
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

E. Kranakis , D. Krizanc , J. van den Berg

Computing boolean functions on anonymous networks

Computer Science / Department of Algorithmics & Architecture Report CS-R9011 March

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

COMPUTING BOOLEAN FUNCTIONS
ON ANONYMOUS NETW-ORKS

Evangelos Kranakis (l)

(eva@cwi.nl)

Danny Krizanc C 1 •2)

(krizanc@cs.rochester.edu)

Jacob van den BergCl)

(jvdberg@cwi.nl)

(1) Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

(2) University of Rochester, Department of Computer Science

Rochester, New York, 14627, USA

A bstract

We study the bit-complexity of computing boolean functions on anonymous
networks. Let N be the number of nodes, 8 the diameter and d the maximal node
degree of the network. For arbitrary, unlabeled networks we give a general algo­
rithm of polynomial bit complexity O(N4 • 8 • d2 - log N) for computing any boolean
function which is computable on the network. This improves upon the previous
best known algorithm which was of exponential bit complexity O(dN

2
). For sym­

metric functions on arbitrary networks we use probabilistic techniques in order to
give an algorithm with bit complexity O(N2 • 8 • d2 - log2 N). This same algorithm
is shown to have even lower bit complexity for a number of specific networks. We
also consider the class of distance regular unlabeled networks and show that on
such networks symmetric functions can be computed efficiently in O(N•b ·d-log N)
bits.

1980 Mathematics Subject Classification: 68Q99
CR Categories: C.2.1
Key Words and Phrases: Anonymous network, boolean function , distance reg­
ular graph , distance transitive graph, group of automorphisms , hypercube, la­
beled and unlabeled networks, oriented and unoriented networks, ring, symmetric
boolean function, threshold function, torus, transitive graph.
Note: This paper will appear in the proceedings of ICALP90.

Report CS-R9011
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

1 Introduction

A very important problem in distributed computing is the designing of efficient algo­
rithms for computing boolean functions in distributed networks of processors. For both
practical and theoretical reasons it is useful to minimize the total number of exchanged
bits which are necessary in order to compute a certain boolean function, but at the same
time keeping the processors as similar to each other as possible.

A distributed network is a simple, connected graph consisting of nodes (vertices)
on which the processors are located, and links (edges) along which the interprocess
communication takes place. The processors are assumed to have unlimited computational
power but may exchange messages only with their neighbors in the network. Initially,
each processor is given an input bit, 0 or 1.

The processors follow a deterministic protocol (or algorithm). During each step of
the protocol they perform certain computations depending on their input value, their
previous history and the messages they receive from their neighbors and then transmit
the result of this computation to some or all of their neighbors. After a finite number of
steps, predetermined by the initial conditions and the protocol, the processors terminate
their computation and output a certain bit. Let BN be the set of boolean functions on
N variables. Let N = (V, E) be a network of size N, with node set V = {O, 1, ... , N -1}
and edge set E ~ V X V. An input to N is an N-tuple I =< bv : v E V > of bits
bv E {O, 1 }, where processor v receives as input value the bit bv. Given a function f E BN
known to all the processors in the network we are interested in computing the value f(I)
on all inputs I. To compute f on input J =< bv : v E V > each processor v E V starting
with the input bit bv should terminate its computation according to the given protocol
and output the value b such that J(I) = b. A network computes the function f if for
each input I, at the end of the computation each processor computes correctly the value
f(I). The bit complexity for computing f is the total number of bits exchanged during
the computation off. We are interested in providing algorithms that minimize the bit
complexity of boolean functions.

We make the following assumptions regarding the networks and their processors:

1. the processors know the network topology and the size of the network (i.e. total
number of processors),

2. the processors are anonymous (this means that they do not know either the iden-
tities of themselves or of the other processors),

3. the processors are identical (this means they all run the same algorithm),

4. the processors are deterministic,

5. the network is asynchronous,

6. the network is unlabeled (i.e., there is no global, consistent labeling (or orientation)
of the network links).

Note that changing any of the above assumptions changes the computational capa­
bilities and limitations of the model. If the size of the network is not known to the
processors then it may not even be possible to compute any nonconstant function, e.g.

2

in the ring [ASW85]. Angluin [Ang80] has shown that if the processors are anonymous
and identical there is no algorithm for electing a leader. If we add randomization to the
model it becomes possible to improve greatly the average and worst case bit complexity.
In synchronous networks information can be gathered not only through message passing
but also through the absence of communication during a particular time interval. La­
beling the edges of a network can be shown to change the set of functions computable
on the network (see [KK90]).

