
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Parse-Tree Annotations Meet Re-Engineering Concerns

Jan Kort, Ralf Lämmel

REPORT SEN-E0327 DECEMBER 23, 2003

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Parse-Tree Annotations Meet Re-Engineering
Concerns

ABSTRACT
We characterise a computational model for processing annotated parse trees. The model is
basically rewriting-based with specific provisions for dealing with annotations along the ordinary
rewrite steps. Most notably, there are progression methods, which define a default for
annotating the results of rewriting. There are also access methods, which can be used in the
rewrite rules in order to retrieve annotations from the input and to establish annotations in the
output. Our approach extends the basic rewriting paradigm with support for the separation of
concerns that involve annotations. This is motivated in the context of transformations for
software re-engineering where annotations can be used to implement concerns such as layout
preservation and reversible preprocessing.

1998 ACM Computing Classification System: D.3.4; D.3.3
Keywords and Phrases: Parse trees; Annotations; Generic Programming

Parse-Tree Annotations Meet Re-Engineering Concerns

Jan Kort
�

and Ralf Lämmel
�

�

Universiteit van Amsterdam, Kruislaan 403, NL-1098 SJ Amsterdam
�

Vrije Universiteit, De Boelelaan 1081a, NL-1081 HV Amsterdam
Email: kort@science.uva.nl, ralf@cwi.nl

Abstract

We characterise a computational model for processing an-
notated parse trees. The model is basically rewriting-based
with specific provisions for dealing with annotations along
the ordinary rewrite steps. Most notably, there are progres-
sion methods, which define a default for annotating the re-
sults of rewriting. There are also access methods, which can
be used in the rewrite rules in order to retrieve annotations
from the input and to establish annotations in the output.

Our approach extends the basic rewriting paradigm with
support for the separation of concerns that involve annota-
tions. This is motivated in the context of transformations
for software re-engineering where annotations can be used
to implement concerns such as layout preservation and re-
versible preprocessing.

1. A challenge in Cobol re-engineering

Suppose we want to renovate Cobol programs using pro-
gram transformations. Typical examples are dialect con-
version, GO TO elimination, data-field expansion, migra-
tion from Cobol files to a relational database, and migra-
tion from an ASCII user interface to a GUI. To implement
the corresponding transformation functionality, rewriting-
based systems such as ASF+SDF [2] or TXL [6] are quite
suitable. In the case of dialect conversion, for example,
we would gather rewrite rules that translate patterns of the
source dialect into patterns of the target dialect. Let’s turn to
the ‘side issues’: a few additional concerns regarding such
renovation tooling are worth an effort. Here they are:

Layout preservation. The renovated sources must pre-
serve the original comments and white spaces. Otherwise,
maintenance programmers will argue that the sources were
alienated. (Layout preservation would also be a precondi-
tion for the visualisation of code changes if we wanted to
use a simple tool like diff.)

Pattern simplification. To hide some of Cobol’s com-
plexity, the programmer should operate on a simple core
syntax for Cobol as opposed to Cobol’s full syntax. To this
end, Cobol programs are normalised prior to transforma-
tion. The original patterns must be restored in the output to
avoid a drastic alienation of the sources.

Change logging. We want to record all code changes in a
precise, syntax-aware manner. Such change logging is use-
ful for visualising affected code regions, recording changes
for later reference and enabling user intervention.

Remote referencing. Given a data name in a Cobol state-
ment, we want to access directly the corresponding decla-
ration site. Such remote referencing is convenient for en-
coding typical analyses and transformations. Otherwise, re-
mote sites had to be repeatedly located by tree traversals.

Post-processing directives. COPY books (i.e., include
files) should be expanded during preprocessing to make
their content accessible within the parse trees. The COPY
statements should be re-established during post-processing
on the basis of directives carried in the parse trees.

Access restrictions. In the presence of expanded COPY
books, it needs to be defined how to handle changes of the
parse-tree regions that arose from expansion. If there is no
useful way to deal with such changes, then any attempt of
rewrite rules to perform such changes should be refused.

Plan of attack — separation of concerns It turns out that
these are crosscutting concerns in a rewriting context. (That
is, a traditional implementation of such a concern will be
tangled in the sense that many or all rewrite rules need to
pay attention to the concern.) In this paper, we provide
a rewriting-based computational model that allows for the
separation of concerns like those above. This model pro-
vides designated support for processing annotated parse
trees. The key insight of our approach is the following:

� The data for concerns like those above can be captured
as annotations of the parse trees that are rewritten.

� The treatment of annotations can be largely decoupled
from the ordinary, annotation-unaware rewrite rules.

Standard production format; without mentioning layout

move-statement = "MOVE" ("CORRESPONDING" | "CORR") identifier
"TO" {identifier}+

Pervasive use of layout positions in the productions

move-statement = Layout "MOVE" (Layout "CORRESPONDING" | Layout "CORR") identifier
Layout "TO" {identifier}+

Figure 1. From an ordinary Cobol grammar to a layout-aware one.

We have experimented with annotated parse trees in
GDK [14] (i.e., C-programming with generative support for
rewriting) and Laptob [16] (i.e., prological language pro-
cessing). The ultimate goal is to integrate this approach
with a strongly typed, powerful rewriting framework such
as ASF+SDF [2], and to also instantiate it seamlessly for
object-oriented as well as functional programming.

