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Abstract. We study a new composition operation on (epistemic) multiagent models and
update actions that takes vocabulary extensions into account. This operation allows to rep-
resent partial observational information about a large model in a small model, where the
small models can be viewed as representations of the observational power of agents, and
about their powers for changing the facts of the world. Our investigation provides ways to
check relevant epistemic properties on small components of large models, and our approach
generalizes the use of ‘locally generated models’.
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1 Introduction

The initial model for a muddy children scenario with n children has 2n nodes. In this paper we
show how such a model can be viewed as a composition of n two-node models, each talking
only about the muddiness of a single child. For this, we introduce restricted multi-agent models,
i.e., models with a limited set of ‘relevant’ proposition letters, we define a composition operation
on restricted models and show that it is nicely behaved. Next, we adjust the definition of action
model update to restricted models, by incorporating vocabulary expansion in the update process.

The intuition behind building models from components is that each component contains par-
tial observational information about the whole model.

Dynamic epistemic logic [Ger99,BMS99,BvEK06,DvdHK07] has a somewhat monolithic
architecture, and the decomposition perspective that we propose in this paper brings the frame-
work closer to that of interpreted systems [FHMV95] (see [BH+09] and [KP10] for discussion).
The intuition guiding interpreted systems is that each agent is following its own computational
procedure, and that the internal states of the agents at different moments in time are given by
local states. We claim that model components with restricted vocabularies can play a similar role
in dynamic epistemic logic.

Our investigation is encouraging for epistemic model checking with dynamic epistemic logic,
for it suggests ways to check relevant epistemic properties on small components of large models.
An extended version of the present paper can be found in Chapter 5 of the forthcoming PhD
thesis [Wan10], available upon request from the author.
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2 Composing Static Models

Let P be a finite set of proposition letters. A static multi-agent model for P is a quadruple
(W, I,R,V) with W a set of worlds, I a finite set of agents, R a function that assigns to each
i ∈ I a binary relation Ri on W, and V a function that assigns to each w ∈ W a subset of P. (In
computer science static multi-agent models are often called labelled transition systems.)

A vocabulary is a subset Q of P. A model over a vocabulary Q is a multi-agent model
(W, I,R,V) where V is a valuation satisfying V(w) ⊆ Q for each w ∈ W.

A restricted multi-agent model is a quintuple (W, I,R,V,Q) such that (W, I,R,V) is a model
over vocabulary Q.

The unit model E for I is the restricted model ({e}, I, {{(e, e)} | i ∈ I}, e 7→ ∅, ∅). In a picture:

∅ I

The parallel compositionM VN of two restricted multi-agent models with the same agent set I
is given by (W, I,R,V,QM ∪ QN), where

W = {(w, v) | w ∈ WM , v ∈ WN ,VM(w) ∩ QN = VN(v) ∩ QM},

and

(w, v)Ri(w′, v′) iff wRiMw′ and vRiNv′,

and

V(w, v) = VM(w) ∪ VN(v).

The new accessibility relations are defined as the product of the relations on the components, in
the usual way, restricted to the pairs of worlds where the old valuations agree on the respective
restricted vocabularies. Note that V(w, v) agrees with VM(w) on QM and with VN(v) on QN .

As a first example, here is a ‘compositional version’ of the muddy children scenario. Consider

the following models, where each pair mi
i
←→ mi represents a child that does not know whether

it is muddy. We assume that each model mi
i
←→ mi is restricted to {mi}, and we leave out reflexive

arrows (present for all agents).
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Composing with a third model gives:
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And so on, for composition of multidimensional hypercubes with more and more children present.
Note that it does not generally hold thatM VM ↔

− M (using ↔− to indicate the existence of
a total bisimulation). In other words, the V operation is not idempotent. To see this, consider the
following model:

M : p p p p
s t u v

It is clear that (t, u) is in the composed modelM VM, but according to the definition of V, (t, u)
cannot reach a non-p world in the composed model. Therefore, (t, u) is not bisimilar to any world
inM. Still, Kripke models with restricted vocabularies form a commutative monoid:

Theorem 1. Restricted multi-agent models form a commutative monoid under the V operation,
with bisimilarity as the appropriate equality notion. In particular, we have (using ↔− to indicate
the existence of a total bisimulation between two models):

E VM ↔
− M

M V E ↔− M

M V (N VK) ↔− (M VN) VK
M VN ↔

− N VM

This yields the well-known algebraic preordering ≤ on the set of restricted multi-agent models:

M ≤ N iff there is a K withM VK = N .

