
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Integrated SCM/PDM/CRM and delivery of software
products to 160.000 customers

R.L. Jansen, G. Ballintijn, S. Brinkkemper,
A. van Nieuwland

REPORT SEN-R0416 OCTOBER 2004

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Integrated SCM/PDM/CRM and Delivery of Software
Products to 160.000 Customers

ABSTRACT
The release and deployment of enterprise application software is a potentially complex task for
software vendors. This complexity can unfortunately result in a significant amount of work and
risk. This paper presents a case study of a product software vendor that tries to reduce this
complexity by integrating product data management (PDM), software configuration
management (SCM), and customer relationship management (CRM) into one system. The case
study shows that by combining these management areas in a single intelligent software
knowledge base, software release and deployment processes can be automated and improved,
thereby enabling a software vendor of enterprise software to serve a large number of customers
with different product configurations.

1998 ACM Computing Classification System: d.2.7
Keywords and Phrases: product software, software configuration management, product data management, customer
relationship management, software delivery, deployment

Integrated SCM/PDM/CRM and Delivery of Software Products
to 160.000 Customers

Slinger Jansen, Gerco Ballintijn
Center for Mathematics and Computer Science

{r.l.jansen, g.ballintijn}@cwi.nl

Sjaak Brinkkemper
Utrecht University

Institute of Information and Computing Sciences
s.brinkkemper@cs.uu.nl

Arco van Nieuwland
Exact Software

Exact Holding N.V.
arco@exactsoftware.com

Abstract

The release and deployment of enterprise application
software is a potentially complex task for software ven-
dors. This complexity can unfortunately result in a sig-
nificant amount of work and risk. This paper presents
a case study of a product software vendor that tries
to reduce this complexity by integrating product data
management (PDM), software configuration manage-
ment (SCM), and customer relationship management
(CRM) into one system. The case study shows that by
combining these management areas in a single intel-
ligent software knowledge base, software release and
deployment processes can be automated and improved,
thereby enabling a software vendor of enterprise soft-
ware to serve a large number of customers with differ-
ent product configurations.

Keywords: product software, software configura-
tion management, product data management, customer
relationship management, software delivery, deploy-
ment

1 Introduction

The release and deployment of enterprise application
software is a complex task for a software vendor. This
complexity is caused by the enormous scale of the un-
dertaking. There are many customers for the vendor
to serve, which all might require their own version or
variant of the application. Furthermore, the applica-
tion itself will consist of many (software) components
that depend on each other to function correctly. On
top of that, these components will evolve over time to
answer the changing needs of the customers. As a con-
sequence, the release and deployment of these applica-
tions take a significant amount of effort and is a time
consuming and error-prone process.

To alleviate this problem we envision an intelli-
gent software knowledge base (ISKB) that contains all
facts about all artefacts together with their relevant at-
tributes, relations and constraints. In this way, high-
quality software configurations can be calculated auto-
matically from a small set of key parameters. It also
becomes possible to pose what-if questions about nec-
essary or future upgrades of a customer’s configuration.

Exact Software (ES), a software manufacturer in the
Netherlands serving 160,000 customers worldwide, has
implemented an ISKB to manage and improve its soft-
ware maintenance, release, and deployment processes.
The ISKB implemented by ES has been implemented
in its own product e-Synergy. In this paper we show
that ES successfully supports its large customer base
with an integrated product data management (PDM),
software configuration management (SCM), and cus-
tomer relationship management (CRM) system. The
paper describes how the processes of development, re-
lease, and deployment have been improved by integrat-
ing processes that were previously managed by utiliz-
ing different isolated systems. The paper also demon-
strates how a central software knowledge base, contain-
ing all the relevant knowledge about software products,
is implemented and used to support the processes of de-
velopment, release, and deployment. Finally, the paper
describes four principles employed by Exact Software
to deal with general complexities in the software engi-
neering discipline.

The rest of this paper is structured as follows. Sec-
tion 2 describes the objective of our research at ES and
a motivation. Section 3 describes ES and the tools it
uses to integrate its SCM, PDM, and CRM systems. In
addition we discuss the requirements ES had before the
system was implemented and how these requirements
were met by the implementation of e-Synergy. Finally,
an in-depth description is given of the different prod-
uct views within ES. Section 4 discusses the lessons

1

learned from ES. Section 4 also discusses what func-
tionality we feel is lacking in Exacts ISKB. Finally,
related work is presented in Section 5 and Section 6
concludes our paper with a discussion.

2 Research Approach

2.1 Problem Overview

The release and deployment processes for a software
product involve a large amount of risk and effort for
a software vendor. The required capabilities have been
documented insufficiently in literature such as the Soft-
ware Engineering Body of Knowledge1 where the is-
sue of delivery is not explicitly handled but seen as part
of configuration management. Our research is focussed
at further defining the problems in the area of software
release and deployment and finding solutions to these
problems.