The paper is structured as follows. In Sec. 2, we exercise
typical techniques that occur in transformation technology
for software re-engineering. Weaknesses of the techniques
serve as a motivation for our approach. In Sec. 3, we char-
acterise the overall computational model underlying our ap-
proach, while details follow in Sec. 4–Sec. 7. Related work
is discussed in Sec. 8, and the paper is concluded in Sec. 9.

2. Common shortcomings

We will now review a few specific techniques for the im-
plementation of the concerns posed in the introduction. We
will argue that these techniques (and hence corresponding
transformation technology for software re-engineering) ex-
hibit shortcomings such as code tangling, persistence of
normalisations, low level of abstraction, and restrictiveness
regarding parse-tree formats. It is this pool of problems
which triggered a designated ‘separation of concerns’ tech-
nique. Most modern transformation technologies such as
ASF+SDF, Recoder, Strafunski, Stratego, TXL attack some
of these problems, but there is no general approach to al-
low for the effective separation of all the relevant concerns.
(This paper works towards such a general approach.)

Code tangling We illustrate this shortcoming with a tech-
nique that addresses the concern of layout preservation.
Following a local tradition, we use the term ‘layout’ here
to denote both white spaces and comments. One major op-
tion to meet the requirement for layout preservation is to
incorporate all layout into the parse tree, and to maintain it
during transformation so that layout can be used during un-
parsing. In [21], this option is adopted in the following way.
The original context-free grammar is expanded to include
a nonterminal for layout preceding every terminal in the
context-free productions. Hence, parse trees comprise addi-
tional branches for layout all over the place. The expanded

grammar is also used for rewriting, i.e., patterns for match-
ing need to include variables to catch layout in the various
positions. In this case, the concern of layout preservation is
entangled in the grammar and in the rewrite rules. To give
an example, we include the syntax of one form of Cobol’s
MOVE statement before and after expansion in Fig. 1. (One
does not need to be a Cobol expert to appreciate this exam-
ple. It is enough to notice the occurrences of Layout, which
were systematically added to the production.)

Persistent normalisations Monster languages like Cobol
naturally invite for normalisations to simplify the imple-
mentation of transformations. If some variations are elimi-
nated or simplified, fewer or simpler cases have to be cov-
ered by the transformation rules. In [3], a simple perl-
based preprocessor is discussed, which performs several
operations on the source code prior to parsing and rewrit-
ing. In particular, the preprocessor removes optional key-
words and it replaces keywords by their ‘normal forms’.
This is illustrated by a perl snippet in Fig. 2. For ex-
ample, the keyword INITIAL is removed, and the varia-
tion HIGH-VALUES is normalised to HIGH-VALUE. This
lexical normalisation is not reversed which implies perva-
sive code changes. The more sophisticated normalisations
get, the more difficult it is to reverse them. The following
rewrite step illustrates context-free (as opposed to lexical)
normalisation for Cobol [15]:

�
NOT ����� - ���
	 � NOT

� ����� - ���
	

So the negating prefix NOT of a relational operator is fac-
tored out to the level of Boolean expressions. A more ad-
vanced normalisation would be about Cobol’s abbreviated

...
$line =˜ s/(\s)INITIAL(\s|\.)/$1$2/g;
$line =˜ s/(\s)GO\s+TO(\s|\.)/$1GO$2/g;
$line =˜ s/(\s)INDEXED\s+BY(\s|\.)/$1INDEXED$2/g;
$line =˜ s/(\s)SPACES(\s|\.)/$1SPACE$2/g;
$line =˜ s/(\s)ZEROS(\s|\.)/$1ZERO$2/g;
$line =˜ s/(\s)ZEROES(\s|\.)/$1ZERO$2/g;
$line =˜ s/(\s)VALUES(\s|\.)/$1VALUE$2/g;
$line =˜ s/(\s)LOW-VALUES(\s|\.)/$1LOW-VALUE$2/g;
$line =˜ s/(\s)HIGH-VALUES(\s|\.)/$1HIGH-VALUE$2/g;
...

Figure 2. Perl snippet for lexical normalisations.

combined relation conditions. This condition form allows
a programmer to omit operands and operators in compound
conditions while defaults of the missing elements are de-
rived from the context. The following example illustrates
how such an abbreviation can be expanded accordingly:

IF
�����

OR ������� � IF
�����

OR
�	� �������

In general, it is not well understood how to implement nor-
malisations in a way that they can be reversed later. This is
an obstacle to using normalisations in practice. To be on the
safe side, few normalisations are performed, and the code is
preserved as much as possible. This implies that the bene-
fits of normalised representations are not accessible to the
working re-engineer.

Low-level annotations In the implementation of program
transformations, it is quite common to use some form of an-
notations to keep track of all sorts of intermediate informa-
tion. The common annotation mechanisms tend to require
from the programmer to operate at a low level of abstrac-
tion, e.g., by relying on comment conventions or an unre-
stricted attribute scheme. We will discuss two examples of
using low-level annotations, one to carry intermediate re-
sults through staged transformations and another to keep
track of obligations for post-processing.

