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Abstract. Potential flow models remain to be practically relevant, for both physical and
numerical reasons. Detailed knowledge of their difference with rotational and viscous flow
models is still important. In the present paper, this knowledge is reviewed and extended.
Normal and oblique shock relations for the steady full potential equation and steady transonic
small disturbance equation are derived. Among others, the deficiencies in conservation of mass
and momentum across shock waves are analyzed in detail for these potential flow models. By
comparison with the shock relations for the Euler equations guidelines are offered for the
applicability of potential flow models in numerical simulations. Furthermore, the analytical
expressions derived here may serve for verification of numerical methods.

1. Introduction

Given the immense progress in numerical methods for Euler and Navier-Stokes flow computa-
tions over the last three decades, potential flow models may seem to become obsolete. However,
practically relevant potential flow simulations remain to exist, because numerical computations
based on potential flow equations can provide quantitative answers in shorter wall-clock time
compared to Euler and Navier-Stokes equations [2]. This makes the potential flow model very
useful in design and optimization studies, encountered in for example the aircraft industry [3, 5].
Viscous corrections or coupling with Navier-Stokes codes extend their range of applicability while
retaining most of the fast solution procedure (see e.g. [1]). For practical purposes, it is important
to precisely know the differences between potential flow models on the one hand and Euler or
Navier-Stokes flow models on the other hand. Further, for rigorous verification of potential flow
models codes, it is important to have a broad and deep knowledge of potential shock relations.

In the present paper we focus on the capability of two compressible potential flow models,
being the full potential equation (FPE) and the transonic small disturbance equation (TSD),
to resolve steady shock waves as predicted by the Euler equations. A good knowledge of the
differences between these models is important for, particularly, preliminary aircraft design in the
high-subsonic, transonic and low-supersonic speed regimes. There is an ongoing interest in these
designs from the viewpoint of fuel consumption and noise nuisance.

We complete this introduction by a short rehearsal of shock waves as weak solutions of partial
differential equations and with the derivation of the well-known shock relations for the Euler
equations. Subsequently, in sections 2 and 3 normal and oblique shock relations for the FPE and
the TSD are derived and extensively compared with the corresponding Euler relations. Deficits
in momentum and mass conservation are also analyzed. These analyses provide a complete
description and overview of normal and oblique shocks in steady potential flow models.

1.1. Weak solution of partial differential equations in conservative form. A general
two-dimensional formulation of a partial differential equation in conservative form can be written
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Figure 1. Nomenclature for shock wave.

as

(1) Fx +Gy = 0,

or as

(2) ∇ · ~A = 0, with ~A =

(

F
G

)

.

To obtain weak solutions of (2) we consider a control volume S that embodies a discontinuity D

(figure 1a) over which we integrate (2):

(3)

∫∫

S

∇ · ~A dS = 0.

Application of the divergence theorem gives

(4)

∮

C

~A · ~n dC = 0.

With the thickness of the control volume approaching zero, we get

(5)

∮

C

~A · ~n dC =

(

F
G

)

1

· ~n1∆s+

(

F
G

)

2

· ~n2∆s = 0.

Taking into account the opposite sign of the unit normal vectors ~n1 and ~n2 we can write the
following jump relation:

(6) (F2 − F1) tanβ = (G2 −G1),

where β is the wave angle (figure 1a).

1.2. Summary of shock relations for the Euler equations. The steady Euler equations in
two dimensions read

(7)
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with ρ, p, u and v denoting density, pressure and velocity components in x- and y-direction,
respectively. H denotes the total enthalpy, which is related to the primitive quantities as H =
γ

γ−1
p
ρ +

1
2 (u

2 + v2), in case of a perfect gas, with γ the ratio of specific heats. Applying equation

(6) for steady one-dimensional shocks, the following jump relations are found:

(8) [ρu] = 0, [p+ ρu2] = 0, [ρuH ] = 0,

where [.] = (.)2−(.)1. The well-known corresponding relation between pre- and post-shock Mach
numbers, M1 and M2 respectively, reads

(9) M2
2 =

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)

,

and the corresponding pressure and density jumps over the shock are

p2
p1

=
2γM2

1 − (γ − 1)

γ + 1
,(10)

ρ2
ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

.(11)

For steady two-dimensional shocks (oblique shocks) in Euler flows the following known relation
exists:

(12) tan θ = 2 cotβ
M2

1 sin2 β − 1

M2
1 (γ + cos 2β) + 2

,

where β is the wave angle and θ the deflection angle, see figure 1b.

