
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Extracting Mathematical Semantics from LaTeX
Documents

J. Stuber, M.G.J. van den Brand

REPORT SEN-E0307 NOVEMBER 27, 2003

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Extracting Mathematical Semantics from LaTeX
Documents

ABSTRACT
We report on a project to use SGLR parsing and term rewriting with ELAN4 to extract the
semantics of mathematical formulas from a LaTeX document and representing them in MathML.
The LaTeX document we used is part of the Digital Library of Mathematical Functions (DLMF)
project of the US National Institute of Standards and Technology (NIST) and obeys project-
specific conventions, which contains macros for mathematical constructions, among them 200
predefined macros for special functions, the subject matter of the project. The SGLR parser can
parse general context-free languages, which suffices to extract the structure of mathematical
formulas from calculus that are written in the usual mathematical style, with most parentheses
and multiplication signs omitted. The parse tree is then rewritten into a more concise and
uniform internal syntax that is used as the base for extracting MathML or other semantical
information.

1998 ACM Computing Classification System: D.3.4, I.1.1, I.1.3, I.7.4, H.5.4
Keywords and Phrases: LaTeX, MathML, parsing, mathematical formulas, rewriting
Note: Presented at Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR2003)

Extracting Mathematical Semantics
from LATEX Documents

Jürgen Stuber1 and Mark van den Brand2,3

1 LORIA École des Mines de Nancy, 615 Rue du Jardin Botanique,
54600 Villers-lès-Nancy, France.

stuber@loria.fr
2 Centrum voor Wiskunde en Informatica, Department of Software Engineering,

Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands,
Mark.van.den.Brand@cwi.nl

3 Hogeschool van Amsterdam, Instituut voor Informatica en Electrotechniek,
Weesperzijde 190, NL-1097 DZ Amsterdam, The Netherlands

Abstract. We report on a project to use SGLR parsing and term rewrit-
ing with ELAN4 to extract the semantics of mathematical formulas from
a LATEX document and representing them in MathML. The LATEX doc-
ument we used is part of the Digital Library of Mathematical Func-
tions (DLMF) project of the US National Institute of Standards and
Technology (NIST) and obeys project-specific conventions, which con-
tains macros for mathematical constructions, among them 200 prede-
fined macros for special functions, the subject matter of the project. The
SGLR parser can parse general context-free languages, which suffices to
extract the structure of mathematical formulas from calculus that are
written in the usual mathematical style, with most parentheses and mul-
tiplication signs omitted. The parse tree is then rewritten into a more
concise and uniform internal syntax that is used as the base for extracting
MathML or other semantical information.

1 Introduction

Mathematics is potentially an interesting field of application for the Semantic
Web, as the underlying semantics is relatively clear and the main problem is to
communicate it in a standard way, so it becomes machine usable, for example
by computer algebra systems or theorem provers. However, today the semantics
exists solely in the mind of the mathematician, who uses mathematical notation,
typically in LATEX, to communicate it to other mathematicians. The mathemat-
ical notation is originally two-dimensional in its graphical representation, take
for example the use of subscripts and superscripts, or the notations for fractions
and matrices. TEX reduces mathematical notation to a linear form, however as a
natural language of humans it leaves out a lot of information that can be easily
reconstructed by the human reader, for example the structure of expressions or
their types. To enable machines to work with the semantics of mathematical for-
mulas, there needs to be a notation that explicitly denotes expression structure
and makes clear exactly which operations and objects are meant in a formula.

MathML [6] is an emerging standard for representing mathematical formulae,
which however is much too verbose to be directly used by humans. For example,
a short half-a-line formula in TEX corresponds to about half a page of MathML
(see Figure 1). MathML comes in two varieties, Representation MathML which is
targeted towards graphical representation for displaying or printing, and Content
MathML designed to represent the mathematical semantics for computation or
proving. Content MathML contains only basic high-school mathematics, for a
wider variety of mathematical objects there is the OpenMath effort [16]. Both
MathML and OpenMath address mathematical formulas in isolation, whereas
OMDoc [10] allows to express the structure of mathematical documents, for
example the relation between definitions, theorems and proofs.

