
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

The Linux kernel as flexible product-line architecture

M. de Jonge

REPORT SEN-R0205 FEBRUARY 28, 2002

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

���������
	����������	�����������������
 ����"!#�%$'&���(*),+-���
	��/.0�%(��1�2)3��(4)5���%�

687:9<; =?>8@A7CBEDF>HG,7
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
http://www.cwi.nl/˜mdejonge/

I*JAKHLNM:IPOAL
L*QSRUTWV XWY?Z\[]R_^`XSR_aFb<cEYW^2deR'fg^2ReR�V b�QWYShiRCjgk/lem%npo'J3q�rWX_spV XStHR]ZWV uia Rvj<uiRederWY_bwRCV f�V bxsyV zxd_YWa f�fwc8r_sWs{X_R}|0[]R_^`X_RSa
decE~��icEX_R_XSf�bgq]�3��R��%^�cH�icibwR4f�c�~�rW[]R4fgQiV bPr_^2d_QiV f�Red}fgYi^2RN~�cW^�R*tHR]ZWV uWa RNu}��r_bwb<RS~�uia V X_h�[]R_^�X_R_aSb<cEYW^2deR4f
^2ReRebFsi�iX_ri~�V derWa a �
� ^2cE~�V X_syV �iV syYSrWaW[]R_^`XSR_a%decH~��icHXSR_XSfwb}�5�3bwR_^2bPfgQSR_XH�Wd}rWX�bwR_a Red}f�|�Q_rSfPdecE~��WcEX_R_XSf�f
Q_R}��^2RerWa a ��XSReRes:�5�Fr%^�si|Pr%^2R*�SR_X_sicW^�b
derWX�R}r_b]V a ��bgYW�W�ici^�f�fgQ_R1TWV XWY?Z��ia rSf � ci^`~�u}���_^2c%�iV syV X_hxr_sisyV f
V cEX_rWaWb<RS�_r%^�rSfwR_a ��siR}�SR_a cH�iRes'[]R_^�X_R_aEdecE~��icEX_R_XSf�be�
��R�sWR_~�cEX_bwf
^2rSf�RvQ_c?|�fgQSR�[]R_^�X_R_a � b�uWYiV a s��_^2cEdeRebwb�derWX8uiR�bwR}fgYi� � ci^*fgQWV b�rW�W�_^2c%r_d_QvrWX_s�Q_c?|0V X_syV �iV syY_rWaPuWYWV a s

�_^2cEdeRebwb<R}b�a cEcH[�a V []Ri�3��R�YSb<R4r�fwRed_QiXWV �HY_R4derWa a R}s
source tree composition

f�c�rSb<bwR_~�uWa R4b<cEYW^2deR5fg^2ReR}bFc � decH~��icHXSR_XSfwb}�
��R�sWR_~�cHX_b�fg^�rSfwR1Q_c?|�V f�V bNrWYSf�cH~�rSfwR}svue�xf
Q_R�fwcEcEa

autobundle
����RxrWa b<c��_^2cH�ic%b<R�r�[]R_^`X_RSa�decH~��icHX_RSXSf�u_rSb<R

r_b4deR_XSf
^2rWa�^2R_�ic%b]V fwci^���c � []R_^`XSR_aEdecH~��icHXSR_XSfwb}�4� f � ci^`~�b4r�deR_XSf
^2rWa�~�ReR}f
V X_h��icHV XSf � ci^-[]R_^`X_R_aEsiR}�SR_a cH�iR_^2b4rWXSs�Y_b<RS^2be�
�%�%�i���������:�i�� :¡W¢�£ ¤S¥C�:¦ §?¨w¨g£ ©Wª]§E¢�£ �i¤�«i¬_¨?¢�e��®N¯ � mH� mH� ¯ � my� °y� ¯ � mH� ±H� ¯ � mH�²l}³�� ¯ � my� lili� ¯ � my� l?mH� ¯ �²lemy� l?´H� ¯ � my� ~
µ <¬y¶A�S·`¸_¨�§%¤W¸'¹AºW·�§?¨]
¨e® bwcHYW^�deR�f
^2ReR�decE~��Wc%b]V fgV cHXE��^2R_Y_bwRi�:[]R_^`X_R_a �,a V XWY?ZH�HdecE~��icEX_R_XSf�be�Hbwc � f�|Pr_^2R��%^�cEsyY_d}f�a V X_R}b
» �H¢�S® ��cW^�[�d}r%^`^�V Res�cEYSfNYWX_sWR_^PO��p���_^2c
¼�Red}f*K,½�¾4li� my� ¯ cE~�riV XS¿ÀK:�iRedSV ÁHd1T_rWX_hEY_r_h%Rebe�Hbg�icHX_bwci^2Res�u}��fgQSR�L�R_a R_~�rSf
V der
� X_bwf
V f
YWYSf]�

1. INTRODUCTION

The implementation of the Linux kernel can be considered as a product-line architecture since different products
(a kernel together with drivers and subsystems for a particular hardware architecture) can be derived from a
single source tree.