2. Full potential equation

The FPE in two dimensions is given by:

(13) (ρφx)x + (ρφy)y = 0,

where φ is the potential whose gradient is the velocity vector, ~V = ∇φ, meaning that the velocity
field is irrotational. Equation (13) expresses conservation of mass, like the first equation of
(7). Besides irrotationality, the potential formulation is often accompanied by the assumptions
of homentropy and homenthalpy. The momentum equations are dropped and the remaining
equations are algebraic only:

p

ργ
= constant (homentropy),(14)

γ

γ − 1

p

ρ
+

1

2
(u2 + v2) = constant (homenthalpy).(15)

By combining the homenthalpic and homentropic conditions, the density and pressure can be
related to the Mach number as:

(16)
p0
p

=

(

ρ0
ρ

)γ

=

(

1 +
γ − 1

2
M2

)
γ

γ−1

,

where ρ0 and p0 are the total density and pressure. The FPE formulation based on equations
(13) and (16) conserves mass and energy across shocks, but not momentum. Other formulations,
which for example conserve mass and momentum but not energy, have also been suggested (see
e.g. [4, 7]) but will not be considered here. In fact, the shock relations for the mass-momentum
FPE model are closer to the shock relations of the Euler equations than those of the mass-energy
FPE model. However, the advantage of the mass-energy FPE model is that only a single scalar
differential equation has to be solved, which is not the case for the mass-momentum FPE model.
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As is well known, the homenthalpic condition (15) is also valid for the steady Euler equations
if the inflow is homenthalpic. The main error in the full potential formulation is therefore
introduced by the assumption of homentropy, which is linked to the irrotationality condition via
Crocco’s theorem. The entropy error can be derived by considering the increase in entropy over
normal shocks that satisfy the Euler equations. In terms of the perfect-gas entropy quantity
z = ln(p/ργ) it holds:

(17) e[z] =
p2
p1

(

ρ1
ρ2

)γ

.

Substituting equations (9)-(11) and expanding in a Taylor series around M1 = 1 leads to:

(18) [z] =
16

3

γ(γ − 1)

(γ + 1)2
(M1 − 1)3 +O

(

(M1 − 1)4
)

.

Hence, the error made by assuming z1 = z2 in the FPE model is of third order in M1 − 1.
The relative error in momentum conservation across a normal FPE shock can be written as:

(19)
[p+ ρu2]

p1 + ρ1u2
1

=
1 + γM2

2

1 + γM2
1

(

1 + γ−1
2 M2

2

1 + γ−1
2 M2

1

)
−γ

γ−1

− 1,

where equation (16) has been used to relate p and ρ to the Mach number. In the next section
we proceed by deriving a relation between M2 and M1 for the FPE.

2.1. Normal shock relations. To derive steady normal shock relations for the FPE we return
to equation (6) and figure 1a. For a normal shock wave we have β = π/2, so

(20) [F ] = 0.

For the FPE F = ρu, hence

(21) ρ2u2 = ρ1u1.

Considering a perfect gas, the velocity u is rewritten in terms of the Mach number as

u = M

√

γp

ρ
= M

√

γ
p0
ρ0

p

p0

ρ0
ρ

= M

√

γ
p0
ρ0

(

1 +
γ − 1

2
M2

)−1/2

.(22)

With (16) and (22), equation (21) yields then:

(23)

(

1 +
γ − 1

2
M2

1

)

−(γ+1)
2(γ−1)

M1 =

(

1 +
γ − 1

2
M2

2

)

−(γ+1)
2(γ−1)

M2.

This is the FPE-analogue of equation (9). It is not possible to derive an explicit expression for
M2 as a function of M1 for general γ. A numerical method is needed to obtain M2 for given M1,
see e.g. [6]. A graph of M2 as a function of M1 according to equation (23), for γ = 7

5 , is given in
figure 2. Like in shock relation (9) for the Euler equations, M2 and M1 are also interchangeable
for the FPE model, i.e., (23) is symmetric with respect to the line M2 = M1.