The goal of our research is to simplify the software
release and deployment effort. We propose to do so by
managing all the knowledge about a software product
explicitly. By managing software knowledge explicitly,
a software vendor can improve the upgrade process of
its software. Furthermore, the explicit management of
software knowledge enables the evaluation of “what if”
scenarios, such as, what will happen to the current con-
figuration of customer X, if she upgrades application
component Y? These evaluations help in assessing the
risk of the deployment process, and these assessments,
in turn, improve interaction between customer and soft-
ware vendor because the vendor can guarantee whether
a combination of components can function correctly to-
gether.

Managing software knowledge is, however, only part
of the story. The software still has to be delivered to
customers. We aim to support dynamic delivery of soft-
ware via the Internet, both in the form of upgrades and
of full packages. The previously mentioned product
and component knowledge is used to compute the dif-
ference between the existing software configuration at
a customer and the desired configuration. This differ-
ence can be used to create the required upgrades.

Central to the release and deployment activities we
envision, is the intelligent software knowledge base.
This software knowledge base can be seen as an in-
tegrated SCM/PDM/CRM system that stores all infor-
mation about all the artefacts that are part of the ap-
plications life cycle. The ISKB stores the information
of all available applications in all available versions at
the vendor site, whereas at the customer site the ISKB
stores information about the installed applications, ap-
plication settings, and configurations.

1www.swebok.org

As part of our research, we are performing case stud-
ies at product software companies [1] to evaluate the
state-of-the-practice of software vendors in the Nether-
lands, such as ES. ES is relevant to our research be-
cause ES has implemented one of its own products,
e-Synergy, to support the processes of release and de-
ployment and to function as an ISKB.

2.2 Exact Software

Exact Software is a manufacturer of software for
accounting and enterprise resource planning (ERP),
based in Delft, the Netherlands. Since its founding
in 1984, ES has established an international customer
base of over 160,000 customers, mainly in the small
to medium enterprise sector. Through autonomous
growth and a number of acquisitions the number of em-
ployees has grown to 2025 in 2003 (see Table 1). Of
these employees, 18 percent are active in the develop-
ment of software. They are spread out over the 31 lo-
cations worldwide. The International Development de-
partment employs most developers with 180 employees
in Kuala Lumpur and 20 employees in Delft.

A typical application sold by ES is Exact Globe,
a back-office application that integrates business pro-
cesses, such as finances, logistics, product data man-
agement, CRM, etc. A recent product is e-Synergy,
which is a front office application that provides orga-
nizations with real-time financials, multi-site reporting
and relationship and knowledge management capabili-
ties. Employees, customers and partners are provided
with real-time access to information across an entire
organization.

Based on more than 20 years of experience in devel-
oping software products for the SME market, ES en-
forces 4 main principles for product development:

• Uniform architecture - All software developed
by ES has a three layered architecture. The
user application layer (a browser or a stand alone
client), the application server layer (containing the
business logic), and the database layer.

• One-X - ES has developed a strategy for develop-
ing its ERP software, called One-X. One-X aims
to develop all software around one single data
model, making the data model available to all ES
applications. The idea behind One-X is that any
data needs to be entered only once and that exten-
sive navigation is possible through integration.

• KISS - To support such a large customer base
within such a complex problem domain, ES fol-
lows the principle of KISS (Keep It Small and
Simple) for its development process. The use of
KISS within ES has resulted in a development cy-
cle in which a fully functional prototype is pro-

2

Table 1: Exact Software full-time employment (2004)

Department FTE Percentage
Support 546 27,0
Services 263 13,0
Sales and Marketing 445 22,0
Finance and Administration 142 7,0
Staff 142 7,0
General Management 81 4,0
Development 294 14,5
Quality Assurance 96 4,7
Release and Deployment 15 0,7
Total 2025 100

duced by a spearhead team first. Once the pro-
totype is released to the development team, the
product enters a maintenance cycle, instead of a
development cycle. From then on the product
can only be changed by the development (actu-
ally maintenance) team through elaborately de-
fined maintenance procedures. All procedures are
monitored by a large quality assurance team (see
Table 1).

• Eat your own dogfood -ES uses its own software
products to support internal processes, which is
called “eat your own dogfood” by Microsoft [2].
This internal use provides the maintenance depart-
ments with early bug reports and feedback.

2.3 The Case Study

There were three reasons for performing the case study
at Exact Software [3]. To begin with, we wished to
prove that the ISKB is a relevant solution to manage
the processes of release and deployment. Secondly,
ES provided us an example ISKB and shows how an
ISKB can be applied. They also allowed us to review
the reasons for implementing an ISKB to support its
processes. Finally, ES gave us an opportunity to see
the advantages and disadvantages of using an ISKB in
daily life.

During the case study, facts have been collected from
several sources:

• Interviews - To study ES and confirm our hy-
potheses, interviews were held with the people re-
sponsible for the development and usage of the e-
Synergy product.

• Studying the software -ES granted an academic
license for the e-Synergy software. This license
helped to gather many facts by examining, using,
and experimenting with the software.

• Document study -Many of the documents found
in the document management system of e-Synergy
supported the research and gave an in-depth view
of the ES development, release, and delivery pro-
cesses.

