
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Quantification of structural information: On a question
raised by Brooks

J. Heering

REPORT SEN-E0311 DECEMBER 8, 2003

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Quantification of structural information: On a
question raised by Brooks

ABSTRACT
We introduce the notion of "generative software complexity" to illustrate some of the problems
one may run into when trying to tackle a special case of a question recently raised by Brooks.

1998 ACM Computing Classification System: D.2.8
Keywords and Phrases: structural complexity of software; quantification of structural information
Note: Published in ACM SIGSOFT Software Engineering Notes 28(3) (May 2003)

Quantification of Structural Information: On a Question Raised by Brooks

Jan Heering
CWI

Kruislaan 413
1098 SJ Amsterdam

The Netherlands
e-mail: Jan.Heering@cwi.nl

www: www.cwi.nl/∼jan

Abstract

We introduce the notion of generative software complexity
to illustrate some of the problems one may run into when
trying to tackle a special case of a question recently raised by
Brooks.

The question

In [Bro03], Brooks proposes three great challenges for com-
puter science: quantification of structural information, soft-
ware estimation, and user interface design for computer sys-
tems. Only the first one will concern us here. After recalling
the successes of Shannon’s information theory, Brooks states

We have no theory, however, that gives us a met-
ric for the information embodied in structure, es-
pecially physical structure. We know that an auto-
mobile is a more complex structure than a rowboat.
We cannot yet say it is x times more complex, where
x is some number.

We indicate some of the problems one may run into when
trying to tackle this important question.

Automobiles vs. wooden rowboats

Is an automobile a more complex structure than a rowboat?
At first sight, it certainly is, but at what level of structural
detail? Is an automobile made of non-biological materials
still more complex than a rowboat made of wood? This is
less obvious. Wood will probably score high on any struc-
tural complexity scale. A procedure or recipe for synthesiz-
ing wood out of basic chemical substances might be pretty
long, for instance. The only reason we consider wood to be a
simple substance is that nature provides it virtually for free.
We take its “construction” for granted.

Of course, this is not what Brooks has in mind when he
states that an automobile is a more complex structure than a
rowboat. He tacitly assumes that the structural complexity
of the material the boat is made of does not matter. He is
talking about a kind of generic rowboat made of a suitable,
but otherwise unspecified material. Perfectly good rowboats
can be constructed from the same kind of materials cars are
made of. Nevertheless, this example indicates that structural

complexity has to be measured relative to a set of compo-
nents or materials whose internal structure does not matter
and is ignored. This structural cut-off has to be specified
explicitly for the complexity comparison to make sense.

Structural complexity of software

Brooks emphasizes the importance of the quantification of
physical structure, but it is no less important and perhaps
somewhat easier to contemplate the quantification of soft-
ware structure. This has the additional advantage of making
it a computer science concern (and a fitting subject for SEN)
rather than a problem in theoretical physics or chemistry.

Structural complexity of software should not be confused
with computational complexity. The latter is concerned with
various aspects of the run-time behavior of programs, such
as their use of time and memory as a function of input size.
Structural complexity of software, on the other hand, is pri-
marily concerned with the structure of the program text as
a static object.

Don’t we already know how to quantify the structural com-
plexity of software? Certainly, McCabe’s cyclomatic and
essential complexity measures, both based on the program
flowgraph, do just that. Other measures try to capture other
aspects [FP96, Chapter 8]. Structural complexity manifests
itself in different ways, it seems. This is one of the problems
one runs into. It looks as if no single measure is satisfac-
tory for all purposes. Even lines of code (LOC) is a useful
indicator of structural complexity.

Generative software complexity

Since there are so many already, let’s introduce yet another
measure. For the time being we call it generative software
complexity. It measures the effectiveness of applying pro-
gram generation techniques to the software in question. The
lower the generative complexity, the larger the potential of
program generation This measure implicitly underlies soft-
ware engineering techniques like (imperfect) clone detection
[Bak95], program generation [SBnd], and generative pro-
gramming [Big98, CE00].