We proceed to give a structural characterization of this relation. For this, let a left-simulation
between two restricted static modelsM and N be a bisimulation with the invariance condition
restricted to proposition letters in the vocabulary of M, and without the zig condition (see the
section on simulation and safety in [BRV01]). Formally, a left-simulation betweenM and N is
a relation C ⊆ WM ×WN such that wCv implies that the following hold:

Restricted invariance p ∈ VM(w) iff p ∈ VN(v) for all p ∈ QM ,



Zag If for some i ∈ I there is a v′ ∈ WN with v
i
−→ v′ then there is a w′ ∈ WM with w

i
−→ w′

and w′Cv′.

We will use M,w ←−– N , v to indicate that there is a left-simulation that connects w and v, and
M ←−– N to indicate that there is a total left-simulation between M and N (and we also write
N −→– M forM←−– N).

Theorem 2. IfM ≤ N thenM←−– N .

Proof. Assume M ≤ N . Then there is a restricted model K with M V K ↔
− N . Let Z be a

total bisimulation between WMVK and WN . Define C as wCv iff there is some world x ∈ WK

with (w, x)Zv. C is easily seen to be a total left-simulation between M and N . The restricted
invariance property follows from the definition of the valuation on M V K . The zag property
follows from the definition of the accessibility relations onM VK . Thus,M←−– N . ut

Note that the converse of Theorem 2 does not hold without restrictions. For example, letM and
N be the following two S5 models:

M : p p

p

N : pq pq

pq

It is clear that M ←−– N . Now suppose towards a contradiction that there exists a K with
M VK ↔

− N . Since there is a pq world in N there must be a world s in K with q true in s and s
compatible with the top-right world inM (call this world t). Then it is easy to see that (t, s) must
be in M V K , with VMVK(t.s) = {p, q}. However, according to the definition of V, (t, s) cannot
reach an p world in one step, and therefore (t, s) cannot be bisimilar to any world in N .

We will prove the converse of Theorem 2 for propositionally differentiated models. Call a
modelM propositionally differentiated if it holds for all worlds w,w′ ofM that if w and w′ have
the same valuation then w ↔

− w′.

Theorem 3. LetM be a propositionally differentiated model. ThenM←−– N impliesM ≤ N .

Proof. We assume without loss of generality thatM is bisimulation minimal. This, together with
the fact thatM is propositionally differentiated, gives that different worlds ofM have different
valuations. Let C be a left-simulation between M and N . Note that since C is total and M is
propositionally differentiated and bisimulation minimal, for each v ∈ WN there is exactly one
w ∈ WM such that VM(w) = VN(v) ∩ QM and wCv.

We will show thatM VN ↔
− N . Let the relation Z betweenM VN and N be defined as

(w, v)Zv′ iff v = v′

We claim Z is a total bisimulation. Note that it follows from the fact that C is total and the
definition of Z that Z is total.

Suppose (w, v)Zv. By construction ofM VN , VMVN((w, v)) = VM(w) ∪ VN(v) = VN(v). This
proves the invariance property.



Suppose (w, v)Zv and (w, v)Ri(w′, v′). By construction ofMVN this means wRiw′ and vRiv′.
By construction of Z, (w′, v′)Zv′. This proves the zig property.