• Direct observations - Since our research took
place at ES’s International Development depart-
ment, we were able to directly observe and docu-
ment day to day operations.

A threat to the validity of the case study is the cor-
rectness of the answers provided by the interviewees.
The interviews consisted of two sessions, one to ex-
plore and elaborate, and one to cross-reference answers
from other interviews. The second session was also
used to cross-reference documentation found in the
document management system of e-Synergy and con-
firm the facts stated in these documents. To ensure
reliability, the case study report was reviewed by key
informants. Besides these reviews we also created a
case study protocol and a case study database. A sec-
ond threat to the validity is the representativeness of ES
for the software industry. Even though ES is a market
leader, there is a risk that ES may not be representa-
tive for other software producing companies within the
same problem domain and that some of the conclusions
we have drawn cannot be generalized. A last threat to
the validity is that developers tend to be reluctant to ad-
mit the existence of quality issues. Consequently, they
may downplay relevant issues. However, during the
case study we interviewed many experienced, senior
developers and are confident that their answers were
accurate.

3 e-Synergy and its use within Ex-
act Software

3.1 Overview

e-Synergy is a front office application that integrates
seven modules: project management, workflow, hu-
man resource management, document management,
CRM, logistics, and financial activities (see Figure 1).
Through the One-X architecture, each module can use
the data in other modules enabling users to easily navi-
gate from one item to another. The logistics module of
e-Synergy is a PDM module that manages conventional
products, the customer relationship module stores in-
formation about customers, and the project and work-
flow modules are used to distribute activities among
personnel. Workflow activities are classified as bug
reports and change requests. Projects are managed
through the project management module, generating
workflow activities. Workflow can be attached to other

3

DB

Workflow HRM

C
R

M

Pr
oj

ec
t

Logistics

Financials

D
oc

um
en

ts

Customer Portal

E
m

pl
oy

ee
 P

or
ta

l

Supplier Portal

R
eseller Portal

Figure 1: e-Synergy Data Model and Architecture

workflow, documents, and deliverables. These attach-
ments can be used to quickly produce reports on how
many tasks are still attached to a deliverable, a project,
or a document. Since all tasks have different defined
levels of impact, projections can be made about the
amount of work and the cost associated with that work,
which enables status reporting. An implementation of
e-Synergy provides four optional Internet portals (see
Figure 1), which can be used to provide customers,
employees, resellers, and suppliers with their specific
views on the data. The DBMS, Microsoft SQL Server,
is a prerequisite for installing all ES products.

ES uses its own product e-Synergy, to support all
the business processes. They use all modules for its
activities, such as document management, workflow
management, and financial accounting. The document
management module is used by developers to share
documents, work on concepts together, and to review
designs. The workflow management module is used
to share and manage activities among employees. The
development department uses it specifically to man-
age activities, such as bug reports and change requests.
Each processed bug report or change request is tested
by quality assurance, which is also managed through
e-Synergy. The traceability of workflow in e-Synergy
supports developers to solve the problems of discon-
tinuous software evolution [4]. The CRM module of
e-Synergy takes care of licensing, support, feedback,
updates, and of course customer data management.

ES also uses e-Synergy to support the processes of
development, release, and deployment for its software
products. Software developed within ES is stored in
a repository. A release is promoted through different
repositories, depending on certain conditions, until the
release reaches the delivery repository. From then on,
the release can be downloaded by customers, or de-
livered on CD-ROM. Customers can provide bug re-
ports and change requests to the development depart-
ment through their reseller or directly through ES cus-

tomer support. By integrating its PDM, its CRM, and
its SCM systems ES has created an ISKB.

Combined SCM and PDM support is provided by the
logistics module of e-Synergy since it stores the prod-
uct data, the deliverables, and the source code. ES has
combined the PDM and SCM systems in e-Synergy be-
cause ES believes that building a software product is no
different from building physical products and can be
done using a general PDM system. Developers see the
SCM system primarily as one repository in which both
the source and their corresponding deliverables, such as
executables, are stored. For sales personnel the PDM
primarily consists of physical objects and software ob-
jects, to which documents, software deliverables, and
workflow activities can be attached.

Before e-Synergy was designed, ES was utilizing
different isolated systems for the processes of software
release and deployment, such as daily build servers and
conventional concurrent versioning management tools
for SCM and its own product Globe, for CRM. ES
experienced many problems within the setting of iso-
lated systems. To begin with, many of the tasks per-
formed included the duplicate entry of data into dif-
ferent systems. A second problem experienced by ES
was that deliverables were not managed explicitly, de-
laying deadlines and often producing incomplete sets
of deliverables for customers. The final problem rel-
evant to this case study was that multiple worldwide
departments needed access to the software repositories
twenty four hours a day. To solve these problems ES
built e-Synergy.

The ISKB implemented by ES consists of the SCM,
PDM, and CRM modules in e-Synergy and are inte-
grated through the One-X architecture. The following
Subsections describe each of these three systems.