We use ELAN4, which combines the rewriting of ELAN [3] with the powerful
parser and development environment of ASF+SDF [7], to extract the semantics
of mathematical formulas from a LATEX document and to generate a represen-
tation in MathML. In a first stage we use the SGLR parser [4] to parse the
expression structure, which is then rewritten to an internal abstract representa-
tion, and finally to some form of MathML, currently Representation MathML.

Our project shows that it is feasible to extract mathematical formulas from a
mathematical text written in a project-specific form of LATEX. In the particular
project we worked on, the Digital Library of Mathematical Functions (DLMF)
project (http://dlmf.nist.gov/) of the US National Institute of Standards
and Technology (NIST), the subject matter was special functions, which has the
properties that there are only few types (real and complex numbers and functions
over these), and that there is a large body of macros for specific special functions.
The task would be more difficult in subjects like algebra or logic, where there are
more levels of abstraction and thus more ambiguity, and fewer easily identifiable
mathematical notions.

Due to the time frame of only three months and lack of suitable tools we were
not able to really investigate Content MathML, and we concentrated on Rep-
resentation MathML instead. However, we want to emphasize that in contrast
to other LATEX-to-MathML conversion tools [9,17], which transform a sequence
of symbols in LATEX into a corresponding mrow element in MathML indiscrimi-
nately, we deduce the complete expression structure of the formula, and that it
would thus would be much easier for us to derive Content MathML. To do this
the main thing that is missing is the disambiguation between multiplication and
function application, for example by type inference. We applied our tool sepa-
rately to the sections of the sample chapter on Airy functions.1 As this is only
a proof of concept there are still parts missing, but, for example, we can treat
the section on Scorer functions completely.2 In particular, the current prototype
cannot parse equations between expressions of function type,3 the MathML rep-
resentation for a large number of macros for special functions is still missing,

1 http://dlmf.nist.gov/Contents/AI/index.html
2 http://dlmf.nist.gov/Contents/AI/AI.12.html
3 http://dlmf.nist.gov/Contents/AI/AI.8_ii.html

http://dlmf.nist.gov/
http://dlmf.nist.gov/Contents/AI/index.html
http://dlmf.nist.gov/Contents/AI/AI.12.html
http://dlmf.nist.gov/Contents/AI/AI.8_ii.html

TEX:

\cos(\tfrac{1}{3}t^3+xt)

Internal abstract syntax:

apply(function("cos"),

apply("(_)",

apply("_+_",

apply("__",

frac("t",Int("1"),Int("3")),

superscript(id(Simple,"t"),Int("3"))),

apply("__",id(Simple,"x"),id(Simple,"t")))))

Representation MathML:

<mrow>

<mo>cos</mo>

<mo>⁡</mo>

<mrow>

<mo stretchy="false">(</mo>

<mrow>

<mrow>

<mfrac displaystyle="false" scriptlevel="1">

<mn>1</mn>

<mn>3</mn>

</mfrac>

<mo>⁢</mo>

<msup><mi>t</mi><mn>3</mn></msup>

</mrow>

<mo>+</mo>

<mrow><mi>x</mi><mo>⁢</mo><mi>t</mi></mrow>

</mrow>

<mo stretchy="false">)</mo>

</mrow>

</mrow>

Fig. 1. Blowup in the transformation from TEX to Representation MathML

and we currently do not use type inference for a more general disambiguation
between multiplication and function application.

Since we currently do not have permission to publish parts of the DLMF
chapter we worked on, we will only show small subformulas and point to the
version published on the WWW [15] where appropriate. We also use examples
from the predecessor of DLMF, the Handbook of Mathematical Functions [1],
in particular Section 10.4 on Airy Functions.

