
Seventh International Conferene onComputational Fluid Dynamis (ICCFD7),Big Island, Hawaii, July 9-13, 2012 ICCFD7-1401
Disretization methods forextremely anisotropi di�usionBram van Es∗,∗∗, Barry Koren∗∗,∗∗∗ and Hugo de Blank∗Corresponding author: es�wi.nl

∗ FOM Institute DIFFER - Duth Institute for Fundamental Energy Researh,Edisonbaan 14, Nieuwegein, The Netherlands.
∗∗ Centrum Wiskunde & Informatia, Siene Park 123, Amsterdam, The Netherlands.
∗∗∗ Eindhoven University of Tehnology, Den Doleh 2, Eindhoven, The Netherlands.Abstrat: In fusion plasmas there is extreme anisotropy due to the high temperature and largemagneti �eld strength. This auses di�usive proesses, heat di�usion and energy/momentum lossdue to visous frition, to e�etively be aligned with the magneti �eld lines. This alignmentleads to di�erent values for the respetive di�usive oe�ients in the magneti �eld diretion andin the perpendiular diretion, to the extent that heat di�usion oe�ients an be up to 1012times larger in the parallel diretion than in the perpendiular diretion. This anisotropy putsstringent requirements on the numerial methods used to approximate the MHD-equations sineany misalignment of the grid may ause the perpendiular di�usion to be polluted by the numerialerror in approximating the parallel di�usion. Currently the ommon approah is to apply magneti�eld aligned grids, an approah that automatially takes are of the diretionality of the di�usiveoe�ients. This approah runs into problems in the ase of rossing �eld lines, e.g., x-pointsand points where there is magneti reonnetion. This makes loal non-alignment unavoidable.It is therefore useful to onsider numerial shemes that are more tolerant to the misalignmentof the grid with the magneti �eld lines, both to improve existing methods and to help open thepossibility of applying regular non-aligned grids. To investigate this several disretization shemesare applied to the anisotropi heat di�usion equation on a artesian grid.Keywords: Anisotropi Di�usion, Aligned Finite Di�erenes.1 IntrodutionAnisotropi di�usion is a ommon physial phenomenon and desribes proesses where the di�usion of somesalar quantity is diretionally dependent. Anisotropi di�usive proesses are for instane Dary's �ow forporous media, large sale turbulene where turbulene sales are anisotropi in size, and heat ondutionand momentum dissipation in fusion plasmas.In tokamak fusion plasmas the visosity and heat ondution oe�ients, parallel to the magneti �eld, maybe in the order of 106 and 1012 times larger than the orresponding perpendiular ondution oe�ients.This is aused by the fat that the heat ondutivity parallel and perpendiular to the magneti �eld lines isdetermined by di�erent physial proesses; along the �eld lines partiles an travel large distanes withoutollision whilst perpendiular to the �eld line the mean free path is in the order of the gyroradius, see e.g.Hölzl [1℄.Numerially, high anisotropy may lead to the situation where errors in the diretion in whih the oe�ientvalue is largest may signi�antly in�uene the di�usion in the perpendiular diretion. This may neessitateeither a high-order approximation in the diretion of the largest oe�ient value and/or a limitation on the1
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degree of anisotropy (see e.g. Sovine et al [2℄, Meier et al [3℄). Given the high level of anisotropy in tokamakplasmas, a numerial approximation may introdue large perpendiular errors if the magneti �eld diretionis strongly misaligned with the grid. Here, misaligned means that the diretions of di�usion are not alignedwith the grid points. Di�ulties that may arise with highly anisotropi di�usion problems on non-alignedmeshes are:
• signi�ant numerial di�usion perpendiular to the magneti �eld lines due to grid misalignment,Umansky et al [4℄,
• non-positivity near high gradients, see e.g. Sharma et al [5℄,
• mesh loking, stagnation of onvergene-dependent on anisotropy, see e.g. Babu²ka and Suri [6℄,
• onvergene loss in ase of variable di�usion tensor, see e.g. Günter et al [7℄.It is possible to use a �eld aligned oordinate system. However, this annot be maintained throughout theplasma; problems arise at x-points and in regions of highly �utuating magneti �eld diretions (for instanein ase of edge turbulene). To on�dently perform simulations of phenomena that rely heavily on the reso-lution of the perpendiular temperature gradient we must apply a sheme that is robust in terms of aurayin ase of varying anisotropy and misalignment.In literature the assoiated problems are disussed individually. Günter et al [7℄, apply a mimeti �nitedi�erene method that maintains the order of auray for non-aligned (regular, retangular) meshes. How-ever, the sheme is not monotonous. Günter et al later apply the support-operator approah from Hymanet al [8℄ to a �nite element method [9℄. Sharma et al [5℄ apply a �ux-limiter to enfore the monotoniity,but this is limited to relatively small levels of anisotropy not relevant for fusion plasma and it inreases theperpendiular numerial di�usion. Other monotoniity preserving methods that maintain the auray weredevised for mimeti �nite di�erene shemes. These methods put restraints on the di�usion tensor and oftenrequire a non-linear approah, see e.g. Lipnikov et al [10℄. Most of the tehniques to handle di�usion inanisotropi media are based on �nite volume or �nite element methods and revolve around handling the in-terpolation of the �ux over the ell-faes, e.g. Aavatsmarket et al [11℄, [12℄, [13℄, Lipnikov et al [10℄, [14℄, [15℄,Potier [16℄, and Pasdunkorale and Turner [17℄. In the present work the fous is on applying a disretizationin the diretion of the strongest di�usion by means of interpolation. This an be applied to the �ux operatoronly or to the entire operator.Hyman et al [8℄, [18℄ and Brezzi et al [19℄, [20℄ apply mimeti �nite di�erene (MFD) methods, wherethe latter also disuss monotonous MFD shemes. The MFD methods are mimeti to the extent that theypreserve the self-adjointness of the divergene and the �ux operator, i.e., the self-adjointness is between thedisrete operators DIV and KGRAD. Manzini [21℄ onsidered a speial treatment of tangential �uxes toavoid mesh-loking for relatively small levels of anisotropy.The fous of this paper is on the order of onvergene and the perpendiular numerial di�usion for ex-tremely high levels of anisotropy. We apply the asymmetri and symmetri �nite di�erene shemes givenin Günter et al on o-loated and (semi)-staggered grids and we give a novel interpolation-based sheme ona o-loated grid. Whenever we speak of �eld lines we refer to a general diretional �eld.2 Problem DesriptionAnisotropi thermal di�usion is desribed by the following model

