
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Deriving tolerant grammars from a base-line grammar

Steven Klusener, Ralf Lämmel

REPORT SEN-E0319 DECEMBER 23, 2003

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Deriving tolerant grammars from a base-line
grammar

ABSTRACT
A grammar-based approach to tool development in re- and reverse engineering promises
precise structure awareness, but it is problematic in two respects. Firstly, it is a considerable up-
front investment to obtain a grammar for a relevant language or cocktail of languages. Existing
work on grammar recovery addresses this concern to some extent. Secondly, it is often not
feasible to insist on a precise grammar, e.g., when different dialects need to be covered. This
calls for tolerant grammars. In this paper, we provide a well-engineered approach to the
derivation of tolerant grammars, which is based on previous work on error recovery, fuzzy
parsing, and island grammars. The technology of this paper has been used in a complex Cobol
restructuring project on several millions of lines of code in different Cobol dialects. Our
approach is founded on an approximation relation between a tolerant grammar and a base-line
grammar which serves as a point of reference. Thereby, we avoid false positives and false
negatives when parsing constructs of interest in a tolerant mode. Our approach accomplishes
the effective derivation of a tolerant grammar from the syntactical structure that is relevant for a
certain re- or reverse engineering tool. To this end, the productions for the constructs of interest
are reused from the base-line grammar together with further productions that are needed for
completion.

1998 ACM Computing Classification System: D.3.4
Keywords and Phrases: tolerant parsing; software re-engineering

Deriving tolerant grammars from a base-line grammar

Steven Klusener
��� �

and Ralf Lämmel
��� �

�
Software Improvement Group, Muiderstraatweg 58a, NL-1111 PT Diemen�

Vrije Universiteit, De Boelelaan 1081a, NL-1081 HV Amsterdam�
CWI, Kruislaan 413, NL-1098 SJ Amsterdam

Email: (steven
�
ralf)@cs.vu.nl

Abstract

A grammar-based approach to tool development in re- and
reverse engineering promises precise structure awareness,
but it is problematic in two respects. Firstly, it is a consid-
erable up-front investment to obtain a grammar for a rele-
vant language or cocktail of languages. Existing work on
grammar recovery addresses this concern to some extent.
Secondly, it is often not feasible to insist on a precise gram-
mar, e.g., when different dialects need to be covered. This
calls for tolerant grammars.
In this paper, we provide a well-engineered approach to the
derivation of tolerant grammars, which is based on previ-
ous work on error recovery, fuzzy parsing, and island gram-
mars. The technology of this paper has been used in a com-
plex Cobol restructuring project on several millions of lines
of code in different Cobol dialects.
Our approach is founded on an approximation relation be-
tween a tolerant grammar and a base-line grammar which
serves as a point of reference. Thereby, we avoid false posi-
tives and false negatives when parsing constructs of interest
in a tolerant mode. Our approach accomplishes the effec-
tive derivation of a tolerant grammar from the syntactical
structure that is relevant for a certain re- or reverse engi-
neering tool. To this end, the productions for the constructs
of interest are reused from the base-line grammar together
with further productions that are needed for completion.

1. In need of tolerance

Background — System analysis and transformation
Tool providers for automated software analysis and trans-
formation develop new components on a daily basis. These
components have to be ‘scalable’, ‘tolerant’ and ‘evolv-
able’. That is, they have to cope with large portfolios from
different clients using various dialects and language cock-
tails while client requirements might evolve over time.

These are representative analyses and transformations:� Business rule extraction for software re-engineering.� Data expansion (think of Y2K as a folklore instance).� Off-line code restructuring, e.g., goto elimination.� Interactive code restructuring (think of refactoring).� Conversion regarding language dialect, API, idioms.� Software re-documentation.� Metrics-based software assessment.

In the present paper, we focus on a technological aspect
of system analysis and transformation, namely parsing of
source code. The technology of this paper has been used in
a complex Cobol restructuring project on several millions
of lines of code in different Cobol dialects [Vee03].

Problem statement — Tolerant parsing Since compo-
nents for analysis and transformation interact with the syn-
tax of the underlying language cocktail (e.g., Cobol + Em-
bedded SQL + CICS), one would like to employ a context-
free approach to source code analysis as opposed to a lexi-
cal approach. There is some borderline where proper pars-
ing becomes mandatory. For example, goto elimination for
Cobol [SSV02] involves a non-trivial fragment of the lan-
guage syntax, and hence a lexical approach is impractical.
However, in the view of the up-front investment for parsers,
it is still common to employ a lexical or a mixed approach
in practice. Another practical limitation of normal parsers
is that they cannot easily deal with different dialects, em-
bedded languages, erroneous inputs (such as in an editing
session). These problems have triggered work on tolerant
parsers, also called robust parsers elsewhere. Previous ap-
proaches to tolerant parsing [BH82, Kop97, DK99, Moo01]
are limited in two respects. Firstly, the link between a gram-
mar used for tolerant parsing and the intended language is
not completely clear. Secondly, specific technology is as-
sumed to realise tolerant parsing. Both concerns are ad-
dressed in the present paper.