Suppose (w, v)Zv and vRiv′. Since (w, v) ∈ M V N , VM(w) = VN(v) ∩ QM . So then w is the
unique element of WM that has that property for v, and wCv. Then because C is a left-simulation,
there must be some w′ such that wRiw′ and w′Cv′. Since w′Cv′, VM(w′) = VN(v′) ∩ QM so
(w′, v′) ∈ M VN . Since wRiw′ and vRiv′, (w, v)Ri(w′, v′) and by definition of Z, (w′, v′)Zv′. This
proves the zag property. ut

Van Ditmarsch and French [DF09] prove that for static models M, N : M ←−– N iff there is
an action model A withM ⊗ A ↔

− N . From this it follows that for allM and A:M←−– M ⊗ A.
Combining this and Theorem 3 we get:

Theorem 4. For any propositionally differentiated static model M and action model A: M ≤

M⊗ A.

As a side remark we mention that ‘erasing’ valuation information can sometimes be used for
decomposing models, as illustrated in the following example:
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Let QI be the universal ignorance model for Q, i.e. QI = (W, I,R,V,Q) with W = P(Q),
Ri = W2, V = id. IfM = (W, I,R,V,Q) is a restricted static model and Q1 is a set of proposition
letters, then we define the expanded model for the larger vocabulary Q∪Q1 as follows:M/Q1 =

M V Q1
I .

Here is an example of expanding with a single new proposition letter m2. Note: Here and
henceforth, worlds are i-linked if there is an i-path in the picture.
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Model expansion to a larger vocabulary will be used in the definition of action model update for
restricted models, in Section 3.

If we let p range over P and i over I, then the PDL language over P, I, notation LPI , is given
by:

φ ::= > | p | ¬φ | φ ∨ φ | 〈α〉φ
α ::= i |?φ | α;α | α ∪ α | α∗



We employ the usual abbreviations. In particular ⊥ abbreviates ¬>. The semantics for LPI is
defined as usual. (We leave the development of a Kleene style three valued logic [Kle50] for
interpretation of LPI in restricted models for a future occasion.)

The diamond fragment of LPI is given by the formulas of the syntactic form of φ in the
following definition:

ψ ::= > | p | ¬ψ | ψ ∨ ψ
α ::= i |?φ | α;α | α ∪ α | α∗

φ ::= ψ | 〈α〉φ | φ ∨ φ | φ ∧ φ.

It is well-known that diamond formulas are preserved from the larger to the smaller model
under simulation. The following theorem generalizes this to cases where the vocabularies of the
two models may be different.

Theorem 5. IfM,w ←−– N , v then all formulas φ over the vocabulary QM in the diamond frag-
ment of LPI are preserved from right to left under left simulation: if N |=v φ thenM |=w φ.

Proof. Let C be a left simulation with wCv. We prove the property by induction on the construc-
tion of φ. If φ has the form ψ and is a proposition letter p, then p is in the vocabulary of M,
and the result holds by the restricted invariance property of C. Purely boolean combinations of
φ are obvious. So the property holds for all boolean formulas ψ. As an example of the reasoning
for 〈α〉 we give the case of 〈i〉φ. Suppose the property holds for φ, and assume N |=v 〈i〉φ. Then

there is a v′ with v
i
−→ v′ and N |=v′ φ. By the zag property of C, there is a w with w

i
−→ w′ and

w′Cv′. By the induction hypothesis,M |=w′ φ, and thereforeM |=w 〈i〉φ. ut

We can get rid of the vocabulary constraint. SinceM,w←−– N , v implies

M / QN , (w,V(v) ∩ (QN − QM))←−– N, v,

we have:

Corollary 1. IfM,w←−– N , v then all formulas φ in the diamond fragment of LPI are preserved
from right to left under left simulation: if N |=v φ thenM / QN |=(w,V(v)∩(QN−QM)) φ.

The box fragment of LPI is defined similarly to the diamond fragment. Box formulas are
preserved in the other direction:

Theorem 6. IfM,w←−– N , v then all formulas φ over the vocabulary QM in the box fragment of
LPI are preserved from left to right under left simulation: ifM |=w φ then N |=v φ.

3 Composing Action Models

An action model is like a static model, but with valuations replaced by precondition formulas
taken from an appropriate language.

An action model over P for agent set I is a quadruple (U, I, S ,T ) where U is a set of events,
S is a function that assigns every i ∈ I a binary relation S i on U, and T is a function that assigns
to every u ∈ U an LPI formula, the so-called precondition of u.



