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Code implementing a crosscutting concern is often spread over many different parts of an
application. Identifying such code automatically greatly improves both the maintainability and
the evolvability of the application. First of all, it allows a developer to more easily find the places
in the code that must be changed when the concern changes, and thus makes such changes
less time consuming and less prone to errors. Second, it allows a developer to refactor the
code, so that it uses modern and more advanced abstraction mechanisms, thereby restoring its
modularity. In this paper, we evaluate the suitability of clone detection as a technique for the
identification of crosscutting concerns. To that end, we manually identify four specific concerns
in an industrial C application, and analyze to what extent clone detection is capable of finding
these concerns. We consider our results as a stepping stone toward an automated "concern
miner" based on clone detection.
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Abstract

Code implementing a crosscutting concern is often spread
over many different parts of an application. Identifying such
code automatically greatly improves both the maintainability
and the evolvability of the application. First of all, it allows
a developer to more easily find the places in the code that
must be changed when the concern changes, and thus makes
such changes less time consuming and less prone to errors.
Second, it allows a developer to refactor the code, so that
it uses modern and more advanced abstraction mechanisms,
thereby restoring its modularity. In this paper, we evaluate
the suitability of clone detection as a technique for the iden-
tification of crosscutting concerns. To that end, we manually
identify four specific concerns in an industrial C applica-
tion, and analyze to what extent clone detection is capable of
finding these concerns. We consider our results as a stepping
stone toward an automated “concern miner” based on clone
detection.

1. Introduction

The tyranny of the dominant decomposition [17] implies
that no matter how well a software system is decomposed
into modular units, some functionality (often called a con-
cern) will always crosscut that decomposition. In other
words, such functionality cannot be cleanly captured inside
one single module, and consequently its code will be spread
throughout other modules.

From a maintenance point of view, such a crosscutting
concern is problematic. Whenever this concern needs to be
changed, a developer should localize the code that imple-
ments it. This may possibly require him to inspect many dif-
ferent modules, since the code may be scattered across sev-
eral of them. Moreover, identifying the code specifically re-
lated to the relevant concern may be difficult. Apart from the
fact that the developer may not be familiar with the source

∗Also affiliated at Delft University, Faculty of Electrical Engineering,
Mathematics and Computer Science, Mekelweg 4, 2628 CD Delft, The
Netherlands.

code, this code may also be tangled with code implement-
ing other concerns, again due to crosscutting. It should thus
come as no surprise that localizing crosscutting code is a
time-consuming and error-prone activity.

Aspect-oriented software development (AOSD) has been
proposed for solving the problem of the dominant decompo-
sition. Aspect-oriented programming languages add an ab-
straction mechanism (called an aspect) to existing (object-
oriented) programming languages. This mechanism allows
a developer to capture crosscutting concerns in a localized
way. In order to use this new feature, and make the code
more maintainable, existing applications written in ordi-
nary programming languages should be evolved into aspect-
oriented applications. Once again, this requires identifying
the crosscutting code within all modules of the application.

In order to support developers in evolving their applica-
tions, and improving the maintainability and understandabil-
ity of their code, some form of automated support for identi-
fying crosscutting code is indispensable. In this paper, we re-
port upon a first experiment in which we assess the effective-
ness of clone detection techniques for that particular purpose.
Clone detection techniques are promising in this respect, be-
cause by definition crosscutting code is not well modularized
and can thus not be easily reused. Consequently, such code
is typically duplicated over the entire application, and could
be identified using advanced clone detection algorithms.

The experiment addresses crosscutting concerns in an
industrial software component written in C and in use at
ASML. A domain expert manually marked occurrences of
four types of crosscutting concerns (error handling, tracing,
parameter checking, and memory management). We then ap-
plied two different clone detection techniques in order to see
how much of the code belonging to these concerns can be
found in an automatic way.

This paper is structured as follows. In the next section,
we discuss the problem statement in more detail, followed
by a short overview of clone detection techniques in Sec-
tion 3. Then, in Section 4, we describe the case study and
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the four different concerns of interest in it. Subsequently, in
Section 5 we detail the approach used to evaluate the capa-
bility of clone detection to find these concerns. In Section 6
we cover and explain the results obtained. We conclude this
paper with a discussion of related work, future work, and a
summary of the paper’s main contributions.