Unfortunately, this architecture makes the current kernel source tree huge: a kernel distribution is about
28 MB, an unpacked kernel source tree is about 125 MB. The kernel is so voluminous because everything is
included: architecture independent code as well as code for all different architectures, all available subsystems,
and for all available drivers.

The product-line architecture also makes the kernel inflexible because it cannot be extended or adapted
easily. This is because i) build and configuration processes of all kernel components are integrated in a single
build/configuration process [2]; ii) the variability of the kernel (the architecture to build a kernel for, and the set
of drivers and subsystems to build) is completely defined by the (fixed) set of kernel components of a particular
kernel distribution.

Inflexibility and its great size yields a number of problems: i) a huge source tree is required when only a
small portion is really needed to compile for a single architecture with a small number of drivers; ii) adding new
drivers is difficult because it requires adapting the kernel’s build and configuration process [7]; iii) embedding
new kernel components in the kernel’s source tree requires acceptance by the kernel maintainers [8]; iv) a huge
source tree needs to be maintained (it requires coding style [4], coding conventions etc. which might hamper
code reuse); v) new drivers can only be provided as patch until they are included in the kernel’s source tree;
vi) it is difficult to maintain a driver separately when it is also included in the kernel’s source tree; vii) it is
difficult for hardware vendors to supply new drivers. Drivers have to be accepted by the kernel maintainers,
or they should be provided as patch which requires users to have particular versions of the kernel source tree
available. Alternatively, pre-compiled drivers can be provided, but they require particular versions of the kernel
to be running.

2

We propose to make the product-line architecture more flexible: i) drivers, subsystems, and architecture spe-
cific code are developed and distributed as separate source code components; ii) specialised kernel source trees
are generated from selections of such components; iii) a kernel component base collects kernel components;
iv) hardware vendors can easily support the Linux OS by donating new drivers to this kernel component base.

The paper is structured as follows. We analyse the structuring of the Linux kernel in components and kernel
configuration in Section 2. We discuss automatic composition of kernel source trees in Section 3. Composition
of compiled kernel components to form executable kernels is discussed in Section 4. Implementation of the
dynamic product-line architecture is addressed in Section 5. Section 6 describes results and future work.

2. KERNEL CONFIGURATION

Configuring the Linux kernel consists of selecting drivers for available hardware and of desired functionality
such as support for different file systems and network protocols. This configuration is performed at compile
time by issuing the command make config and determines the kernel components that should be built. A
number of different types of kernel components can be distinguished:

Core kernel components. These are hardware and platform independent components which form the base of
each running kernel and are required by each different kernel configuration. The Linux scheduler and
the platform independent signal handling routines are examples of this type of components.

Architecture specific components. These contain functionality which requires different implementations on
different hardware architectures. Configuration for a specific architecture occurs once at compile time.
After building a kernel it cannot be configured dynamically for a different architecture. Examples are
boot procedures and IRQ handling.

Kernel subsystem components. These are optional hardware and platform independent kernel components.
The kernel can be configured to add support for several subsystems. Some subsystems can be dynami-
cally added to, or removed from a running kernel. The network subsystem is an example of this type of
kernel components.

Kernel drivers. These are hardware specific components that control hardware devices. Like kernel subsystem
components, a running kernel can dynamically be configured to add new, or to remove existing drivers.

Basically, the configuration of the Linux kernel thus consists of two types of configurations:

Configuring what components to build. This configures the kernel’s build process such that only the drivers,
subsystems, etc. according to a user’s selection are built.

Configuring how to build a kernel from them. This configuration is concerned with linking kernel modules
into the kernel after they have been built.

Currently, both types of configurations are combined in a single kernel build process. This implies that build
knowledge of all possible kernel components is already contained in this build process. Consequently, adding
a new component requires adapting this build process. We propose to separate both types of configurations to
yield a more flexible, extendible kernel:

Composition of kernel source trees. First, select the kernel components that are desired and then automati-
cally generate a dedicated kernel source tree for this selection. The generated kernel source tree contains
only the source trees of the selected (and required) components. It also contains a single build and
configuration procedure that merges the build/configuration procedures of the individual components.

Composition of kernel components. Then, build the kernel components and link them into a kernel exe-
cutable. Kernel modules can be linked either statically or dynamically (as loadable modules).

