
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Source tree composition

M. de Jonge

REPORT SEN-R0204 FEBRUARY 28, 2002

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

���������
	��
��	
	����������������������

� �"!$# %'& ()�+*-,.&0/1�
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
http://www.cwi.nl/˜mdejonge/

243)50687"2:9)6
;=< >?< @A< BDCFE$GDH�I�JLKDM�N+EPOQERIPNDSTE�< BVUWG-SYXZG-BDNDBQIPE�< SYX�M�GD>QNWE[ERG�H�I�J:KDM�NVM�ND\DERKZ]Z< ^ < I�O_KDE`J:ND^ ^�KDE[ERG�H�I�J:KDM�NFSTKZ< BQIRKZ< BDKZ]?< ^ < I�OWa
9)G0SYX?G0BQNDBQIREb^ < >QN�KQI
E$Nc>QNQM�KZ^)^ Nc>QND^ Ecd"J:N�UWG-BDUWNDB'IeM�KQIPNfG0BgIihDN�< SfX?^ NDSTNDB'IRKQIi< G-B[^ Nc>QND^AJ4hDNDM�N�UWG0SYX?G0BQNDBQIRE
KDM�NfHjG?MkSTNW@
]cO�ERG0\?M�UWNTl1^ NWEWd0@A< >?< @ZNc@�GD>QNDMm@0< M�NcUcIRG?MnOYERIiMk\DUcIi\ZM�NWEca
5o\DUDhgE$G-\ZM�UWNfUWG-@ZNfUcG0SYX?G0BDNDB'IRE
K�M�Ng\DEe\DKZ^ ^ O�EPIeMnG0BDC-^ O�UWG0\ZX?^ NW@�< BgIihDNf@A< MnNWUcIRG?MnO�ERIiMk\DUcIi\ZM�NfG�HLK�ERG�HnIkJ:KDM�NfEROQEPIRNDS�a

64hQND< MoUWG0SYXZ< ^ KQIe< G0Bp< E�\DEe\DKZ^ ^ O8UWG0B'IeM�G-^ ^ NW@f]WO8K8Eq< BDC-^ N�C-^ G-]DKZ^�]Z\Z< ^ @�XDM�G-UWNWEREWar64hZ< E.NDBQIRK?BDC0^ < BQCpGDH1ERG0\ZMnUWN�IiM�NWNWE.KZBD@�]Z\Z< ^ @
XDM�G-UWNWERE$NcEpGDH�IRNQB�STKZsqNWEfMnND\DERN�G�H=ERG0\ZMnUWN�UWG-@?N�UWG0SYX?G0BDNQBQIREY< B`@A< t1NDM�NDBQI8ERG�H�I�J:K�MnNgEPOQEPIRNDSTEp@A< u�UD\Z^ Ica�v ITK?^ ERGwSTKZsqNcE
ERG�H�I�J:K�MnNbEROQEPIRNDSTE8< BQx0NqyZ<]Z^ NY]?NWUWK?\DE$Nf< BQIRNWC-M�KQIi< G-BfGDH.KQ@Z@A< Ie< G0BDKZ^ZERG0\ZM�UcNbUWG-@?NpUWG0SYX?G0BQNDBQIRE
< B�ERG0\ZMnUWNpIiM�NWNWE�KZBD@[]Z\Z< ^ @
XDM�G-UWNWERE$NcE8< E�@A< u�UQ\Z^ Iqa
6�hZ< E�XDKZX?NDMPz E�Ee\Z]${|NWUcIg< EYIRGV< BDUDMnNWKDERN[ERG�HnIkJ:KDM�N�M�ND\DERN�]cO�@ZNWUQM�NWKDEe< BQCwUWG0\ZX?^ < BDC�G�H8E$G-\ZM�UWN`UWG-@ZN`UWG0SYX?G0BDNQBQIREca}v I

< EfKDUDhZ< Nc>QNW@_]cO~KZ\QIRG-SY< �qNW@+KDERERNDSY]Z^ O[G�H
ERG�HnIkJ:KDM�N`EROQEPIRNQSpEbH|M�G0S�M�ND\DERKZ]Z^ N`ERG0\?M�UWN`UcG-@ZN`UWG-SYXZG-BDNDBQIPEYKZBQ@V< BQ>QG0^ >QNWE
< BQIRNWC-M�KQIi< G-B�G�HAERG0\?M�UWNLIiM�NWNWEcdZ]?\Z< ^ @bXDM�G-UWNWERE$NcEWdQKZBQ@TUWG-BQlAC-\ZM�KQIi< G-B8X�M�G-UcNWE$ERNWEcar2=XZXZ^ < UcKQIe< G0B�@ZG-STKZ< BQE.< BDUD^ \D@ZN

generative
programming

d
product-line architectures

doK?BD@
commercial off-the-shelf (COTS)