In the sequel we assume that N is the number of processors in a given anonymous
network. The simplest topology considered in the study of the bit complexity of comput­
ing boolean functions is the ring e.g., [AAHK88], [ASW85], [AS88], [MW86], [PKR84].
It has been shown by [ASW85] that there is an algorithm for computing all boolean
functions which are computable on the ring, with bit complexity 0(N 2

). Moreover, this
bit complexity is the same on both oriented and unlabeled rings. In addition, [MW86]
show that any nonconstant function has bit complexity O(N • log N) on the ring, and
also construct boolean functions with bit complexity 0(N • log N) on the ring. For the
oriented torus [B889] give an algorithm with bit complexity 0(Nl.5), and construct non­
constant functions with bit complexity 0(N). The case of the unlabeled and the oriented
hypercube network is studied in [KK90]. For general graphs [YK88] and [YK87] show
that the message complexity of computing a boolean function on an arbitrary unlabeled
network is O(N2 • m), where mis the number of links of the network. However, these
messages consist of trees of depth N 2 and fanout the corresponding degrees of the nodes
of the network. For regular graphs of degree d this translates into an exponential 0(dN

2
)

bit complexity (d = 4 for the torus, and d = log N for the hypercube).
In the present paper we study the bit complexity for boolean functions on arbitrary

unlabeled networks and on distance regular networks. We show in section 2 that for any
unlabeled N-node network of maximal node valency d and diameter 8, every boolean
function which is computable on the network can be computed in O(N4 -8-d2-log N) bits,
thus significantly improving the previous 0(dN

2
) upper bound of [YK87]. This bound

can be significantly improved for computing symmetric functions . In section 3 we give an
algorithm for computing symmetric functions with bit complexity O(N2 • 8 • d2 - log2 N).
This same algorithm provides even more efficient algorithms when applied to specific
networks. For the case of distance regular networks we show in section 4 how to compute
any symmetric function in 0(N · 8 · d · log N) bits. We conclude in section 5 with some
discussion and open problems.

2 Unlabeled Networks

In this section we give a general algorithm which computes any boolean function com­
putable on a given network using polynomial bit complexity. One of the results that will
be used very frequently in the sequel concerns the computation of certain simple oper­
ations, like maximum and set-union on general unlabeled networks. To facilitate and
simplify our discussion and avoid unnecessary repetition we state our main algorithm for
computing such functions as a separate theorem. First we need a few definitions.

Let ◊ be a · commutative, associative and idempotent binary operation on a set A,
i.e. ◊ : A x A ---t A satisfies the following axioms for all a, b, c E A,

• ◊(a,b) = ◊(b,a) (commutativity),

3

• ◊(a,◊(b,c)) = ◊(◊(a,b),c) (associativity),

• ◊(a, a)= a (idempotency).

Such operations include maximum, minimum, set-union and set-intersection. For sim­
plicity from now on we will abbreviate ◊(a, b) by a◊b.

Let N = (V, E) be an unlabeled network and let ◊ be an operation satisfying the
above three conditions. Let AN be the set of all N-tuples from elements of A. For any
input I=< iP: p E V >E AN to the network we can define a function◊: AN - A by
the following equation

◊(I) = io◊i1 ◊ · · · ◊iN-1·
(By an abuse of notation we use the same symbol for the binary operation◊ : Ax A -
A and the function ◊ : AN - A.) In view of the associativity of◊ this function is
well defined. As a first step in our goal for providing an algorithm for computing all
(computable) boolean functions we will show that functions, like ◊, which arise from
such binary operations give rise to computable functions.

Theorem 2.1 LetN be an unlabeled network with maximal node valency d and diameter
8 and let ◊ be a commutative, associative and idempotent binary operation. There is an
algorithm for computing ◊(I) for any input I =< ip: p E V >E AN with bit complexity
0(N • a • 8 • d) , where a denotes the number of bits necessary to represent an element of

A .

Proof. The idea of the algorithm is rather simple. Each processor sends its initial input
value to all its neighbors. After receiving a value from its neighbors it applies the oper­
ation ◊ to the value it already has and the values it receives. Every processor executes
these steps 8 many times. Eventually every input value to a node of the network will be
distributed and accounted for by every other processor. More formally the algorithm is
as follows. Let J =< ip: p E V > be the input to the network.

Algorithm for procesor p:

Initialize: valuep[O] := ip ;
for i := 0, 1, ... , 8 - l do

send valuep[i] to all neighbors of p;
receive valueq(i] from all neighbors q of p;
compute valuep[i + l] := ◊({ valuep[i]} U { valueq[i] : q is a neighbor of p});

od;
output valueP := valuep[8].