Contribution Our approach is based on two concepts:

a) We provide a formal definition of a grammar that is tol-
erant with respect to another grammar. To this end, we
develop an approximation relation on grammars such that
‘constructs of interest’ are recognised in a reliable manner.
Thereby, we address the important problem of false posi-
tives and false negatives, which enters the scene when tol-
erant parsing is used instead of precise parsing.

b) We define a semi-automatic process to derive a tolerant
grammar from the constructs that are of interest for a cer-
tain re- or reverse engineering tool. The productions for the
constructs of interests are reused from a base-line grammar
that serves as a point of reference. Further productions are
reused to provide a reliable context for constructs of inter-
est. Ultimately, default productions are added to skip irrel-
evant constructs in a liberal mode.

Road-map In Sec. 2, we review island grammars with
which we share our motivation for problem dedication in
source code analysis. This review provides us with obser-
vations that shape our approach. In Sec. 3, we formally
define the notion of a tolerant grammar, which is a gener-
alisation of the notion of a (well-behaved) island grammar.
In Sec. 4, we describe the semi-automatic process for the
derivation of a tolerant grammar from a base-line grammar
and constructs of interest. In Sec. 5, practical experiences
with tolerant parsing are reported.

2. Islands in the stormy ocean

An island grammar [DK99, Ver00, Moo01, Moo02] con-
sists of ‘island’ productions for the precise analysis of con-
structs of interest, and ‘water’ productions for skipping the
irrelevant rest of the input. Island grammars combine the
flexibility of lexical analysis with the power of context-free
parsing. The available body of research on island grammars
employs SDF [HHKR89] and scannerless generalised LR
parsing [Vis97, BSVV02] for the implementation of island
grammars. In this section, we will review island grammars
in detail using an example. We will motivate the neces-
sity of a so far missing correspondence between an island
grammar and a base-line grammar which serves as a point
of reference. This missing correspondence should guaran-
tee that there are no false positives and false negatives when
trying to select constructs of interest with a tolerant parser.

An example of an island grammar The grammar in
Fig. 1 defines the structure of data declarations in a given
Cobol program. Hence, a parser that is derived from the
grammar can be used to select all data declarations in a
given Cobol source file. For example, the three data decla-

module Layout
lexical syntax

[\ \t\n] -> LAYOUT

module Water
imports Layout
context-free syntax

Chunk* -> Input
Water -> Chunk

lexical syntax
˜[\ \t\n]+ -> Water {avoid}

module DataParts
lexical syntax

[0][1-9] -> Level
[1-4][0-9] -> Level
[A-Z][A-Z0-9\-]* -> DataName

module DataFields
imports Water DataParts
context-free syntax

Level DataName -> Chunk

Figure 1. An island grammar (in SDF notation) for
extracting data declarations; adopted from [Moo01].

rations "01 REC1", "03 FLD1", and "03 FLD2" will be
recognised for the following Cobol program:

IDENTIFICATION DIVISION.
PROGRAM-ID. TST.

DATA DIVISION.
WORKING-STORAGE
01 REC1.

03 FLD1 PIC 99.
03 FLD2 PIC S9(4) USAGE COMP.

PROCEDURE DIVISION.
...

We will now explain the grammar in detail. The productions
in module DataParts define the lexical sorts Level and
DataName. In the shown Cobol snippet, there are two level
numbers, i.e., 01 and 03; there are three data names, i.e.,
REC1, FLD1, and FLD2. The production

Level DataName -> Chunk

in the module DataFields defines the context-free syn-
tax of constructs of interest, i.e., data declarations.
The remaining productions in the modules Layout and
Water are needed to skip layout and irrelevant input
(aka water or ocean). In particular, the production
˜[\ \t\n]+ -> Water {avoid} defines that every
token without spaces, tabs and newlines can be parsed as
water, while the avoid attribute assigns a low priority
to this production. Thereby, chunks of the form Level
DataName (i.e., islands) are strictly preferred over water.
This grammar is very concise because it only defines the
structure of constructs of interest.

Level-number
data-name-or-filler?
Data-description-entry-clauses
"."

-> Data-description-entry

Figure 2. The base-line production for data declara-
tions; adopted from [LV99].

module DataFieldsWithContext
imports Water DataParts
context-free syntax

"DATA DIVISION"
DataChunk*
"PROCEDURE DIVISION" -> Chunk
Level DataName -> DataChunk
Water -> DataChunk

Figure 3. A revision of Fig. 1 to rule out
false positives outside the data division; adopted
from [Moo02].

The relation with a base-line grammar We will now re-
view the relation of the island grammar from above with a
suitable base-line grammar for Cobol. In general, we want
to be sure that if we used the base-line grammar to do the
extraction of constructs of interest, then we obtain the same
results as with the island grammar. We will here consider
the grammar for VS Cobol II as of [LV99] as the base-
line grammar for Cobol. In Fig. 2, the base-line production
for data declarations is presented. This inspection reveals
that the island production for DataField chunks actually
covers some part of the base-line production for data de-
scription entries. In particular, the clauses of such an en-
try (e.g., PIC ...), and the terminating period “.” are omit-
ted from the chunk production. Also, DataField chunks
are simply assumed to occur in a flat sequence of chunks,
while Data-description-entry occurs in the context of
other base-line productions for the data division of a Cobol
program. The general question is now if the island gram-
mar admits false positives and false negatives when trying
to recognise constructs of interests.