2. Problem Statement

Localizing a crosscutting concern manually within the
source code of a large application typically involves the fol-
lowing three steps:

1. To identify a particular crosscutting concern, a devel-
oper should already have some idea about how it ap-
pears in the source code. In other words, a developer
should identify a particular pattern that is used to imple-
ment the concern. Clearly, this already requires a good
understanding of the concern itself, the source code and
the way it implements the concern. Such a concern pat-
tern is often referred to as a seed;

2. Assuming a developer identified a pattern associated to
the concern, he should browse and inspect the source
code of the application in order to look for that pattern.
Especially in large-scale applications involving millions
of lines of code, this is quite a daunting task. We can
easily imagine a developer overlooking some code that
implements the concern, or mistakenly identifying code
as if it implements the concern;

3. Due to the crosscutting nature of the concern, more of-
ten than not, the source code implementing the con-
cern will be intertwined with code implementing other
concerns. A developer interested in only one concern
should thus be able to discriminate the different con-
cerns implemented by the code. Again, this requires a
good understanding of the concerns and of the source
code.

Clearly, identifying crosscutting concern code is thus an
error-prone and time-consuming task, and each of the three
steps above could benefit greatly from some form of auto-
mated support.

In order to provide such automated support, an intrinsic
property of crosscutting concern code can be exploited. Typ-
ically, source code implementing a crosscutting concern in-
volves a great deal of duplication. First of all, since such
code cannot be captured cleanly inside a single abstraction,
it cannot be reused. Therefore, developers are forced to write
the same code over and over again, and are tempted to just
copy and paste the code and adapt it slightly to the context.
Alternatively, they may use particular coding conventions
and idioms, which also exhibit similar code. Second, cross-
cutting concerns often involve superimposed functionality,

i.e. functionality that should be implemented in the same
way everywhere in the application. Logging and tracing are
the prototypical examples of such superimposed functional-
ity.

We hypothesize from all these observations that clone de-
tection techniques might be ideal candidates for identifying
crosscutting concern code, since they automatically detect
duplicated code in an application’s source code. Moreover,
because of the significant research effort spent on clone de-
tection, the techniques and algorithms available are both sta-
ble and scalable.

In this paper we seek to evaluate this hypothesis. In par-
ticular, we want to assess the usefulness and accuracy of
clone detection techniques for finding crosscutting code. We
will manually identify some prevalent concerns and evaluate
how much of the code that implements these concerns can be
found by the clone detection algorithms. Our increased un-
derstanding of how well clone detection captures crosscut-
ting code will then be an important first step toward a “con-
cern miner” that can offer automated support for all three
steps involved in the localization of crosscutting concerns.

3. Clone Detection

Clone detection techniques attempt at finding duplicated
code, which may have undergone minor changes afterward.
The typical motivation for clone detection is to factor out
copy-paste-adapt code, and replace it by a single procedure.

Several clone detection techniques have been described
and implemented:

Text-based techniques [10, 5] perform little or no trans-
formation to the ‘raw’ source code before attempting to de-
tect identical or similar (sequences of) lines of code. Typi-
cally, white space and comments are ignored.

Token-based techniques [11, 1] apply a lexical analysis
(tokenization) to the source code, and subsequently use the
tokens as a basis for clone detection.

AST-based techniques [2] use parsers to first obtain a
syntactical representation of the source code, typically an ab-
stract syntax tree (AST). The clone detection algorithms then
search for similar subtrees in this AST.

PDG-based approaches [12, 13] go one step further in
obtaining a source code representation of high abstraction.
Program dependence graphs (PDGs) contain information of
semantical nature, such as control- and data flow of the pro-
gram.

Metrics-based techniques [14] are related to hashing al-
gorithms. For each fragment of a program the values of a
number of metrics is calculated, which are subsequently used
to find similar fragments.

Following Walenstein [18], clone detection adequacy de-
pends on application and purpose. Finding crosscutting con-
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Figure 1. Distribution of the memory error handling
concern over 19,000 lines of code.

cerns is a completely new application area, potentially re-
quiring specialized types of clone detection.

4. Case Study

4.1. Background

Our paper is based on a small experiment on a software com-
ponent (called CC) of 19,000 lines of C code, part of the
larger code base (comprising over 10 million lines of code)
of ASML, the world market leader in lithography systems
based in Veldhoven, The Netherlands. The CC component is
responsible for the conversion of data between several data
structures and other utilities used by communicating compo-
nents.

Developers working on this component express the feel-
ing that a disproportional amount of effort is spent imple-
menting ‘boiler plate’ code, i.e., code that is not directly re-
lated to the functionality the component is supposed to im-
plement. Instead, much of their time is spent dealing with
concerns like error handling and parameter checking (ex-
plained below).