We will now give a version of action model update ⊗ (see [BMS99]) for restricted models. A
restricted action model for P, I is a quintuple (U, I, S ,T,Q) where (U, I, S ,T ) is an action model,
Q is a subset of P, and the formulas in {T (u) | u ∈ U} use only proposition letters in Q.

Model expansion to a larger vocabulary X by means of M / X is used in the definition of
product update to ensure that we get a result model for a vocabulary consisting of the union of
the vocabulary of the static input model and the vocabulary of the action model.

LetM = (W, I.R,V,Q) be a restricted static model and A = (U, I, S ,T,Q1) a restricted action
model for the same agent set I. Let X be the new vocabulary, i.e., X = Q1 − Q. Then M ⊗ A is
the static model (W ′, I,R′,V ′,Q′) given by (M / X) ⊗ (U, I, S ,T ), where ⊗ is the usual update
product. This definition boils down to the following:

1. W ′ = {(w, X′, u) | w ∈ W, u ∈ U, X′ ⊆ X,M / X |=(w,X′) T (u)},
2. (w, X′, u)R′i(w

′, X′′, u′) iff wRiw′ and uS iu′,
3. V ′(w, X′, u) = V(w) ∪ X′.
4. Q′ = Q ∪ X.

Here is an example of update with a public announcement “At least one of the two children is
muddy”, or !m1∨m2. This is represented by an event model with a single world and precondition
m1 ∨ m2. Note that the update involves model expansion:

m1 m1
1

/{m2}

m1m2

m1m2

m1m2

m1m2

1

1

1, 2 1, 2 !(m1 ∨ m2)
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1
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Here is an update of the other component of the two-muddy-children model:
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And here is the outcome of composing the two update results:
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This is the same as the result of public announcement of m1 ∨ m2 (“at least one of you is

muddy”) on the composition on m1
1
←→ m1 and m2

2
←→ m2. The following theorem expresses

that this outcome is not accidental: update of a composed model yields the same result (modulo
bisimulation) as composing the updates of its components, provided the action model satisfies
certain conditions. Call an action model propositionally differentiated if all its preconditions are
boolean, and mutually exclusive.

Theorem 7. If A is propositionally differentiated then:

(M VN) ⊗ A ↔− (M⊗ A) V (N ⊗ A).

Proof. Now define a relation Z ⊆ W(MVN)⊗A ×W(M⊗A)V(N⊗A), as follows:

((w, v, X), s)Z(((w′, X1, s′), (v′, X2, s′′)) iff w = w′, v = v′, s = s′ = s′′, X = X1 ∩ X2.

It is not hard to see that Z is total: Given ((w, v, X), s) ∈ W(MVN)⊗A, let X1 = X ∪ (VN(v) − VM(w))
and X2 = X∪ (VM(w)−Vn(v)), then ((w, X1, s), (v, X2, s)) ∈ W(M⊗A)V(N⊗A) and X1∩X2 = X. On the
other hand, given ((w, X1, s), (v, X2, s)) ∈ W(M⊗A)V(N⊗A) we have ((w, v, X1 ∩ X2), s) ∈ W(MVN)⊗A.

To check that Z is a bisimulation, assume that ((w, v, X), s)Z(((w, X1, s), (v, X2, s)) and note
that:

VMVN)⊗A(w, v, X), s) = VMVN(w, v, X)
= VM(v) ∪ VN(w) ∪ X

= (VM(v) ∪ X1) ] (VN(w) ∪ X2)
= V(M⊗A)V(N⊗A)((w, X1, s), (v, X2, s)).

This proves invariance.
For zig, assume ((w, v, X), s) → ((w′, X′, v′), s′). Then w → w′ and v → v′ and s → s′. and

(w′, X′1) and (v′, X′2) satisfy the precondition of s′, where X′1 = X′ ∪ (VN(v′) − VM(w′)) and
X′2 = X′ ∪ (VM(w′) − Vn(v′)). It follows that ((w, X1, s), (v, X2, s)→ ((w, X1, s), (v, X2, s), and we
get ((w′, X′, v′), s′)Z((w, X1, s), (v, X2, s) by definition of Z.