The proof of correctness of the algorithm is not difficult. By commutativity and
associativity it is immaterial the order in which the operation ◊ is applied to the given
values. It can happen that in the course of the execution of the above algorithm by
processor p the operation ◊ is applied more than once to some element a, which is the
initial input value to a certain processor q. The number of times ◊ is applied depends
on the number of walks of length less than 8 from p to q through the network. However
because of the idem potency of the operation◊ we have that a◊a◊ • ••◊a= a. It follows
that all processors will compute exactly the same value ◊(I), namely valueP = ◊(I), for
all p.

4

It remains to determine the bit complexity of the algorithm. The processors receive
through their neighbors elements of A, apply the operation ◊, create new elements of A
and transmit them to their neighbors. The cost of transmitting each of these elements is
o:, the number of bits necessary to represent an element of A. Each of the N processors
transmits a value to its d neighbors once in each of the 8 phases of the above algorithm.
This gives the desired bit complexity. D

An obvious corollary of the theorem concerns the bit complexity of the ORN function.
This is worth stating separately.

Corollary 2.1 On an unlabeled N -node network with maximal node valency d and di­
ameter 8 the ORN function can be computed with bit complexity O(N • 8 • d).

Proof. Apply theorem 2.1 to the operation of binary or, i.e. a◊b = a Vb. □
A simple extension of the lower bound for ORN on the ring in [ASW85] shows that if
the network is regular then ORN requires 0(N • 8) bits to compute. Thus for this case
the above algorithm is optimal to within a factor of d.

Another corollary will be useful in the proof of our general theorem 2.2 about the bit
complexity of computable boolean functions on general networks.

Corollary 2.2 Let N be an unlabeled N-node network with maximal node valency d
and diameter 8. There is an algorithm for computing the set { ip : p E V} for any input
I = < ip : p E V > E AN with bit complexity 0(N 2

• o: · 8 • d), where a denotes the number
of bits necessary to represent an element of A.

Proof. Here we apply the main theorem 2.1 to the binary operation union, ◊(a, b) = aUb
where the input to node pis the singleton set {ip}- The elements transmitted in the
course of the algorithm are subsets of the set {ip: p EV}. Each element can be coded
with a bits, and therefore such sets can be coded with N · a bits. D

We are now ready to give our algorithm for computing arbitrary boolean functions
on a given unlabeled network. We will prove the following theorem.

Theorem 2.2 Let N be an unlabeled N -node network with maximal node valency d
and diameter 8. There is an algorithm that computes any boolean function which is
computable on the network with bit complexity 0(N 4

• 8 • d2 • log N).

Proof. Our algorithm relies on several cost efficient adjustments and improvements of
the algorithm of [YK88] using Theorem 2.1. Let f E BN be any computable boolean
function on the anonymous network N. Let J =< bP : p E V > be the input to the
network, where bp is the input to node p. We present the algorithm in three phases.

Phase 1. Each processor chooses an arbitrary labeling for all its incident edges, i.e.,
the links of p are labeled with the numbers 1, 2, ... , deg(p), where deg(p) is the degree
of p. Now each processor transmits to each neighbor the label it has chosen for the link
connecting them. Let £ be the resulting labeling of the network N. Next, each pair
(p, q) of processors labels their corresponding link with

l(p,q) = (£(p,q),£(q,p)).

5

The processors keep this labeling fixed throughout the algorithm. It should be pointed
out that this is only a local labeling and not a global orientation of the network; the pro­
cessors know only the labeling of their corresponding links, and are completely unaware
of the choice of labeling by the other processors in the network.

Phase 2. In this phase each processor gathers as much information as possible from
the rest of the processors about the input to the network in order to be il hle to compute
correctly the value J(I). Each processor p computes its view, Te,,I(p) [YK87]. Since £
and I are fixed below we will denote the view of p by Tp. This is a vertex and edge
labeled tree of depth N 2 • In a sense, each node p "unwraps" the network and forms a
tree with itself as root. Since the network is anonymous it cannot use names for the
processors, instead it can only label the vertices of the tree with the input bits it receives
in the course of the interprocess communication. Thus, the root of TP is labeled with
the input bit bP and the node corresponding to the node q is labeled with the bit bq.
However it needs to be stressed here that when the processors label a node with the bit
bq they do not necessarily know that the name of the processor they are labeling is q.

The processors need to exchange enough information in order to compute correctly
each TP- They do this by exchanging the views they have constructed. However, trees of
depth i have exponential bit complexity 0(i) and transmitting them is rather expensive.
Therefore we must be careful if we want to achieve an algorithm with polynomial bit
complexity. In the sequel we concentrate on the issue of coding and transmission of the
trees concerned. Processor p computes a sequence of trees r; of depth i, i = 0, 1, .. . , N 2 ,

by executing the following algorithm.