q = −D · ∇T,
∂T

∂t
= −∇ · q+ f, (1)2



where T represents the temperature, b the unit diretion vetor of the �eld line, f some soure term and Dthe di�usion tensor. For a two-dimensional problem the di�usion tensor is given byunit diretion vetor: b = [cosα, sinα]T ,

D = D‖bb+D⊥(I − bb),

D =

(

D‖b
2
1 +D⊥b

2
2 (D‖ −D⊥)b1b2

(D‖ −D⊥)b1b2 D⊥b
2
1 +D‖b

2
2

)

,whereD‖ andD⊥ represent the parallel and the perpendiular di�usion oe�ient respetively. We de�ne x, yas the non-aligned oordinate system and s, n as the aligned oordinate system, see �gure 1. The boundaryonditions are disussed per test ase. The di�usion equation is approximated on a uniform artesian grid,with ∆x = ∆y = h.In tokamak fusion plasma simulations the di�usion oe�ients are often taken as temperature-dependent.In general the parallel and perpendiular di�usion oe�ients are assumed to be proportional to T 5/2 and
T−1/2 respetively, i.e., the anisotropy varies strongly with temperature.

Figure 1: Explanation of symbols3 Finite Di�erene ShemesWe limit the disussion to �nite di�erene shemes. Given a uniform grid this an be diretly translatedto a �nite volume approah. We onsider several seond-order aurate �nite di�erene shemes for theapproximation of model equation (1). The �rst two shemes are desribed in Günter et al [7℄. The di�erenebetween these shemes lies in the treatment of the �ux, partiularly the loation of the �ux. The newshemes, to be presented here, aim to improve the auray of o-loated shemes by applying a stenil thatlies on an approximation of the �eld line. We use sub-indies x, y, s, n to denote the respetive derivatives.3.1 Asymmetri Finite Di�erenesThe �rst �nite di�erene sheme for heat di�usion we disuss is depited in �gure 2. For a spatially onstantdi�usion tensor this sheme redues to the standard seond-order sheme for di�usion. The label asymmetryis oined beause of the di�erent treatment of the x- versus y-di�erential in eah point. The di�erent
3