2 Mathematical notation

Mathematical notation is a language invented by human mathematicians for
communicating with other human mathematicians. As such it is a natural lan-
guage, with a tendency to suppress information that can easily be deduced by
the mathematician. For example, in contrast to programming languages which
are designed to be parsed by machines, mathematical notation leaves out many
parentheses and multiplication signs, and there is no global order of priorities to
chose the right reading.

We looked at several mathematical texts to deduce rules for parsing mathe-
matical formulas, first and foremost of course the chapter on Airy functions we
were working on, the Handbook of Mathematical Functions [1], but also other
books chosen for their variety and availability [2,5,8,12,18] to get a wider un-
derstanding of the problem. Wolfram [20] describes his understanding of math-
ematical notation, however we feel that it is not as standardized as he claims.

The omission of multiplication signs leads to an ambiguity between func-
tion application and multiplication, which can only be resolved using knowledge
about the types. For example, w(a+b) could mean that the function w is applied
to a + b, or that w is multiplied by a + b.

The omission of parentheses complicates the parsing of expressions. In par-
ticular, for elementary transcendental functions, such as sin or log, parentheses
around arguments are often omitted. Expressions such as x sin ax cos bx are to
be understood as x(sin(ax))(cos(bx)) where following factors are also part of
the argument to the function, up to the next elementary transcendental func-
tions. For example, this notation is used throughout the chapter on elementary
transcendental functions in [1]. However, a formula like sin(pπ)z−n/4 might also
mean (sin(pπ))z−n/4, i.e. in this case sin could be understood to have parenthe-
ses around its argument.4 We resolve this by parsing a parenthesis immediately
following an elementary transcendental function as its argument, excluding fol-
lowing factors. For the DLMF project, and in particular the chapter on Airy
Functions, this seems to lead to correct parses. However, there are examples in
other books [5, page 1069 (305)] where this will parse formulas incorrectly.

Similar conventions apply to big operators. For example, a sum operator
extends typically to the next additive operation (+, −, ±, ∓), including nested
sums. Often this is made clear by the scope of the index variables of the sum,

4 http://dlmf.nist.gov/Contents/AI/about_AI.13.9.html

http://dlmf.nist.gov/Contents/AI/about_AI.13.9.html

for example the i in ∑
i

i
∑

j

aij

shows that the scope of the first sum extends over the second. In any case, by
the distributivity laws the equality

∑
i

(ai

∑
j

bj) = (
∑

i

ai)(
∑

j

bj)

holds, so this ambiguity is usually not a problem. We do not currently treat other
big operators, as their interaction with

∑
and other operations is not clear to

us, and varies in the mathematical literature we surveyed.
For division it is rather unclear whether in sin a/b the b is part of the argument

of sin, in practice this seems to depend on the particular a and b. In the DLMF
this is resolved by always using macros for division, which makes this clear.

All of this can be expressed in an SDF grammar with the help of a hierarchy of
sorts for various expressions. We will show such a grammar below for a fragment
that contains the elementary transcendental functions.

3 Overall Structure

The technique that we use is to proceed in several stages, using the SGLR parser
of ELAN4 to parse expressions and then rewriting them into the desired MathML
representation (see Figure 2). Processing of a document begins by parsing it with
the SGLR parser, which needs a relatively complex grammar that we describe in
Section 4. The rest of the processing is done by several passes of rewriting. We
first use a large rewriting system that parallels the grammar to rewrite the parse
tree to an internal abstract syntax (Section 5), which is then made more uniform
by successive rewriting phases (Section 6). From the final internal representation
we produce an abstract version of MathML (Section 7), which is then rewritten
to a parse tree for true XML by a small rewrite system (Section 8). From this
the resulting XML can be created by the unparse tool that is part of ELAN4.