This problem is not limited to just the component we se-
lected; it appears in nearly the entire code base. Since the de-
velopers at ASML use an idiomatic approach to implement
these crosscutting concerns in all applicable modules, similar
pieces of code are scattered throughout the system. Clearly,
large benefits in code size, quality and comprehensibility are
to be expected if such concerns could be handled in a more
systematic and controlled way.

4.2. Considered Concerns

A domain expert manually marked places in the CC compo-
nent dealing with four different crosscutting concerns. Each

Concern LOC Fraction
Error handling 1716 9%
Dynamic execution tracing 1539 8%
Function parameter checking 1441 7%
Memory allocation handling 1110 6%
Total 5806 31%

Table 1. Code percentages devoted to various con-
cerns, in a 19 KLOC component.

line in the application was annotated with at most one mark,
and as a result, each line belongs to at most one of the con-
cerns described below, or to no concern.

• General error handling and administration; this code is
responsible for roughly three tasks: the initialization of
variables that will hold return values of function calls,
the conditional execution of code depending on the oc-
currence of errors and finally administration of error oc-
currences in a data structure.

• Dynamic execution tracing; logging the values of input
and output parameters of C functions to facilitate de-
bugging.

• Function pre and post condition checking; covering
pointer and array bound checks.

• Dedicated handling of errors originating from C mem-
ory management.

The concern markers provided by the domain expert not
only allow us to obtain an intuition about the amount of code
devoted to crosscutting concerns, but also enables us to sub-
sequently apply clone detection techniques in order to get
as close as possible to retrieving these crosscutting concerns
from the code. Note that this approach does not automate
step 1 of the process outlined in Section 2. Although clone
detection techniques do not need a seed to perform their anal-
ysis, and could thus be used to uncover the pattern of a con-
cern as well, we did not consider that option yet. Step 2 of
the process is automated, however, since the clone detector
inspects the source code automatically.

All together, these concerns comprise roughly 31% of the
code. The details are shown in Table 1, while Figure 1 il-
lustrates the scattered nature of these concerns by highlight-
ing the code fragments belonging to the memory error han-
dling concern. The vertical bars represent the files of the 19
KLOC component, and within each vertical bar, horizontal
lines of pixels correspond to lines of source code within the
file. Coloured lines are part of the memory error handling
concern. The other concerns exhibit a similarly scattered dis-
tribution.
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5. Approach Taken

5.1. Clone Detectors

The first step in our experiment consists of detecting clones
in the selected component. For this purpose we have used
two different tools, which implement different clone detec-
tion techniques. First, we used the clone detection tool con-
tained in Bauhaus1 (version 4.7.2), a toolset aimed at sup-
porting program understanding and reengineering. The clone
detector, called ‘ccdiml’, is an implementation of a variation
of Baxter’s approach to clone detection [2], and thus falls in
the category of AST-based clone detectors. Second, we used
CCFinder [11] (version 7.1.1), a clone detection tool based
on tokenized representations of source code.

We have selected these specific clone detection tools for
several reasons. First, both tools offer excellent performance
in terms of running time and memory usage. Second, both
tools were easily available. Third, we were interested in
the gain of precision and recall obtained by using an AST-
based clone detector compared to those using more textually-
oriented approaches.

Both detection tools are highly configurable with respect
to the types of clones they detect. For CCFinder, we left
all settings at their defaults, except for the minimum length
a clone must have in order to be included in the output: a
clone must at least be 7 tokens long. For Bauhaus’ ccdiml,
a minimum length of 2 lines was selected. These values
were chosen such that we would not expect that pieces of
concern code were missed because of the minimum clone
length. Furthermore, in the case of CCFinder, a smaller
minimum clone length resulted in an intractable number of
clones. Bauhaus’ ccdiml was also configured to compare all
statements of the source code, as opposed to comparing only
functions. CCFinder did not require such a setting. Further-
more, Bauhaus’ ccdiml is capable of detecting three types
of clones. First, exact clones are simply verbatim copies,
although white space and comments are ignored. Second,
parametrized clones are like exact clones but the leaves of
the AST’s are ignored during comparison. The result is that
variable and type names and literal values are not taken into
account. Third, near clones are like parametrized clones but
allow for insertion and deletion of code. For our experi-
ment we consider only the first two types, i.e. exact and
parametrized clones.