3

package
identification

name=scsi
version=0.1
location=http://www.cwi.nl/˜mdejonge/kernel-base/

info=http://www.kernel.org/
description=’basic scsi driver package’

keywords=linux, kernel, scsi, driver
configuration interface
requires

kernel-base 0.1

Figure 1: A package definition for the generic SCSI driver.

3. COMPOSITION OF KERNEL SOURCE TREES

Automatic assembling a kernel’s source tree from those source code components that are really needed allows
users to obtain a kernel specialised for their needs. Hardware vendors can easily provide support for the Linux
platform by suppling new drivers as additional source code components.

Automatic assembling of source trees (called source tree composition [3]) consists of the following phases:

� Source code components are (formally) described in package definitions (see Figure 1).

� Users choose the components of need (by selecting package definitions).

� Components are merged into a self-contained source distribution.

� The distribution is unpacked, configured, and built.

Source tree composition performs dependency resolution to calculate which additional packages are required.
It performs version checking to determine which versions of components to use. It integrates individual source
trees into a single one. It also merges individual build and configuration processes. Finally, source tree compo-
sition supports generation of self-contained source distributions from particular component collections.

With source tree composition, individual kernel components can be developed and maintained separately.
Merging them in different kernel configurations is completely automated. Source tree composition simplifies
the configuration and build processes of such collections of source code components.

To enable dynamic assembling of Linux kernel source trees, we propose to develop kernel components
individually, to define package definitions for each of them, and to use autobundle1 to automatically assem-
bling them to form kernel source trees. In Section 5 we discuss the implications for the development of kernel
components.

4. COMPOSITION OF KERNEL COMPONENTS

After kernel components have been built (compiled), they have to be linked to form an executable kernel. Three
types of linking are distinguished in the kernel:

Statically linked with explicit initialisation. Components are linked into the kernel at build time. Explicit
invocation of their initialisation routines is performed conditionally depending on whether the component
is selected during configuration or not.

Statically linked with implicit initialisation Components are linked statically. Their initialisation routines
are executed via a dynamic table of function pointers (heavily depending on specific gcc features [1]).

1autobundle implements automatic source tree composition. It is Free Software and available at: http://www.cwi.nl/
˜mdejonge/autobundle

4

Hence, there is no direct function invocation. Kernel drivers are typical examples of components that are
linked this way.

Dynamic linked with explicit initialisation Initialisation is performed explicitly when a component is dy-
namically loaded. The kernel executable does not contain direct function invocations to such compo-
nents. Components linked this way are also known as dynamic loadable modules.

Source tree composition requires independent build processes. Hence, a component’s build process has no
knowledge about the build process of another component. Consequently, there is no information available
about what components to link statically in the kernel, and what the names of these components are.

For dynamic linked components this is no problem. They can be built, installed, and be loaded at run time.
For static linked components we need a mechanism to register the names of kernel component to link (and their
link order). We also need a mechanism to support conditional code which execution depends on component
selection. In the next section we discus both mechanisms.

5. IMPLEMENTATION

In this section we briefly describe the implementation of an artificial componentized kernel. This kernel is
structured similar to the Linux kernel and is used to test the concepts presented in this paper. We are currently
applying these techniques to the ‘real’ Linux kernel.

We only consider the build process of the kernel and its components because, in case of Linux, this what
needs to be adapted to fit in the product-line architecture that we propose. The architecture of the Linux kernel
itself is already flexible enough to deal with different configurations and component compositions. Except for
small changes related to conditional code, the source code of the kernel therefore needs no adaption.

Automake/Autoconf. The build processes of kernel components in our architecture make use of the tools
autoconf [5] and automake [6]. These tools are required by autobundle because they provide standard
build and configuration procedures (see [3] for details).

Kernel base package. general functionality is contained in the kernel base package. This functionality is
required by all kernel components. It includes general build rules, build utilities, and general kernel include
files (such as init.h).

Supporting conditional code. The kernel base package generates the file kernel-config.h at compile
time. This file defines for each source code component c that is bundled the symbol KC c. Code that should
only be executed when a component c is bundled, can be embedded within #ifdef KC c ... #endif
preprocessor code.

Registering components to be linked statically. The base package implements a mechanism to statically link
a varying collection of components in the kernel. The mechanism is based on registering kernel components
during the kernel’s build process. Each component that needs to be linked statically, registers itself using the
tool regdrv. A general build rule in the base package performs this action during component installation:

install-data-local:
regdrv $(driverdir) $(DRIVER) \

$(DRIVER_PRIO)

Kernel components can be registered with priorities to force a particular link order (by setting DRIVER PRIO
to a non-zero value). The Linux kernel contains a similar feature, by fine-tuning the build order of compo-
nents [1]. Our approach makes link ordering more explicit.