4 Parsing

We use the SGLR parser [4] in ELAN4, which permits to write unrestricted
context-free grammars, even ambiguous ones, and has in addition a preference
mechanism to choose certain parse trees if there are ambiguities. Grammars for
SGLR are written in SDF, the Syntax Definition Formalism. We use preferences
in the technique of “island parsing” [13], where a simple and loose subgrammar
allows to parse the complete document in a rather flat and meaningless way, the
“sea”, and wherever possible more detailed subgrammars parse the parts that
we are interested in, the “islands”. In the case of this work the sea consists of the
preamble and textual part, while the islands are the mathematical formulas. The
SDF for the standard, non-mathematical part of the grammar is shown in Fig-
ure 3. The nonterminal TeX-Element is extended in Math-Env by environments

DLMF LATEX

DLMF LATEX parse tree

DLMF LATEX abstract syntax

XML abstract syntax

XML parse tree

XML

parser (sglr, large grammar)

rewriting (large number of rules but simple)

rewriting (interesting things happen here)

rewriting (small number of rules, simple)

unparser

Fig. 2. Overview of the system

for mathematical formulas, where all the mathematical parsing takes place. The
mathematical part consists in turn of several environments which are specific to
the DLMF project, which contain equations or mathematical formulas together
with for example labels and comments.

The central component of the grammar for mathematical formulas is the
grammar module Equation, which describes the rules according to which math-
ematical expressions can be formed. This grammar is rather large, it has about
100 productions, so we cannot present it here. Instead we present a fragment of
its core that describes basic arithmetic and elementary transcendental functions
in Figure 4. As said this is only a small fraction, the real grammar contains
many more rules, for example for fractions, differentials, integrals and other, less
well-known mathematical operators. Our example grammar relies on the pres-
ence of grammars for AddOp, MultOp, Function, Number and Variable, which
are of a very simple structure, either a few lexical definitions or dictionaries of
functions. A small example dictionary is shown in Figure 5. In the real grammar
the dictionaries are much larger, for example there are about 200 macros for
specific functions in the DLMF latex package.

5 Rewriting to Abstract Syntax

The result of parsing is a parse tree that conserves all the syntactical details of
a mathematical formula. In particular, each grammar rule becomes a function
symbol in the parse term, even though several grammar rules may represent

module Latex-Document

imports

Math-Env

Layout

exports

sorts

LaTeX-Document

Doc-Class

Tex-Element

Tex-Token

Comment

Text-Token

Macro

Special-Macro

Bracket-Struct

lexical syntax

[A-Za-z0-9\-]+ -> Doc-Class

[\\] [a-zA-Z]+ [\\]? -> Macro

[\\] ~[a-zA-Z] -> Special-Macro

~[\\\%\ \n\{\}\[\]\#\$]+ -> Text-Token

[\#][0-9]+ -> Text-Token

"%" ~[\n]* [\n] -> Comment

context-free restrictions

Macro -/- [A-Za-z]

Text-Token -/- ~[\\\%\ \n\{\}\[\]\#\$]