The first example deals with a staged transformation for
the Y2K benchmark. (Here, it is not necessary to be an Y2K
expert. The example is only meant to illustrate how differ-
ent kinds of comments direct and reflect on a staged trans-
formation.) The following stages are relevant. The Y2K
engine starts from a programmer-supplied seed set for date
fields. A subsequent propagation step determines the fields
with the same type of usage as the data fields in the seed set.
Then, code patterns are identified that involve the affected
fields. Finally, the identified patterns need to be changed,
and the changes need to be documented. In Fig. 3, we illus-
trate two of these stages. The Cobol snippet at the top shows
legacy code that moves the various components of a date to
data fields in an accept and display buffer SCREEN37. (As
one can see, the legacy code assumes a fixed value 19 for
the century.) The Cobol snippet in the middle reflects the
result of all analyses and the identification of affected code
fragments. The findings of the Y2K engine are reported
by a kind of comment. This is called a scaffold according
to [21], or a maintenance hot spot according to [7]:

SCAFFOLD [MOVE-CENT [FILE42-YY : Identifier]]

The transformation stage reads this comment as a proposal
to treat the MOVE 19 ... statement following the scaf-
fold as a MOVE statement that fills a CENTury field. The
year for the windowing decision is found in FILE42-YY.
The Cobol snippet at the bottom shows the code that results
from implementing the scaffold by a transformation. That

Original code with Y2K problem
...
MOVE FILE42-DD TO SCREEN37-DD.
MOVE FILE42-MM TO SCREEN37-MM.
MOVE FILE42-YY TO SCREEN37-YY.
MOVE 19 TO SCREEN37-CENT.
...

Code with scaffold for scheduled windowing adaptation
...
MOVE FILE42-DD TO SCREEN37-DD.
MOVE FILE42-MM TO SCREEN37-MM.
MOVE FILE42-YY TO SCREEN37-YY.
SCAFFOLD [MOVE-CENT [FILE42-YY : Identifier]]
MOVE 19 TO SCREEN37-CENT.
...

Adapted code with maintenance comment
...
MOVE FILE42-DD TO SCREEN37-DD.
MOVE FILE42-MM TO SCREEN37-MM.
MOVE FILE42-YY TO SCREEN37-YY.

* BEGIN MY-Y2K-ENGINE: MOVE-CENT FILE42-YY
IF FILE42-YY > 68
MOVE 19 TO SCREEN37-CENT

ELSE
MOVE 20 TO SCREEN37-CENT.

* END MY-Y2K-ENGINE: MOVE-CENT FILE42-YY
...

Figure 3. Two steps in a staged windowing transfor-
mation for the Y2K problem. We use scaffold com-
ments in the intermediate result.

is, using 68 as the cut-off year, either 19 or 20 is moved to
the century field. It is important to notice that scaffolds are
like comments that can be placed anywhere in the source
code. There are no higher-level idioms for locating scaf-
folds, for preserving them, and for identifying their scope.

As another example of low-level annotations, we con-
sider the link between pre- and post-processing with fo-
cus on Cobol’s COPY books. (These are like include files
that comprise reusable code fragments for Cobol programs.)
COPY books are normally expanded prior to transformation
so that the complete source code of a program can be ac-
cessed. The expansion is reversed in the final code. COPY-
book expansion is illustrated in Fig. 4. The code snippet at
the top contains a COPY statement. (As an aside, without
expansion, the shown code is not proper Cobol because the
period terminating the USING clause resides in the COPY
book. The period at the end of the COPY statement really
just terminates this statement.) The code snippet at the bot-
tom shows the result of expansion. The content that orig-
inates from the COPY book is surrounded by special com-
ments so that post-processing can later undo the expansion.
While this approach is effective in practice, it is obviously
entirely unsafe. That is, a transformation might garble the
comments. Also, a transformation might end up transform-
ing the inlined content of the COPY book, although this is
normally not sensible.

Before COPY book expansion
...
PROCEDURE DIVISION USING SCREEN01

SCREEN02
COPY LINK-REST.

...

After COPY book expansion
...
PROCEDURE DIVISION USING SCREEN01

SCREEN02
* BEGIN COPY-BOOK EXPANSION LINK-REST

SYS-PARA
USR-PARA
OPT-CODE
RET-CODE.

* END COPY-BOOK EXPANSION LINK-REST
...

Figure 4. A Cobol program that uses a COPY book
for a reusable list of subprogram arguments. The ex-
panded code is scoped by comments.

Restriction to tree-shaped data Especially in the context
of rewriting, tree shape is taken as an axiom. That is, a parse
tree is really nothing more than a tree as opposed to a more
general graph data structure. So rewrite rules can observe
subtrees of a given tree, but there is no way to navigate from
a given node

�
to a ‘related’ node 	 if

�
does not root

	 . The technique of a symbol table is typically used to
compensate for this restriction. However, the presence of
name spaces or the need to modify remote nodes require
further provisions. The restriction to tree-shaped data is an
obstacle to simple encodings of some recurring scenarios in
software re-engineering, e.g., the direct navigation from use
to declaration sites.

Let us illustrate the restriction to tree shape by using a
fragment of the specification for a Y2K-like project dis-
cussed in [11]. The specification is executable in the
ASF+SDF Meta-Environment [2]. In Fig. 5, we show two
conditional rewrite rules that specify type-of-usage propa-
gation. Given a set of affected data names Sofar, the shown
rules identify more affected fields and accumulate them as
a parameter Found. Identification of the same type of us-
age is based on looking at Cobol patterns that use two data
names; here MOVE statements. We include a data name,
if it is not yet in Sofar while its companion data name in
the MOVE statement is in Sofar. For the comparisons of
data names to be correct, we have to assume that all the
data names are qualified. (Think of Cobol’s nested group
fields.) This would normally require a pervasive transfor-
mation. We might also perform name qualification on the
fly by an expensive traversal of the program’s DATA DI-
VISION.

