the processor 
updates the value it already has based on the values it receives. Every processor executes 
these steps S times, where S = 0( - 1~~g:) is a function of the topology of N known to 
all processors. Eventually in this way every input value to a node of the network will be 
distributed and equally accounted for by every other processor. 

Let f be a symmetric boolean function on N variables known to all the processors and 
let fk be the value off on inputs of weight (i.e. number of 1 's) k. Let I =< bv : v E V > 
be the input to the network, where bv is the input bit to node v. More formally the 
algorithm is as follows. 

Algorithm for procesor p: 
Input: bp, f; 
Initialize: valuep[O] := bP and S; 
for i := 0, 1, ... , S do 

send v;;;,(~)j to all neighbors of p; 
• value [i] f 11 . hb f receive deg'(~) rom a ne1g ors q o p; 

compute valuep[i + 1] := EC:;,ed)l : q is a neighbor of p or q = p} 

od; 
put w := [val::p[SJJ; 
Output fw• 

Each processor knows its input bit but does not know the network input configu­
ration I. At the ith stage, i ~ S, processor p updates its variable valueP which is an 
approximation to the number of 1 's in the input configuration I times the quantity 1r p· 

At the final stage the processor computes w = [valueP/1rP], the nearest integer less than 
or equal to valueP/1rP. If the approximation is sufficiently close to the actual value k1rp, 
where k is the weight of the input I, then all processors will output the same correct 
value fw, 

We have to show that all the processors eventually converge to the correct ratio ( and 
hence the resulting value f w is the same for all the processors) and to bound the value 
of S. We will use the theory of Markov chains ([Sen81], [Gan59]) in order to complete 
the proof of correctness of the above algorithm. 

Note that P = (Pi,j) is the N x N stochastic matrix of a primitive, reversible Markov 
chain corresponding to a random walk on N'. (In general, the stochastic matrix cor­
responding to an arbitrary connected, undirected network is only irreducible and need 
not be primitive. By adding a self loop to each vertex of N to form the network N' we 
guarantee the corresponding Markov chain is primitive.) Its stationary distribution is 
(1r1, 1r2, ... , 7rN ). Let 1 = )q > A2 2:: ... 2:: Ak be the eigenvalues of P and put 

p = max { I Ai I : 2 ~ i ~ k}. 

Standard arguments (see e.g. [BK89, lemma 2]) show that 

8 



where p~~} is the (i,j) entry of the matrix pr_ If Mp= maxi,j{ /rr1/1ri} then the matrix 

form of equation (1) is 
pr = poo + 0 (MP . pr . E) ' (2) 

where E is the matrix of all l's, and the limit P 00 = limr-+oo pr of the chain is an 
N x N matrix such that all the entries of its i-th column are equal to 7ri, In our 

case, Mp = Jdmax/ dmin, where dmax (respectively, dmin) is the maximal (respectively, 
minimal) valency of the network N'. Hence, equation (2) becomes 

(3) 

It is easy to see that for any input vector I, L = I P 00 is the eigenvector of P whose 
ith entry equals kni, where k is the number of l's in the input J. 

We are interested in the rate of convergence of the limit of J pr as r tends to infinity. 
It follows from equation ( 3) that 

J pr = L + 0 (✓ dmax . pr . k . e) 
dmm 

(4) 

where e is the row vector consisting of all l's. During the rth iteration of the above 
algorithm processor p computes the pth component of I pr. To guarantee that all the 
proccessors compute the correct value it is enough to ensure that the error term in ( 4) 
is less than (1/2)1rp, i.e. 

~ r k l y-;c;:. P . < 2(N + 2M)' 

This inequality implies that the number of iterations required is S = 0( - log N / log p ), 
if p > 0. (Of course the case p = 0 is possible but then the number of required iterations 
is S = 2.) It is not hard to see that during each iteration of the algorithm O(log 5) 
bits must be transmited by each processor to all of its less than or equal to d neighbors 
in order to guarantee a sufficient precision of the approximation at the 5-th iteration. 
By [1081] for any network N with maximal node valency d and diameter 8 the second 
largest eigenvalue of the stochastic matrix corresponding to the network N' satisfies the 
inequality 

1 
P<l------

- N · 8 · ( 2 + d) ' 

i.e. log p ~ -1/N • 8 • (2 + d). Hence log S = O(log N) and so the bit complexity of the 
algorithm (number of steps x number of processors x maximal number of bits per step 
per processor) is indeed 

as we had to prove. D 

( 
log N ) 0 - -- · N · log N · d 
log p 

As an immediate consequence of the above theorem we get the following bound on 
the bit complexity of symmetric functions on unlabeled networks. 