5.2. Clone Classes

Most clone detectors produce output consisting of pairs of
clones, i.e. they report which pairs of code fragments are
similar enough to be called clones. However, for our pur-
pose the pairs of clones are not very interesting. Instead, we
investigate the groups of code fragments that are all clones

1URL: http://www.bauhaus-stuttgart.de/

of each other. These groups of code fragments are termed
clone classes [11].

More formally, a clone detector defines a relation between
code fragments and typically yields the tuples of this rela-
tion as its output. Instead of investigating these tuples on
their own, we assume this clone relation to be an equiva-
lence relation. It is clear that a clone fragment is always
either an exact or parametrized clone of itself (reflexivity).
Also, if code fragment A is an exact or parametrized clone
of code fragment B, then it is clear that B is also an exact or
parametrized clone of A (symmetry). Finally, if code frag-
ment A is a clone of B and B is a clone of C, then A is also an
exact or parametrized clone of C (transitivity). Subsequently
clone classes are comprised of the equivalence classes of the
clone relation.

The output of CCFinder indeed describes an equivalence
relation between code fragments [11], and thus obtaining the
clone classes is a straightforward task. However, our version
of Bauhaus’ ccdiml does not produce an equivalence rela-
tion. Given the types of clones we include in our experiment,
i.e. either exact or parametrized clones, we feel justified in
augmenting the output of ccdiml such that it does constitute
an equivalence relation. For this purpose we use grok, a re-
lational algebra program developed by Holt et. al. [9].

5.3. Concern Coverage

Up to now, we have described how we obtained two sources
of information. On the one hand, we have manually anno-
tated source code lines of a 19 KLOC component. Each
line of code of the component is thus known to be either
error handling, memory error handling, tracing or parameter
checking code, or other code. On the other hand, we have
obtained two sets of clone classes by means of two clone de-
tectors, Bauhaus’ ccdiml and CCFinder. These two sets of
clone classes are the subjects of our further analysis.

A clone class defines a (non-contiguous) region of source
code that is related according to some clone detector. The
manually annotated source code is also partitioned in sev-
eral (non-contiguous) regions, namely those lines of source
code that implement error handling, memory error handling,
tracing, parameter checking code, and other code. With re-
gard to our goal, an interesting criterion for evaluation is the
extent to which the region defined by a clone class matches
the region defined by a concern. In fact, we aim at evaluat-
ing the usefulness of a clone detector for identifying concern
code by analyzing the extent to which each of the concerns
we consider is ‘covered’ by the set of clone classes yielded
by the clone detector. The number of clone classes needed
to cover one particular concern completely (in part) indicates
how well the clone detector is able to identify the concern.

In order to perform this evaluation, we use grok to pro-
cess the sets of clone classes of both clone detectors sepa-
rately. For each of the concerns we consider, we try to find
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an ordered selection of clone classes that does a good job at
‘covering’ the region of code defined by the concern in ques-
tion. A source code line of a concern is covered by a clone
class if it is included in one of the clones (code fragments) of
the clone class.

For each concern, we then proceed as follows: for all of
the clone classes in the set, we calculate which concern lines
are covered by each clone class. The clone class that cov-
ers the most lines of the concern is selected, and the concern
lines that are covered will no longer be considered during
the remainder of the algorithm. Subsequently, the algorithm
will select the clone class that covers the most of the remain-
ing concern lines, and so on until no more concern lines are
covered by any clone class. If it occurs that multiple clone
classes cover an equal number of concern lines, we select
the clone class that contains the least number of non-concern
lines. Similar to lines belonging to a concern, non-concerns
lines are also considered at most once.

6. Obtained Results

Our primary goal is finding the code belonging to a cer-
tain concern. Therefore, in our algorithm to select the clone
classes (see Section 5), we favor coverage and sacrifice pre-
cision (defined below). Arguably, other goals require differ-
ent criteria to rank the clone classes. For example, in order
to identify opportunities for (automatic) refactoring, preci-
sion would be the primary issue. We plan to explore these
possibilities in the future.

In order to evaluate to what extent the clone detectors
meet our goal, we investigate the level of concern coverage
met by the clone classes. Concern coverage is the fraction
of a concern’s source code lines that are covered by the first
n selected clone classes. Using the selection algorithm de-
scribed in Section 5 we obtain the results displayed in Fig-
ure 2(a) and Figure 2(b) for Bauhaus’ ccdiml and CCFinder,
respectively.