� ���
�����	��
�������������������
�������
���������!����" #$�

%&����'��)(*���+�-,
MOVE

��� �
TO
��� � �$
�.�������./0����12�234�

/0����12��5768������9

� �:�
����;�<
���������!����" #$���
��� � ��
�����������������

%&����'��)(*���+�-,
MOVE

����
TO
�������$
�.�������./0����12�234�

/0����12��5768����)9

Figure 5. Snippet of an algebraic specification for
type-of-usage propagation for Cobol.

If we do not restrict ourselves to tree shape, then we can
perform name resolution once and for all before all other
phases, and we can keep track of the resolved names using
links between use and declaration sites for later reference.
This will not involve any pervasive transformation. Also,
these links will be immediately useful once we need to up-
date data declarations and data references.

3. Rewriting with annotations at a glance

We will now characterise a rewriting-based computational
model for processing parse trees or abstract syntax trees
with provisions for annotations. This model allows us to
treat problems like the above-mentioned ones in a uniform
and modular manner. The model is based on the following
ingredients:

� Rewrite rules: these are the basic computations in tree
processing. A rewrite rule is a programmer-defined
problem-specific action on a given syntactical sort. It
performs tree matching and tree building.

� Traversal schemes: they are means to systematically
apply rewrite rules to the complete parse tree. A good
candidate is innermost normalisation as widely used in
rewrite engines. We might also consider user-definable
traversal schemes as in strategic programming [17].

� Annotations: each node in a parse tree can be an-
notated. We view annotations as property lists (say,
name/value pairs) so that we can deal with separate
concerns.

� Access methods: the programmer uses these methods
in the definition of rewrite rules in order to retrieve an-
notations from the input and to establish annotations in
the output of a rewrite step.

� Progression methods: the programmer defines or se-
lects these methods in order to set up the default
scheme for annotating the results of rewriting. This de-
fault scheme can be overridden by using access meth-
ods in rewrite rules.

The following sections detail these concepts.

4. Rewrite rules and rewrite steps

In our model, rewrite rules correspond to the most basic
pieces of functionality, i.e., to the building blocks of pro-
gram transformations. Operationally, rewrite rules perform
tree matching and building. In addition, they might invoke
subcomputations on parts of the tree, and they might be con-
strained by side conditions. We will later see that rewrite
rules can also perform actions to access annotations. We use
the term rewrite step to denote an application of a rewrite
rule in the course of a complete traversal over a parse tree.
We will later see that the ordinary rewrite steps must be in-
tertwined with actions for progressing with annotations.

The notion of a rewrite rule can be incarnated as follows:

Term rewriting just a rewrite rule.
OOP a visitor object.
Functional progr. a function on algebraic datatypes.
C a function on a designated term API.

Here is a simple example of a rewrite rule written down in
the notation of term rewriting:

���������
	��

Here, � , 	 , and � are function symbols whereas ��� , �� , and��� are tree variables. In Fig. 6, we visualise a correspond-
ing rewrite step, i.e., the application of this rewrite rule to
a specific input tree. The arrows in the figure illustrate how
function symbols and subtrees are shared by input and out-
put. This sharing relation between input and output will be
useful to guide the automatic propagation of annotations.

The sharing relation for entire subtrees is immediately
implied by the occurrence of variables on both sides of a
rewrite rule. The intended sharing relation for nodes (say,
function symbols) relies on tagging. Implicitly, a function
symbol is tagged by itself. So a function symbol occurring
both on the left- and the right-hand side is shared by default
(unless the same symbols occurs several times on a given
side). Explicit tags can be used to disambiguate multiple
occurrences, to disable implicit sharing, and maybe even
to express sharing for different function symbols. In the
following revision of the earlier rewrite rule, we tag the two
occurrences of � differently. Hence, � is not shared anymore
between left- and right-hand side:

��� ��� �!���"�
	��������������#�$�%� ���'&���������������������(���

It remains to define how ordinary rewrite rules are ap-
plied to annotated parse trees. We also need to clarify how
rewrite steps are completed by actions for progressing with
annotations. Furthermore, we need to extend the notion of a
rewrite rule to be able to access annotations. The following
sections cover all these topics.

e d

a

b

d e

a

b

OutputInput

c f

Figure 6. A rewrite step where we show the shar-
ing relation (cf. arrows), and we focus on the changed
subtree (cf. circles).

5. Annotated parse trees

We assume a very simple data structure for annotated parse
trees (or annotated abstract syntax trees, and others). That
is, each ordinary node in the parse tree can be annotated
by a property list. This is illustrated in Fig. 7 for the in-
put of the rewrite step from Fig. 6. The rewrite engine can
now match a rewrite rule, which does not care about annota-
tions, against an annotated parse tree very easily: the extra
pairing level is skipped and only the right component of the
“()” node is considered for comparing function symbols. A
useful refinement of the given format is to restrict annota-
tions to specific, possibly optional properties depending on
the node type. This adds opportunities for static checks and
optimisation.