3.2 SCM

Before the systems of SCM, PDM, and CRM were inte-
grated, the concurrent versioning system RCS [5] was
used to support development. Besides RCS, ES also
used daily build servers, to create new builds for the
quality assurance department to check the work of the
day before. During the design of e-Synergy, ES drew
up standard requirements for change control, team sup-
port, status reporting, process control, and audit con-
trol. Aside from these standard requirements, ES had
the following non-generic requirements [6] in the area
of SCM:

• Version control - In the past too many resources
were absorbed by legacy support and customers
were confronted with complex upgrades and bug
fixes. As a consequence of the KISS principle,
ES decided to reduce complexity for the customer
and development by no longer supporting multiple

4

versions of a product.

• Configuration support - Because bandwidth and
disk space are cheap and development is expen-
sive, ES concluded that sending each customer the
full set of deliverables for a product would be most
efficient. Wanting to keep its software as simple as
possible, ES decided to support only runtime vari-
abilities. Also, to improve quality, ES wished an
automated check of the validity of a product con-
figuration before it is delivered.

• Build support - ES previously used separate build
servers to build the complete product overnight.
That build was tested the next day by quality as-
surance. As ES grew larger internationally and
developers were working on code 24 hours a day,
there was no down time left for servers to build
the software. A new way of partially building was
required to facilitate these needs.

These non-generic requirements were part of the re-
quirements of e-Synergy.

Exact Software promotes some key starting points
for its development process. To begin with, developers
have private ownership of deliverables and source code
and they commit their compiled deliverables with their
source code. This introduces pessimistic locking, and
enables management to assign responsibility for deliv-
erables to one developer specifically.

The decision for building the end product on the
developer’s workspace is deliberate since in the past
ES experienced too many resources were spent on the
build process. The solution where developers upload
their compiled deliverables creates a repository that al-
ways contains the most recent build of the software,
which removes the need for nightly builds. This solu-
tion also enables ES to have a latest running version
available 24 hours a day at all departments worldwide.

ES has chosen to deliver the full set of deliver-
ables for a product to a customer, abolishing the need
for elaborate dependency information among software
modules. The reasons for this approach are that de-
velopment costs for a partial delivery system are high
while disk space and bandwidth are cheap.

The SCM system consists of five repositories, in
which five concurrent releases of all deliverables and
corresponding source code are stored, as shown in Fig-
ure 2. The first repository is the D(evelopment) repos-
itory. Each of the five repositories contains a release
of all the source files, help files, binary files, executa-
bles, resources, and SQL scripts, for one product, such
as e-Synergy or Globe. Periodically, depending on the
quality criteria for each repository, the full repository
is manually promoted (copied) from one repository to
another.

Repository D

Repository C

Repository B

Repository A

Repository 0

Development Release

Quality Assurance

Internal Piloting

External Pilots

Commercial Release

1 week

2 weeks

8 weeks

3 weeks after B
release

NULL Release does
not promote

Repository Release stored Promotion period

Figure 2: Repository Promotion Scheme and Promo-
tion Periods

All developers perform their operations, such as
committing, on the development release stored in the D
repository. When all uploaded bug fixes and new func-
tionalities have been finished and checked by the pro-
grammers on the release stored in the D repository, that
release is promoted to the C repository, overwriting the
release previously stored in that repository. Once every
two weeks, the release in the C repository, after being
approved by quality assurance personnel, is copied to
the B repository. The release stored in the B repository
is, if possible, used internally by all ES personnel and is
thereby thoroughly tested. This testing generates new
bug reports and functionality requests again.

Approximately every three months, when the release
stored in the B repository is deemed stable enough by
primary internal business users, such as the director of
ES Finance and Administration, the release is copied
to the A repository, which is open to external pilot cus-
tomers who report their experiences back to a desig-
nated developer. After the release in the A repository
has been used for a minimum of three weeks, the re-
lease is copied to the NULL repository containing the
official product release, which is sent out to customers
through either CD-ROMs or the Internet.

Besides e-Synergy, there is one external tool that per-
forms actions on the repositories. The Product Updater
downloads and installs all deliverables for a release
from the repository the user chooses (and has permis-
sion to). The Product Updater establishes what deliv-
erables (if any) are present at the client site and down-
loads (new versions of) the required files. The Product
Updater also has some scripting capabilities to install
the application and create and transform the tables in
the database. The Product Updater is not part of e-
Synergy because it deploys deliverables at the client,
which e-Synergy cannot do.

5

3.3 PDM

According to [7] PDM is the discipline of “govern-
ing the control of the product data and processes used
during the entire life cycle of a product”. When ES
started designing e-Synergy, ES concluded that produc-
ing software is not different from producing a conven-
tional product and that a PDM system can be used to
manage software products. During the requirements
phase of e-Synergy, generic requirements were speci-
fied of wanting to introduce ownership of deliverables
and automating product configuration and composi-
tion. ES had the following non-generic requirements
for the PDM system in e-Synergy:

• Manage deliverables -Previously, source files
were the focus of management instead of deliver-
ables. A compiled version of the software created
on the build server and a manual from the manual
department were the only deliverables. As prod-
uct complexity grew, however, ES desired to be
able to manage the deliverables individually and
attach workflow and documents to deliverables to
increase its traceability. Also, previously devel-
opers determined, depending on the requirements,
what the variabilities of a product would look like.
ES decided that sales departments should be able
to influence at what level a developer introduces
variability.