ERG�H�I�J:K�MnNbNDBDC0< BDNWNQMk< BQCoa
�����?�p�
�����"�?�T�"�Z��� �Q�+�"� �'�R�e� �Z�q�-��� �?���?�D�'�j�W��� ;4a �0a �0d�;
a �Aa �Ad�;4a �0a �0d);4a �0a �0d);4a �Aa �?�?d�;4a �Aa �'�0d�;
a �'�0a��W�Ad�;4a �Aa S
 �$�A¡)�Q¢k£D�
���Z£[¤)¥Z¢j�'�q�i�W� ERG0\ZMnUWNpIiM�NWNbUWG-SYXZG�Eq< Ie< G0B-doM�ND\DERN?d"sqNDMkBDND^ d1^ < BZ\'y0d0UWG-SfX?G-BDNDBQIPEWd0ERG�H�I�J:KDM�N�X�MnG-@A\DUcI
^ < BDNcE
¦ �0�j�Q� 61GfKZXZX?NWKDMm< BpIihDNbXDM�G-UWNWNW@0< BDC�ELGDH�IehDN850Nc>QNQBQIehgv BQIRNQMkBDKQIi< G-BDKZ^?9)G0BQHjNQM�NDBDUWN
G0Bb50GDH�I�JLKDM�Nf71ND\DERNb§ev 9r5�7��?¨qd0�D©?©?�Aa
¦ �0�j�Q�Lª GZM�sfUcK�MkM�< NW@�G-\QI8\ZBD@ZNDM:9 ª v�XDM�Gi{PNWUcI451«�¬��?a �Ad);:G-SpK?< BQ­|5"X?NWUQ< l0Ug®DKZBDC-\DKDC�NWEWd0EeX?G0BDERG?M�NW@~]cOfIehQNb6�ND^ NDSTKQIi< UWK
v BDERIi< Ii\Z\QIqa

1. INTRODUCTION

The classical approach of component composition is based on pre-installed binary components (such as pre-
installed libraries). This approach however, complicates software development because: (i) system building
requires extra effort to configure and install the components prior to building the system itself; (ii) it yields
accessibility problems to locate components and corresponding documentation [23]; (iii) it complicates the
process of building self-contained distributions from a system and all its components. Package managers (such
as RPM [1]) reduce build effort but do not help much to solve the remaining problems. Furthermore, they
introduce version problems when different versions of a component are used [23, 29]. They also provide
restricted control over a component’s configuration. All these complicating factors hamper software reuse and
negatively influence granularity of reuse [28].

We argue that source code components (as alternative to binary components) can improve software reuse
in component based software development. Source code components are source files divided in directory
structures. They form the implementation of subsystems. Source code component composition yields self-
contained source trees with single integrated configuration and build processes. We called this process source
tree composition.

The literature contains many references to articles dealing with component composition on the design and
execution level, and with build processes of individual components (see the related work in Sect. 9). However,
techniques for composition of source trees of diverse components, developed in different organizations, in

2

multiple languages, for the construction of systems which are to be reusable themselves and to be distributed
in source, are underexposed and are the subject of this paper.

This paper is organized as follows. Section 2 motivates the need for advanced techniques to perform source
tree composition. Section 3 describes terminology. Section 4 describes the process of source tree composition.
Section 5 and 6 describe abstraction mechanisms over source trees and composite software systems. Section 7
describes automated source tree composition. It discusses the tool autobundle, online package bases, and
product-line architectures. Section 8 describes experiences with source tree composition. Related work and
concluding remarks are discussed in Sect. 9 and 10.

2. MOTIVATION

In most software systems the constituent source code components are tightly coupled: the implementation of
all subsystems is contained in a single source tree, a central build process controls their build processes, and
a central configuration process performs their static (compile-time) configuration. For example, a top-level
Makefile often controls the global build process of a software system. A system is then built by recursively
executing make [15] from the top-level Makefile for each source code component. Often, a global GNU
autoconf [24] configuration script performs system configuration, for instance to select the compilers to use
and to enable or disable debugging support.

Such tight coupling of source code components has two main advantages: (i) due to build process integration,
building and configuring a system can be performed easily from one central place; (ii) distributing the system
as a unit is relatively easy because all source is contained in a single tree (one source tree, one product).

Unfortunately, tight coupling of source code components also has several drawbacks:

� The composition of components is inflexible. It requires adaption of the global build instructions and
(possibly) its build configuration when new components are added [23]. For example, it requires adaption
of a top-level Makefile to execute make recursively for the new component.

� Potentially reusable code does not come available for reuse outside the system because entangled build
instructions and build configuration of components are not reusable [28]. For example, as a result of using
autoconf, a component’s configuration is contained in a top-level configuration script and therefore
not directly available for reuse.

� Direct references into source trees of components yield unnecessary file system dependencies between
components in addition to functional dependencies. Changing the file or directory structure of one com-
ponent may break another.

To address these problems, the constituent source code components of a system should be isolated and be made
available for reuse (system decomposition). After decomposition, new systems can be developed by selecting
components and assembling them together (system composition). This process is depicted in Fig. 1.

For system composition not only source files are required, but also all build knowledge of all constituent
source code components. Therefore, we define source tree composition as the composition of all files, direc-
tories, and build knowledge of all reused components. To benefit from the advantages of a tightly coupled
system, source tree composition should yield a self-contained source tree with central build and configuration
processes, which can be distributed as a unit.