Additionally, we evaluate the precision obtained by the
first n selected clone classes. Precision is defined as follows:

precision(n) =
concernLines(n)

totalLines(n)
,

where n indicates the first n selected clone classes, concern-
Lines equals the number of concern code lines covered by
the first n selected clone classes, and likewise totalLines
equals the total number of lines covered by the first n se-
lected clone classes. Figure 2(c) and Figure 2(d) show the
precision obtained by the first n selected clone classes for
Bauhaus’ ccdiml and CCFinder, respectively.

Observe that as the number of clone classes considered in-
creases, the coverage displays a monotonic growth, whereas
the precision tends to decrease. The highest coverage is

less than 100% in all cases: the remaining percentage cor-
responds to concern code that is coded in such a unique way
that it does not occur in any clone class. For example, Fig-
ure 2(a) and Figure 2(b) show that 5% of the memory error
handling code is not part of any clone class.

We are primarily interested in achieving sufficient cover-
age without loosing too much precision. Therefore, we will
focus on the number of clone classes needed to cover most
of a concern, where we will consider 80% to be a sufficient
coverage level.

6.1. Memory Error Handling

Using 9 clone classes is enough to sufficiently cover the
memory error handling concern for both Bauhaus’ ccdiml
and CCFinder, resulting in 69% and 52% precision, respec-
tively.

We observe that CCFinder yields a clone class that al-
ready covers 45% of the concern code. This particular clone
class contains 96 clones which are 6 lines in length. Figure 3
shows an example clone from this class. While the lines
marked with ‘M’ belong to the memory handling concern,
only the lines marked with ‘C’ are included in the clones.
CCFinder allows clones to start and end with little regard to
syntactic units. In contrast, Bauhaus’ ccdiml does not allow
this, due to its AST-based clone detection algorithm.

M C if (r != OK)
M C {
M C ERXA_LOG(r, 0, ("PLXAmem_malloc failure."));
M C
M C ERXA_LOG(CCXA_MEMORY_ERR, r,
M C ("%s: failed to allocated %d bytes.",
M func_name, toread));
M
M r = CCXA_MEMORY_ERR;
M }

Figure 3. CCFinder clone covering memory error
handling.

Furthermore this clone class does not cover memory er-
ror handling code exclusively. In Figure 2(d), note that the
precision obtained for the first clone class is roughly 82%.
Through inspection of the code we found that some of the
clones do not cover memory error handling code at all, but
code that is similar at the syntactical level, yet semantically
different.

6.2. Parameter Checking

Our results show that the parameter checking concern is
found very well by both clone detectors: using 7 clone
classes of Bauhaus’ ccdiml is sufficient to cover 80% of the
concern, while for CCFinder we can suffice with 4 clone
classes. Precision obtained using the selected clone classes
is 85% Bauhaus’ ccdiml and 52% for CCFinder.
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(a) Concern coverage for Bauhaus’ ccdiml.
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(b) Concern coverage for CCFinder.
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(c) Precision for Bauhaus’ ccdiml.
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(d) Precision for CCFinder.

Figure 2. Results of the clone detection experiment.

The clone class that was selected first in the case of
Bauhaus’ ccdiml captures roughly 40% of the concern, at
a precision of 100%. This class consists of 79 clones, span-
ning 523 lines of parameter checking code. In Figure 4 we
show an example clone of this clone class. The lines marked
with ‘P’ belong to the parameter checking concern and those
marked with ‘C’ are the lines included in the clone. Inspec-
tion of the example shows that clones in this class correspond
to the pieces of code that handle the case of invalid param-
eter values, while the code doing the actual checking of the
parameters is not covered. The pieces of checking code can
differ strongly due to a varying number of parameters, or
varying types of the parameters.

P if ((r == OK) && (msg == (void *) NULL))
P C {
P C r = CCXA_PARAMETER_ERR;
P C
P C ERXA_LOG(r, 0,
P C ("%s: input parameter ’%s’ is NULL.",
P C func_name,
P C "msg"));
P C }

Figure 4. Bauhaus’ ccdiml clone covering parame-
ter checking.

The second clone class for Bauhaus’ ccdiml contains
clones similar to the one in Figure 4, but including the actual
checking code. This clone class contains 48 clones, spanning
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276 lines of parameter checking code.

6.3. Error Handling

Of the concerns we consider, error handling is clearly the
worst in terms of both coverage and precision. All the clone
classes yielded by Bauhaus’ ccdiml together do not suc-
ceed in covering 80% of the concern, while for CCFinder
we reach sufficient coverage only after selecting 42 clone
classes. At that point precision is well below 50%.