It can be observed that the shocks satisfying the FPE are stronger than shocks satisfying the
Euler equations. In order to analyze the error with respect to the Euler solution, we make a
series expansion of both equations (9) and (23) around M1 = 1, yielding:

(24) MEuler
2 = 1− (M1 − 1) +

3γ − 1

γ + 1
(M1 − 1)2 +O

(

(M1 − 1)3
)

,

(25) MFPE
2 = 1− (M1 − 1) +

5
3γ − 1

γ + 1
(M1 − 1)2 +O

(

(M1 − 1)3
)

,
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hence

(26) MEuler
2 −MFPE

2 =
4
3γ

γ + 1
(M1 − 1)2 +O

(

(M1 − 1)3
)

.

In contrast to the error in entropy, the error in post-shock Mach number is second order near
M1 = 1. Graphically this means that the slopes of the Euler and FPE graphs are equal at
M1 = 1 but the curvatures are not, see figure 2.

The relative error in momentum conservation, equation (19), can now be calculated. It is
shown in figure 3 for γ = 7

5 (the TSD results, also depicted here, will be derived in section 3). It

can be seen that [p+ ρu2] > 0, meaning that the FPE leads to a gain in momentum across the
shock. By using equation (25), including higher order terms, we can make the following Taylor
expansion of equation (19):

(27)
[p+ ρu2]

p1 + ρ1u2
1

=
16

3

γ

(γ + 1)3
(M1 − 1)3 +O

(

(M1 − 1)4
)

.

The relative error in momentum conservation is of third order, like the entropy error. Note that
the two errors are related as:

(28) [z] = (γ2 − 1)
[p+ ρu2]

p1 + ρ1u2
1

+O
(

(M1 − 1)4
)

.

Finally we note that, in the past, full potential flow models have been implemented in non-
conservative form (see e.g. [2] and references therein). In such a form a mass conservation error
(an effective mass source) is introduced at shocks, which has - nevertheless - accidentally led to
better agreement with experimental data.
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2.2. Oblique shock relations. For oblique shocks described by the Euler equations the mo-
mentum equation in a direction tangential to the shock can be used to show that

(29) [v] = 0.

In flows governed by the full potential equation the momentum equations have been dropped.
The normal component of the momentum flux is not conserved across a shock, as was just
observed. The tangential component is still conserved though, as can be shown by integrating

the irrotationality condition ∇× ~V = 0:

(30)

∫∫

S

∇× ~V dS =

∫

C

~V · d~l = 0,

from which it follows that v2 = v1. With mass conservation it then follows that ρ2u2v2 = ρ1u1v1.
Hence, whereas the FPE model does not conserve normal momentum, it does conserve tangential
momentum. This difference between conservation of normal and tangential momentum has
already been noticed by Van der Vooren and Slooff [7].
In a direction normal to the shock (23) still holds, albeit with Mn,1 and Mn,2 instead of M1 and
M2. To find the relation with M1 and M2, we need the definitions for the wave angle β and
deflection angle θ (see figure 1b):

u1

v1
= tanβ,(31)

u2

v2
= tan(β − θ).(32)
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With these definitions the pre-shock and post-shock Mach numbers normal to the shock follow
as:

Mn,1 = M1 sinβ,(33)

Mn,2 = M2 sin(β − θ).(34)

From equations (21), (29) and (31) it follows that:

(35)
u2

u1
=

ρ1
ρ2

=
tan(β − θ)

tanβ
.

Expressing the pre- and post-shock densities ρ1 and ρ2 in terms of the Mach number by using
equation (16) we find

(36)
tan(β − θ)

tanβ
=

(

1 + γ−1
2 M2

n,1

1 + γ−1
2 M2

n,2

)
−1
γ−1

.

This equation, together with (23) for the relation between Mn,1 and Mn,2, is the FPE analogue
of equation (12). Given a supersonic flow with a certain Mn,1 and a deflection angle θ, the
oblique shock-wave angle β can now be computed, if existent. The FPE relation between θ and
β is shown in figure 4 for different pre-shock Mach numbers, and compared to the oblique shock
relations for the Euler equations. As for the Euler equations, three different possibilities occur
depending on the deflection angle:

(1) θ < θmax: two solutions. The ‘weak’ solution, i.e., the solution with the smallest β,
normally occurs in practice.

(2) θ = θmax: one solution.
(3) θ > θmax: no solution; the shock wave is detached.