When the reuse scope of software components is restricted to a single Configuration Management (CM) [3]
system, source tree composition might be easy. This is because, ideally, a CM system administrates the build
knowledge of all components, their dependencies, etc., and is able to perform the composition automatically.1

When the reuse scope is extended to multiple projects or organizations, source tree composition becomes
harder because configuration management (including build knowledge) needs to be untangled [7, 28]. Source
tree composition is further complicated when third party components are reused, when the resulting system
has to be reusable itself, and when it has to be distributed as source. This is because: i) standardization of CM

1Observe that in practice, CM systems are often confused with version management systems. The latter do not administrate knowledge
suitable for source tree composition.

3

A

B

C

D

A

B

C DC

System

System
composition

assembling

Component
development

select
bundle

system 1

system 1 system 2

system 2

Figure 1: Component development, system composition, and system assembly with source code component reuse. Com-
ponents are developed individually; compositions of components form systems, which are assembled to form software
bundles (self-contained software systems).

systems is lacking [28, 32]; ii) control over build processes of third party components is restricted; iii) expertise
on building the system and its constituent components might be unavailable.

Summarizing, to increase reuse of source code components, source tree composition should be made more
generally applicable. This requires techniques to hide the decomposition of systems at distribution time, to
fully integrate build processes of (third party) components, and to minimize configuration and build effort
of the system. Once generally applicable, source tree composition simplifies assembling component based
software systems from implementing source code components.

Suppliers of Commercial Off-The-Shelf (COTS) source code components and of Open Source Software
(OSS) components can benefit from the techniques presented in this paper because integration of their com-
ponents is simplified, which makes them suitable for widespread use. Moreover, as we will see in Sect. 7.3,
product-line architectures, which are concerned with assembling families of related applications, can also ben-
efit from source tree composition.

3. TERMINOLOGY

System building is the process of deriving the targets of a software system (or software component) from
source [9]. We call the set of targets (such as executables, libraries, and documentation) a software product,
and define a software package as a distribution unit of a versioned software system in either binary or source
form.

A system’s build process is divided in several steps, which we call build actions. They constitute a system’s
build interface. A build action is defined in terms of build instructions which state how to fulfill the action. For
example, a build process driven by make typically contains the build actions all, install, and check.
The all action, which builds the complete software product, might be implemented as a sequence of build
instructions in which an executable is derived from C program text by calling a compiler and a linker.

System building and system behavior can be controlled by static configuration [11]. Static configurable
parameters define at compile-time which parts of a system to build and how to build them. Examples of such
parameters are debug support (by turning debug information on or off), and the set of drivers to include in an
executable. We call the set of static configurable parameters of a system a configuration interface.

We define a source tree as a directory hierarchy containing all source files of a software (sub) system. A
source tree includes the sources of the system itself, files containing build instructions (such as Makefiles), and
configuration files, such as autoconf configuration scripts.

4

package
identification

name=CobolSQLTrans
version=1.0

location=http://www.coboltrans.org
info=http://www.coboltrans.org/doc

description=’Transformation framework for COBOL with embedded SQL’
keywords=cobol, sql, transformation, framework

configuration interface
layout-preserving ’Enable layout preserving transformations.’

requires
cobol 0.5 with lang-ext=SQL
asf 1.1 with traversals=on
sglr 3.0
gpp 2.0

Figure 2: An example package definition.

4. SOURCE TREE COMPOSITION

Source tree composition is the process of assembling software systems by putting source trees of reusable
components together. It involves merging source trees, build processes, and configuration processes. Source
tree composition yields a single source tree with centralized build and configuration processes.

The aim of source tree composition is to improve reusability of source code components. To be successful,
source tree composition should meet three requirements:

Repeatable To benefit from any evolution of the individual components, it is essential that an old version of a
component can easily be replaced by a newer. Repeating the composition should therefore take as little
effort as possible.

Invisible A source distribution of a system for non-developers should be offered as a unit (one source tree, one
product), the internal structuring in source code components should not necessarily be visible. Integrating
build and configuration processes of components is therefore a prerequisite.

Due to lacking standardization of build and configuration processes, these requirements are hard to satisfy.
Especially when drawing on a diverse collection of software components, developed and maintained in different
institutes, by different people, and implemented in different programming languages. Composition of source
trees therefore often requires fine-tuning a system’s build and configuration process, or even adapting the
components themselves.

To improve this situation, we propose to formalize the parameters of source code packages and to hide
component-specific build and configuration processes behind interfaces. A standardized build interface defines
the build actions of a component. A configuration interface defines a component’s configurable items. An
integrated build process is formed by composing the build actions of each component sequentially. The con-
figuration interface of a composed system is formed by merging the configuration interfaces of its constituent
components.

5. DEFINITION OF SINGLE SOURCE TREES

We propose source code packages as unit of reuse for source tree composition. They help to: i) easily dis-
tinguish different versions of a component and to allow them to coexist; ii) make source tree composition
institute and project independent because versioned distributions are independent of any CM system; iii) allow
simultaneous development and use of source code components.