Theorem 3.2 Let N be an unlabeled N-node network with maximal node valency d and 
diameter 8. There is an algorithm that computes any symmetric bc,,,....,an function on N 
with bit complexity 0( N 2 . 8 . d2 log2 N). 
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Proof. As above logp ~ - N-o}2+d)" Combining this with theorem 3.1 we obtain that 

the bit complexity for computing symmetric functions is 0( N 2 • 8 • d2 • log2 N). □ 

Corollary 3.1 The bit complexity of computing any symmetric function on an unlabeled 
d-dimensional torus with N = nd nodes is O(Nl+¼ log2 N). 

Proof. The characteristic values of the corresponding adjacency matrix of N' are given 
by the formula 

d 21r 
1 + L2cos(-ik),1 ~ i1, .. , ,id~ n 

k=l n 

The second largest eigenvalue of the corresponding stochastic matrix of N' is p = 2d~l • 

( 1 + 2d · cos( 211")). Using approximations to the log and cos functions it is easy to show 
log p = 0(-}2 ). Thus, by the theorem, the bit complexity of computing symmetric 

functions in this case is O(Nl+¼ log2 N). □ 

Corollary 3.2 The bit complexity of computing a symmetric function on an unlabeled 
n-dimensional hypercube with N = 2n nodes is 0( N log4 N). 

Proof. The eigenvalues of the adjacency matrix of the hypercube are Ai = n - 2i, 
0 ~ i ~ n. The second largest eigenvalue of the corresponding stochastic matrix of N' 
is :~i. Using the inequality log(l - n!i) < - n!l, the theorem implies that the bit 
complexity of computing symmetric functions in this case is O(N log4 N). □ 

Corollary 3.3 The bit complexity of computing any symmetric function on a random 
regular graph of valency 2d is O(Nd~~~

2t) with probability greater than l - N-n(>id) _ 

Proof. This follows immediately from the theorem and recent results of Friedman et. 
al. [FKS89] bounding the size of the second largest eigenvalue of random regular graphs. 

□ 

4 Distance Regular Graphs 

In this section we show that by taking advantage of the topology of distance regular 
graphs we can derive efficient algorithms for computing symmetric functions on such 
graphs. 

The distance between any two nodes p, q E V of a network N, denoted d(p, q), is the 
length of the shortest path between p and q. The circle with center p E V and radius k, 
denoted by C(p; k ), is the set of nodes q E V such that d(p, q) = k. The set of neighbors 
of p, denoted N(p), is the circle C(p; 1). The threshold function Thk E BN is defined 
to be 1 on inputs of weight at least k and 0 otherwise. (By the weight of an input I we 
understand the number of occurrences of 1 in the input.) 

Distance regular graphs are graphs N such that for any nodes p, q E V with d(p, q) = 
k the quantities 

I C(p; 1) n C(q; k - 1) I, 
I C(p; 1) n C(q; k + l) I 
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depend only on the distance d(p, q ). More formally, for k = d(p, q) we define 

ak I { r E C(p; 1) : d( q, r) = k - 1} I, k = 1, 2, ... , 8 

bk I {r E C(p;l): d(q,r) = k + 1} l,k = 0,1, ... ,8 -1, 

ck I {r E C(p;l): d(q,r) = k} l,k = 0,1, ... ,8. 

Such graphs include hypercubes, odd graphs, triangle graphs, complete bipartite graphs, 
etc. [Big74], [Cam83]. They satisfy several useful properties. We mention only a few 
obvious ones and refer the reader to [Big74] and [Cam83] for further properties. Distance 
regular graphs are regular with valency d = b0 . By definition, a0 = 0. Moreover, c0 = 0 
and a 1 = 1. Since, if d(p, q) = k every neighbor of p has distance k, k - 1 or k + 1 from 
q it is clear that ck = d - ak - bk. A network N is distance transitive if for any nodes 
p, q, p', q' with d(p, q) = d(p', q') there is an automorphism 4> of the network N such that 
<f>(p) = p' and 4>( q) = q'. It is easy to see that all distance transitive graphs are distance 
regular, but the converse is false [Big74]. 

Now we are ready to prove the main theorem of this section. 

Theorem 4.1 On an unlabeled N-node distance regular network of valency d and di­
ameter 8 every symmetric function can be computed in 0( N · 8 · d -log N) bits. Moreover 
the threshold function T hk can be computed in 0( N · 8 · d · log k) bits, where k :'.S N. 