For zag, assume ((w, X1, s), (v, X2, s)→ ((w′, X′1, s′), (v′, X′2, s′′). Then from the fact that the
preconditions of A are mutually exclusive, we know that s′ = s′′, and we get from the definition
of V that (w, X1, s) → (w′, X′1, s′) and (v, X2, s) → (v′, X′2, s′). Since both (w′, X′1) and (v′, X′2)
satisfy the precondition of s′, we can join the vocabulary extensions X′1 and X′2 to a single
extension X′ of the joint vocabulary of w′ and v′, and conclude ((w, v, X), s) → ((w′, X′, v′), s′).
Again we get that Z relation between ((w′, X′, v′), s′) and ((w, X1, s), (v, X2, s) by definition of
Z. ut

Action models are very similar to static models, and it turns out that parallel composition on
action models can be defined in a natural way.

The parallel composition AVB of two restricted action models A and B is given by (U, I, S ,T,Q),
where U = {(w, v) | w ∈ UA, v ∈ UB}, S is given by

(w, v)S i(w′, v′) iff wS iAw′ and vS iBv′,

T by T (w, v) = TA(w) ∧ TB(v), and Q by Q = QA ∪ QB.
Updating with a composite action model should yield the same outcome as updating with its

components and then composing the results. The following theorem says that it does.



Theorem 8. M⊗ (A V B) ↔− (M⊗ A) V (M⊗ B).

Proof. Let the relation Z ⊆ WM⊗(AVB) ×W(M⊗A)V(M⊗B) be given by

(w, X, (s, t))Z((w′, X1, s′), (w′′, X2, t′)) iff w = w′ = w′′, s = s′, t = t′ and X = X1 ∪ X2

To see that (w, X, (s, t)) is in WM⊗(AVB) implies ((w, X1, s), (w, X2, t)) (with X1 = X ∩ QA and
X2 = X ∩ QB) is in W(M⊗A)V(M⊗B), notice that

(w, X, (s, t)) ∈ WM⊗(AVB)

=⇒

M / (QA ∪ QB) |=w,X TA(s) ∧ TB(t)

=⇒

M / QA |=w,X∩QA TA(s) andM / QB |=w,X∩QB TB(t)

=⇒

(w, X1, s) ∈ WM⊗A and (w, X2, t) ∈ WM⊗B

=⇒

((w, X1, s), (w, X2, t)) ∈ W(M⊗A)V(M⊗B).

On the other hand, if ((w, X1, s), (w, X2, t)) is in W(M⊗A)V(M⊗B) then it is not hard to see that (w, X1∪

X2, (s, t)) is in WM⊗(AVB). This proves the totality of Z.
The invariance, zig and zag properties of Z are immediate based on the toality of Z. ut

4 Composing Change Models

A PI substitution is an expression of the form {p1 7→ φ1, . . . , pn 7→ φn} with the pk ∈ P,
all different, and each φk ∈ LPI . If σ = {p1 7→ φ1, . . . , pn 7→ φn} is a substitution, we call
{p1, . . . , pn} its domain, notation dom (σ). PI substitutions can be used to express factual change
(see [BvEK06]). An action model with change (henceforth: a change model) is a quintruple
(U, I, S ,T,C) where (U, I, S ,T ) is an action model, and C is a function that assigns to every
u ∈ U a PI substitution. The substitutions express instructions for changing the facts of the
world.

A substitution σ = {p1 7→ φ1, . . . , pn 7→ φn} is over a vocabulary Q if each pk ∈ Q and
moreover the set of proposition letters in each φk is contained in Q. A change model (U, I, S ,T,C)
is over a vocabulary Q if (U, S ,T ) is over vocabulary Q, and each C(u) is a substitution over Q. A
restricted change model is a quintuple (U, I, S ,T,C,D) such that (U, I, S ,T,C) is a change model
over vocabulary D.