To be effectively reusable, software packages require abstractions [22]. We introduce package definitions
as abstraction of source code packages. We developed a Domain Specific Language (DSL) to represent them.

5

bundle
name=CobolSQLTrans-bundle version=1.0
configuration interface
layout-preserving

’Enable layout preserving transformations.’
boxenv

’Location of external boxenv package.’
bundles
package
name=sdf version=2.1
configuration

package
name=sql version=0.2
configuration

package
name=cobol version=0.5
configuration lang-ext=SQL

package
name=aterm version=1.6.3
configuration

package
name=asf version=1.1
configuration traversals=on

package
name=sglr version=3.0
configuration

package
name=gpp version=2.0
configuration

package
name=CobolSQLTrans version=1.0
configuration

Figure 3: Bundle definition obtained by normalizing the package definition of Fig. 2. This definition has been stripped
due to space limitations.

An example is depicted in Fig. 2. It defines the software package CobolSQLTrans which is intended to develop
transformations for Cobol with embedded SQL.

Package definitions define the parameters of packages, which include package identification, package de-
pendencies, and package configuration.

Package identification The minimal information that is needed to identify a software package are its name
and version number. In addition, also the URL where the package can be obtained, a short description of the
package, and a list of keywords are recorded (see the identification section of Fig. 2).

Package configuration The configuration interface of a software package is defined in the configuration inter-
face section. Partial configuration enforced by other components and composition of configuration interfaces
is discussed in Sect. 6. For example, in Fig. 2, the configuration interface defines a single configuration param-
eter and a short usage description of this parameter. With this parameter, the CobolSQLTrans package can be
configured with or without layout preserving transformations.

Package dependencies To support true development with reuse, a package definition can list the packages
that it reuses in the requires section. Package definitions also allow to define a (partial) static configuration for
required packages. Package dependencies are used during package normalization (see Sect. 6) to synthesize
the complete set of packages that form a system. For example, the package of Fig. 2 requires at least version 0.5
of the cobol package and configures it with embedded SQL. Further package requirements are the Algebraic
Specification Formalism (asf) as programming language with support for automatic term traversal, a parser
(sglr), and pretty-printer (gpp).

6. DEFINITION OF COMPOSITE SOURCE TREES

A software bundle is the source tree that results from a particular source tree composition. A bundle definition
(see Fig. 3) defines the ingredients of a bundle, its configuration interface, and its identification. The ingredients
of a bundle are defined as composition of package definitions.

A bundle definition is obtained through a process called package normalization which includes package
dependency and version resolution, build order arrangement, configuration distribution, and bundle interface

6

CobolSQLTrans-1.0

cobol-0.5 asf-1.1 sglr-3.0 gpp-2.0

sdf-2.1

sql-0.2 aterm-1.6.3 boxenv-1.8

Figure 4: A package dependency graph for the Cobol transformation package of Fig. 2. The dashed circle denotes an
unresolved package dependency.

construction.

Dependency resolution Unless otherwise specified, package normalization calculates the transitive closure of
all required packages and collects all corresponding package definitions. The list of required packages follows
directly from the bundle’s package dependency graph (see Fig. 4). For instance, during normalization of the
package definition of Fig. 2, dependency upon the aterm package is signaled and its definition is included in
the bundle definition. When a package definition is missing (see the dashed package in Fig. 4), a configuration
parameter is added to the bundle’s configuration interface (see below).

Version resolution One software bundle cannot contain multiple versions of a single package. When depen-
dency resolution signals that different versions of a package are required, the package normalization process
should decide which version to bundle.

Essential for package normalization is compatibility between different versions of a package (see [31, 9,
32] for a discussion of version models). In accordance with [27], we require backwards compatibility to
make sure that a particular version of a package can always be replaced by one of its successors. When
backwards compatibility of a package cannot be satisfied, a new package (with a different name) should be
created. Our tooling can be instantiated with different version schemes allowing experimenting with other
(weakened) version requirements.

Build order arrangement Package dependencies serve to determine the build order of composite software
systems: building a package should be delayed until all of its required packages have been built. During
package normalization, the collected package definitions are correctly ordered linearly according to a bottom
up traversal of the dependency graph. Therefore, the cobol package occurs after the sql package in the bundle
definition of Fig. 3. Circular dependencies between packages are not allowed. Such circularities correspond to
bootstrapping problems and should be solved by package developers (for instance by splitting packages up or
by creating dedicated bootstrap packages).

Configuration propagation Each package definition that is collected during package normalization contains
a (possible empty) set of configurable parameters, its configuration interface. Configurable parameters might
get bound when the package is used by another which imposes a particular configuration. During normal-
ization, this configuration is determined by collecting all the bindings of each package. For example, the
CobolSQLTrans package of Fig. 2 binds the configurable parameter lang-ext of the cobol package to SQL, the
parameter traversals of the asf package is bound to on (see Fig. 3). A conflicting configuration occurs when

CobolSQLTrans-1.0.html
cobol-0.5.html
asf-1.1.html
sglr-3.0.html
gpp-2.0.html
sdf-2.1.html
sql-0.2.html
aterm-1.6.3.html
boxenv-1.8.html

7

Table 1: The following files are contained in a software bundle generated by autobundle.