context-free syntax

"\\documentclass{" Doc-Class "}" TeX-Element*

"\\begin{document}" TeX-Element* "\\end{document}" -> LaTeX-Document

Comment -> TeX-Token

Text-Token -> TeX-Token

Macro -> TeX-Token

Bracket-Struct -> TeX-Token

Special-Macro -> TeX-Token

TeX-Token -> TeX-Element

context-free syntax

"{" TeX-Element* "}" -> Bracket-Struct

"[" TeX-Token+ "]" -> Bracket-Struct

Fig. 3. Top part of island grammar

module Expression

imports

Layout

Dictionaries

exports

sorts

Expression SumProduct ETFProduct SumApplication ETFApplication

SimpleProduct Power Base SumOp ETFunction

context-free syntax

ETFProduct -> Expression

AddOp ETFProduct -> Expression

Expression AddOp ETFProduct -> Expression

SimpleProduct -> ETFProduct

ETFApplication -> ETFProduct

ETFProduct MultOp ETFApplication -> ETFProduct

ETFunction SimpleProduct -> ETFApplication

ETFunction ETFApplication -> ETFApplication

Power -> SimpleProduct

SimpleProduct MultOp Power -> SimpleProduct

Base -> Power

Base "^" "{" Expression "}" -> Power

Number -> Base

Variable -> Base

"(" Expression ")" -> Base

Function "(" Expression ")" -> Base

"\\sin" -> ETFunction

"\\log" "_" "{" Expression "}" -> ETFunction

ETFunction -> Function {prefer}

Fig. 4. Simplified grammar for mathematical expressions

module Dictionaries

sorts

Integer Number Variable Function LogFunction AddOp MultOp SumOp

exports

lexical syntax

[\-]?[1-9][0-9]* -> Integer

context-free syntax

Integer -> Number

"x" -> Variable

"y" -> Variable

"i" -> Variable

"n" -> Variable

"f" -> Function

"g" -> Function

"+" -> AddOp

"-" -> AddOp

-> MultOp

"*" -> MultOp

Fig. 5. Dictionary for the example grammar

[] #to_term_expression(#$Expression_1# #$PlusOp# #$Expression_2#)

=> apply(#$Term_op#,#$Term_1#,#$Term_2#)

where #$Term_op# := #to_term_plus_op(#$PlusOp#)

where #$Term_1# := #to_term_expression(#$Expression_1#)

where #$Term_2# := #to_term_expression(#$Expression_2#)

Fig. 6. Typical rule to rewrite to abstract syntax

the same mathematical object. For example, in the full grammar the hierar-
chy of sorts leads to 7 rules for multiplication. This would make it extremely
hard to work with, as each of the redundant cases will need to be treated sep-
arately. We chose to obtain a more uniform representation as the first step,
rewriting the parse tree to an abstract internal representation that is more uni-
form and closely follows the mathematical structure. The abstract syntax con-
sists of variable-arity terms in prefix notation, with optional annotations. Atoms
are either constants or strings. For example, plus, apply(plus,"x","1") and
mo("("){[xml attribute(stretchy),"false"]} are terms in the abstract syn-
tax. The optional annotations consist of a list of pairs of terms in braces; we use
it mostly to represent XML attributes. The abstract syntax was chosen so that
it is a subset of the textual representation of ATerms [19].

The rewriting system that converts parse tree to abstract syntax parallels
the grammar, as grammar rules become function symbols in the parse trees, so
we essentially need a rule for each of these function symbols. A typical rule is
shown in Figure 6. #to_term_expression is the function that converts parse
trees of sort (resp. nonterminal) Expression to abstract syntax. The general
form of the ELAN4 rules that we use (there are other features such as strategies
that we do not use currently) is

[] l => r where t1 := s1 . . . where tn := sn

where l, r, si and ti are terms. If l matches a subterm of the current term
then the variables in l are bound, and the terms in the right-hand sides si of
the where clauses are successively rewritten to normal form and then matched
against the corresponding left-hand side ti. If this match fails the rule is not
applied, otherwise the variables in ti are bound and the process continues. At
the end l is replaced by r in the current term, with the variables in r instantiated
by their bound values. In the example variables have the syntax #$Sort Suffix#
where the optional suffix distinguishes several variables of the same sort. The #
helps to distinguish them from abstract terms and TEX-text.

This example illustrates that in the internal syntax we represent most math-
ematical expressions in the form apply(operation,arguments), except for frac-
tions, large operators, differentials and integrals, which have their special repre-
sentation.