We observe that, considering weak solutions at a certain M1 and θ,

(37) βFPE ≤ βEuler,

which is to be expected since the shocks predicted by the FPE are stronger. The agreement
between the FPE and Euler relations improves with decreasing Mach number and decreasing
deflection angle.

3. Transonic small disturbance equation

3.1. Normal shock relations. The transonic small disturbance equation (TSD) in two dimen-
sions is given by:

(38)
(

1−M2
∞ − (γ + 1)M2

∞ϕx

)

ϕxx + ϕyy = 0,

where ϕ is the non-dimensional disturbance potential; ϕx = u/V∞ − 1, with V∞ the free-stream
flow speed. In the derivation of this equation it is assumed that perturbations of the free-stream
flow are small, which is typically valid for slender bodies at small angle of attack. Equation (38)
is hyperbolic if

(39) ϕx >
1−M2

∞

(γ + 1)M2
∞

.

This condition can be expressed solely in Mach numbers by writing the disturbance velocity ϕx

in terms of the Mach number, similarly to equation (22), but now also using free-stream values
besides stagnation values:

(40) u = M

√

γp

ρ
= M

√

γ
p∞
ρ∞

p

p0

p0
p∞

ρ0
ρ

ρ∞
ρ0

.
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5 .

With the homentropic relations (16) this leads to the following requirement for hyperbolicity:

(41) M >

√

g(M∞)2

4− γ−1
2 g(M∞)2

,

where

(42) g(M∞) =
1 + γM2

∞

γ+1
2 M∞

√

1 + γ−1
2 M2

∞

.

The minimum M required for a locally hyperbolic equation is shown in figure 5. In case g(M∞) >

2
√

2/(γ − 1) such an M does not exist, i.e., the TSD can then not be hyperbolic. For γ = 7
5

this leads to the condition M∞ & 0.196, recognized by the vertical asymptote in figure 5. For
M∞ = 1 the same hyperbolicity condition is encountered as for the Euler and FPE models,
namely M > 1. It is important to note that formally inequality (41) is the condition numerical
algorithms should use to determine if a central or upwind differencing scheme has to be used;
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the widely used condition that locally M > 1, mentioned in e.g. [2], is a good approximation to
(41) around M∞ = 1.
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0.5

1

1.5

2

2.5

3
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M

Figure 5. Minimum required M for a locally hyperbolic TSD as function of
M∞, γ = 7

5 .

To investigate the jump relations for the TSD, it is cast in the form of equation (2) by taking

F = (1−M2
∞)ϕx −

γ + 1

2
M2

∞ϕ2
x, G = ϕy.(43)

Hence, following (20), the jump relation for a one-dimensional normal TSD shock reads

(44)

[

(1−M2
∞)ϕx −

γ + 1

2
M2

∞ϕ2
x

]

= 0.

Rewriting gives

(45)
1−M2

∞

γ+1
2 M2

∞

= (ϕx)2 + (ϕx)1 =
u1 + u2

V∞

− 2.

(46)
M1

√

1 + γ−1
2 M2

1

+
M2

√

1 + γ−1
2 M2

2

=
1 + γM2

∞

γ+1
2 M∞

√

1 + γ−1
2 M2

∞

.

Opposed to the Euler and FPE models, this normal shock relation for the TSD also depends on
the free-stream Mach number M∞. An explicit equation for M2 can be obtained by rewriting
equation (46) as

(47) MTSD
2 =

f(M1,M∞)
√

1− γ−1
2 f(M1,M∞)2

,
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where

(48) f(M1,M∞) = g(M∞)−
M1

√

1 + γ−1
2 M2

1

.

So, in contrast to the FPE, a numerical method is not necessary to obtain M2 as a function of
M1 and M∞. Relation (46) has been plotted in figure 2 for different values of M∞. It can be
seen that only for M∞ = 1 the TSD is a consistent approximation to the Euler equations near
M1 = 1, i.e., only for M∞ = 1 it satisfies the trivial solution M1 = M2 = 1. For M∞ 6= 1, one
can observe the peculiar result that M2 > M1 for M1 = 1. The aforementioned symmetry of the
Euler and FPE relations around the line M2 = M1 still holds, but no longer around the point
M2 = M1 = 1. Instead, the symmetry point is (M1,M2) = (M s,M s), with M s given by

(49) M s =

√

g(M∞)2

4− γ−1
2 g(M∞)2

.