Separation of concerns It is indeed vital that nodes are
annotated by property lists (say, name/value pairs) as op-

()

a

() ()

e

()

cb

()

1l

2l

4l

3l

l5
d

Figure 7. An annotated parse tree. There are extra
nodes (“()”) for pairing ordinary nodes and annota-
tions, say property lists.

c

d e

c

()

d e

()

f

e d

a

()

b

()

a

()

b

()

[]

Figure 8. Change logging for Fig. 6 using lists of parse subtrees as annotation to keep track of history. The non-filled
bullets indicate absence of annotations. Notice the added annotation in the result. It corresponds to the focused subtree
in the input that is changed. For simplicity, potential sharing is not visualised.

posed to one blob of annotation. This allows us to effec-
tively separate different annotation concerns, e.g., layout
preservation, and pattern simplification, and change log-
ging, and so forth. Common types of annotations are the
following:

� Boolean for status markers.
� Natural numbers for counters.
� Parse-tree types to back up subtrees.
� Pointer types to link nodes in the parse tree.

(We keep the established term ‘parse trees’ despite the po-
tential of pointers.)

Sample concerns from the introduction The following
types of annotations are appropriate:

� Layout preservation. We use chunks of layout, say
strings. There are different ways how layout can be
turned into annotations. A simple and effective ap-
proach is to only annotate leaf nodes, i.e., tokens, and
to turn the layout preceding a token into its annotation.

� Pattern simplification. We use the annotation to back
up the original subtree. We might want to assume that
parse trees are actually directed acyclic graphs. This
allows us to keep track of the sharing relation between
original tree and simplified tree.

� Change logging. We maintain historical trees for each
node. This is illustrated in Fig. 8. The change log
might refer to ordinary subtrees to express sharing of

subtrees between historical trees and the current tree.
Such sharing is more efficient in storage, and it also
specifies the changes more precisely.

� Remote referencing. The annotation is a link to a dec-
laration site. Here, it becomes indispensable that we
allow for at least directed acyclic graphs for the repre-
sentation of annotated parse trees.

� Post-processing directives. The annotation is basically
the COPY statement. If the COPY statement comprises
a syntactically valid fragment (without prior expan-
sion), then we can place the annotation at the node
that roots the content from the COPY book. Otherwise,
we have to flag (say, annotate) all tokens that originate
from the COPY book.

� Access restrictions. Recall that this concern is meant
to refuse any attempt to modify the inlined content of
COPY-books. According to the previous concern, the
mere information about expanded tokens and subtrees
is already available. Hence, this concern does not ne-
cessitate more annotations.

This finishes our discussion of the data structure for an-
notated parse trees. It remains to explain how annotated
parse trees are processed, more specifically, how the anno-
tations are retrieved, established, preserved, etc. The subse-
quent two sections serve this purpose.

6. Progression methods

Even if a rewrite rule, by itself, is not concerned with anno-
tations, we have to define how annotations from the input
possibly carry over to the output, and how missing anno-
tations are constructed if possible. Here, a crucial insight
enters the scene. In our approach, not just the annotation
types but also the rules for their progression can be defined
by the programmer.

Progression can be defined differently for each property
that might possibly occur in the property list. For each an-
notation concern, there are the following overall schemes of
progression:

� Initialisation. If a node in the output needs to be anno-
tated, then we simply opt for a constant.

� Propagation. If nodes are shared between left- and
right-hand side, and the left-hand side node carries
a suitable annotation, then the output annotation can
be computed from the input annotation, maybe con-
strained by side conditions.

� Synthesis. An output annotation is computed while ob-
serving the entire input and output of a rewrite step.
This includes subtrees, involved tags and annotations.
This is the most general scheme.

Some options for the scheme of propagation are illustrated
in Fig. 9. We focus on a node (“a”) shared between in-
put and output tree. We look at a single property � � . The
copy option is used when the input annotation � � should
be preserved as is, e.g., line-number information. The up-
date option is suitable if the input annotation � � should be
transformed (by a function �), e.g., incrementing a counter
whenever a subtree is rewritten. The reset option is suit-
able if a certain default is favoured for the output annota-
tion (e.g., �) regardless of any available input annotation.
The generate option is used when a kind of unique node
identifier is needed. Finally, the guard option is used when
a predicate is meant to test for consistency of rewrite step as
far as annotations are concerned.

Progression methods for initialisation and propagation
can be defined and implemented very easily. To this end,
we make two modest assumptions. Firstly, we only con-
sider newly constructed output nodes while shared subtrees
are preserved including their annotations. Secondly, prop-
erties are not optional, that is, a certain type of node is either
supposed to be annotated by a given property or not. (We
can still use an ‘empty’ annotation to denote the absence of
a proper annotation.) Then, the definition of progress for
a given output node (say, function symbol) comes down to
providing two actions for two different cases:

1. The function symbol is not shared between left- and
right-hand side of the rewrite rule. We need to perform
an action for initialisation.

0

1p’

1p

1p’

1p

1p’

0

1p’

1p

()

a

()

a

()

a

()

a

= f(p)

side conditions

is a constant

is preserved

C
op

y

Reset

G
enerateG

uard

()

a

()

a
1p

is fresh

p1

1

subject to

Update

Figure 9. Different options for the propagation of an
annotation � � of the root node from Fig. 6.

2. The function symbol is shared. That is, there is a can-
didate annotation from the left-hand side. We need to
perform an action for propagation.