The definition of ⊗ for update of restricted models with change models is similar to that of ⊗
for action models.

As an example, consider an epistemic model for the 100 prisoners and a lightbulb riddle
[DvEW10]. This has 100 proposition letters and 2100 possible states. The simplest protocol for
solving the riddle has an agent acting as counter who only is aware of a single boolean variable
(for signaling whether the lightbulb is on or off) and of the value of a counting register (for keep-
ing track of how many times she has switched the light off). Here is how the counter component
of the model gets updated:



light, c = n

light, c = n

⊗ light, {light := ⊥, c := c + 1} ↔
− light, c = n + 1

This models an update with the event of finding the light on and carrying out part of the protocol:
switch the light off and increment the counting register.

Next, consider what happens if one of the non-counting prisoners gets interrogated, seen from
the point of view of the counter. If the prisoner has not touched the switch before and finds the
light off he will switch it on. This can be viewed as an update with

>, {light := donei → light, donei := light→ donei}

where donei indicates that prisoner i has done his signalling deed. From the counter perspective
we get a simplified view of this. Suppose we start out from a situation where the counter knows
that the light is off. Next, prisoner i gets interrogated, and light is set to donei → light. Since the
counter cannot make observations about donei, the result is that afterwards she does not know
what has happened to the light.

The definition of A V B for change models is as before, but with the new change component
C of the composition result given by:

C(w, v) binds p to CA(w)(p) ∧CB(v)(p) if p ∈ dom (CA(w)) ∩ dom (CB(v))
C(w, v) binds p to CA(w)(p) if p ∈ dom (CA(w)), p < dom (CB(v))
C(w, v) binds p to CB(v)(p) if p < dom (CA(w)), p ∈ dom (CB(v))

Theorems 7 and 8 extend to change models.

5 Characterizing Epistemic Models in Terms of Composition

Our framework suggests new questions about composition: is it possible to build every multi-
modal S5 model from components with at most two worlds? The answer turns out to be ‘no’,
and the follow-up question is: what do the multimodal S5 models that can be built from compo-
nents with at most two worlds look like? Similar questions can be asked about KD45 models. If
a model is built from S5 components using V, then the result is again S5. How about building
from KD45 components: will the result again be KD45?

There are also more general questions: for which (finite)M is it possible to find a decompo-
sition ofM (modulo bisimulation) such that each component has strictly smaller vocabulary than
M? Or more general still: Is there a normal form ofM by composition and relativization (pub-
lic announcement)? There is a connection between this question and the prime factor product
decomposition theorem in graph theory (see, e.g., [IK00], theorem 5.21).

As an example result in this area, we give a characterization of models that can be decom-
posed into two-world building blocks.

Theorem 9. An S5-model can be generated from two-world S5 components iff it is bisimilar to
a model satisfying the following conditions:



1. all worlds have different valuations
2. for any proposition p, either all worlds agree on the valuation of p or p is in some subset of

propositions P such that
(a) half of the worlds have one valuation V of the propositions in P and the other half of the

worlds have the opposite valuation V of the propositions in P
(b) there is a bisimulation Z between the model restricted to worlds with valuation V of

P and the model restricted to worlds with valuation V of P, if we limit the invariance
conditions to propositions not in P

(c) there is a fixed set of agents J such that if w and w′ differ on the valuation of P, wZu and
u′Zw′ then the set of agents that relate w and w′ is the intersection of J with the set of
agents that relate w and u′ or, equivalently, w′ and u.