Makefile.am Top-level automakeMakefile that integrates build processes of all bundled pack-
ages.

configure.in An autoconf configuration script to perform central configuration of all pack-
ages in a software bundle.

pkg-list A list of the packages of a bundle and their download locations.
collect A tool that downloads, unpacks, and integrates the packages listed in pkg-list.
README A file that briefly describes the software bundle and its packages.
acinclude.m4 A file containing extensions to autoconf functionality to make central configu-

ration of packages possible.

a single parameter gets bound differently. Such configuration conflicts can easily be detected during package
normalization.

Bundle interface construction A bundle’s configuration interface is formed by collecting all unbound config-
urable parameters of bundled packages. In addition, it is extended with parameters for unresolved package re-
quirements and for packages that have been explicitly excluded from the package normalization process. These
parameters serve to specify the installation locations of missing packages at compile time. The configuration
interface of the CobolSQLTrans package (see Fig. 3) is formed by the layout-preserving parameter originating
from the CobolSQLTrans package, and the boxenv parameter which is due to the unresolved dependency of the
gpp package (see Fig. 4).

After normalization, a bundle definition defines a software system as collection of software packages. It
includes package definitions of all required packages and configuration parameters for those that are missing.
Furthermore, it defines a partial configuration for packages and their build order. This information is sufficient
to perform a composition of source trees. In the next section we discuss how this can be automated.

7. PERFORMING AUTOMATED SOURCE TREE COMPOSITION

We automated source tree composition in the tool autobundle. In addition, we implemented tools to make
package definitions available via online package bases. Online package bases form central meeting points for
package developers and package users, and provide online package selection, bundling, and contribution via
Internet. These techniques can be used to automate system assembling in product-line architectures.

7.1 Autobundle
Package normalization and bundle generation are implemented by autobundle.2 This tool produces an
software bundle containing top-level configuration and build procedures, and a list of bundled packages with
their download locations (see Table 1).

The generated bundle does not contain the source trees of individual packages yet, but rather the tool col-
lect that can collect the packages and integrate them in the generated bundle automatically. The reason
to generate an empty bundle is twofold: i) since autobundle typically runs on a server (see Sect. 7.2),
collecting, integrating, and building distributions would reduce server performance too much. By letting the
user perform these tasks, the server gets relieved significantly. ii) It protects an autobundle server from
legal issues when copyright restrictions prohibit redistribution or bundling of packages because no software is
redistributed or bundled at all.

To obtain the software packages and to build self-contained distributions, the generated build interface of a
bundle contains the actions collect to download and integrate the source trees of all packages, and bundle
to also put them into a single source distribution.

2autobundle is free software and available for download at http://www.cwi.nl/˜mdejonge/autobundle/.

8

Table 2: These are the actions of the standardized build interface required by autobundle. In addition, autobundle
also requires a tool configure to perform static configuration.

all Build action to build all targets of a source code package.
install Build action to install all targets.
clean Build action to remove all targets and intermediate results.
dist Build action to generate a source code distribution.
check Build action to verify run-time behavior of the system.

The generated bundle is driven by make [15] and offers a standardized build interface (see Table 2). The
build interface and corresponding build instructions are generated by autoconf [24] and automake [25].
The tool autoconf generates software configuration scripts and standardizes static software configuration.
The tool automake provides a standardized set of build actions by generating Makefiles from abstract build
process descriptions. Currently we require that these tools are also used by bundled packages. We used the
tools because they are freely available and in widespread use. However, they are not essential for the concept
of source tree composition. Essential is the availability of a standardized build interface (such as the one in
Table 2); any build system that implements this interface would suffice. Moreover, when a build system does
not implement this interface, it would not be difficult to hide the package specific configuration and build
instructions behind the standardized build interface.

After the packages are automatically collected and integrated, the top-level build and configuration processes
take care of building and configuring the individual components in the correct order. The build process also
provides support for generating a self-contained source distribution from the complete bundle. This hides the
structuring of the system in components and allows a developer to distribute his software product as a single
unit. The complete process is depicted in Fig. 5.

7.2 Online Package Bases
Dependency resolution during package normalization is performed by searching for package definitions in
package repositories. We developed tools to make such repositories browsable and searchable via Inter/Intranet,
and we implemented HTML form generation for interactive package selection. The form constitutes an online
package base and lists packages and available versions together with descriptions and keywords. The form can
be filled out by selecting the packages of need. By pressing the “bundle” button, the autobundle server is
requested to generate the desired bundle. Anyone can contribute by filling out an online package contribution
form. After submitting this form, a package definition is generated and the online package base is updated.
This is the only required step to make an autoconf/automake based package available for reuse with
autobundle.