6 Improving the Abstract Syntax

The abstract syntax representation obtained in the previous step is still very close
to the original grammar, and needs to be refined to exhibit all the information

rules

[] #improve_abstract_syntax(#$Term#)

=> #$Term8#

where #$Term0# := #collate_tex_text(#$Term#)

where #$Term1# := #move_macro_argument(#$Term0#)

where #$Term2# := #transform_text_envs(#$Term1#)

where #$Term3# := #transform_references(#$Term2#)

where #$Term4# := #transform_headings(#$Term3#)

where #$Term5# := #transform_user_macros(#$Term4#)

where #$Term6# := #transform_equation_envs(#$Term5#)

where #$Term7# := #transform_text(#$Term6#)

where #$Term8# := #transform_preamble(#$Term7#)

Fig. 7. Phases for rewriting the abstract syntax

needed in subsequent steps in a convenient format. We use several passes that
traverse the complete term and each does a particular operation on the tree
(see Figure 7). First, we combine adjacent texts into one to substantially reduce
the term size, and we attach arguments to macros, which in the grammar are
braces that follow macros. Currently we do not do more sophisticated semantical
processing, such as type inference, however this could easily be extended.

The remaining phases #transform X are concerned with generating abstract
XML (XHTML and Representation MathML) for output, which we discuss in
the following section.

7 Rewriting to Abstract Representation MathML

As the final step within abstract syntax we generate an abstract version of XML
for output. XML elements are represented as function applications, text nodes
as strings and attributes as annotations. For example, the abstract syntax term

mo("("){[xml attribute(stretchy),"false"]}

represents the XML

<mo stretchy="false">(</mo>.

We also have a special notation XML Reference(String) to represent character
references, for example XML Reference("int") becomes ∫.

With this representation of XML in place it is straightforward to write rules
that transform our internal representation. Figure 8 contains the fragment of the
code that handles the various cases of apply, together with a few lines from the
dictionary rules to illustrate their format. Here we use the where clauses of the
ELAN4 rules to distinguish the different operation types, in order to generate
different output. For example, in

where infix(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term_1#, #$Term_2#))

=> mrow(#to_mrep(#$Term_1#),#$Term_mo#,#to_mrep(#$Term_2#))

where infix(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))

=> mrow(#$Term_mo#,#to_mrep(#$Term#))

where prefix(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))

=> mrow(#to_mrep(#$Term#),#$Term_mo#)

where postfix(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))

=> mrow(#$Term_mol#,#to_mrep(#$Term#), #$Term_mor#)

where fence(#$Term_mol#,#$Term_mor#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))

=> mrow(#$Term_mo#,mo(XML_Reference("ApplyFunction")),#to_mrep(#$Term#))

where et_function(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))

=> mrow(#$Term_mo#,

mo(XML_Reference("ApplyFunction")),

mo("("),

#to_mrep(#$Term#),mo(")"))

where function(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply("\sqrt", #$Term#))

=> msqrt(#to_mrep(#$Term#))

[] #to_mrep(apply("\sqrt", #$Term_exp#, #$Term#))

=> msqrt(#to_mrep(#$Term#),#to_mrep(#$Term_exp#))

[] #to_mrep_op("_+_") => infix(mo("+"))

...

[] #to_mrep_op("+_") => prefix(mo("+"))

...

[] #to_mrep_op("_!") => postfix(mo("!"))

...

[] #to_mrep_op(function("sin")) => et_function(mo("sin"))

...

[] #to_mrep_op(function("AiryAi")) => function(mo("Ai"))

...

[] #to_mrep_op("(_)") => fence(mo("("){[xml_attribute(stretchy),"false"]},

mo(")"){[xml_attribute(stretchy),"false"]})

[] #to_mrep_op("\left(_\right)") => fence(mo("("),mo(")"))

[] #to_mrep_op("|_|") => fence(mo("|"),mo("|"))

Fig. 8. Transformation to MathML of apply

[] <#term_to_XML_element(#$Identifier#(#$Term,+#) #$Annotation?#)#>

=> <$QName $Attributes><#terms_to_XML_nodes(#$Term,+#)#></$QName>

where $QName := #term_to_qname(#$Identifier#)

where $Attributes := <#opt_annotation_to_attributes(#$Annotation?#)#>

Fig. 9. A core rule in the transformation from abstract syntax to XML

the rewriting of the term on the right-hand side results in a normal form. If
this normal form has the function symbol infix at the root it matches the left-
hand side, its argument gets bound to the variable #$Term mo# and the rule
is executed. In this way it is easy to write dictionaries for a large number of
operators.