Proof. ⇐: For any model satisfying above conditions, take a set of propositions P satisfying
conditions 2a, 2b and 2c. We can decompose the model into two smaller models: a two-world
model with vocabulary P of which one world has valuation V and the other valuation V; and one
of the two models that are related by the bisimulation Z, restricted to propositions not in P. This
latter model also satisfies the above conditions, so we can also decompose that model resulting
in another model satisfying the conditions, and so on. Since the conditions imply that the number
of worlds in the model is a power of two, we will end up with a sequence of two-world models.
⇒: Zero-world, single-world and two-world models trivially satisfy conditions 1 and 2.
Suppose we have a model M satisfying conditions 1 and 2 and we compose it with the

two-world model K to get a new model N . Suppose K satisfies condition 1. Then clearly this
property is preserved in N . Suppose the two worlds of K have identical valuations, then N is a
model consisting of two ‘copies’ of each world of M that matches the valuation of the worlds
of K . We can remove one of each two copies to get a model bisimilar to N satisfying condition
1. This operation does not effect the satisfaction of condition 2. So we can assume N satisfies
condition 1. Now we will show that N satisfies condition 2. Let p be a proposition. Clearly, if
either all worlds ofM or both worlds ofK agree on the valuation of p thenN satisfies condition
2. Suppose otherwise. Let P, V , V and J be the corresponding subset of propositions, valuations
and set of agents justifying satisfaction of condition 2 for p inM. There are three possibilities:

– Neither V nor V match the valuation of any worlds of K . In this case N is the zero-world
model.

– V matches the valuation of one world of K and V matches the valuation of no worlds of K ,
or the other way around. In this case all worlds in N will agree on the valuation of p.

– Both V and V match the valuation of one world ofK (clearly, these worlds must be different).
Let W be the set of worlds with (partial) valuation V inM that match a world of K , and let
W ′ be the set of worlds with (partial) valuation V ′ in M that are bisimilar to W ′. Clearly
this is exactly the set of worlds with (partial) valuation V ′ that match a world of K . Now let
U and U′ be the sets of worlds in N that result from the worlds in W and W ′ and let P′ be
the result of removing from P all propositions for which both worlds of K have the same
valuation. Then P′ is a subset of propositions containing p satisfying conditions 2a, 2b and
2c inN . U is one half of the worlds ofN satisfying V ∩P′ and U′ is the other half of worlds
satisfying V ∩ P′, and the appropriate set of agents is the intersection of J with the set of
agents relating the worlds of K . ut



As an immediate application of this theorem, we see that any initial muddy children model
can be built from two-world components, but the model that results from the father’s announce-
ment ‘At least one of you is muddy’ cannot.

Our composition approach holds promise for epistemic model checking with dynamic epis-
temic logic. The following theorem gives examples of epistemic properties that can be checked
on small components of large models.

Theorem 10 (Preservation). If a pointed model (M, s) is decomposable into reflexive pointed
models (M0, s0), . . . , (Mn, sn) with disjoint vocabularies Q0,Q1, . . . ,Qn, then for any epistemic
formula φ based on Qi :Mi, si � φ ⇐⇒ M, s � φ.

Proof. Let Zi be the relation between the worlds of M and the worlds of Mi given by tZit iff
t[i] = t (where t[i] is the ith component of the vector t). We show that Zi is a Qi-restricted
bisimulation (a bisimulation with the invariance condition restricted to Qi. Assume tZit. Then
V(t) ∩ Qi = Vi(t), by the definition of parallel composition and the fact that Qi is disjoint from
the other vocabularies. Thus, Qi-restricted invariance holds. Next suppose tRku. Then by the
definition of the accessibility relations onM, t[i]Rku[i], whence, by definition of Zi, there is a u
in the domain ofMi with uZit. It follows that the zig condition holds. Finally, assume there is a
u in the domain ofMi with tRku. Consider the state u given by u[i] = u and u[ j] = t[ j] for j , i.
Then by reflexivity of the component models and the fact that tRku, tRiu. From the definitions of
u and Zi we get that uZit, i.e., the zag condition holds. ut

For an example application, consider a muddy children model of 2n components. This can be
viewed as built from n reflexive two-component models, each with its own vocabulary for talking
about the muddiness of a single child. Any epistemic statement that talks about the muddiness of
a single child in the big model can be checked by evaluation in a single two-world component.