In Fig. 10, we define these two actions for a few progression
methods in Prolog. (Recall that we use Prolog and Lap-
tob [16] to experiment with annotated parse trees.) The first
predicate defines initialisation (e.g., copy1) and the sec-
ond defines propagation (e.g., copy2). The listed methods
basically exercise all the options from Fig. 9, and they add
a fall-back solution for the non-sharing case. There are sev-
eral ways in which some of the methods might deliberately
fail in order to avoid inconsistent annotations.

The progression scheme for synthesis is really strictly
more general. Its generality allows us to affect annotations
of other than just newly constructed nodes, and to observe
annotations of other than just nodes shared between input
and output trees. For example, we can identify all input
annotations of a certain type which do not reappear in the
output tree as constructed by a rewrite rule. This analysis is
immediately useful for a form of layout preservation where
otherwise vanishing comments from the input tree are relo-
cated to the output tree.

% Propagation by copying
copy1(_) :- fail.
copy2(Anno,Anno).

% Integer increment
inc1(_) :- fail.
inc2(I0,I1) :- I1 is I0 + 1.

% Initialise or reset to 0
zero1(0).
zero2(_,0).

% Generate fresh annotation
gen1(Sym) :- gensym(’_’,Sym).
gen2(_,Sym) :- gensym(’_’,Sym).

% Block progression for annotation true
noreuse1(false).
noreuse2(Anno,Anno) :- not(Anno==true).

Figure 10. Prolog encoding of some progression
methods. They are invoked by the rewrite engine to
complete ordinary rewrite steps.

Sample concerns from the introduction The following
progression methods are appropriate:

� Layout preservation. We adhere to the ‘reset’ option,
i.e., no reuse of layout for newly constructed nodes.
This corresponds to the amount of preservation in pre-
vious work on layout preservation. Improvements can
be achieved using the ‘copy’ option or a designated
method based on the general scheme of synthesis —
as indicated above.

� Pattern simplification. We adhere to the ‘reset’ option
as there is no obvious way to make use of the back-up
after the corresponding simplified tree was changed.

� Change logging. We adhere to the ‘update’ option, i.e.,
we append the input tree to the change log for the node.

� Remote referencing. When a tree with outgoing remote
references is rewritten, then the remote references have
to be redirected. The programmer of the rewrite rules
can be made responsible for redirection, but it is safer
to leave direction to a designated progression method.

� Access restrictions. A designated progression method
checks that the output tree does not attempt to garble
the inlined content of a COPY book. So the method
serves as a guard. (There are other solutions to this
problem, which do not require progression methods.
The garbling can also be determined via a very late
check during post-processing, or an advanced type sys-
tem could attempt to refuse it even statically.)

7. Access methods

For several typical annotation concerns, rewrite rules are
predominantly unaware of annotations. For example, ac-
cess restrictions should definitely be enforced without the
programmer’s intervention. Also, layout should be pre-
served largely for free. There are however concerns which
require certain rewrite rules to be aware of annotations. In
fact, a good example is fine tuning of comment preserva-
tion, where comments need to be moved from the input to
the output on the basis of arguments that are specific to the
transformation rules at hand.

Annotation-aware rewrite rules can retrieve annotations
from the input and establish annotations in the output. To
this end, the rewrite rules employ access methods, which re-
side in the ‘annotation library’ just as the progression meth-
ods. In general, access methods (and progression methods
alike) can walk downwards (and maybe even upwards) the
tree. So a method can basically reach all nodes in the parse
tree and their annotations regardless of the current window.

Here is a (simplified) example that illustrates annotation-
aware rewrite rules:

���������
	"� ��� �!��� ����(���#�����������
� � ��� �!������������
retrieve �������
�
	��� � ��� � � �
��������� ��	��� � �
establish ��� � ������������� ��	��� � �������
�
	��� �

That is, we retrieve the comments from the vanishing func-
tion symbol 	 , and we establish the comment annotation for
the introduced function symbol � . (Note that the vanishing
comment annotations are not placed right at � � but the ac-
cess method � �����������
�
	��� will need to traverse.) As we
can see, annotations that are retrieved from the input tree
can be used in the method invocations that establish anno-
tations in the output tree. In principle, retrieved annotations
can also be used in constructing the output tree itself.

8. Related work
Annotations At a technical level, our approach to pro-
cessing annotated parse trees exhibits one original ingre-
dient: the provision of progression methods for computing
annotations without a contribution from rewrite rules. The
overall ability to annotate parse trees, abstract syntax trees
or other data is widely established. For example, TXL [6]
provides a so-called attribute mechanism, and ATerms [1]
as used in the ASF+SDF Meta-Environment [2] and else-
where literally reads as annotated terms. Also, XML’s dis-
tinction of elements and attributes provides a simple anno-
tation mechanism; simple because attributes are basically
strings. At a more abstract level, our approach emphasises
separation of concerns. A similar goal is addressed by a
kind of annotation approach in [19]. Here, source text is
factored according to different kinds of concerns such as the

ordinary code factor vs. the COPY prefactor and the COPY
postfactor. Functionality can now observe all these factors
and process the factors accordingly.