8 Generating XML

We have written an SDF grammar for XML with namespaces that can be used
both for parsing and generating XML documents, which has the side effect that
generated documents must be syntactically correct. We use a small rewrite sys-
tem of 27 rules to generate XML from internal abstract syntax, which is not
specific to MathML. As an example we show the core rule that creates an XML
element from a function symbol in Figure 9. There are more rules for traversing
the term and for the other XML nodes. In particular the rules for traversing
make heavy use of list matching, since for example nodes below an element are
described in the grammar by a * operator. The strange syntax with <, # and $
characters is again used to ensure that operations and variables are not parsed
as TEX or XML text.

Using unparse on the resulting XML parse tree produces an XML document
that can be passed to other tools as input, in our case for example Mozilla for
Representation MathML display.

9 Performance

Of the 17 sections in the DLMF sample chapter on Airy functions we can handle
the mathematical formulas completely in 6, partially in 5 (without the transfor-
mation to MathML), and 6 remain incomplete.

The grammar currently contains approximately 1000 productions, of which
ca. 350 are dictionaries. There are about 550 rewrite rules. There are fewer
rewrite rules than grammar rules, partly because dictionaries can be treated
uniformly by manipulating literals, and partly because it is still incomplete with
respect to the grammar.

On a 1.8GHz Pentium 4 compiling the grammar and rules takes about a
minute, while parsing is relatively fast, on the order of a few seconds for the
complete chapter. The result is a parse tree of several hundred thousand nodes.
Rewriting it is comparatively slow, on the order of several minutes, since it is
done by an interpreter. We do not currently have a compiler for ELAN4.

We feel that the limit of what can be achieved with ELAN4 is not yet reached.

10 Conclusion

SGLR permits a very flexible syntax, which allows to represent both LATEX
and XML directly. However, having these two markup languages, where almost
every input string except for some escape characters is legal, lead to problems in
correctly parsing the rewrite rules. These were overcome by designing a special
syntax for internal variables and function symbols, as these can also be chosen
freely.

Our project shows that parsing mathematics in the form of LATEX documents
written to project-specific rules is feasible, but due to the variations in notation
the grammar needs to be engineered specifically for the project, or even for differ-
ent chapters written by different mathematicians (e.g. the chapter on elementary
transcendental functions and on Airy functions).

In this kind of work there will also always be some part that cannot treated
automatically. For example, the example chapter contains the formula

∫ ∫
· · ·

∫
f(t) (dt)n,

which, even if we could parse it, we would not know how to represent in Content
MathML.

The use of ELAN4 is not a prerequisite but was a convenient vehicle due
to its combination with SDF. We could also have used ASF, since we currently
do not use ELAN’s strategies, however these might be useful for type inference.
Writing an equivalent grammar with, for instance, LEX+YACC will probably
next to impossible. It would also have been possible to keep the SGLR parser and
the grammar, but to use other tools for the transformation, in particular JAVA
tools like TOM [14] or JJForester [11]. The advantage of using ELAN4 or ASF
over these is that use of user-defined syntax for both the input format as well as
the output format ensures syntactically correct results. Another possible route
would be to translate the parse trees into XML and to express the transformation
in XSLT.

Parsing mathematical formulas in LATEX documents is a real challenge. In
this paper we only address the translation to Representation MathML, due to
time constraints. The translation to Content MathML is a next step in this
project and would create a link with computer algebra systems like Mathematica
or Maple. We feel that to generalize and extend these results further some of
the implicit mathematical semantic information, in particular type information,
needs to be encoded in the document and used by more semantically directed
parsing techniques.