• Ease of delivery -ES wished to automatically up-
date its products with an evolving set of deliv-
erables because ES consultants were often con-
fronted with complex manual update procedures
in the past.

To meet the requirements above, a PDM module was
implemented in e-Synergy. The PDM functionalities
were implemented as a central system to the process
of maintenance. One of the main reasons for introduc-
ing e-Synergy is the fact that using the combination of
a PDM and a contract management functionality (see
Subsection 3.4.1) makes it easier to serve large num-
bers of customers because tasks, such as contract val-
idation, contract creation, and licensing can be done
automatically.

3.3.1 Product Item Structures

The PDM system of ES is used to control its prod-
uct deliverables. PDM systems generally implement
a classification of artefacts to support reuse [7]. The
PDM implemented in e-Synergy makes use of atomic
entities called “items” by ES. An item can be used
to represent any business item, such as a promotional
sweatshirt, a printout of a manual, but also an exe-
cutable belonging to a software product. Items are

categorized, of which the relevant categories for this
case study are sales items, source items, and deliver-
able items.

• Sales items -ES uses sales items to encapsulate
all sellable goods. A sales item can be a service
agreement, a manual, a piece of software (includ-
ing a paper manual and a CD-ROM), or any other
good sold by ES. From each sales item a bill of
materials can be generated, stating what items are
necessary to complete the product. When a sales
item is a software product the bill of materials in-
cludes all deliverable items, but no source items.

• Deliverable items -Deliverable items are deliver-
ables that depend on source items, even if they are
simply direct copies of those source items. De-
liverable items include digital manuals, resource
files, library files, and executable files.

• Source items -Source items are source files that
are required to create a deliverable. Source items
are source code files, resource files, etc. Com-
panies producing conventional products use the
source items to store their basic raw materials and
resources with which they create their products.

e-Synergy connects the PDM and the HRM system
to enable ES to assign deliverables to specific develop-
ers and hold developers responsible for the quality of
their deliverables. Before e-Synergy was introduced,
when deliverables were mostly unmanaged, automat-
ically reusing modules for different products was im-
possible. Since deliverables can now be linked together
to form new products, ES can create new products from
a standard set of components.

Because currently all deliverables are stored explic-
itly in the PDM system, the Product Updater can au-
tomatically retrieve a list of deliverables for a product
from the PDM and install them if necessary. The fact
that all deliverables can be retrieved this way eases the
process of software delivery to customers.

3.3.2 Views on Product Structures

ES products are represented in e-Synergy in different
ways at the development sites of ES, whereas instan-
tiation information for products is stored in the con-
tract management functionality (see Subsection 3.4.1)
and locally at the customer’s site. These two different
views are based on the assumption that sales person-
nel do not need to know all the implementational de-
tails, whereas developers are not concerned with sales
knowledge. An example is that the sales department
sees products as decomposable modules that can be
sold separately, whereas development delivers a large
set of deliverables containing all modules, which are
later activated or deactivated at runtime by the license
file.

6

Figure 3 displays a generic product structure and the
two different views of that structure:

Sales View -From a sales point of view, it is not
relevant what deliverables and sources look like. For
the sales view it is required to know what a product
costs, what options there are to a product, what kind of
sales agreements are possible, and what materials make
up a product. Sales personnel thus share no interest in
source files. A product, consisting of sales items con-
nected by the one-of, more-of, mandatory, and optional
relationships, can be instantiated by binding these re-
lationships. The binding of these relationships corre-
sponds with the product information stored in a license
file. The relationships defined here are similar to the
relationships defined for feature diagrams [8].

Development View -Developers are concerned with
deliverable files and source files. As developers always
work in the context of a product, and they know the
complete structure of that product, however, developers
usually do not use sales items. A developer considers
a product as a complete set of deliverables, therefore
there are only two relationships available for the de-
velopment view, the Sources relationship, meaning the
file is a source file for some parent deliverable item,
and the Deliverables relationship, meaning the file has
corresponding sources.

Currently, the PDM is implemented to only store
lists of all the mandatory deliverables for a product.
The fact that mandatory deliverables are stored in a
list, and their sources are children of these deliverables,
means that the dependencies amongst deliverables are
not explicitly stored. The Product Updater uses the list
of deliverables for products to compare that to the list
of installed files at the customer. The solution imple-
mented by ES, where one product is configured to serve
different purposes, is cheaper than implementing a full
product line at this scale [9].