A false positive is a substring which is parsed by the is-
land grammar as an island, but which does not correspond to
a construct of interest (judging on the basis of the base-line
grammar). The following fragment triggers a false positive:

01 FLD1 PIC 99.
01 FLD2 PIC 99 VALUE 42 COMP-3.

That is, "42 COMP-3" matches with the island pro-
duction Level DataName -> Chunk but not with
Data-description-entry in the base-line grammar.
This false positive can be fixed by rejecting COMP-3 as a
data name. In SDF this can be done as follows:

"COMP-3" -> DataName {reject}

Eventually, all or most reserved Cobol words should be
rejected like this. This is error-prone when it is done
manually, and without reference to a base-line grammar.
For other sorts of false positives, different provisions are
needed. For example, in [Moo02], a revision of the island
grammar for data declarations is proposed which makes
sure that we only search for DataField chunks within the
data division, and not accidentally in the procedure division.
Indeed, a numeric literal followed by a name can also very
well form part of some statements, e.g., in:

DISPLAY 01 FLD1.

The required revision is shown in Fig. 3. There are now two
levels of chunks. At the top level, we search for the content
of the data division, and at the inner level, we search for
data fields in a list of data chunks.

A false negative is a substring which is a proper construct
of interest according to the base-line grammar, but which is
not recognised by the island grammar. Let us suppose that
the constructs of interests are all data declarations — not
just named ones. Then the following fragment contains two
false negatives:

01 REC1.
03 PIC X.
03 FILLER PIC X.

The substring "03 PIC X." matches with the base-line
production of Data-description-entry because it is an
entry without any data name. By contrast, the island gram-
mar will not recognise this special form. Also, the sub-
string "03 FILLER PIC X." is not recognised by the is-
land grammar. Here we assume that reserved words such
as FILLER were rejected as data names as needed above for
handling false positives.

The cure — Sharing structure We contend that it is not
straightforward to determine if an island grammar admits
false positives or negatives. Once false positives or nega-
tives were identified, one still has to revise the island gram-
mar by imposing more structure on chunks, by adding re-
strictions, priorities, or others. Our key insight, which we
concluded from these observations, is that the status of tol-
erant parsing becomes radically more clear if the link be-
tween a tolerant grammar and its base-line grammar can be
clearly identified in terms of shared structure. For example,
we could refactor the island grammar for data declarations
so that it becomes compliant with the base-line grammar. In
this case, we will obtain chunk productions as follows:

Data-description-island -> Chunk
Level (DataName|"FILLER")? Water* "."

-> Data-description-island

The nonterminal Data-description-island can
be directly mapped onto the base-line nonterminal
Data-description-entry. (If we wanted to express
that only named data fields are relevant, then we would re-
move the relevant branches of the production by a grammar
transformation.) It remains to share more structure in order
to enforce the right context for data description entries.

3. A formal definition of a tolerant grammar

We will now define the notion of a tolerant grammar. To
this end, we define an approximation relation on grammars.
Here we employ a base-line grammar as a point of refer-
ence. As we will discuss at the end of the section, the notion
of a tolerant grammar is more general and abstract when
compared to the notion of an island grammar. The specific
intention of (well-behaved) island grammars suggests one
possible style of encoding tolerant grammars.

A nonterminal mapping The main idea underlying our
formalisation is that the correspondence between two gram-
mars is specified by a mapping � between some of the non-
terminals of both grammars. We write 	�
����	 to denote
that 	�
 approximates 	 , where some of the nonterminals of	 are mapped to a counterpart in 	�
 via � . Our notion of
a tolerant grammar is visualised in Fig. 4. We first go from
left to right (“ � ”). Given is a parse tree ��� according to the
base-line grammar 	 . The shown subtree inside � � com-
prises a construct � of interest rooted by a nonterminal � .
If 	
 is a tolerant grammar, then there must be a parse tree� ��� with a subtree rooted by ������� for the same construct
of interest � in the same context and ! . If this left-to-right
correspondence holds, there will be no false negatives. We
now go from right to left (“ " ”). Basically, the inverse con-
dition must hold, and then there will be no false positives.
Here, it is important that we restrict both “ � ” and “ " ” to
the language generated by 	 (i.e., #$�%	��) when we require
that the tolerant grammar 	
 and its base-line grammar 	
agree on the substrings � for constructs of interest. The fact
that 	�
 is tolerant is modelled by the fact that 	�
 can still
recognise more substrings as constructs of interest for in-
puts that are in #$�&	�
'� but not in #$�&	�� . The details of the
definition follow.

Context-free grammars A grammar 	 is a tuple(%)+* � *-,.*0/�1 , where
)

is the set of nonterminals, � is the
set of terminals,

,
is a set of productions and

/324)
is the

start symbol as usual. In the sequel, we let � , , ! range over
the set of strings �65 whereas 7 , 8 , 9 range over the set of
sentential forms :)<; ��=>5 , and � ranges over the set of non-
terminals

)
. We assume the standard derivation relation on

sentential forms. That is, 7$�69?� � 7@8A9 holds if there

s s

tx y x t y

for all x t y in L(G)

TGparse tree TGparse tree

n m(n)
no false positives

no false negatives

Figure 4. Correspondence between a tolerant gram-
mar and a base-line grammar.

is a production �CBD8 . The relations 5� � and E� � denote
the common closures of � � . For example, the language
defined by 	 is the set of strings � such that

/ E�<�F� .
Definition 1 (Approximation relation on grammars) 	
and 	�
 are two grammars with the start symbols

/
and

/
 ,
respectively. � is a partial mapping from

) �&	�� to
) �%	�
G� .