Algorithm for procesor p:

Initialize: ri := bP and set~:= {Ti};
for i := 0, ... , N 2 do

compute the set set~:= {T; : q E V};
code the elements of the set set~ with integers 1, ... , k, where k :S N is
the number of elements of set~, by ordering the set set~ lexicographically
and letting code(T;) = j, if r; is the jth tree in this ordering;
form the tree r;+ 1 ; it is a tree of depth 1 with root labeled bp;
for each neighbor q of p there is an edge labeled l(p, q); its leaves are labeled
code(T;), where q is a neighbor of p;
send the tree r;+1 to all the neighbors of p;

od;
output set:

2
•

After the trees of level i have been constructed the processors use the set algorithm
given in corollary 2.2 to compute the set {T; : p E V}. Once all processors know all
the trees of depth i there is no need to transmit to each other the decoded full trees
themselves. It is sufficient to transmit the codes of the trees, and these can be just
integers from 1 up to N. The processors themselves can decode the trees in order to
generate the views. To code the trees the processors order them lexicographically and
let the code of the tree T be j, if T is the jth tree in this ordering. The processors then
form new trees of depth i + 1, namely r;+ 1 . The tree has a root which is labeled with
p's input bit. The leaves of the tree consist of the above codes of the corresponding trees
of depth i and the edges have the corresponding labeling. Now the processors transmit

6

these new trees to all their neighbors, etc. As indicated above we iterate this algorithm
N 2 times.

P hase 3. At this point all processors have computed the set of all views of depth N 2 ,

namely the set {T/;2 : p E V}. As in [YK87] we define an equivalence relation among
trees. Two trees T and T' are equivalent if they are isomorphic including vertex and edge
labels, but ignoring names of the vertices . By lemma 3.3 in [YK87] for any two trees if
their restrictions to depth N 2 are isomorphic then the full trees themselves must also be
isomorphic. Let [T]1,.c denote the equivalence class of T, where the subscript is to stress
the dependence of the equivalence class on the input and the chosen labeling. It follows
from the above discussion that each processor will be able to find representatives of all the
equivalence classes of the full trees. Further, it follows from theorem 4.1 in [YK87] that
since f is computable on the network its value depends only on the equivalence classes
of the trees above, i.e. for any inputs I, I' and any labelings £,£',if [T] 1,.c = [T'] 1,p, for
any trees T, T', then J(I) = J(I'). The processors want to compute f(I), but they do
not know the input I. To resolve this problem the processor uses its knowledge of the
network topology to construct a labeling {,' and an input I' such that [T]1 ,.c = [T] 1,p,
for all trees T. Certainly, each processor may choose a different input I' and labeling
{,'. However by exchanging information using corollary 2.2 the processors can agree on
a unique input I' and labeling £'. Since the value off depends only on the equivalence
classes of the trees we conclude that f(I) = f (I'). Thus it is sufficient to output f (I')
and this will be the desired, correct value assumed by f on input I.

This concludes the description of the algorithm. It remains to determine its bit
complexity. Phases 1 and 3 either involve local computations which do not require any
bit exchanges or simple low cost bit exchanges. The main bit exchanges take place in
phase 2. There we have N 2 iterations of the algorithm in corollary 2.2. We need d -log N
bits to represent each of the corresponding trees. This means that the bit complexity of
the algorithm is 0(N 4

• 8 • d2 • log N). □

3 Symmetric Functions

In this section we give an algorithm which computes any symmetric function on an
unlabeled network, improving upon the algorithm given above in this case.

Let N = (V, E) be an unlabeled network of size N, with node set V = {0, 1, ... , N -
1} and edge set E ~ V x V. To simplify the analysis below we will consider the network
N' = (V, EU { (i, i)li = 0, ... , N -1}) (i.e., N with self loops added to each vertex). Let
deg(i) and deg'(i) = deg(i) + 1 be the valency of node i in N and N'', respectively. Let
A = (ai,j) be the adjacency matrix of N'. We associate the stochastic matrix P = (Pi,J,
where Pi,j = ai,1/deg'(i), with N'. For each node i, define 1ri = deg'(i)/(N + 2M), where
M is the number of edges of N. Note that 7ri can be computed by each processor i from
knowledge it has of the topology of the network. We will prove the following theorem.