Layout preservation The specific concern of layout
preservation has been addressed by a number of rewriting-
based approaches. In the most simple case, no extension
of the rewriting machinery is assumed [21], which implies
some code tangling as discussed in Sec. 2. A more inte-
grated approach is the one in [23] where overlays for term
matching and building are used. While the primary term
constructors contain layout positions, these overlays do not.
A constant (normally a whitespace) is assumed for build-
ing a pattern in a rewrite rule. An approach towards built-in
support for layout preservation is presented in [4]. Here,
the rewrite engine is aware of layout positions in a way that
rewrite rules again can omit layout positions from patterns.
All these approaches have in common that they rely on extra
branches in a parse tree as opposed to our extra annotation
nodes. The mere placement of these added branches assigns
a fixed meaning to the annotations, namely ‘the layout pre-
ceding a token’. Such a fixed meaning is not acceptable for
our purposes because we want to model various annotation
concerns, and not just a specific form of layout preservation.
Our work shows that layout preservation is just an instance
of a more general problem: the annotation of parse trees (or
similar data structures) with data needed for concerns that
add to the syntactical structure. The contribution of our ap-
proach is that separate concerns can be effectively defined
because annotation types, progression methods, and access
methods are all programmer-definable.

Other ‘separation of concerns’ techniques There is an-
other extension of rewriting which is related to our work:
origin tracking [8]. Origins are relations between subterms
of intermediate terms that occur during rewriting. A con-
cern like change logging can obviously be handled using
these relations. Origin tracking differs from our approach
in so far that it does not involve any additional rewriting
actions nor programmer-definable elements except for the
ability to operate on origins after the normal form of a
given term has been reached. Another, very general ap-
proach to the extension of the parse-tree format and to
the corresponding adaptation of preexisting functionality
is meta-programming as used for purposes similar to ours
in [13, 18]. The later reference specifically demonstrates a
meta-programming approach to layout preservation.

Attribute grammars vs. rewriting Our approach is re-
lated to attribute grammars [12] (AGs). While our compu-
tational model is predominantly rewriting-based, we indeed
borrow certain elements of both the basic AG formalism
and some of its vital extensions. Understanding the precise
correspondence is a useful exercise.

AGs assign a meaning to context-free grammars by at-
tributing parse trees. The values of the attributes are com-
puted by means of semantic rules associated to the context-
free productions. Our annotations are not quite like at-
tributes in AGs. This is because attributes are immutable
place holders in the mathematical sense, while we assume
that annotations progress for each rewrite step. Otherwise,
our concepts are inspired by ideas in the AG field. That is,
our progression methods are similar to symbolic computa-
tions and forms of remote access in [10]. Our considera-
tion of graphs instead of trees (recall links as annotations)
is similar to the amalgamation of the purely declarative AG
formalism with references as in [9].

AGs are typically applied for semantic analysis and inter-
mediate code generation. AGs are, in our experience, much
less suited for transformations than rewriting. This can be
substantiated as follows:

� Asymmetry between input and output. The input is de-
fined in terms of the context-free grammar while the
output is defined by some root attribute. If this distin-
guished attribute happens to be of the type of a syntac-
tical domain, then one can say that the AG describes
a transformation. In rewriting, a symmetric situation
is reflected by the fact that both left- and right-hand
side of a rewrite rule are terms. Hence, a rewrite rule
encodes a (piece of a) transformation.

� Lack of tree matching / building. In the AG setting,
transformation rules cannot be encoded directly, but
they rather need to be scattered over the productions
of the underlying context-free grammar.

� Lack of normalisation / traversal. Attribute evaluation
is driven by attribute dependencies for the nodes in a
parse tree. This is useful if the different kinds of nodes
carry attributes of different types, and there are rich,
non-local dependencies between the attributes. This is
normally not the case for transformations. They are
more appropriately performed by a systematic appli-
cation of some rewrite rules all over the tree.

Pattern matching on abstract data types In a way, we
are concerned with the problem that different functional-
ity favours different views on the transformed trees. In
most rewrite rules, we would like to abstract from annota-
tions, while the definition of progression methods is aware
of the complete representation types, that is, trees including
annotations. In functional programming, a similar prob-
lem has been studied: pattern matching for abstract data
types [22, 5, 20] (aka views). Views allow one to use the
functions of an ADT in pattern matching as if these corre-
sponded to proper constructors. Our approach involves an
essential element that is not present in this work: tree an-
notations are potentially propagated from the input to the
output of a rewrite step as defined by progression methods.

9. Concluding remarks

Annotations are useful in practical applications of rewrit-
ing, in particular in the context of the implementation of
transformations for software re-engineering. Our approach
suggests to open up rewrite engines for performing actions
on annotated trees in parallel with ordinary tree matching,
building, and normalisation. This is in contrast to a rewrite
engine that anticipates specific concerns. Our approach dis-
entangles ordinary rewriting and annotation concerns. In
particular, rewrite rules do not need to catch annotations
when matching trees, neither do they need to supply anno-
tations when building trees. With access methods, rewrite
rules retrieve and establish annotations if this is necessary.
With progression methods, rewrite steps are complemented
so that required annotations are computed according to a
given scheme. In our ongoing work, we aim at seamless
support for the approach in language processing technol-
ogy. To this end, a few conceptual issues deserve further
research, especially typing, efficient use, and composition
of progression methods.

Acknowledgement We are grateful for discussions with Paul
Klint, Wolfgang Lohmann, Günter Riedewald, and Jurgen Vinju.
We are also very grateful for the feedback on an earlier version
of the paper, which was presented at the German GI-AOSD’03
workshop in Essen, in March 2003. Finally, thanks to the three
enthusiastic, anonymous reviewers at SCAM’03.