Figure 2: Semi-staggered grid, asymmetri sheme, temperature T is de�ned on the full indies and thedi�usion tensor D on the half-indiestreatment is a diret result of taking the �ux values in i± 1
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.In ase of a o-loated grid we use arithmeti averaging for the di�usion tensor, so:
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2
,we also implement the sheme on a o-loated grid whereD is de�ned at the same points as the temperature.
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3.2 Symmetri Finite Di�erenesAnother approah is taken by Günter et al [7℄, they use a symmetri sheme (with a symmetri linearoperator) that is mimeti by maintaining the self-adjointness of the di�erential operator. By maintainingthe self-adjointness numerially the following integral identity still holds at the disrete level:
∫

V

φ∇ · qdV +

∫

V

q · ∇φdV =

∮

∂S

φ(q · n)dS,where φ is an arbitrary real-valued funtion in x, y. The total energy of a system desribed by the di�usionequation is given by E =
∫

V
TdV . In absene of any surfae and soure terms this should be onstant. Thismeans that ∂E

∂t = 0 or ∫
V
∇ · (D · ∇T )dV = 0. If we take a onstant value for φ we �nd that

φ

∫

V

∇ · qdV =
∂E

∂t
= 0,and so energy is preserved exatly.The approah goes as follows. First, the divergene terms are determined at the enter points (see �gure 3):
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Figure 3: Staggered grid, symmetri sheme, temperature T is de�ned on the full indies and the di�usiontensor D on the half-indiesNext, the di�usion tensor is applied to obtain the heat �ux
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where the di�usion tensor is taken as the arithmeti mean of the four surrounding points, so
Di+ 1
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4
.Finally, the divergene is taken over the heat �ux
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.Two ases are onsidered, a fully staggered grid where q and D are de�ned on the half-indies i ± 1

2
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2and a o-loated grid where D is de�ned at the same points as the temperature.3.3 Aligned Finite Di�erenesThe idea is that di�erening along the �eld line yields an approximation less prone to large false perpendiulardi�usion. To do this we have to use interpolation to �nd the values of T and D on the �eld line. The �eldline itself is approximated, by traing. In the urrent implementation, the interpolation of T,b and D isdone on a o-loated grid. In the following setion we will onsider x, y as loal oordinates where the originis loated in the stenil point i, j. By applying the produt rule and some vetor identities we an write thedi�usion equation in parts:
∇ · (D · ∇T ) = A1 +A2 +A3 +A4, (2)where the parts are given by�eld line urvature: A1 = −

(

D‖ −D⊥

)

∇ · b⊥ (b⊥ · ∇T ) ,�eld strength variation: A2 =
(

D‖ −D⊥

)

∇ · b (b · ∇T ) ,temperature di�usion: A3 = D‖bb : ∇∇T +D⊥b⊥b⊥ : ∇∇T,di�usion variation: A4 = (b · ∇T )(b · ∇D‖) + (b⊥ · ∇T )(b⊥ · ∇D⊥).Rewriting this in s, n oordinates yields
A1 =− (D‖ −D⊥)NTn,

A2 =(D‖ −D⊥)STs,

A3 =D‖Tss +D⊥Tnn,

A4 =D‖s
Ts +D⊥n

Tn,

(3)where
S = −b2b1n + b1b2n , N = −b1b2s + b2b1s .So we an write

∇ · (D · ∇T ) = ∇ ·
(

D‖(b · ∇T )b
)

+∇ · (D⊥(b⊥ · ∇T )b⊥) ,

∇ ·
(

D‖(b · ∇T )b
)

= D‖ (−NTn + STs + Tss) +D‖s
Ts,

∇ · (D⊥(b⊥ · ∇T )b⊥) = D⊥ (NTn − STs + Tnn) +D⊥n
Tn.Note that S = αn and N = −αs.When applying the equations of magnetohydrodynamis to nulear fusion plasmas, an assumption to bemade is that the temperature is di�used instantaneously along the �eld line. This means that the variation6



of the temperature in the diretion of the �eld line is zero, i.e., b · ∇T = 0, Ts = 0. So in that ase our setof equations an be redued to
A1 =D⊥NTn,

A2 =0,

A3 =D⊥Tnn,

A4 =D⊥n
Tn.Here, we stik to the more general form with the parts given by (3). We ontinue by applying an alignedstenil to approximate equation (2) in s, n-oordinates. The stenil points r, l, u, d, c are given in �gure 4.