Theorem 3.1 Let N be an unlabeled N -node network with maximal node valency d and
let N' be the network N with self loops added to each node. Let p be the second largest
eigenvalue (in absolute value) of the stochastic matrix P associated with N'. There is an
algorithm that computes any symmetric function on the network N with bit complexity
o(- 10gN. N -logN -d).

logp

7

Proof. The idea of the algorithm is the following. Each processor sends its initial input
value to all its neighbors. After receiving the values from all its neighbors the processor
updates the value it already has based on the values it receives. Every processor executes
these steps S times, where S = 0(- 1~~g:) is a function of the topology of N known to
all processors. Eventually in this way every input value to a node of the network will be
distributed and equally accounted for by every other processor.

Let f be a symmetric boolean function on N variables known to all the processors and
let fk be the value off on inputs of weight (i.e. number of 1 's) k. Let I =< bv : v E V >
be the input to the network, where bv is the input bit to node v. More formally the
algorithm is as follows.

Algorithm for procesor p:
Input: bp, f;
Initialize: valuep[O] := bP and S;
for i := 0, 1, ... , S do

send v;;;,(~)j to all neighbors of p;
• value [i] f 11 . hb f receive deg'(~) rom a ne1g ors q o p;

compute valuep[i + 1] := EC:;,ed)l : q is a neighbor of p or q = p}

od;
put w := [val::p[SJJ;
Output fw•

Each processor knows its input bit but does not know the network input configu­
ration I. At the ith stage, i ~ S, processor p updates its variable valueP which is an
approximation to the number of 1 's in the input configuration I times the quantity 1r p·

At the final stage the processor computes w = [valueP/1rP], the nearest integer less than
or equal to valueP/1rP. If the approximation is sufficiently close to the actual value k1rp,
where k is the weight of the input I, then all processors will output the same correct
value fw,

We have to show that all the processors eventually converge to the correct ratio (and
hence the resulting value f w is the same for all the processors) and to bound the value
of S. We will use the theory of Markov chains ([Sen81], [Gan59]) in order to complete
the proof of correctness of the above algorithm.

Note that P = (Pi,j) is the N x N stochastic matrix of a primitive, reversible Markov
chain corresponding to a random walk on N'. (In general, the stochastic matrix cor­
responding to an arbitrary connected, undirected network is only irreducible and need
not be primitive. By adding a self loop to each vertex of N to form the network N' we
guarantee the corresponding Markov chain is primitive.) Its stationary distribution is
(1r1, 1r2, ... , 7rN). Let 1 =)q > A2 2:: ... 2:: Ak be the eigenvalues of P and put

p = max { I Ai I : 2 ~ i ~ k}.

Standard arguments (see e.g. [BK89, lemma 2]) show that

8

where p~~} is the (i,j) entry of the matrix pr_ If Mp= maxi,j{ /rr1/1ri} then the matrix

form of equation (1) is
pr = poo + 0 (MP . pr . E) ' (2)

where E is the matrix of all l's, and the limit P 00 = limr-+oo pr of the chain is an
N x N matrix such that all the entries of its i-th column are equal to 7ri, In our

case, Mp = Jdmax/ dmin, where dmax (respectively, dmin) is the maximal (respectively,
minimal) valency of the network N'. Hence, equation (2) becomes

(3)

It is easy to see that for any input vector I, L = I P 00 is the eigenvector of P whose
ith entry equals kni, where k is the number of l's in the input J.

We are interested in the rate of convergence of the limit of J pr as r tends to infinity.
It follows from equation (3) that

J pr = L + 0 (✓ dmax . pr . k . e)
dmm

(4)

where e is the row vector consisting of all l's. During the rth iteration of the above
algorithm processor p computes the pth component of I pr. To guarantee that all the
proccessors compute the correct value it is enough to ensure that the error term in (4)
is less than (1/2)1rp, i.e.

~ r k l y-;c;:. P . < 2(N + 2M)'

This inequality implies that the number of iterations required is S = 0(- log N / log p),
if p > 0. (Of course the case p = 0 is possible but then the number of required iterations
is S = 2.) It is not hard to see that during each iteration of the algorithm O(log 5)
bits must be transmited by each processor to all of its less than or equal to d neighbors
in order to guarantee a sufficient precision of the approximation at the 5-th iteration.
By [1081] for any network N with maximal node valency d and diameter 8 the second
largest eigenvalue of the stochastic matrix corresponding to the network N' satisfies the
inequality

1
P<l------

- N · 8 · (2 + d) '

i.e. log p ~ -1/N • 8 • (2 + d). Hence log S = O(log N) and so the bit complexity of the
algorithm (number of steps x number of processors x maximal number of bits per step
per processor) is indeed

as we had to prove. D

(
log N) 0 - -- · N · log N · d
log p

As an immediate consequence of the above theorem we get the following bound on
the bit complexity of symmetric functions on unlabeled networks.