For M∞ = 1 this shift is zero and for all other M∞ it is positive. We note that equation (49)
is exactly equal to equation (41), allowing us to interpret the region M2 > M1 in figure 2 as
a region where the TSD is not hyperbolic, so that solutions in this region are not valid shock
solutions. Equation (16) shows that such solutions would correspond to unphysical expansion
shocks.

A further, stricter, requirement on valid shock solutions comes from the denominator of (47).
It is necessary that the term under the square root is positive, which gives the condition M∞ >
M∗

∞ (there is no upper bound). In figure 6, M∗
∞ is shown as a function of M1, for γ = 7

5 . For this
γ we find M∗

∞(M1 = 1) ≈ 0.294 and M∗
∞(M1 → ∞) ≈ 0.196, the same value that was obtained

from the requirement on hyperbolicity. In practice, flows with M∞ close to M∗
∞ would require

strongly curved bodies or high angles of attack to be accelerated such that locally supersonic
conditions appear. Since in such cases the small perturbation assumption underlying the TSD is
not valid, the condition M∞ > M∗

∞ is not a serious limitation for practical flow problems with
γ = 7

5 .
To investigate the accuracy of the TSD shock relation, we expand equation (46) in a series

solution around M1 = 1 and find (for convenience with M∞ = 1):

(50) MTSD
2 = 1− (M1 − 1) + 3

γ − 1

γ + 1
(M1 − 1)2 +O

(

(M1 − 1)3
)

.

The error in M2 is again O
(

(M1 − 1)2
)

:

(51) MEuler
2 −MTSD

2 =
2

γ + 1
(M1 − 1)2 +O

(

(M1 − 1)3
)

.

Compared to the FPE model, equation (26), near M1 = 1 the error in the shock relation of the
TSD at M∞ = 1 and γ = 7

5 is only slightly larger than for the FPE. This was already visible in

figure 2. For mono-atomic gases (γ = 5
3 ) and M∞ = 1 comparison of (26) and (51) learns that

the TSD is even slightly more accurate than the FPE.
An interesting case occurs when M∞ = M1; then TSD relation (46) yields:

(52) M2
2 =

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)

.

This expression is identical to relation (9) for the post-shock Mach number of the Euler equations.
Graphically this is seen in figure 2 by the intersection of the TSD line at M∞ = 1.2 with the
Euler line at a value of M1 = 1.2. Similarly, although not physical, the TSD line at M∞ = 0.8
intersects the Euler line at M1 = 0.8. The latter is not visible in figure 2, but due to the reversible
nature of equation (46) (the symmetry with respect to M2 = M1), the TSD line at M∞ = 0.8
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Figure 6. Minimum allowed free-stream Mach number versus pre-shock Mach
number, γ = 7

5 .

also intersects at M2 = 0.8, which is visible in figure 2. Although the jump in Mach number at
M∞ = M1 matches the Euler jump, the pressure, density and temperature jumps do not, due to
the fact that they are derived with the assumption of homentropic flow.

Shocks satisfying the TSD are again stronger than shocks satisfying the Euler equations if
M∞ = 1. For other M∞ this is true only when M1 > M∞ > 1 or M2 < M∞ < 1.

The relative momentum error for the TSD is found by substituting M2 according to equation
(46) into equation (19). From figure 3 it is observed that the relative momentum error is rather
insensitive to the free-stream Mach number. Substituting equation (50), including higher order
terms, in equation (19) and Taylor expanding the result leads to:

(53)
[p+ ρu2]

p1 + ρ1u2
1

=
8

3

γ(2γ − 1)

(γ + 1)3
(M1 − 1)3 +O

(

(M1 − 1)4
)

.

The relative error in momentum conservation is of third order, as was the case for the FPE.
The TSD, as opposed to the FPE, also fails to conserve mass across shocks. For homentropic

flows, the relative mass error can be written as

(54)
[ρu]

ρ1u1
=

(

1 + γ−1
2 M2

1

1 + γ−1
2 M2

2

)
γ+1

2(γ−1)
M2

M1
− 1.