3.4 CRM

Before e-Synergy had been introduced, ES only used
its own product Globe for CRM. However, ES had re-
quirements that Globe could not facilitate. Their over-
all goal was to reduce complexity of delivery, intensify
customer contact, and reduce the cost of the support
department. They also had the following non-generic
requirements:

• Facilitate custom solutions -The ES customer
base still depends for a noteworthy part on cus-
tom solutions to extend current functionality in
ES products. They wanted to reduce complex-
ity of delivery, yet still facilitate custom solutions
and extensions to its products, and ES wanted to
remove the expensive need for consultants at the
customer site to perform an update of the product.

Target 1
Source File 1

Target 2
Source File 2
Source File 3

Sales Item Product X
One-of

More-of

Mandatory

Company License
University License

Component 1
Component 2
Component 3

Manual
Box
Target itemsSales View

Developer View

Figure 3: Sales and Developer Product View of an Ex-
ample Product

• Unify licensing and CRM - ES realised its soft-
ware was being copied and distributed illegally.
To trace back illegal licenses ES wished to link
a license directly to a customer, whereas in the
past its licensing was done through license num-
bers provided with the distribution CD-ROM.

ES started building the CRM module in e-Synergy,
combining these requirements with the functionality
already present in the conventional CRM system im-
plemented in Globe. They also introduced customer-
specific license files to meet the requirements stated
above.

3.4.1 Contracts and License Files

Some of the results of the integration of the PDM and
CRM systems are the contract management function-
alities and the license files. Customers can use the
information portal of e-Synergy to access the CRM
system and see the status of their contracts, see their
support questions, find new products, and where cus-
tomers can download license files to activate their pur-
chased products. The CRM module contains a con-
tract management functionality which was built to meet
Exacts requirements. The contract management func-
tionality stores a link to the customer information, pur-
chased product information, the license file for each
product, the version number of the latest sent out ver-
sion, and a link to customer support calls and service
status. The purchased product information lists what
variants of products have been purchased. The corre-
sponding license files are only available for download
by customers. License files are generated every twenty
four hours, depending on whether a new contract has
become available or needs to be renewed. The license

7

file is published on the customer portal of e-Synergy so
that customers can download the periodically renewed
license file.

When a product is sold to a customer, a contract is
handed to a contract manager. The contract manager
checks whether all product relationships can be satis-
fied and finalizes the contract by entering it into the
contract management functionality. The contract man-
ager delegates the physical task of sending the software
to the customer to the delivery department. e-Synergy
supports the contract manager in checking whether the
bound relationships create a complete product, in cre-
ating an order with the correct price information and
delivery information, and finally, in delegating tasks to
the delivery department.

The version number stored in the contract manage-
ment functionality for each product is changed au-
tomatically when a customer downloads an update
or manually when a CD-ROM is sent out to a cus-
tomer. The version number is used for support pur-
poses, telling the support department what version a
customer is currently using. The link to the customer
support calls and service status is used to see how many
calls a customer has made, and whether a customer is
still allowed support. Using the support information
leads to a stricter way of dealing with support and re-
sults in less support calls.

At the customer site a data file contains all the
deployed deliverables and the license file contains a
coded version of all the bound relationships for a prod-
uct, stating all modules that were and were not pur-
chased by a customer. The license file also contains
information on the expiration date of the license, since
licenses need to be refreshed periodically (yearly for
most products). Finally the license contains, if avail-
able, a pointer to a download location for a custom
solution. The download location can be used by the
Product Updater to update the custom solution for a
customer.

When an ES product is deployed at a customer site
by the Product Updater, a data file is created with a list
of all deliverables installed on the site. For each deliv-
erable the version number and the install location are
also stored. The data file is used by the Product Up-
dater when updating, by comparing the deployed data
file to the list of available deliverables for a product.
After an update the data file is updated to contain all the
newest information. The local settings for a product are
stored in the database of the client. ES can be extended
through an architecture that facilitates loose coupling
of external components, built by ES or the customer
(through an SDK provided by ES), to ES applications.

ES is unique because they provide customers a di-
rect link to their individual contracts and their license
files. ES is also unique because e-Synergy stores the
version number of a product deployed at the customer,

improving support. Finally, the usage of license files
to encapsulate product instantiation information, is un-
common, yet practical, in the software industry.

3.4.2 Customer Experience

With respect to customers ES has attempted to increase
customer contact, scale down support, reduce the com-
plexity of the delivery process of software products,
and to reduce piracy of its products, all with e-Synergy.
ES believes that product (experience) improvement by
intensive customer contact will retain more customers
[10]. The e-Synergy customer portal is used to achieve
this. Customers log into the ES portal to see their con-
tract information, to see the status of their support calls
or bug reports, and to download (renewed) license files.
Because customers are expected to visit the ES cus-
tomer portal regularly, customers are notified of new
NULL releases and other products through the ES e-
Synergy customer portal.

When a customer wishes to perform an update, all
she has to do is start up the Product Updater and present
a valid license file. The download and installation is au-
tomatic and includes database conversion scripts. The
license file and the run-time variabilities have greatly
reduced the complexity of the delivery of software, es-
pecially since before the introduction of e-Synergy and
the Product Updater, an ES consultant was required
to perform an update. Updates are destructive, how-
ever, due to file overwrites and the fact that destructive
database conversions cannot be rolled back.