Theorem 3.2 Let N be an unlabeled N-node network with maximal node valency d and
diameter 8. There is an algorithm that computes any symmetric bc,,,....,an function on N
with bit complexity 0(N 2 . 8 . d2 log2 N).

9

Proof. As above logp ~ - N-o}2+d)" Combining this with theorem 3.1 we obtain that

the bit complexity for computing symmetric functions is 0(N 2 • 8 • d2 • log2 N). □

Corollary 3.1 The bit complexity of computing any symmetric function on an unlabeled
d-dimensional torus with N = nd nodes is O(Nl+¼ log2 N).

Proof. The characteristic values of the corresponding adjacency matrix of N' are given
by the formula

d 21r
1 + L2cos(-ik),1 ~ i1, .. , ,id~ n

k=l n

The second largest eigenvalue of the corresponding stochastic matrix of N' is p = 2d~l •

(1 + 2d · cos(211")). Using approximations to the log and cos functions it is easy to show
log p = 0(-}2). Thus, by the theorem, the bit complexity of computing symmetric

functions in this case is O(Nl+¼ log2 N). □

Corollary 3.2 The bit complexity of computing a symmetric function on an unlabeled
n-dimensional hypercube with N = 2n nodes is 0(N log4 N).

Proof. The eigenvalues of the adjacency matrix of the hypercube are Ai = n - 2i,
0 ~ i ~ n. The second largest eigenvalue of the corresponding stochastic matrix of N'
is :~i. Using the inequality log(l - n!i) < - n!l, the theorem implies that the bit
complexity of computing symmetric functions in this case is O(N log4 N). □

Corollary 3.3 The bit complexity of computing any symmetric function on a random
regular graph of valency 2d is O(Nd~~~

2t) with probability greater than l - N-n(>id) _

Proof. This follows immediately from the theorem and recent results of Friedman et.
al. [FKS89] bounding the size of the second largest eigenvalue of random regular graphs.

□

4 Distance Regular Graphs

In this section we show that by taking advantage of the topology of distance regular
graphs we can derive efficient algorithms for computing symmetric functions on such
graphs.

The distance between any two nodes p, q E V of a network N, denoted d(p, q), is the
length of the shortest path between p and q. The circle with center p E V and radius k,
denoted by C(p; k), is the set of nodes q E V such that d(p, q) = k. The set of neighbors
of p, denoted N(p), is the circle C(p; 1). The threshold function Thk E BN is defined
to be 1 on inputs of weight at least k and 0 otherwise. (By the weight of an input I we
understand the number of occurrences of 1 in the input.)

Distance regular graphs are graphs N such that for any nodes p, q E V with d(p, q) =
k the quantities

I C(p; 1) n C(q; k - 1) I,
I C(p; 1) n C(q; k + l) I

10

depend only on the distance d(p, q). More formally, for k = d(p, q) we define

ak I { r E C(p; 1) : d(q, r) = k - 1} I, k = 1, 2, ... , 8

bk I {r E C(p;l): d(q,r) = k + 1} l,k = 0,1, ... ,8 -1,

ck I {r E C(p;l): d(q,r) = k} l,k = 0,1, ... ,8.

Such graphs include hypercubes, odd graphs, triangle graphs, complete bipartite graphs,
etc. [Big74], [Cam83]. They satisfy several useful properties. We mention only a few
obvious ones and refer the reader to [Big74] and [Cam83] for further properties. Distance
regular graphs are regular with valency d = b0 . By definition, a0 = 0. Moreover, c0 = 0
and a 1 = 1. Since, if d(p, q) = k every neighbor of p has distance k, k - 1 or k + 1 from
q it is clear that ck = d - ak - bk. A network N is distance transitive if for any nodes
p, q, p', q' with d(p, q) = d(p', q') there is an automorphism 4> of the network N such that
<f>(p) = p' and 4>(q) = q'. It is easy to see that all distance transitive graphs are distance
regular, but the converse is false [Big74].

Now we are ready to prove the main theorem of this section.

Theorem 4.1 On an unlabeled N-node distance regular network of valency d and di­
ameter 8 every symmetric function can be computed in 0(N · 8 · d -log N) bits. Moreover
the threshold function T hk can be computed in 0(N · 8 · d · log k) bits, where k :'.S N.