Looking at the full potential relation (23), it is confirmed that the relative mass error for the
FPE is zero, as expected. Taylor expansion shows that

(55)
[ρu]

ρ1u1
=

8

3

2γ − 3

(γ + 1)2
(M1 − 1)3 +O

(

(M1 − 1)4
)

,
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so the relative mass error is third order, like the momentum and entropy error. In figure 7
the relative mass error according to TSD shock relation (46) is plotted as a function of M1 for
three different values of M∞. There can be either mass gain, mass loss, or conservation of mass,
depending on M1 and M∞. Points of zero relative mass error correspond to intersections of the
TSD and FPE curves in figure 2. We note that, just as for the FPE, mass-conserving shocks do
not necessarily give the best correspondence with experimental data.
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Figure 7. Relative mass error for the TSD, γ = 7
5 .

3.2. Oblique shock relations. The geometrical relation for oblique shocks, equation (31), is
still valid. However, u2

u1
is not equal to ρ1

ρ2
anymore. Instead we can write

(56)
u2

u1
=

Mn,2

Mn,1

√

p2
p1

ρ1
ρ2

.

Using the homentropic relations for the pressure ratio and density ratio across the shock, (56)
can be rewritten as

(57)
u2

u1
=

Mn,2

Mn,1

√

√

√

√

1 + γ−1
2 M2

n,1

1 + γ−1
2 M2

n,2

=
tan(β − θ)

tanβ
.

By employing the same approach as in section 2.2, with now the TSD relation for the pre- and
post-shock Mach numbers Mn,1 and Mn,2, the oblique shock relations for the TSD are added to
figure 4. The jump in Mach number normal to the shock is the same as for the Euler equations
if Mn,1 = Mn,∞, but the wave angle is not the same due to the assumption of homentropy. It
can be seen that the FPE and TSD results are very close for M∞ = 1, but for other M∞ the
results quickly diverge. For sufficiently high M1 we can distinguish intersections with the TSD
results.
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4. Conclusion

In this paper an overview has been given of normal and oblique shock relations for Euler, full
potential equation (FPE) and transonic small disturbance equation (TSD) flow models. Existing
shock relations have been revisited and new shock relations have been derived, which are ideally
suited for the verification of numerical methods. A novelty is that all relations are expressed in
terms of pre- and post-shock Mach number only.

The normal shock relation for the FPE is an implicit relation between post- and pre-shock
Mach numbers (M2 and M1) that has to be solved numerically. Compared to the Euler shock
relations, it provides a second order approximation to M2 in terms of M1 − 1. The assumption
of homentropy, a third order error in terms of M1 − 1, leads to a gain in momentum across the
shock, which is also a third order error term.

For the TSD an explicit expression is derived for M2 in terms of M1 and free-stream Mach
number M∞. For general M∞ this is an inconsistent approximation to the Euler expressions for
M2, i.e., solutions do not pass through M1 = M2 = 1, although the associated error is small for
M∞ near 1. The switch from elliptic to hyperbolic is not at M = 1 (except for M∞ = 1), but
at a higher value. This value should be used in numerical codes when locally a switch between
differencing schemes is used. As for the FPE, an error in momentum conservation is present, but
additionally an error in mass conservation is introduced. Certain values of M∞ deserve special
attention:

(1) In case M∞ is too small (e.g. smaller than ∼ 0.294 for M1 = 1 and γ = 7
5 ) the TSD

shock relations become invalid.
(2) In case M∞ = 1, the TSD expression for M2 is consistent, second order accurate in

M1 − 1 and the associated errors in mass and momentum are both third order in terms
of M1 − 1. It is very close to the FPE expression, and for certain γ, e.g. mono-atomic
gases with γ = 5

3 , it is even more accurate.
(3) In case M∞ = M1 no approximation is involved since the expression for M2 of the Euler

equations is recovered.
(4) For certain combinations of M1 and M∞ the TSD shock relations are equal to the FPE

shock relations, and there is no mass conservation error.

Oblique shock relations have also been derived for both the FPE and TSD model. As for
Euler flows, the relations allow for computations of the shock-wave angle (if existent), for known
pre-shock flow, deflection angle, and free-stream Mach number in case of the TSD model. For
small deflection angles and small upstream Mach numbers the FPE gives a good approximation
to the oblique shock relations obtained from the Euler equations. This remains true for the TSD
if M∞ is close to unity.
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