We say that 	�
 approximates 	 , denoted by 	�
�� � 	 , if
the following holds for all ��H! 2 #$�%	�� , � 2I) �&	�� with�F�%���@JKML :/ 5� � 3�N! O � E� � �

"P� /
 5�C� � Q�F�%����! O ������� E�C� � � R

Decidability The approximation relation defines equality
of generated languages except for the provision of the non-
terminal mapping � and the asymmetry to consider strings
from #$�%	�� only. This property is obviously undecidable.
However, in Sec. 4, we present a process for the derivation
of tolerant grammars from a base-line grammar such that
the approximation property follows from the construction.

Filtering derivations In reality, parsing is not just plain
simulation of the derivation relation for context-free gram-
mars. Actual parsing technology relies on a number of id-
ioms such as ‘prefer-shift-over-reduce’ for LR parsers, se-
mantic predicates for top-down parsers, or disambiguation
constructs for generalised LR parsing. We reflect the po-
tential of such idioms in our setting by a single provision.
That is, we add a filter S , which is a predicate over deriva-
tions. Given a grammar 	 K (&)+* � *T,.*T/U* S 1 , a derivation/ �C�WVXVYV.�C�ZVXVXV.�<�[� is constrained to also pass the
filter S . Def. 1 does not need any modification. This pro-
vision effectively abstracts from idiosyncratic issues of spe-
cific parsing technology.

Tolerant grammars vs. island grammars Moonen gives
a definition of island grammars in [Moo01]. His definition
requires that the island grammar accepts more input strings
than a reference grammar. More specifically, it requires that
the island grammar accepts constructs of interest in strings
that are not accepted by the reference grammar. However,
the nonterminal mapping that we have introduced is not
part of Moonen’s definition. And because this mapping is
missing, reasoning about false positives and negatives is not
facilitated. In particular, degenerated grammars are island
grammars. For example, for every 	 K (&)+* � *T,.*T/\1 we can
construct the following degenerated island grammar which
is obviously by far too liberal because it accepts � 5 :
	�] K (: /^* �_= * � * : / Ba` *T/ Ba� / = ; :Y�+Ba�Xb � 2 ��= *0/\1

Furthermore, while Moonen’s definition refers to a refer-
ence grammar, there is no systematic process which would
utilise this reference grammar (say, base-line grammar) for
the derivation of island grammars. The subsequent section
present such a process for tolerant grammars.

Styles of tolerant grammars Moonen’s definition also
states that the reference grammar has a higher complexity
than the island grammar. We omit such intentions from our
abstract, formal definition of tolerant grammars. Neverthe-
less, different styles of tolerant grammars can be identified
with (well-behaved) island grammars as one example. Here,
we propose to reserve the notion of an island grammar for
grammars with little structure: most of the input is parsed
as water and only certain substrings are parsed as islands.
(This is well in line with the island grammars in the lit-
erature.) Then, tolerant grammars of a different style are
skeleton grammars. These are grammars that share their
context-free structure with a base-line grammar down-to a
certain depth in the parse tree. In the next section, we will
present a constructive approach for deriving tolerant gram-
mars that are in fact skeleton grammars.

4. The derivation of a tolerant grammar

We will now describe a process for the derivation of tol-
erant grammars (in fact, skeleton grammars) from a base-
line grammar. To this end, we will employ a Cobol re-
engineering exercise as the running example.

Contract productions We will first motivate the transfor-
mation underlying our running example so that the relevant
grammar productions can be determined. The transforma-
tion is meant to eliminate Cobol’s jump statement NEXT
SENTENCE. (This is a typical operation of a restructuring
suite [Vee03].) Here, is a Cobol snippet:

context-free syntax
"CONTINUE" -> Statement
"NEXT" "SENTENCE" -> Statement
Statement* -> Statement-list

variables
"Stat*" [0-9]* -> Statement

replace(Stat*1 NEXT SENTENCE Stat*2)
= replace(Stat*1 CONTINUE)

Figure 5. A transformation rule and the associated
contract productions.

IF A>B THEN
MOVE 1 TO B

ELSE
NEXT SENTENCE
DISPLAY "WILL NEVER BE REACHED".

DISPLAY "START OF NEXT SENTENCE".

Because of the way the jump statement NEXT SENTENCE
statement is used in the sample code, it can be translated
into a no-op CONTINUE statement subject to removal of the
dead code following NEXT SENTENCE. This leads to the fol-
lowing result:

IF A>B THEN
MOVE 1 TO B

ELSE
CONTINUE.

DISPLAY "START OF NEXT SENTENCE".

The definition of the transformation and the relevant pro-
ductions are given in Fig. 5. The actual transformation is
implemented using term rewriting in the ASF+SDF Meta-
Environment [BDH E 01]. Since the corresponding produc-
tions express to what extent the transformation depends on
the base-line grammar, we will refer to them as the contract
productions.