Proof. For any input configuration I=< bv : v E V >, any processor p and any distance
k :'.S 8 let I(p; k) be the number of processors x at distance k from the processor p such
that b., = l. To compute a symmetric function it is sufficient for each processor p to
know I(p; k), for each k :'.S 8. The idea of the proof is to find a (inductive) formula for
computing I(p; k) in terms of the previously computed values I(p; l), where l < k, and
values J(q, l), where q E C(p; 1) is a neighbor of p, l < k. We note that

L I(q; k - l)
qEN(p)

I{< q,x >: q E N(p),d(q,x) = k- l,b., = 1} I

L I { q E N(p) : d(q, X) = k - l} I

L I { q E N(p) : d(q' X) = k - l} I +
bz = l ,d(p,x)=k

L I { q E N(p) : d(q, X) = k - l} I +
bz=l,d(p,x)=k-l

L I {qEN(p):d(q,x)=k-l} I
bz=l,d(p,x)=k-2

bz=l,d(p,x)=k bz=l,d(p,x)=k-l bz=l,d(p,x)=k-2

ak · I(p; k) + ck-l · I(p; k - 1) + bk-2 · I(p; k - 2),

which in turn leads to the following inductive formula

I(p; k) =: · (L I(q; k - l) - (d- ~k-l - bk-1) · I(p; k - l) - bk-2 · I(p; k - 2)) .
k qEN(p)

(5)

11

Formula (5) and the knowledge of the network topology (i.e. the numbers ak and bk)
make it possible to construct an efficient algorithm for computing symmetric functions.
Let f E BN be a symmetric function and let fk be the value off on inputs of weight k.

Algorithm for processor p:
Input: hp, f;
Initialize: I(p; 0) := 1 if p's input bit is 1 and is := 0 otherwise;
send input bit to all neighbors;
compute I(p; l) := the number of ls among the neighbors of p;
for k : = 1, ... , 8 - l do

od;

send I(p; k) to all the neigbors of p;
compute J(p; k + l) from I(p; k - l), I(p; k) and the J(q; k)s,
where q ranges over all neighbors of p, via formula (5);

compute the sum s := I:!=o I(p; k);
output Is

The correctness of the algorithm was shown above. It remains to determine its
complexity. For k = 0, ... , 8 each processor p transmits the number I(p; k) to all its
neighbors. This requires transmission of 8 messages

I(p;0), ... ,I(p;8)

(each of length less than or equal to log N bits) to each of the d neighbors of p, i.e.
0(8 • d • log N) bits per processor for a total of 0(N • 8 • d • log N).

The proof of the bit complexity of computing the threshold function Thk employs
the previous algorithm. Observe that when the number of ls at a certain distance from
a processor exceeds the threshold value k then we only need to transmit k which requires
log k bits. D

An important corollary to the above is the case of the hypercube.

Corollary 4.1 On the unlabeled hypercube, every symmetric function can be computed
in O(N • log3 N) bits. Moreover the threshold function Thk can be computed in O(N •
log2 N . log k) bits, where k :'.S N.

Proof. Let n = log N. This is an immediate consequence of the fact that the hypercube
is distance regular. It is easy to show that in the notation of section 4, ak = k, bk = n - k
and ck = 0. The resulting inductive formula (which is a special case of formula (5)) is
the following:

b(p; k) = ¼ · (L b(q; k - l) - (n - k + 2) • b(p; k - 2)) . D
qED(p;l)

(6)

5 Conclusions and Open Problems

The present paper has been concerned with the problem of determining algorithms with
polynomial bit complexity for computing boolean functions on anonymous distributed
networks. The main result of section 2 provides such an algorithm for any unlabeled

12

network N with bit complexity O(N4
• 6 • d2 - log N). It would be interesting however if

we could improve on this bit complexity.
We have been able to find more efficient algorithms for computing symmetric func­

tions on arbitrary networks (theorem 3.2) and very efficient algorithms for symmetric
functions on the class of distance regular networks (theorem 4.1). Nevertheless these
algorithms are still not known to be optimal and improvements are possible.

An interesting special case is that of the hypercube network. Based upon the results
of [ASW85] for unlabeled and oriented rings and [BB89] for oriented tori we conjecture
that there are more efficient algorithms for computing boolean functions on the unlabeled
and oriented hypercube than those provided here. Preliminary results on these questions
are presented in [KK90].

There have been few studies in the literature regarding lower bounds. The only net­
work for which this question has been studied extensively is the ring [MW86], [AAHK88],
[DG87]. [PKR84] studies the question for the extrema finding function but relies on spe­
cific properties of this function. [YK88] give lower bounds for the message complexity of
computing boolean functions for broad classes of networks. However, very little is known
about lower bounds on the bit complexity of boolean functions on the anonymous torus
or hypercube, not to mention the general case of unlabeled networks.

If we allow the processors to flip coins in the course of the computation then this
changes entirely the rules of the game. It is now possible to introduce algorithms with
improved average and worst case bit complexity. Also, the class of functions computable
in this model may be different. For the case of rings this has been studied by [AS88]. For
general networks [SS89] and [MA89] have given algorithms with low message complexity
for the problem of constructing a rooted spanning tree (which can then be used to
compute boolean functions efficiently) . It would be very interesting to examine more
thoroughly the bit complexity for the case of general anonymous networks.