In an attempt to reduce piracy a license checking
mechanism was implemented. Each time the customer
starts the software, the license file must be decoded and
checked. Also, periodically, the license file is renewed
and must be downloaded again to keep the product ac-
tive. Currently there is no data available to support
whether piracy has effectively been reduced.

4 Discussion

The customer base of Exact Software has shown a con-
stant growth over the last 15 years. Related to the area
of development ES has dealt with this growth by inte-
grating its CRM, its PDM, and its SCM systems. The
solution implemented by ES teaches us two lessons.

• Integrated support systems -The first lesson
is that integration of these three systems can be
highly profitable. The integration has resulted in
a reduction of effort required for the processes of
release and deployment. Explicit management of
deliverables with the PDM system have enabled
ES to attach workflow to them, thereby providing
a software maintenance process which is easy to

8

manage and enables quicker releases. The integra-
tion of the CRM contracts functionality and PDM
enable ES to quickly and automatically manage
the delivery of software and licenses to customers
through the Internet.

• Development simplification -The second lesson
lies in the fact that ES attempts to simplify all
processes, thereby eliminating complexities that
would normally result in more effort. The simpli-
fication approach used, has resulted in some strik-
ing changes. Their decision to deploy the full set
of deliverables has removed the complexities of
partial delivery and removed the need for depen-
dency tracking among modules, enabling ES to
focus more on the delivery process. In our current
experiences, delivering the full set of deliverables
is common practice for software developers prac-
ticing KISS. Another influential decision is the de-
cision to remove build servers that would perform
daily builds, and introduce the concept of devel-
opers committing deliverables with their sources.
ES has also chosen to build all its products on
one universal data model, the One-X architecture,
enabling applications to share data among each
other. Finally, ES uses a maintenance cycle in-
stead of a development cycle to improve its soft-
ware. There are two advantages to the mainte-
nance cycle. First it reduces complexity for devel-
opers and quality assurance because developers do
their activities in a maintenance cycle with prede-
fined workflow. Secondly, the workflow module
stores the processed workflow, making activities
traceable.

There are downsides to the strategies employed by
ES as well. ES does not keep track of dependencies
among modules, simply because they are not required
when deploying the full set of deliverables at a cus-
tomer. Without these dependencies it is impossible to
employ a product line approach, where dependencies
among modules are required to guarantee a customer
that a subset of modules is complete. Another down-
side of the simplification strategy is that ES performs
destructive updates, disabling customers to move back
to older versions of the software. Finally, ES does not
allow developers to branch development in its SCM
software to simplify the maintenance process, thus re-
stricting concurrent development.

ES’s implementation of e-Synergy can be seen as an
intelligent software knowledge base (ISKB). The ISKB
consists of (A) a vendor side ISKB that stores all prod-
uct and component knowledge and (B) a local software
knowledge base consisting of the data file containing
all deployed deliverables, the configuration informa-
tion of the tools stored in the database, and the license

file storing a list of all activated modules and licensing
information.

The case study has influenced our research in the fol-
lowing ways. First, the ES solution is not easily appli-
cable to products in domains that do not wish to send
out all deliverables, wish to provide incremental up-
dates that can be rolled back, or wish to maintain a
high level of reusability among products. In contrast,
we wish to create a generalizable solution. Secondly,
the case study shows us that integration of software
knowledge, as we suspected, is a powerful tool in the
development of software. ES, however, also showed
us this software knowledge can be effectively used in
other processes, such as workflow management, hu-
man resource management, and customer support. Fi-
nally, we observe that the simplification techniques ap-
plied by ES demonstrate that complex solutions com-
ing from Academia conflict with the KISS principle
and are therefore not easily adopted by the industry.

5 Related Work

During our research we encountered some related work
in the areas of software knowledge bases, integration
of processes, product configurations, and deployment
tools, schema, and languages. The need for a dis-
tributed intelligent software knowledge base, such as at
Exact Software, has already been mentioned in litera-
ture. Meyer is the first one to introduce the concept of a
centrally available software knowledge base [11]. Oth-
ers, such as [12] and [13] emphasize the need for ex-
plicit knowledge management during development and
maintenance.

In the Scandinavian industry the study of integration
of PDM and SCM systems in [7] and the case studies
[14] of the use of PDM tools and SCM tools were re-
ported. The techniques applied by ES to integrate SCM
and PDM are similar to those described by these two
studies.

For instantiations of configurable sets of products we
found that much of our research is related to the work
performed by [15]. Conradi and Westfechtel [16] have
given an extensive description of SCM technology and
we have positioned the strategies of ES.

The need for a system that uses an ISKB to support
deployment of software has resulted in a deployment
tool called the Software Dock and a case study regard-
ing this tool [17]. The same group has published a rel-
evant study of deployment schema and languages [18].
The deployment languages and schema of ES are not
that advanced as those of Open Software Description
(OSD) [19] and the Desktop Management Taskforce
(DMTF) [20], as these can describe component depen-
dencies.