Proof. For any input configuration I=< bv : v E V >, any processor p and any distance 
k :'.S 8 let I(p; k) be the number of processors x at distance k from the processor p such 
that b., = l. To compute a symmetric function it is sufficient for each processor p to 
know I(p; k ), for each k :'.S 8. The idea of the proof is to find a (inductive) formula for 
computing I(p; k) in terms of the previously computed values I(p; l), where l < k, and 
values J(q, l), where q E C(p; 1) is a neighbor of p, l < k. We note that 

L I(q; k - l) 
qEN(p) 

I{< q,x >: q E N(p),d(q,x) = k- l,b., = 1} I 

L I { q E N(p) : d( q, X) = k - l} I 

L I { q E N(p) : d( q' X) = k - l} I + 
bz = l ,d(p,x )=k 

L I { q E N(p) : d( q, X) = k - l} I + 
bz=l,d(p,x)=k-l 

L I {qEN(p):d(q,x)=k-l} I 
bz=l,d(p,x)=k-2 

bz=l,d(p,x)=k bz=l,d(p,x)=k-l bz=l,d(p,x)=k-2 

ak · I(p; k) + ck-l · I(p; k - 1) + bk-2 · I(p; k - 2), 

which in turn leads to the following inductive formula 

I(p; k) =: · ( L I(q; k - l) - (d- ~k-l - bk-1) · I(p; k - l) - bk-2 · I(p; k - 2)) . 
k qEN(p) 

(5) 
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Formula (5) and the knowledge of the network topology (i.e. the numbers ak and bk) 
make it possible to construct an efficient algorithm for computing symmetric functions. 
Let f E BN be a symmetric function and let fk be the value off on inputs of weight k. 

Algorithm for processor p: 
Input: hp, f; 
Initialize: I(p; 0) := 1 if p's input bit is 1 and is := 0 otherwise; 
send input bit to all neighbors; 
compute I(p; l) := the number of ls among the neighbors of p; 
for k : = 1, ... , 8 - l do 

od; 

send I(p; k) to all the neigbors of p; 
compute J(p; k + l) from I(p; k - l), I(p; k) and the J(q; k)s, 
where q ranges over all neighbors of p, via formula (5); 

compute the sum s := I:!=o I(p; k ); 
output Is 

The correctness of the algorithm was shown above. It remains to determine its 
complexity. For k = 0, ... , 8 each processor p transmits the number I(p; k) to all its 
neighbors. This requires transmission of 8 messages 

I(p;0), ... ,I(p;8) 

( each of length less than or equal to log N bits) to each of the d neighbors of p, i.e. 
0( 8 • d • log N) bits per processor for a total of 0( N • 8 • d • log N). 

The proof of the bit complexity of computing the threshold function Thk employs 
the previous algorithm. Observe that when the number of ls at a certain distance from 
a processor exceeds the threshold value k then we only need to transmit k which requires 
log k bits. D 

An important corollary to the above is the case of the hypercube. 

Corollary 4.1 On the unlabeled hypercube, every symmetric function can be computed 
in O(N • log3 N) bits. Moreover the threshold function Thk can be computed in O(N • 
log2 N . log k) bits, where k :'.S N. 

Proof. Let n = log N. This is an immediate consequence of the fact that the hypercube 
is distance regular. It is easy to show that in the notation of section 4, ak = k, bk = n - k 
and ck = 0. The resulting inductive formula (which is a special case of formula (5)) is 
the following: 

b(p; k) = ¼ · ( L b( q; k - l) - ( n - k + 2) • b(p; k - 2 )) . D 
qED(p;l) 

(6) 

5 Conclusions and Open Problems 

The present paper has been concerned with the problem of determining algorithms with 
polynomial bit complexity for computing boolean functions on anonymous distributed 
networks. The main result of section 2 provides such an algorithm for any unlabeled 
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network N with bit complexity O(N4 
• 6 • d2 - log N). It would be interesting however if 

we could improve on this bit complexity. 
We have been able to find more efficient algorithms for computing symmetric func­

tions on arbitrary networks ( theorem 3.2) and very efficient algorithms for symmetric 
functions on the class of distance regular networks ( theorem 4.1). Nevertheless these 
algorithms are still not known to be optimal and improvements are possible. 

An interesting special case is that of the hypercube network. Based upon the results 
of [ASW85] for unlabeled and oriented rings and [BB89] for oriented tori we conjecture 
that there are more efficient algorithms for computing boolean functions on the unlabeled 
and oriented hypercube than those provided here. Preliminary results on these questions 
are presented in [KK90]. 

There have been few studies in the literature regarding lower bounds. The only net­
work for which this question has been studied extensively is the ring [MW86], [AAHK88], 
[DG87]. [PKR84] studies the question for the extrema finding function but relies on spe­
cific properties of this function. [YK88] give lower bounds for the message complexity of 
computing boolean functions for broad classes of networks. However, very little is known 
about lower bounds on the bit complexity of boolean functions on the anonymous torus 
or hypercube, not to mention the general case of unlabeled networks. 

If we allow the processors to flip coins in the course of the computation then this 
changes entirely the rules of the game. It is now possible to introduce algorithms with 
improved average and worst case bit complexity. Also, the class of functions computable 
in this model may be different. For the case of rings this has been studied by [AS88]. For 
general networks [SS89] and [MA89] have given algorithms with low message complexity 
for the problem of constructing a rooted spanning tree ( which can then be used to 
compute boolean functions efficiently) . It would be very interesting to examine more 
thoroughly the bit complexity for the case of general anonymous networks. 
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