During the final link stage the tool kernel-linker is used to obtain a list of all registered kernel compo-
nents:

3The kernel base is available at http://www.cwi.nl/˜mdejonge/kernel-base/.

5

Figure 2: Screenshot of an experimental online kernel base3 from which kernel components can be selected
and kernel distributions can be generated.

KERNEL_OBJECTS := \
$(shell kernel-linker $(driverdir))

kernel.o: $(KERNEL_OBJECTS)
$(LD) -r $(KERNEL_OBJECTS) -o $@

Developing a component. Figure 1 contains an example package definition for the generic SCSI package.
It defines a dependency upon version 0.1 of the kernel-base package, it briefly describes the package, and it
expresses where the package can be retrieved. The location field of a package definition allows component
distributions to reside anywhere. Only package definitions are stored centrally to make components available.

The Makefile of the package reuses general build rules defined in kernel.Makefile (which is contained
in the kernel base package). These build rules can for instance build a component as statically linked or as
dynamic loadable component. Parameters which define how to build the SCSI driver (such as the name of the
driver and the constituent source files) can be defined declaratively in the Makefile:

DRIVER = scsi.o
DRIVER_SRC = scsi1.c scsi2.c
DRIVER_PRIO = scsi_0

include kernel.Makefile

6

aic7xxx-0.1

scsi-0.1

kernel-base-0.1

kernel-i386-0.1

Figure 3: Dependency graph of a Linux kernel. By selecting the components aic7xxx-0.1 and
kernel-i386-0.1, autobundle automatically generates a source tree which also includes the (required)
components scsi-0.1 and kernel-base-0.1.

The symbols defined in kernel-config.h (see above) can be used when the implementation of the driver
contains code that needs conditional execution.

Extending a component. The Linux kernel contains several generic drivers (such as the generic SCSI driver).
Code from a generic driver is reused to implement others. Our architecture supports this by defining a depen-
dency in a package definition. For example, we defined the SCSI package aic7xxx (which is also part of
the Linux kernel) and defined a dependency upon the generic SCSI package that we described above. In the
Makefile we instruct the preprocessor where to look for include files of the generic SCSI driver, by adding a
line INCLUDES += -I$(SCSI)/include.

Building a kernel. Once package definitions for kernel components and component distributions have been
made, different kernels can be assembled. Either via a generated online kernel base (see Figure 2), or by using
the autobundle tool directly:

autobundle -o . \
-p aic7xxx-0.1 -p kernel-i386-0.1

This command automatically assembles two kernel components and the components they depend on (see Fig-
ure 3). After unpacking the resulting distribution, the README file contains instructions about how to configure
and build this kernel.

6. CONCLUDING REMARKS

Contributions. We analysed how the kernel and its build process are structured. We argued that separating
linking of kernel source trees and linking of kernel components yields a more flexible product-line architecture.
This architecture allows hardware vendors to easily add support for the Linux platform. It yields less code that
needs to be maintained centrally. Finally, it no longer requires users to download a kernel source distribution of
28 MB, but only the sources they really need. We developed (part of) a new kernel build process which makes
source tree assembling possible. We used autobundle to automatically assemble kernel source trees. We
have shown the implementation of the build process for an artificial kernel with a similar structure as the Linux
kernel. We also discussed a (generated) Linux kernel base from which kernel distributions are automatically
assembled. Finally, we described how to build a specialised kernel source tree by using autobundle.

7

� ���E���%��	�(����

1. T. Aivazian. Linux kernel 2.4 internals, 2001. http://www.moses.uklinux.net/patches/lki.
html.

2. M. E. Chastain. Linux kernel Makefiles, 2000. http://www.linuxhq.com/kernel/v2.4/doc/
kbuild/makefiles.txt.html.

3. M. de Jonge. Source tree composition. In Proceedings: Seventh International Conference on Software
Reuse, LNCS. Springer-Verlag, 2002. to appear.

4. Linux kernel coding style. http://www.linuxhq.com/kernel/v2.4/doc/CodingStyle.
html.

5. D. Mackenzie and B. Elliston. Autoconf: Generating automatic configuration scripts, 1998. http://
www.gnu.org/manual/autoconf/.

6. D. Mackenzie and T. Tromey. Automake, 2001. http://www.gnu.org/manual/automake/.

7. R. Russell et al. The kernel hacking HOWTO, 1999.

8. Submitting drivers for the Linux kernel. http://www.linuxhq.com/kernel/v2.4/doc/
SubmittingDrivers.html.