From the contract productions to a skeleton grammar
Clearly, the contract productions have to be complemented
to obtain a complete grammar that can be used to parse
actual source code. The overall process for the derivation
of a skeleton grammar is shown in Fig. 6. There are basi-
cally three steps. Firstly, the contract productions are com-
plemented by all base-line productions that are needed to
reach constructs of interest from the start symbol. This
step is called root completion. Secondly, all undefined or
partially defined nonterminals are provided with liberal de-
faults. This step is called default completion. Thirdly, tol-
erance can be customised to favour parse errors for certain
symptoms of inappropriate contract productions. This step
is called default restriction. We will discuss these steps
in turn. To illustrate what is coming, the resulting skele-
ton grammar for our running example is shown in Fig. 7.

grammar
Skeleton

Root completion Default completion Default restriction
Root−completed Default−completed

grammargrammar

Default
productions

Base−line
grammar

productions
Contract

Figure 6. Construct a tolerant grammar (in fact, a skeleton grammar) from contract productions, a base-line grammar,
and default productions; this is a semi-automatic process.

contract.1 "CONTINUE" -> Statement

contract.2 "NEXT" "SENTENCE" -> Statement

contract.3 Statement* -> Statement-list

root.1 Statement-list "." -> Sentence

root.2 Label-name "." Sentence* -> Paragraph

root.3 Paragraph-without-header? Paragraph* -> Paragraphs

root.4 Section-header "." Paragraphs -> Section

root.5 Section-without-header Section* -> Sections

root.6 Proc-division-header Sections -> Proc-division

root.7 Id-division? Env-division? Data-division? Proc-division? -> Program

default.1 Token-start-verb Token-stat* "." -> Statement

default.2 Integer | User-defined-word -> Label-name

default.3 Sentence+ -> Paragraph-without-header

default.4 Label-name "SECTION" Integer? -> Section-header

default.5 Paragraphs -> Section-without-header

default.6a "PROCEDURE" "DIVISION" Using-phrase "." Declaratives? -> Procedure-division-header

default.6b "USING" User-defined-word* -> Using-phrase

default.6c "DECLARATIVES" "." Token-excl-end* "END" "DECLARATIVES" "." -> Declaratives

default.7 "IDENTIFICATION" "DIVISION" "." Token-excl-env-data-procedure* -> Id-division

default.8 "ENVIRONMENT" "DIVISION" "." Token-excl-data-proc* -> Env-division

default.9 "DATA" "DIVISION" "." Token-excl-proc* -> Data-division

Figure 7. The productions of the constructed grammar; auxiliary token productions are omitted.

The productions are grouped for the contract, root com-
pletion, and default completion. The productions for root
completion were reused from the base-line grammar for
VS Cobol II [LV99]. The default productions were derived
semi-automatically from the base-line grammar.

Automated root completion In order to share context-
free structure with the base-line grammar, we add all pro-
ductions that are needed to connect the nonterminals for
constructs of interest with the start symbol. This is an im-
portant provision for making sure that constructs of interest
will only be recognised in the right context. In our example,
we need to connect Statement with Program. In Fig. 8,
root completion is defined as an algorithm that constructs
the root-completed grammar. This algorithm is completely
general (i.e., no side conditions, no heuristics), and it is triv-
ially implemented. The algorithm transitively selects all the
base-line productions that are needed for reaching the start
symbol. Note that the automation of root completion im-

plies that its added value comes for free. In Fig. 7 all pro-
ductions root.1 – root.7 are shown that will be collected for
the contract productions contract.1 – contract.3 during root
completion.

Extent of default completion Some of the nonterminals
in the root-completed grammar can be completely unde-
fined. Both contract productions and the productions in-
cluded by root completion can involve such unresolved ref-
erences. In our running example, Data-division in the
production root.7 is such an undefined nonterminal. De-
fault completion shall provide a definition for these unde-
fined nonterminals. Defined nonterminals also necessitate
a default completion for two reasons. Firstly, some nonter-
minals might be partially defined, e.g., Statement in our
example, because the contract productions only cover some
forms. Secondly, to improve tolerance, it is beneficial to
provide defaults for most nonterminals anyway.

Notation: c�d�e�f vs. ghd�e�f denote the nonterminals that are de-
fined vs. used by the productions e . ijd�e�f denotes the union ofc�d�e�f and ghd�e�f .

———————————————————————–

k Input:l
Base-line grammar m�nporq�i$ntsvutswexntszy|{ .l
Contract productions e~}���e n .k Output:l
Root-completed grammar m��Norq�i@��s�uAszex��szy|{ .k Algorithm:

1. e �j� oCe } (initialisation).
2. Repeat steps (a) and (b) as long as possible.

(a) Pick a production �3�e~n�_e �
where � is of the form �Q���A���|� ,
and �����Pc�d�e~��f-s�����Pc�d�e~�~f .

(b) e �j� oCe �3�Q� ��� .
3. i$� � o�ijd�e~��f

Figure 8. Automated root completion.

Parsing with defaults In the default productions from
Fig. 7, we use nonterminals the names of which start with
Token-. . . . Parts of the parse tree in which we are not in-
terested are parsed as sequences of such tokens. So these
nonterminals root waterish areas in the parse tree. Their
definitions are derived automatically by enumerating all the
kinds of tokens that can possibly occur in the relevant con-
text. With the default productions from Fig. 7 we can parse
a fragment like the following:

ACCEPT CURRTIME FROM DATE
CONTINUE
ADD A TO B

This fragment contains three statements: the first and the
last statement are parsed via the liberal default production
for statements, and the CONTINUE statement in the middle
is covered by one of the contract productions. We generally
assume that default productions are associated with prior-
ities such that non-default productions are preferred over
default productions.