To begin with, we fix a general purpose programming lan-
guage L to write program generators in. In practice, it may
be hard to find a suitable language (Lisp comes to mind),

1

but for the present purpose any Turing-complete language
will do.

The programs in whose generative complexity we are in-
terested need not be written in L. Given such a program, its
generative complexity is defined as the length of the shortest
program generator (written in L) producing it.

The length of the generator is measured in number of (lex-
ical) symbols or, less precisely, in LOC. Given the shortest
generator G for a program P , the latter can be replaced by
a tiny shell script that first runs G and then runs the output
of G (which happens to be P). This script is very short, so
the total length of G and the shell script combined is for all
practical purposes still equal to the length of G.

Generative software complexity does not use a simple mea-
sure like LOC directly, but inserts a program generation
phase and then applies the simple measure to the genera-
tor. The resulting two-stage measure is both shallow and
deep:

• It is shallow, because as far as generative complexity is
concerned a program is only a string of symbols without
meaning.

• It is deep, because there may be deep regularities in
the program text whose discovery is highly non-trivial.
The shortest generator has to use these regularities to
beat other generators. Less attractively, it may also use
accidental textual patterns unrelated to the program’s
intent.

What is generative software complex-
ity?

Generative software complexity is actually the Kolmogorov
complexity of software. Kolmogorov complexity is a fun-
damental notion in information theory (algorithmic infor-
mation theory), inductive learning, pattern recognition, and
other areas [LV97].

The software perspective allowed us to describe generative
complexity in software engineering terms and indicate its
links with established software engineering practices. The
Kolmogorov complexity perspective yields further insights
and allows the use of a different terminology:

1. Program generators are compressed programs. Pro-
grams with low generative complexity are highly redundant.
The shortest generator itself has maximal generative com-
plexity. It cannot be compressed further.

2. After his car vs. rowboat example quoted in the begin-
ning, Brooks added

Yet we know that the complexity is related to the
Shannon information that would be required to
specify the structures of the car and the boat.

It can now be seen that this is true for generative software
complexity except that it is not Shannon information, but
algorithmic information that is involved. In fact, generative

software complexity is the amount of algorithmic information
needed to specify the program. The executable specification
in question is the shortest program generator. Its length (in
bits) is the amount of algorithmic information that is needed.

3. Kolmogorov complexity (and hence generative complex-
ity) are uncomputable. Asking for the shortest generator is
simply too much. We reach a fundamental theoretical limit
here.

Concluding remarks and future work

Quantification of structural information is a hard problem,
even in the special case of software. Structural complexity
manifests itself in different ways, it seems. This leads to
different metrics that try to capture different aspects of it.

Generative software complexity (Kolmogorov complexity
of software) is implicit in many established software engi-
neering practices, but it is uncomputable. A practically use-
ful and well-defined computable approximation to generative
software complexity may exist, however, perhaps based on
advanced pattern recognition. This remains to be seen.

An expanded version of this note is in preparation.

References

[Bak95] B. S. Baker. On finding duplication and near-
duplication in large software systems. In Proceed-
ings of the 2nd Working Conference on Reverse En-
gineering (WCRE ’95), pages 86–95. IEEE, 1995.

[Big98] T. J. Biggerstaff. A perspective of generative reuse.
Annals of Software Engineering, 5:169–226, 1998.

[Bro03] F. P. Brooks, Jr. Three great challenges for half-
century-old computer science. Journal of the ACM,
50(1):25–26, January 2003.

[CE00] K. Czarnecki and U. Eisenecker. Generative Pro-
gramming. Addison-Wesley, 2000.

[FP96] N. E. Fenton and S. L. Pfleeger. Software Metrics:
A Rigorous and Practical Approach. ITP, second
edition, 1996.

[LV97] M. Li and P. M. B. Vitanyi. An Introduction to Kol-
mogorov Complexity and its Applications. Springer-
Verlag, second edition, 1997.

[SBnd] Y. Smaragdakis and D. Batory. Application gen-
erators. Technical report, Department of Com-
puter Science, University of Texas at Austin, n.d.
http://www.cc.gatech.edu/∼yannis/generators.pdf.

2