9

6 Conclusion

This paper describes a case study of an intelligent soft-
ware knowledge base at Exact Software. The case
study helps to provide evidence that that the complex
task of release and deployment of enterprise applica-
tion software for a vendor is best managed with an
ISKB. Our contribution is twofold. First, we showed
that explicitly managing software knowledge improves
the processes of release and deployment for an enter-
prise software vendor. Secondly, we showed that in-
tegrating the knowledge with other systems, such as
PDM and CRM systems optimizes the processes of de-
velopment, release, and delivery, and enables vendors
to serve a large customer base. We will use the results
of this case study in comparisons with other case stud-
ies we are performing at other software manufacturers
and we will use the results to build prototype tools re-
lated to ISKBs in cooperation with the industry.

References

[1] J. Natt och Dag, V. Gervasi, S. Brinkkemper, and
B. Regnell, “Speeding up requirements management in
a product software company: Linking customer wishes
to product requirements through linguistic engineer-
ing,” in Proceedings of the 12th International Require-
ments Engineering Conference, 2004.

[2] M. A. Cusumano and R. W. Selby, “Microsoft secrets.”
Free Press, 1995.

[3] S. Jansen, G. Ballintijn, and S. Brinkkemper, “Software
release and deployment at exact: a case study report.”
CWI technical report.

[4] M. Aoyama, “Continuous and discontinuous software
evolution: aspects of software evolution across multiple
product lines,” inProceedings of the 4th international
workshop on Principles of software evolution. ACM
Press, 2002, pp. 87–90.

[5] W. F. Tichy, “RCS — a system for version control,”
Software — Practice and Experience, vol. 15, no. 7, pp.
637–654, 1985.

[6] H. Mei, L. Zhang, and F. Yang, “A software configu-
ration management model for supporting component-
based software development,”SIGSOFT Softw. Eng.
Notes, vol. 26, no. 2, pp. 53–58, 2001.

[7] U. A. Ivica Crnkovic and A. P. Dahlqvist, “Implement-
ing and integrating product data management and soft-
ware configuration management.” Artech House Pub-
lishers, 2003.

[8] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Pe-
terson, “Feature-oriented domain analysis (FODA) fea-
sibility study,” SEI, CMU, Pittsburgh, PA, Tech. Rep.
CMU/SEI-90-TR-21, Nov. 1990.

[9] A. Jaaksi, “Developing mobile browsers in a product
line,” IEEE Softw., vol. 19, no. 4, pp. 73–80, 2002.

[10] D. J. Kim, D. L. Ferrin, and H. R. Rao, “A study of
the effect of consumer trust on consumer expectations
and satisfaction: the korean experience,” inProceed-
ings of the 5th international conference on Electronic
commerce. ACM Press, 2003, pp. 310–315.

[11] B. Meyer, “The software knowledge base,” inProceed-
ings of the 8th international conference on Software en-
gineering. IEEE Computer Society Press, 1985, pp.
158–165.

[12] P. Klint and C. Verhoef, “Enabling the creation of
knowledge about software assets,”Data Knowl. Eng.,
vol. 41, no. 2-3, pp. 141–158, 2002.

[13] P. N. Robillard, “The role of knowledge in software de-
velopment,”Commun. ACM, vol. 42, no. 1, pp. 87–92,
1999.

[14] J. Tiihonen, T. Soininen, T. Mannisto, and R. Sulonen,
“State of the practice in product configuration – a sur-
vey of 10 cases in the finnish industry,” inKnowledge
Intensive CAD, First Edition. Chapman et Hall.

[15] J. Bosch and M. Ḧogstr̈om, “Product instantiation in
software product lines: A case study,”Lecture Notes
in Computer Science, vol. 2177, p. 147, 2001.

[16] R. Conradi and B. Westfechtel, “Version models for
software configuration management,”ACM Comput.
Surv., vol. 30, no. 2, pp. 232–282, 1998.

[17] R. S. Hall, D. Heimbigner, and A. L. Wolf, “A coop-
erative approach to support software deployment using
the software dock,” inInternational Conference on Soft-
ware Engineering, 1999, pp. 174–183.

[18] R. S. Hall, D. Heimbigner, and A. Wolf, “Evaluating
software deployment languages and schema,” inICSM,
1998, pp. 177–187.

[19] A. van Hoff, H. Partovi, and T. Thai, “The open soft-
ware description format.” ”w3.org”, ”1997”.

[20] Desktop Management Task Force, “Software standard
groups definition, version 2.0,” 1995.

Acknowledgements

The authors would like to thank Exact Software
and its employees for participating in the case study.
Specifically the authors would like to thank Sebastian
Toet, Jeroen van der Heide, and Nenad Borota for their
extensive help. Finally, the authors would like to thank
Tijs van der Storm and Paul Klint for their discussions
and preliminary reviews of our paper.

10