Naive defaults The ultimate approach is to use the struc-
ture of the base-line grammar in deriving default produc-
tions that respect the approximation property. On the other
hand, the default productions are meant to be very liberal in
the interest of tolerance. A naive approach is to define de-
faults such that they generate Token*. This would suggest
default productions as follows for the running example:

default.1 Token* -> Statement
...
default.9 Token* -> Data-division

Figure 9. Stable recognition of waterish subtrees in
a parse tree. The filled triangles represent subtrees
that originate from default productions. The bullets
represent synchronisation tokens.

Such default productions will immediately guarantee the
“ � ” direction of the approximation relation because the
completed grammar will be strictly more general than the
base-line grammar. The “ " ” requires a refinement of this
naive approach as discussed in the sequel.

Synchronisation — By example Essentially, we should
refine the simple default productions in a way that some
minimal synchronisation with the input is enforced. This
idea is illustrated in Fig. 9. All the default productions from
Fig. 7 contain synchronisation tokens at the beginning or the
end or both. Here is, for example, the default production for
the data division (default.9 in Fig. 7):

"DATA" "DIVISION" "."
Token-excl-proc*

-> Data-division

Here, we assume that Token-excl-proc is defined to
comprise all possible tokens excluding "PROCEDURE". This
production expresses that the content of the data division
starts necessarily with "DATA" "DIVISION" "." and it
ends when the subsequent division starts. This is a very
liberal definition but still it is safe since it is in accordance
with the base-line grammar. For example, one can check
that the token sequence "DATA" "DIVISION" "." does
indeed not occur anywhere else but at the beginning of the
data division. Another example is the default production for
Cobol statements:

Token-start-verb Token-stat* -> Statement

Here, Token-start-verb comprises all start verbs of
Cobol statements, i.e., "ACCEPT", "ADD", etc., whereas
Token-stat is defined to comprise all tokens that can pos-
sibly occur in Cobol statements. This will exclude start
verbs and the “.” to finish a Cobol sentence.

Automated synchronisation The kind of synchronisa-
tion information that we used in the examples given above
can be derived from the base-line grammar by a system-
atic analysis. To this end, we need to compute some sets
of tokens for each nonterminal very much in the sense of
the standard first and follow sets known from parsing the-
ory [AU73, ASU86]. The following token sets are of use:
kp���-�w�w� dG��f — first in the strings derived from � .k�� �Y�w� � dG��f — last in the strings derived from � .kp¡0¢Y�'� ¢Y£t� dG��f — following � in sentential forms.k�¤H��¥�¦-¥�§¨¥Y� dG��f — preceding � in sentential forms.k�¤H��¥'�x© � dG��f — anywhere in prefixes of � .k�¤^¢Y�w� ��©�� dG��f — anywhere in postfixes of � .krªw¢�§Y« � dG��f — anywhere in the strings derived from � while

ignoring the first and the last token.

Using these sets, we can establish safe defaults. For exam-
ple, for a given nonterminal � , we can define its default as
“ ¬Q�-¯® ” subject to the following side conditions:

k ���T°± �N² (nonempty derivation)kp���-�w� � dG��f�o �X³ � (definite begin)k�� �Y�w� � dG��f�o �X´ � (definite end)k ³ �� ¤µ�w¥'�x© � dG��f (distinguished begin)k ´ �� ¤^¢Y�w� �x©�� dG��f (distinguished end)k ´ �� ªz¢�§X«^� dG��f (distinguished end cont’d)k�¶ o ªw¢�§Y« � dG��f (all possible tokens)

The nonterminal Declaratives meets these specific cri-
teria, and hence the production default.6c is approved. Us-
ing similar criteria, we can provide default productions in a
systematic manner. (We need to consider more look ahead
than just one token in some cases. Also, we need to con-
sider more relaxed scenarios than the one above.) A detailed
study of the completeness and correctness of this approach
is beyond the scope of the present paper. Cobol is certainly
suited for this approach to the definition of synchronisation
tokens because of its pervasive use of reserved keywords.
In general, the use of a token for synchronisation is maybe
better subject to approval by the grammar engineer because
the automated insistence on certain synchronisation tokens
could make tolerant parsing insufficiently tolerant.

Default restriction At this point, we have derived a
proper tolerant grammar. There is one remaining issue,
namely the possibility of quality problems with the base-
line grammar. That is, we might intend to cover a certain
construct by a contract production but its definition in the
base-line grammar is incomplete or incorrect. For exam-
ple, we might intend to cover all add statements while the
base-line grammar lacks some form. If this missing form
is exercised by source code, it will be skipped via the de-
fault. This is a false negative in the special sense that the

(unaccessible) intended syntax for constructs of interest de-
viates from the available base-line grammar. To tackle this
problem, one can restrict defaults so that they do not ap-
ply too easily. Then, parse errors manifest the inadequacy
of the contract productions. For example, to disable the de-
fault production for add statements it is sufficient to exclude
"ADD" from the definition of Token-start-verb.