Online package bases can be deployed to enable and control software reuse within a particular reuse scope
(for instance, group, department, or company wide). They make software reuse and software dependencies
explicit because a distribution policy of software components is required when source code packages form the
unit of reuse.

7.3 Product-Line Architectures
Online package bases allow to easily assemble systems by selecting components of need. An assembled system
is partly configured depending on the combination of components. Remaining variation points can be config-
ured at compile time. This approach of system assembly is related to the domain of product-line architectures.

A Product-Line Architecture (PLA) is a design for families of related applications; application construction
(also called product instantiation [17]) is accomplished by composing reusable components [2]. The building
blocks from which applications are assembled are usually abstract requirements (consisting of application-
oriented concepts and features). For the construction of the application, corresponding implementation compo-
nents are required. To automate component assembly, configuration knowledge is required which maps between
the problem space (consisting of abstract requirements) and the solution space (consisting of implementation

9

(2) Package normalization

(4) Source tree composition

(1) Package selection

(5a) System building (5b) Bundling / Distribution

generation
(3) Build−environment

Figure 5: Construction and distribution of software systems with source tree composition. (1) Packages of need are
selected. (2) The selected set of packages is normalized to form a bundle definition. (3) From this definition an empty
software bundle is generated. (4) Required software packages are collected and integrated in the bundle, after which the
system can be built (5a), or be distributed as a self-contained unit (5b).

components) [10].
We believe that package definitions, bundle generation, and online package bases serve implementing a

PLA by automating the integration of source trees and static configuration. Integration of functionality of
components still needs to be implemented in the components themselves, for instance as part of a component’s
build process.

Our package definition language can function as configuration DSL [11]. It then serves to capture configura-
tion knowledge and to define mappings between the problem and solution space. Abstract components from the
problem space are distinguished from implementation components by having an empty location field in their
package definition. A mapping is defined by specifying an implementation component in the requires section
of an abstract package definition.

System assembling can be automated by autobundle. It normalizes a set of abstract components (fea-
tures) and produces a source tree containing all corresponding implementation components and generates a
(partial) configuration for them. Variation points of the assembled system can be configured statically via the
generated configuration interface. An assembled system forms a unit which can easily be distributed and reused
in other products.

Definitions of abstract packages can be made available via online package bases. Package bases then serve to
represent application-oriented concepts and features similar to feature diagrams [21]. This makes assembling
applications as easy as selecting the features of need.

8. CASE STUDIES

System development We successfully applied source tree composition to the ASF+SDF Meta-Environment [4],
an integrated environment for the development of programming languages and tools, which has been developed
at our research group. Source tree composition solved the following problems that we encountered in the past:

� We had difficulties in distributing the system as a unit. We were using ad-hoc methods to bundle all
required components and to integrate their build processes.

� We were encountering the well-known problem of simultaneously developing and using tools. Because
we did not have a distribution policy for individual components, development and use of components
were often conflicting activities.

� Most of the constituent components were generic in nature. Due to their entangling in the system’s
source tree however, reuse of individual components across project boundaries proved to be extremely
problematic.

10

Figure 6: Automated source tree composition at the Online Package Base. The Online Package Base is available at
http://www.program-transformation.org/package-base/.

After we started using source tree composition techniques, reusability of our components greatly improved.
This was demonstrated by the development of XT [20], a bundle of program transformation tools. It bundles
components from the ASF+SDF Meta-Environment together with a diverse collection of components related
to program transformation. Currently, XT is assembled from 25 reusable source code components developed
at three different institutes.

For both projects, package definitions, package normalization, and bundle generation proved to be extremely
helpful for building self-contained source distributions. With these techniques, building distributions of the
ASF+SDF Meta-Environment and of XT became a completely automated process. Defining the top-level
component of a system (i.e., the root node in the system’s package dependency graph) suffices to generate a
distribution of the system.

Online Package Base To improve flexibility of component composition, we defined package definitions for
all of our software packages, included them in a single package repository and made that available via Internet
as the Online Package Base3 (OPB).

With the OPB (see Fig. 6), building source distributions of XT and of the ASF+SDF Meta-Environment
becomes a dynamic process and reduces to selecting one of these packages and submitting a bundle request
to the autobundle server. The exact contents of both distributions can be controlled for specific needs by
in/excluding components, or by enforcing additional version requirements of individual components. Similarly,
any composition of our components can be obtained via the OPB.

Although it was initiated to simplify and increase reuse of our own software packages, anyone can now
contribute by filling out a package contribution form. Hence, compositions with third-party components can
also be made. For example, the OPB contains several package definitions for GNU software, the graph drawing
package graphviz4 from AT&T, and components from a number of other research institutes.

Stratego compiler Recently, the Stratego compiler [30] has been split up in reusable packages (including
the Stratego runtime system). The constituting components (developed at different institutes) are bundled with
autobundle to form a stand-alone distribution of the compiler. With autobundle also more fine-grained

3Available at http://www.program-transformation.org/package-base/
4Available at http://www.research.att.com/sw/tools/graphviz/

11

reuse of these packages is possible. An example is the distribution of a compiled Stratego program with only
the Stratego run-time system. The Stratego compiler also illustrates the usefulness of nested bundles. Though
a composite bundle, the Stratego compiler is treated as a single component by the XT bundle in which it is
included.