The error handling concern can be partitioned into three
sub-concerns: initialization, error linking and skipping.
First, the initialization sub-concern deals with the initializa-
tion of variables used to keep track of return values. Second,
error linking handles the administration of error occurrences
in a data structure. Third, skipping is concerned with making
sure that specific parts of a function are not executed in case
an error has occurred.

Further experiments have shown that, on the one hand,
the initialization and error linking sub-concerns are gener-
ally found well, i.e. coverage exceeding 90% while using
a very limited number of clone classes. On the other hand,
the skipping sub-concern is found very badly, which explains
why the error handling concern in general is found badly.

Consider the code fragment in Figure 5, a simple example
of code belonging to the skipping sub-concern. The lines
marked with ‘S’ are those belonging to the skipping concern.
The skipping sub-concern accounts for 1231 lines of code,
i.e. 6,5% of the CC component, and furthermore it is present
in the entire code base. In the example, the r variable is used
to hold return values of previous function calls, and the if
statement ensures the conditional execution of the remaining
code.

S if (r == OK)
S {

r = FD_read(read_fd,
&msg_hdr,
(int) sizeof(CCCN_msg_header));

S }

Figure 5. Instance of the skipping concern.

The clone classes yielded by both clone detectors do not
provide good coverage of this concern for the same reason:
the pieces of skipping code are simply too small to qualify
for clones by themselves due to the limits we set in Section 5.
Furthermore, the code that appears inside the if statements
can differ greatly. As a result no clones classes are found
that cover just the skipping concern. However, some clone
classes cover the skipping sub-concern by accident, i.e. the
clones cover a large number of non-concern lines compared
to the number of skipping lines covered.

6.4. Tracing

Compared to the other concerns, the coverage obtained for
tracing is mediocre: the clone classes of Bauhaus’ ccdiml
reach 78% coverage all together, while we reach sufficient
coverage using 37 clone classes of CCFinder. Precision ob-
tained by the clone classes of Bauhaus’ ccdiml is higher than
for the clone classes of CCFinder, especially for the first 9
selected clone classes. For both clone detectors, precision
nears 50% as coverage of the concern approaches 80%.

The first two clone classes for Bauhaus’ ccdiml together
cover 32% of the tracing code, while maintaining 100% pre-
cision. An example clone from the first clone class is shown
in Figure 6. In total, 71 clones of this class are present in the
CC component, spanning 343 lines. The lines belonging to
the tracing concern are marked with ‘T’, while lines marked
with ‘C’ belong to the example clone.

T C THXAtrace(CC,
T C THXA_TRACE_INT,
T C func_name,
T C "< () = %R",
T C r);

Figure 6. Bauhaus’ ccdiml clone covering tracing.

All the code belonging to the tracing concern is very sim-
ilar to the example in Figure 6. The THXAtrace(...)
function is always called, and its first three arguments are
typically the same. However, a variable number of argu-
ments can follow the first three. As a result, we also find
clone classes which consist of calls to THXAtrace(...)
with 5 arguments, 6 arguments, and so on. In fact, the second
clone class selected for Bauhaus’ ccdiml contains clones of
the THXAtrace(...) function call with 6 arguments.

CCFinder does not yield clones of the
THXAtrace(...) function call with less than 6 ar-
guments, simply because we have limited the minimum
size of a clone to 7 tokens (see Section 5). However, clone
classes including THXAtrace(...) function calls with
less than 6 arguments do turn up, but they also include a
number of non-tracing lines. A clone belonging to the first
clone class selected for CCFinder is shown in Figure 7. It
does in fact include many of the same lines as the first clone
class selected for Bauhaus’ ccdiml, but as can be seen in
Figure 7, the clones are extended with non-tracing lines.

T C THXAtrace(CC,
T C THXA_TRACE_INT,
T C func_name,
T C "< () = %R",
T C r);
C
C return r;
C }

Figure 7. CCFinder clone covering tracing.
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6.5. Discussion

For both Bauhaus’ ccdiml and CCFinder, we have seen that
the parameter checking and memory error handling concerns
are covered sufficiently well (80%) using a limited number
of clone classes. Furthermore, the level of precision obtained
by the clone classes of Bauhaus’ ccdiml in the parameter
checking case is very high: the first 4 selected clone classes
obtain a precision as high as 98%.