5. Practical experiences

We have applied our process for parser development to
Cobol while we used the relatively correct and complete
grammar for VS Cobol II [LV99] as base-line grammar.
(This grammar was recovered earlier from IBM’s indus-
trial standard [IBM93] using other grammar engineering
techniques [LV01].) We have automated the process for
deriving skeleton grammars using grammar transforma-
tions [Läm01, LW01] as supported by the Grammar De-
ployment Kit (GDK) [KLV02].1 Using GDK, we can gen-
erate parser specifications for different parsing technolo-
gies. Our focus was on making the process work for the
SDF syntax definition formalism [HHKR89] and scanner-
less generalised LR parsing [Vis97, BSVV02] as available
in the ASF+SDF Meta-Environment [BDH E 01]. This focus
is triggered by our use of the ASF+SDF Meta-Environment
for the implementation of transformation technology. We
do not rely on specific SDF features other than avoid at-
tributes for assigning lower priorities to default productions.
This can be achieved with other parsing technology as well.

We have applied tolerant parsing in a project with a hi-
erarchy of components, each defining several nontrivial
transformation rules for restructuring Cobol programs; see
[Vee03]. Each component relies on a designated skeleton
grammar derived from the component-specific contract pro-
ductions. Tolerant parsing is compositional. That is, with-
out any changes to the components we can take the union
of all the contract productions for the various components
and derive a combined skeleton grammar that works for all
components. In the project, the components were applied
on a source base (· 2,000,000 LoC of some forms of IBM
Cobol and · 2,000,000 LoC of some forms of Microfocus
Cobol). While precise parsing according to the base-line
grammar would have been unsuccessful, we succeeded with
tolerant parsing. The various relevant constructs were prop-
erly defined by the base-line grammar since all encountered
dialects agreed on them. So no dialect-specific customisa-
tion was needed.

The skeleton grammars which are derived from the contract
productions are typically by factor 3–15 smaller when com-
pared to the base-line grammar. Here are some milestone
grammar sizes:

1GDK URL: http://gdk.sourceforge.net

analysis

Precise
parsing

parsing grammars

Lexical

Fuzzy Island Skeleton
grammars repair

Error

Figure 10. A spectrum of approaches for source code analysis.

Grammar Productions LOC Keywords
Simple statement skeleton 51 209 82
Nested statement skeleton 268 438 129
Base-line grammar 888 1228 325

We have experienced that the runtime for the different
parsers lies within the same range; parsing with the base-
line grammar is as fast as parsing with a small skele-
ton grammar. Note, that this was not the case when we
started our project because a less systematic default comple-
tion caused many (local) ambiguities and in turn penalties.
The described scheme for default productions using simple
means for synchronisation is very robust.

6. Related work

Fuzzy parsing In [Kop97], the notion of fuzzy parsing is
defined and engineered. Fuzzy parsers perform syntactical
analysis on selected portions of the input for the purpose of
the extraction of a partial source code model. The key idea
is to identify ‘anchor terminals’ that trigger the application
of context-free productions. That is, the input is skipped
until an anchor ¸ is found, and then context-free analysis
is attempted using a production starting with ¸ . This is a
rather lexical approach because no context-free structure is
employed to determine the context for constructs of interest.

Island grammars A potent refinement of fuzzy parsing
is the notion of an island grammar [DK99, Ver00, Moo01,
Moo02]. A unified syntax definition formalism is used to
specify islands and water. Island grammars from the liter-
ature are geared towards very specific parsing technology.
Island grammars amalgamate lexical and context-free anal-
ysis rather heavily; see the lexical definition of Water in
Fig. 1 which tends to compete with problem-specific forms
of chunk. As discussed in Sec. 2, island grammars can
be radically concise for simple analysis and transformation
problems when compared to an up-front development of a
conservative parser. Furthermore, the island grammar ap-
proach does immediately lead to very tolerant parsers.

Degrees of tolerant parsing In Fig. 10, we place var-
ious approaches on a chart regarding their relative posi-
tion in between lexical analysis and precise parsing. Fuzzy
parsers involve a lexical criterion to switch to the context-
free mode. Island grammars can mix lexical vs. context-free

style in more sophisticated ways. Still the islands are found
in lists of chunks with little or no similarities to the parse-
tree structure suggested by a base-line grammar. Skeleton
grammars employ ordinary context-free productions where
lexical skips only occur at subtrees the structure of which is
not relevant. Error-repairing parsers can be seen as a way
to achieve tolerance. The simple approach is ‘panicking’
using stop symbols [AU73, ASU86] on top of an otherwise
precise grammar. So lexical skips only occur for recovery
from parser errors. A sophisticated approach is described
in [BH82] where recovery from all errors is guaranteed, and
recovery is driven by the grammar structure rather than us-
ing a criterion for plain lexical panicking.

7. Conclusion

We have first presented a formal definition of tolerant gram-
mars. The parsers that are derived from our tolerant gram-
mars accept inputs that use unanticipated phrases in the
sense of dialects. Our definition specifically addresses the
issue of false positives and false negatives, which are to
be avoided when performing tolerant parsing. We have
then described a semi-automatic process to derive a tolerant
grammar for the productions that are needed for a specific
grammar-based software tool. We have demonstrated our
approach in the context of Cobol re-engineering. The result-
ing parsers scale as required for use in industrial projects.
Compared to previous work on error repair, fuzzy parsing,
and island grammars, the following shift of focus and added
value can be pointed out:
� We reuse productions from an existing base-line gram-

mar to define the structure of constructs of interest.
That is, we do not advocate the design of problem-
specific productions, as in the case of island grammars.
Because all our components for system transformation
and analysis are based on one base-line grammar, com-
ponent composition is possible.