References

[1] M. v. d. Brand, H. de Jong, P. Klint, and P. Olivier. Effi-
cient annotated terms. Software – Practice and Experience,
30(3):259–291, Mar. 2000.

[2] M. v. d. Brand, A. v. Deursen, J. Heering, H. d. Jong,
M. d. Jonge, T. Kuipers, P. Klint, L. Moonen, P. Olivier,
J. Scheerder, J. Vinju, E. Visser, and J. Visser. The
ASF+SDF Meta-Environment: a Component-Based Lan-
guage Development Environment. In R. Wilhelm, edi-
tor, Proc. Compiler Construction (CC’01), volume 2027 of
LNCS, pages 365–370. Springer-Verlag, 2001.

[3] M. v. d. Brand, M. Sellink, and C. Verhoef. Obtaining
a COBOL Grammar from Legacy Code for Reengineering
Purposes. In M. Sellink, editor, Proc. Workshop on the
Theory and Practice of Algebraic Specifications, Electronic
Workshops in Computing. Springer-Verlag, 1997.

[4] M. v. d. Brand and J. Vinju. Rewriting with Layout. In
N. Derschowitz and C. Kirchner, editors, Proc. Workshop
on Rule-Based Programming (RULE’00), Sept. 2000.

[5] F. Burton and R. Cameron. Pattern Matching with Abstract
Data Types. Journal of Functional Programming, 3(2):171–
190, 1993.

[6] J. Cordy. The TXL Programming Language, Mar. 2003. Ver-
sion 10.3, http://www.txl.ca/.

[7] J. Cordy, K. Schneider, T. Dean, and A. Malton. HSML:
Design Directed Source Code Hot Spots. In Proc. Inter-
national Workshop on Program Comprehension (IWPC’01).
IEEE Press, May 2001.

[8] A. Deursen, P. Klint, and F. Tip. Origin Tracking. Journal
of Symbolic Computation, 15:523–545, 1993.

[9] G. Hedin. An Overview of Door Attribute Grammars. In
P. Fritzon, editor, Proc. Compiler Construction (CC’94),
volume 786 of LNCS, pages 31–51. Springer-Verlag, 1994.

[10] U. Kastens and W. Waite. Modularity and reusability in
attribute grammars. Acta Informatica 31, pages 601–627,
1994.

[11] S. Klusener, R. Lämmel, and C. Verhoef. Architectural
Modifications to Deployed Software. Submitted for pub-
lication, June 2002.

[12] D. Knuth. Semantics of context-free languages. Math. Syst.
Theory, 2:127–145, 1968. Corrections in 5:95-96, 1971.

[13] J. Kort and R. Lämmel. A Framework for Datatype Trans-
formation. In B. Bryant and J. Saraiva, editors, Proc. Lan-
guage, Descriptions, Tools, and Applications (LDTA’03),
volume 82 of ENTCS. Elsevier, Apr. 2003. 20 pages.

[14] J. Kort, R. Lämmel, and C. Verhoef. The Grammar Deploy-
ment Kit. In M. v. d. Brand and R. Lämmel, editors, Proc.
Language Descriptions, Tools, and Applications (LDTA’02),
volume 65 of ENTCS. Elsevier Science, Apr. 2002.

[15] R. Lämmel. Beiträge zur Anpassung, Bewertung und In-
strumentierung von Syntaxdefinitionen. In Proc. Workshop
Software Reengineering (WSR’00), Bad Honnef, Technis-
cher Bericht Universität Koblenz, May 2000.

[16] R. Lämmel and G. Riedewald. Prological Language Pro-
cessing. In M. v. d. Brand and D. Parigot, editors, Proc.
Language Descriptions, Tools, and Applications (LDTA’01),
volume 44 of ENTCS. Elsevier Science, Apr. 2001.

[17] R. Lämmel, E. Visser, and J. Visser. Strategic Programming
Meets Adaptive Programming. In Proc. Aspect-Oriented
Software Development (AOSD’03), pages 168–177. ACM
Press, 2003.

[18] W. Lohmann and G. Riedewald. Towards automatical mi-
gration of transformation rules after grammar extension. In
Proc. Conference on Software Maintenance and Reengi-
neering (CSMR’03), pages 30–39. IEEE Press, Mar. 2003.

[19] A. Malton, K. Schneider, J. Cordy, T. Dean, D. Cousineau,
and J. Reynolds. Processing software source text in auto-
mated design recovery and transformation. In Proc. Inter-
national Workshop on Program Comprehension (IWPC’01).
IEEE Press, May 2001.

[20] G. S. Novak Jr. Creation of views for reuse of software with
different data representations. IEEE Transactions on Soft-
ware Engineering, 21(12):993–1005, 1995.

[21] M. Sellink and C. Verhoef. Scaffolding for Software Reno-
vation. In J. Ebert and C. Verhoef, editors, Proc. Conference
on Software Maintenance and Reengineering (CSMR’00),
pages 161–172. IEEE Press, March 2000.

[22] P. Wadler. Views: a way for pattern matching to cohabit
with data abstraction. In Proc. Principles Of Programming
Languages (POPL’87), pages 307–313. ACM Press, 1987.

[23] H. Westra. Configurable transformations for high-quality
automatic program improvement. CobolX: a case study.
Master’s thesis, Utrecht University, February 2002.