In contrast, the tracing and error handling concerns do not
show the same results. While the clone classes yielded by
CCFinder do reach a coverage of 80%, the number of clone
classes required is quite high. Both of these concerns are not
covered sufficiently well by the clone classes of Bauhaus’
ccdiml, although the coverage of tracing is almost sufficient
(78%). Additionally, the obtained precision is low. An ex-
ception is the precision obtained for the tracing concern by
the first 2 clone classes of Bauhaus’ ccdiml: they cover 32%
of the tracing code at 100% precision. However, if more
clone classes are considered the precision degrades quickly.

We observe that the precision obtained by the clone
classes of Bauhaus’ ccdiml is generally higher than for the
clone classes of CCFinder, though there are a few exceptions.
Inspection of the results has shown that clones yielded by
CCFinder tend to begin and end with little regard to the syn-
tactic structure of the source code. An example can be seen
in Figure 3. Due to the AST-based technique, clones yielded
by Bauhaus’ ccdiml are constrained to (sequences of) syn-
tactic units. Both clone detectors attempt to find clones of
maximal length, which entails that they try to extend clones
as far as possible. Because CCFinder is not limited to syntac-
tic units, but instead uses (generally smaller) tokens, clones
are also more likely to be extended. Consequently, clones
covering instances of a concern are more likely to also cover
a number of non-concern lines which (coincidentally or not)
often occur in the presence of a concern instance.

However, we also observe an advantage of the token-
based approach. Figure 3 shows an instance of the memory
error handling concern, being covered in part by a CCFinder
clone. This particular clone class alone covers 45% of the
concern (see Figure 2(b)). A similar clone class is found for
parameter checking, yet resulting in much lower precision.
Clone classes like these, covering similar parts of concern
instances, are less likely to be found by Bauhaus’ ccdiml due
to the restriction of clones to (sequences of) syntactic units.
However, considering that ultimately our goal is to refactor
the identified concerns into aspects, it is clear that it is diser-
able to have syntactically sound units representing the con-
cern.

We conclude this discussion by considering the implica-
tions of the results for our future work. First, evaluating the
clone classes in terms of both concern coverage and precision
identified many clone classes that will be of value during our
research within the context of the ASML code base. The

component we considered in this paper is a small, but rep-
resentative, example of the components that exist within this
code base. Our larger goal is to identify crosscutting con-
cerns in all these components, and support the refactoring of
these concerns into a more modular solution.

Second, in this paper we showed that for some concerns,
clone detection techniques can be used to obtain a suffi-
ciently complete coverage of those concerns. These results
will allow us to move ahead with research, testing the general
applicability of clone detection techniques to the aspect min-
ing problem. The next step would be to evaluate the use of
clone detection techniques to identify concern code fully au-
tomatically. Our results allow us to derive characterizations
of clone classes that provide high coverage of the concerns,
which could subsequently be used to filter clone detection
results of other systems. In Section 8 we describe how we
plan to use the results obtained in this paper.

Finally, clone detection techniques work because the code
implementing the concerns has been developed using a dis-
ciplined and idiomatic approach. In other words, the devel-
opment process provides strict rules on the implementation
of the concerns in question, resulting in many similar pieces
of code. We view the idiomatic nature of the development
process at ASML as a major condition to the applicability of
clone detection techniques for the purpose of aspect mining,
and thus our results. The language used to implement the
concerns appears to be of lesser importance, although we do
not yet have results to support that claim. Obviously, the type
of clone detection applied is of major importance as well.

7. Related Work

The considerable research effort spent on clone detection
techniques makes them both very stable and scalable to
large-scale programs. In recognition of this fact, aspect min-
ing is only one particular application of using clone detection
techniques for reasoning about software. Van Rysselberghe
and Demeyer for example, use a clone detection algorithm
to study the evolution of a software system [15]. In partic-
ular, they try to distinguish move method refactorings that
were applied when evolving one version of the software into
another.

Although traditionally, aspect-oriented programming
techniques have been applied to object-oriented applications,
the idea of applying it for improving the modularity of large-
scale C programs is not new. Most notably, Coady et al. re-
port upon an experiment using aspect-oriented techniques to
modularize the implementation of prefetching within page
fault handling in the FreeBSD operating system kernel [4].
To that end, they make use of an aspect language tailored
specifically to the C programming language, called aspectC,
which is currently under development. However, in their ex-
periment, the crosscutting code is identified manually instead
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of automatically.

Although research on aspect mining is still in its infancy,
several prototype tools have already been developed that sup-
port developers in identifying crosscutting code. Many of
these tools are semi automatic, which means they require
some form of input by the developer. Those are discussed
in the next paragraph. More advanced tools, that are able to
identify aspects without human intervention, are appearing
as well, and will be discussed afterward.