The following definition is from the interpreted systems literature (cf. [EvdMM98]). A basic
proposition p ∈ Q is i-local for i ∈ I in a model M = (W, I,∼,V,Q), if w ∼i v implies that
p ∈ V(w) ⇐⇒ p ∈ V(v). A modelM = (W, I,∼,V,Q) is said to be locally generated if for any
i ∈ I, w ∼i v ⇐⇒ (Qli ∩ V(w) = Qli ∩ V(v)) where Qli is the set of all the i-local propositions in
M. (We leave the logical characterization of this property for a future occasion.)

Intuitively, the i-local propositions are the atomic observables of agent i. A model is locally
generated if those atomic observables determine the epistemic relations in the model. The muddy
children model is a typical example of a locally generated model. But note that the property is not
preserved under bisimulation: the fact thatM, s is locally generated does not imply thatM′, s′

is locally generated, even ifM, s ↔− M′, s′, for unconnected states harm.

Theorem 11 (Decomposition of locally generated models). If M = (W, I,∼,V,Q) is locally
generated, then there are partial models M1, . . . ,Mn and M0 such that |I| = n and Mi =

(Wi, I,∼,Vi,Qi) such that:

– Qi = Qli for i ≤ 0 and Q0 = Q;
– M ↔

− (M0 VM1 V · · · VMn).

Proof. For i > 0, let Mi be (the bisimulation contraction of) (W, I,∼,Vi,Qli ) where Vi is the
restriction of V to Qli . Let M0 be the universal ignorance model with the same state space:
(W, I,∼′,V,Q) where ∼′i is the universal relation on S × S for each i ∈ I. ut



Given a model M = (W, I,∼,V,Q), let φM be a DNF formula listing all the V(w) in M, i.e.,
φM =

∨
w∈W (
∧
{p∈V(w)} p ∧

∧
{p<V(w)} ¬p). We can then also rephrase the theorem asM ↔

− (M0 V
M1 V · · · VMn)|φM such thatM0 is a universal ignorance model w.r.t to Q0 = Q −

⋃
i∈I Qi.

This theorem says that we can decompose a locally-generated model according to the ob-
servables of each agent and the states of affairs considered in the model. Muddy Children is an
example of such decomposition where all the propositions are local for some agents.

On the other hand, there are models which are not locally generated but decomposable in a
non-trivial way. The following modelM that can be decomposed into two three-world-models
is an example:

pq pq pq

pq pq pq

pq pq pq

It is clear that the p is local for the line agent 1 and q local for the dot agent 2, butM is not
locally generated. Nevertheless,M can be decomposed as follows:

q

q

q

V

p p p

If we take the boldface states as the real worlds in these two models respectively, then the
two models capture the situations where agent 2 is not sure about whether 1 knows that 2 knows
q and agent 1 is not sure about whether 2 knows that 1 knows p.

6 Conclusions, Connections, and Future Work

We intend to extend the epistemic model checker DEMO [Eij07] with model composition op-
erations, to investigate the practical usefulness of the approach. Our approach of composing
epistemic models from small components differs in an interesting way from the decomposition
by symmetry reduction technique of [CDLQ09].



In [DHKW08] ‘cooperative boolean games’ are studied: games where agents cooperatively
can achieve goals stated as propositional formulas. In the present framework, the variables under
the control of an agent can be taken to be the variables that are in the domain of a substitution
in component models representing the perceptive and control abilities of agents. This points the
way towards extending cooperative boolean games with an epistemic dimension, and for building
a logical framework for the study of cooperative epistemic games.

Van Ditmarsch and French [DF09] study an operator Gφ with semantics M |=w Gφ iff for
allM′,w′ withM,w←−– M′,w′ it holds thatM′ |=w′ φ. Their definition of ←−– differs from ours
in that they do not work with vocabulary restrictions on their models. In case M,w ←−– M′,w′

they callM′,w′ a refinement ofM,w, and they prove that product updates are refinements. This
should be compared to our Theorem 2. There is also an obvious connection to the dynamics of
awareness, as studied in [BVQ09].

Finally, the combination of communicative actions and vocabulary expansion deserves sepa-
rate study. A first task here could be to axiomatize the strong Kleene logic of public announce-
ment !φ and vocabulary expansion ]p, where ]p is interpreted as the model changing operation
M 7→ M / {p}.
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