6 Acknowledgements

We are grateful to L. Meertens, J. Hastad and J. Tromp for many fruitful conversations.
C. Attiya and T. Tsantilas were very helpful with the bibliography.

References

[AAHK88] Karl Abrahamson, Andrew Adler, Lisa Higham, and David Kirkpatrick. Ran­
domized evaluation on a ring. In Jan van Leeuwen, editor, Distributed Al­
gorithms, 2nd International Workshop, Amsterdam, The Netherlands, July
1987, volume 312, pages 324 - 331, Heidelberg, 1988. Springer Verlag Lecture
Notes in Computer Science.

[Ang80] Dana Angluin. Local and global properties in networks of processors. In 12th
Annual ACM Symposium on Theory of Computing, pages 82 - 93, 1980.

[AS88] Hagit Attiya and Mark Snir. Better computing on the anonymous ring.
Technical Report RC 13657 (number 61107), IBM T. J. Watson Research
Center, November 1988. 33 pages.

13

[ASW85] Chagit Attiya, Mark Snir, and Manfred Warmuth. Computing on an anony­
mous ring. In 4th Annual ACM Symposium on Principles of Distributed
Computation, pages 196 - 203, 1985.

[BB89] Paul W. Beame and Hans L. Bodlaender. Distributed computing on tran­
sitive networks: The torus. In B. Monien and R. Cori, editors, 6th Annual
Symposium on Theoretical Aspects of Computer Science, STAGS, pages 294-
303, Heidelberg, 1989. Springer Verlag Lecture Notes in Computer Science.

[Big74] Norman Biggs. Algebraic Graph Theory. Cambridge University Press, 1974.

[BK89] A. Broder and A. Karlin. Bounds on the cover time. Journal of Theoretical
Probability, 2(1):101 - 120, 1989.

[Cam83] Peter J. Cameron. Automorphism groups of graphs. In Lowell W. Beineke
and Robin J Wilson, editors, Selected Topics in Graph Theory, Volume 2,
chapter 4, pages 89 - 127. Academic Press Inc., 1983.

[DG87] P. Duris and Z. Galil. Two lower bounds in asynchronous distributed com­
putation. In Proceedings 28th Annual IEEE Symposium on Foundations of
Computer Science, pages 326 - 330, 1987.

[FKS89] Joel Friedman, Jeff Kahn, and Endre Szemeredi. On the second eigenvalue
of random regular graphs. In 21st Annual ACM Symposium on Theory of
Computing, pages 587 - 598, 1989.

[Gan59] F. R. Gantmacher. Matrix Theory. Chelsea Publishing Company, 1959.
Translated from the Russian.

[KK90] E. Kranakis and D. Krizanc. Computing boolean functions on a distributed
hypercube network, 1990. unpublished manuscript.

[1081] H.J. Landau and A. M. Odlyzko. Bounds for eigenvalues of certain stochastic
matrices. Linear Algebra and its Applications, 38:5 - 15, 1981.

[MA89] Y. Matias and Y. Afek. Simple and efficient election algorithms for anony­
mous networks. In J.-C. Bermond and M. Raynal, editors, Distributed Algo­
rithms, 3nd International Workshop, Nice, France, September 1989, volume
392, pages 183 - 194, Heidelberg, 1989. Springer Verlag Lecture Notes in
Computer Science.

[MW86] S. Moran and M. Warmuth. Gap theorems for distributed computation.
In 5th Annual ACM Symposium on Principles of Distributed Computation,
pages 131 - 140, 1986.

[PKR84] J . Pachl, E. Korach, and D. Rotem. A new technique for proving lower
bounds for distributed maximum finding algorithms. J. of the ACM,
31(4):905 - 918, October 1984.

[Sen81] E. Seneta. Non-negative Matrices and Markov Chains. Springer Series in
Statistics. Springer Verlag, 1981. 2nd edition.

14

(SS89]

(YK87]

(YK88]

B. Schieber and M. Snir. Calling names on nameless networks. In 8th Annual
ACM Symposium on Principles of Distributed Computation, pages 319- 328,
1989.

M. Yamashita and T. Kameda. Computing on an anonymous network. Tech­
nical Report 87-16, Laboratory for Computer and Communication Research,
Simon Fraser University, 1987. 27 pages.

M. Yamashita and T. Kameda. Computing on an anonymous network. In 7th
Annual ACM Symposium on Principles of Distributed Computation, pages
117 - 130, 1988.

15

ONTVANGEN 3 JULI 1990