Product-line architectures We are currently investigating the use of autobundle and online package bases
in a commercial setting to transform the industrial application DocGen [14] into a product-line architecture [12].
DocGen is a documentation generator which generates interactive, hyperlinked documentation about legacy
systems. Documentation generation consists of generic and specific artifact extraction and visualization in a
customer-specific layout. It is important that customer-specific code is not delivered to other customers (i.e.,
that certain packages are not bundled).

The variation points of DocGen have been examined and captured in a Feature Description Language
(FDL) [13]. We are analyzing how feature selection (for instance the artifacts to document and which lay-
out to use) can be performed via an online package base. Package definitions serve to map selected features to
corresponding implementing components (such as specific extractors and visualizators). Such a feature set is
normalized by autobundle to a bundle of software packages, which are then integrated into a single source
tree that forms the intended customer-specific product.

9. RELATED WORK

Many articles, for instance [6, 5, 8] address build processes and tools to perform builds. Tools and techniques
are discussed to solve limitations of traditional make [15], such as improving dependency resolution, build
performance, and support for variant builds. Composition of source trees and build processes is not described.

Gunter [16] discusses an abstract model of dependencies between software configuration items based on a
theory of concurrent computations over a class of Petri nets. It can be used to combine build processes of
various software environments.

Miller [26] motivates global definition of a system’s build process to allow maximal dependency tracking and
to improve build performance. However, to enable composition of components, independence of components
(weak coupling) is important [31]. For source tree composition this implies independence of individual build
processes and therefore contradicts the approach of [26]. Since the approach of Miller entangles all components
of the system, we believe that it will hamper software reuse.

This paper addresses techniques to assemble software systems by integrating source trees of reusable com-
ponents. In practice, such components are often distributed separately and their installation is required prior
to building the system itself. The extra installation effort is problematic [29], even when partly automated by
package managers (like RPM [1]). Although source tree composition simplifies software building, it does not
make package management superfluous. The use of package managers is therefore still advocated to assist
system administrators in installing (binary) distributions of assembled systems.

The work presented in this paper has several similarities with the component model Koala [28, 27]. The
Koala model has a component description language like our package definition language, and implementations
and component descriptions are stored in central repositories accessible via Internet. They also emphasize
the need for backward compatibility and the need to untangle build knowledge from an SCM system to make
components reusable. Unlike our approach, the system is restricted to the C programming language, and
merging the underlying implementations of selected components is not addressed.

In [18, 19], a software release management process is discussed that documents released source code com-
ponents, records and exploits dependencies amongst components, and supports location and retrieval of groups
of compatible components. Their primarily focus is component release and installation, not development of
composite systems and component integration as is the case in this paper.

10. CONCLUDING REMARKS

This paper addresses software reuse based on source code components and software assembly using a tech-
nique called source tree composition. Source tree composition integrates source trees and build processes of

12

individual source code components to form self-contained source trees with single integrated configuration and
build processes.

Contributions We provide an abstraction mechanism for source code packages and software bundles in the
form of package and bundle definitions. By normalizing a collection of package definitions (package normal-
ization) a composition of packages is synthesized. The tool autobundle implements package normalization
and bundle generation. It fully automates source tree composition. Online package bases, which are automati-
cally generated from package repositories, make package selection easy. They enable source code reuse within
a particular reuse scope. Source tree composition can be deployed to automate dynamic system assembly in
product-line architectures.

Future work We depend on backwards compatibility of software packages. This requirement is hard to
enforce and weakening it is an interesting topic for further research. The other requirement that we depend on
now, is the use of autoconf and automake, which implement a standard configuration and build interface.
We have ideas for a generic approach to hide component specific build and configuration procedures behind
standardized interfaces, but this still requires additional research. The research in using autobundle for the
construction of product-line architectures is in an early phase. Therefore, we will conduct more case studies in
autobundle-based product-line architectures.

Acknowledgments We thank Arie van Deursen, Paul Klint, Leon Moonen, and Joost Visser for valuable
discussions and feedback on earlier versions of the paper.

13

� 	��-	���	f�b�
	
�

1. E. C. Bailey. Maximum RPM. Red Hat Software, Inc., 1997.

2. D. S. Batory, C. Johnson, B. MacDonald, and D. von Heeder. Achieving extensibility through product-
lines and domain-specific languages: A case study. In International Conference on Software Reuse, volume
1844 of LNCS, pages 117–136. Springer-Verlag, 2000.

3. R. H. Berlack. Software Configuration Management. Wiley and Sons, New York, 1991.

4. M. van den Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge, T. Kuipers, P. Klint, L. Moonen,
P. Olivier, J. Scheerder, J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment: a component-
based language development environment. In Compiler Construction 2001 (CC 2001), volume 2027 of
LNCS. Springer-Verlag, 2001.