� We advocate a form of tolerant grammars which
we call skeleton grammars because they share their
context-free structure with a base-line grammar down-
to a certain depth in the parse tree. Thereby, we estab-
lish the right context for constructs of interest, which
in turn contributes to reliable tolerant parsing, without
false positives and false negatives.

� We use grammar transformations to select, adapt, com-
pose, and generate productions. This contributes to the
automation of tolerant grammar development. Without
grammar transformations, some elements of our pro-
cess, e.g., the derivation of auxiliary token nontermi-
nals, would be tedious and error-prone.

In our ongoing work, we attempt to identify a simple
domain-specific language for tolerant parser development.
It provides the following concepts:

� Selection and specialisation of contract productions.� Directives for synchronisation tokens.� Directives for restricting defaults.� Derivation of a designated abstract syntax.� Contract-based test case generation.� Seamless support of different parsing technologies.

Furthermore, the completion approach favoured for the de-
velopment of skeleton grammars should be dualised. We
think of relaxing the structure of the base-line grammar sys-
tematically until a certain normal form is reached.

Acknowledgment We are grateful to Mark van den Brand,
Jim Cordy, Paul Klint, Jan Kort, Leon Moonen, Niels Veerman,
Chris Verhoef, and Ernst-Jan Verhoeven for discussions on the
overall subject of the paper. The three anonymous ICSM 2003
reviewers proved to be very helpful.

References

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
principles, techniques, tools. Addison-Wesley, 1986.

[AU73] A.V. Aho and J.D. Ullman. The theory of parsing,
translation, and compiling. Prentice-Hall, Engle-
wood Cliffs (NJ), 1972–73.

[BDH ° 01] Brand, M.G.J. van den, Deursen, A. van, J. Heering,
Jong, H.A. de, Jonge, M. de, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju,
E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Devel-
opment Environment. In Proc. Compiler Construc-
tion (CC’01), volume 2027 of LNCS, pages 365–370.
Springer-Verlag, 2001.

[BH82] D.T. Barnard and R.C. Holt. Hierarchic Syntax Error
Repair for LR Grammars. International Journal of
Computer and Information Sciences, 11(4):231–258,
1982.

[BSVV02] M.G.J. van den Brand, J. Scheerder, J. Vinju, and
E. Visser. Disambiguation Filters for Scannerless
Generalized LR Parsers. In Proc. Compiler Construc-
tion (CC’02), volume 2304 of LNCS, pages 143–158.
Springer-Verlag, 2002.

[DK99] A. van Deursen and T. Kuipers. Building Documen-
tation Generators. In Proc. International Conference
on Software Maintenance (ICSM’99), pages 40–49,
1999.

[HHKR89] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers.
The syntax definition formalism SDF — Reference
manual. SIGPLAN Notices, 24(11):43–75, 1989.

[IBM93] IBM Corporation. VS COBOL II Application Pro-
gramming Language Reference, 4th edition, 1993.
Publication number GC26-4047-07.

[KLV02] J. Kort, R. Lämmel, and C. Verhoef. The Gram-
mar Deployment Kit. In Proc. Language Descrip-
tions, Tools, and Applications (LDTA’02), volume 65
of ENTCS. Elsevier Science, April 2002. 7 pages.

[Kop97] R. Koppler. A systematic approach to fuzzy pars-
ing. Software Practice and Experience, 27(6):637–
649, 1997.

[Läm01] R. Lämmel. Grammar Adaptation. In Proc. Formal
Methods Europe (FME’01), volume 2021 of LNCS,
pages 550–570. Springer-Verlag, 2001.

[LV99] R. Lämmel and C. Verhoef. VS COBOL II
grammar Version 1.0.3, 1999. Available at:
http://www.cs.vu.nl/grammarware/vs-cobol-ii/.

[LV01] R. Lämmel and C. Verhoef. Semi-Automatic Gram-
mar Recovery. Software—Practice & Experience,
31(15):1395–1438, December 2001.

[LW01] R. Lämmel and G. Wachsmuth. Transformation
of SDF syntax definitions in the ASF+SDF Meta-
Environment. In Proc. Language Descriptions, Tools
and Applications (LDTA’01), volume 44 of ENTCS.
Elsevier Science, April 2001.

[Moo01] L. Moonen. Generating Robust Parsers using Island
Grammars. In Proc. Working Conference on Reverse
Engineering (WCRE’01), pages 13–22. IEEE Press,
October 2001.

[Moo02] L. Moonen. Lightweight Impact Analysis using Is-
land Grammars. In Proc. International Workshop
on Program Comprehension (IWPC’02). IEEE Press,
June 2002.

[SSV02] M.P.A. Sellink, H.M. Sneed, and C. Verhoef. Restruc-
turing of COBOL/CICS Legacy Systems. Science of
Computer Programming, 45(2–3):193–243, 2002.

[Vee03] N.P. Veerman. Revitalizing modifiability of legacy
assets. In Proc. Conference on Software Maintenance
and Reengineering (CSMR’03), pages 19–29. IEEE
Press, 2003.

[Ver00] E.J. Verhoeven. Cobol island grammars in SDF,
2000. Master’s thesis, University of Amsterdam.

[Vis97] E. Visser. Scannerless Generalized-LR Parsing. Tech-
nical Report P9707, Programming Research Group,
University of Amsterdam, July 1997.