The Aspect Browser [7] is a programming environment
that provides text-based mining, which means it relies on
pattern-matching techniques to identify aspects. A devel-
oper specifies a regular expression, that describes the code
belonging to the aspect of interest, and a color. The pro-
gramming environment then identifies the code conforming
to the regular expression, and highlights it using the asso-
ciated color in the source code editor. The Aspect Mining
Tool [8] is an extension of the Aspect Browser that intro-
duces a combination of text-based and type-based mining.
Type-based mining considers the usage of types within an
application to identify crosscutting code. It appears to be a
good complement to simple text-based mining, and the com-
bination of the two ensures that far less false positives and
false negatives occur. The Prism tool [19] in its turn ex-
tends the Aspect Mining Tool, and additionally provides a
type ranking feature and takes control flow information into
account. The type ranking feature is based on the assump-
tion that types that are used widely in the application are a
good sign of crosscutting code. Therefore, the tool ranks
the types in the system according to their use. The tool also
takes control-flow information into account to identify as-
pects: E.g. it considers the values involved in conditional
branches and the code involved in accessing these values (as-
signments, method calls, etc). If such code is not well local-
ized and appears in many places in the application, it may
be a very good candidate for an aspect. Ettinger et al. dis-
cuss a totally different approach to aspect mining, that identi-
fies entangled code based on input by the developer, and dis-
entangles it using program slicing and aspect-oriented tech-
niques [6]. In other words, the developer points out a partic-
ular expression or statement and a tool automatically com-
putes the corresponding slice. The code fragment computed
in this way can then be extracted into an aspect.

Fully automated tools for aspect mining are proposed in
literature as well. Breu and Krinke propose a tool that dy-
namically analyzes Java software to identify aspects [3]. To
that end, program traces are generated and analyzed auto-
matically. The idea is to detect particular patterns occurring
in the trace, such as a call to a particular method a that is
always followed by a call to a method b, or a call to a partic-
ular method c that always occurs inside a call to a method d.
Such patterns could point to before/after aspects. Shepher et
al. present a tool that uses a clone detection algorithm based

on the program dependence graph [16]. The tool identifies
possible aspects fully automatically, focusing currently on
before advice. Although the tool still consumes considerable
resources, the initial results are promising.

8. Future Work

The crosscutting concerns we considered in the present case
study also occur in a range of other ASML components. We
will investigate how we can identify these concerns without
manual annotations, using the clone classes found in the CC
component as a starting point. In other words, the CC clone
classes can be used as seeds for the concern identification in
other components of the ASML code base.

Clone classes can be characterized by simple measures
like the number of clones contained in such a class, or the
number of lines covered by the class, but more complex
measures can be derived as well, such as the distribution of
clones over different files. Such measures could be useful to
filter clone detection results for the purpose of automatic as-
pect mining. Based on the results described in this paper, we
could possibly show relations between measures for clone
classes and levels of coverage and precision. Such relations
could then be tested on other systems, including those writ-
ten in other languages.

Finally, it would be interesting to study how other tech-
niques, especially PDG-based clone detectors [13, 12], are
capable of identifying crosscutting concern code. Concerns
like those included in our experiment consist of a large num-
ber of semantically equivalent code fragments. Due to the
close match between PDG representations and the semantics
of the program, we expect PDG-based clone detectors to per-
form well at detecting such crosscutting concern code. The
experiment has shown that we can already identify large por-
tions of crosscutting concern code by means of syntactical
techniques (token-based and AST-based), mainly due to cod-
ing conventions and idioms used by developers. It will be in-
teresting to see whether PDG-based techniques will perform
better at finding crosscutting concern code in the same sys-
tem, and also in systems which have not been implemented
using the same coding conventions and idioms.

9. Conclusion

First, our results confirm the belief that crosscutting func-
tionality is often implemented by similar pieces of code,
which are scattered throughout a system. Our case study
shows that these pieces of code can contribute up to 30%
to the code size. Large gains in terms of maintainability and
evolvability are thus to be expected from methods supporting
the identification and refactoring of these crosscutting con-
cerns.
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Second, we have evaluated the suitability of two clone
detection techniques for the identification of code belonging
to crosscutting concerns. To that end, we manually iden-
tified four specific concerns in an industrial C application,
and analysed the concern coverage and precision obtained
by clone classes yielded by two clone detection tools. The
results show that code belonging to concerns like parameter
checking and memory error handling is identified very well
by both clone detection tools, while error handling and trac-
ing concerns are more problematic.
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