11 Acknowledgments

We thank Gaurav Kwatra from IIT Delhi, who has worked with us on this project
as a summer intern, Claude Kirchner and Michael Kohlhase for initiating the
project, and Bruce R. Miller from NIST for making available the sample chapter.

References

1. Milton Abramowitz and Irene Stegun, editors. Handbook of Mathematical Func-
tions. National Bureau of Standards, USA, 1964.

2. Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer, 1998.
3. Peter Borovanský, Horatiu Cirstea, Hubert Dubois, Claude Kirchner, Hélène Kirch-

ner, Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. ELAN V
3.3 User Manual. LORIA, Nancy (France), third edition, December 1998.

4. M.G.J. van den Brand, J. Scheerder, J.J. Vinju, and E. Visser. Disambigua-
tion Filters for Scannerless Generalized LR Parsers. In Compiler Construction
(CC’02), LNCS 2304, pages 143–158, Grenoble, France, 2002. Springer. See
http://www.cwi.nl/projects/MetaEnv/.

5. I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig. Taschenbuch der
Mathematik. Harri Deutsch, 5th edition, 2000.

6. David Carlisle, Patrick Ion, Robert Miner, and Nico Poppelier, editors. Math-
ematical Markup Language (MathML) Version 2.0. W3C, 21 February 2001.
http://www.w3.org/TR/2001/REC-MathML2-20010221/ .

7. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing. World
Scientific, 1996.

8. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley, 2nd edition, 1994.

9. Eitan M. Gurari. Tex4ht: Latex and tex for hypertext.
http://www.cis.ohio-state.edu/~gurari/TeX4ht/mn.html.

10. Michael Kohlhase. OMDoc: An open markup format for mathematical documents,
2003. See http://www.mathweb.org/omdoc/ .

11. T. Kuipers and J. Visser. Object-oriented tree traversal with JJForester. Science
of Computer Programming, 47(1):59–87, November 2002.

12. Serge Lang. Algebra. Addison-Wesley, Reading, Mass., 3rd edition, 1993.
13. Leon Moonen. Generating robust parsers using island grammars. In Proc. 8th

Working Conf. on Reverse Engineering, pages 13–22. IEEE Computer Society
Press, 2001.

14. Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. A Pattern
Matching Compiler for Multiple Target Languages. In G. Hedin, editor, 12th Con-
ference on Compiler Construction, Warsaw (Poland), volume 2622 of LNCS, pages
61–76. Springer-Verlag, May 2003.

15. Frank W. J. Olver. Digital Library of Mathematical Functions, chapter Airy
and Related Functions. National Institute of Standards and Technology, 2001.
http://dlmf.nist.gov/Contents/AI/index.html.

16. OpenMath. http://www.openmath.org/.
17. John Plaice and Yannis Haralambous. Produire du MathML et autres . . .ML à

partir d’Ω : Ω se généralise. In Cahiers GUTenberg no 33 — actes du congrès
GUT’99, Lyon, May 1999.

18. Günter Scheja and Uwe Storch. Lehrbuch der Algebra. B. G. Teubner, Stuttgart,
2nd edition, 1994.

19. M. G. J. van den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient
annotated terms. Software, Practice and Experience, 30(3):259–291, 2000.

20. Stephen Wolfram. Mathematical notation: Past and future. Tran-
script of a keynote address presented at MathML and Math on
the Web: MathML International Conference 2000. Available at
http://www.stephenwolfram.com/publications/talks/mathml/.

http://www.cwi.nl/projects/MetaEnv/
http://www.w3.org/TR/2001/REC-MathML2-20010221/
http://www.cis.ohio-state.edu/~gurari/TeX4ht/mn.html
http://www.mathweb.org/omdoc/
http://dlmf.nist.gov/Contents/AI/index.html
http://www.openmath.org/
http://www.stephenwolfram.com/publications/talks/mathml/

	Extracting Mathematical Semanticsfrom LaTeX Documents