5. P. Brereton and P. Singleton. Deductive software building. In J. Estublier, editor, Software Configuration
Management: Selected Papers of the ICSE SCM-4 and SCM-5 Workshops, number 1005 in LNCS, pages
81–87. Springer-Verlag, Oct. 1995.

6. J. Buffenbarger and K. Gruel. A language for software subsystem composition. In 34th Annual Hawaii
International Conference on System Sciences (HICSS-34). IEEE, 2001.

7. M. Cagan and A. Wright. Untangling configuration management. In J. Estublier, editor, Software Config-
uration Management: Selected Papers of the ICSE SCM-4 and SCM-5 Workshops, number 1005 in LNCS,
pages 35–52. Springer-Verlag, 1995.

8. G. M. Clemm. The Odin system. In J. Estublier, editor, Software Configuration Management: Selected
Papers of the ICSE SCM-4 and SCM-5 Workshops, number 1005 in LNCS, pages 241–2262. Springer-
Verlag, Oct. 1995.

9. R. Conradi and B. Westfechtel. Version models for software configuration management. ACM Computing
Surveys, 30(2):232–282, June 1998.

10. K. Czarnecki and U. W. Eisenecker. Components and generative programming. In O. Nierstrasz and
M. Lemoine, editors, ESEC/FSE ’99, volume 1687 of LNCS, pages 2–19. Springer-Verlag / ACM Press,
1999.

11. K. Czarnecki and U. W. Eisenecker. Generative Programming. Methods, Tools, and Applications. Addison-
Wesley, 2000.

12. A. van Deursen, M. de Jonge, and T. Kuipers. Feature-based product line instantiation using source-level
packages. submitted for publication, january 2002.

14 � �����W¢k�W�Z�c�e�

13. A. van Deursen and P. Klint. Domain-specific language design requires feature descriptions. Journal of
Computing and Information Technology, 2001.

14. A. van Deursen and T. Kuipers. Building documentation generators. In Proceedings; IEEE International
Conference on Software Maintenance, pages 40–49. IEEE Computer Society Press, 1999.

15. S. I. Feldman. Make – A program for maintaining computer programs. Software – Practice and Experience,
9(3):255–265, Mar. 1979.

16. C. A. Gunter. Abstracting dependencies between software configuration items. ACM Transactions on
Software Engineering and Methodology, 9(1):94–131, Jan. 2000.

17. J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in software product lines. In
R. Kazman, P. Kruchten, C. Verhoef, and H. van Vliet, editors, Proceedings of the Working IEEE/IFIP
Conference on Software Architecture, pages 45–54. IEEE, 2001.

18. A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L. Wolf. Software release management. In M. Jazayeri
and H. Schauer, editors, ESEC/FSE ’97, volume 1301 of LNCS, pages 159–175. Springer / ACM Press,
1997.

19. A. van der Hoek and A. L. Wolf. Software release management for component-based software, 2001. (In
preparation).

20. M. de Jonge, E. Visser, and J. Visser. XT: a bundle of program transformation tools. In M. van den Brand
and D. Parigot, editors, Proceedings of Language Descriptions, Tools and Applications (LDTA 2001),
volume 44 of Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers, 2001.

21. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, november 1990.

22. C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–183, June 1992.

23. Y.-J. Lin and S. P. Reiss. Configuration management in terms of modules. In J. Estublier, editor, Software
Configuration Management: Selected Papers of the ICSE SCM-4 and SCM-5 Workshops, number 1005 in
LNCS, pages 101–117. Springer-Verlag, 1995.

24. D. Mackenzie and B. Elliston. Autoconf: Generating automatic configuration scripts, 1998. http:
//www.gnu.org/manual/autoconf/.

25. D. Mackenzie and T. Tromey. Automake, 2001. http://www.gnu.org/manual/automake/.

26. P. Miller. Recursive make considered harmful, 1997. http://www.pcug.org.au/˜millerp/
rmch/recu-make-cons-harm.html.

27. R. van Ommering. Configuration management in component based product populations. In Tenth Interna-
tional Workshop on Software Configuration Management (SCM-10), 2001. http://www.ics.uci.
edu/˜andre/scm10/papers/ommering.pdf.

28. R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala component model for consumer
electronics software. IEEE Computer, 33(3):78–85, March 2000.

29. D. B. Tucker and S. Krishnamurthi. Applying module system research to package management. In Tenth
International Workshop on Software Configuration Management (SCM-10), 2001. http://www.ics.
uci.edu/˜andre/scm10/papers/tucker.pdf.

30. E. Visser. Stratego: A language for program transformation based on rewriting strategies. System descrip-
tion of Stratego 0.5. In A. Middeldorp, editor, Rewriting Techniques and Applications (RTA’01), volume
2051 of LNCS, pages 357–361. Springer-Verlag, May 2001.

31. D. Whitgift. Methods and Tools for Software Configuration Management. John Wiley & Sons, 1991.

32. A. Zeller and G. Snelting. Unified versioning through feature logic. ACM Transactions on Software
Engineering and Methodology, 6(4):398–441, Oct. 1997.