Figure 4: Loally transformed grid, 5-point stenilThe values at the loations r, l, u, d are determined by bi-quadrati interpolation:
v(x, y) = c1x

2y2 + c2x
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2 + c6xy + c7x+ c8y + c9, x, y ∈ [−h, h], (4)where v an represent T, b1, b2, D‖ or D⊥. For onveniene we assume that we have a uniform Cartesian gridwith ∆x = ∆y = h. Then, for T , the oe�ients c1, . . . c9 follow from1
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The matrix V ontains the polynomial terms for eah node, see �gure 4. The oe�ients c1, · · · , c9 are now1similarly for b1, b2, D‖,D⊥
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given by
cV1 =

1
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cV9 = Ti,j ,where the supersript V denotes V andermonde. Note that the oe�ients c1, . . . c8 are all approximationsof di�erential terms in point i, j,
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c7 = Tx +O(h2), c8 = Ty +O(h2).For omparison purposes we hange the oe�ients that represent Tx, Ty, Txx and Tyy to involve more nodesto approximate the respetive di�erentials,
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cS4 = cV4 + cV1
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2
h2,where the supersript S denotes symmetri. The reasoning is that the Vandermonde oe�ients represent theasymmetri sheme for spatially onstant di�usion tensor and likewise the symmetri oe�ients represent themimeti (or symmetri) sheme for a spatially onstant di�usion tensor. These are onsistent approximationsof the di�erential terms. However, when using these oe�ients in the bi-quadrati interpolation they donot exatly yield all nodal values for the given loations.The loations of r, l, u, d are based on the �eld line, a �rst estimate is to apply a single step in the diretionof the �eld line. With s the oordinate in �eld line diretion, n the oordinate normal to it and with ∆s and

∆n the steps in both diretions, the loations then beome
(xr, yr) = (b1, b2)∆s, (xl, yl) = (−b1,−b2)∆s, (xu, yu) = (−b2, b1)∆n, (xd, yd) = (b2,−b1)∆n. (5)Now we apply these oordinates (5) to onstrut disrete shemes in s, n-oordinates for the individual parts8



A1,A2,A3 and A4.3.3.1 Consisteny AnalysisThe following analysis holds for both the symmetri and the Vandermonde oe�ients, the supersripts of theoe�ients will denote the variable to whih they apply. We remark that although the auray requirementholds for the sum A1 +A2 +A3 +A4, we hoose to impose it on A1,A2,A3 and A4 individually.For the approximation of A4 we have the following expression:
A4 =
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2∆s
+
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2∆n
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2∆n
. (6)To verify that this sheme approximates part A4 seond-order aurately we substitute the interpolationfuntions in equation (6) and we ollet the oe�ients:
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8 (yu − yd)
)

(

cT7 (xu − xd) + cT8 (yu − yd)
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)

,where the supersripts of the interpolation oe�ients represent the variable to whih the interpolationapplies. Now the 0th-order expression must be equal to A4 and the 1st-order expression must be zero. Therequirements that an be distilled from this are
(xr − xl)

2 = 4b21∆s2, (yr − yl)
2 = 4b22∆s2, (xr − xl)(yr − yl) = 4b1b2∆s2,
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2 = 4b22∆n2, (yu − yd)
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x2
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l,d = 0, y2r,u − y2l,d = 0, xr,uyr.u − xl,dyl,d = 0.This holds for the loations given by equation (5). It appears that the �rst-order term A4 an be approxi-mated with seond-order auray.For the seond-order terms in A3 we apply the following �nite di�erene formula
A3 = D‖

Tr − 2Tc + Tl

∆s2
+D⊥

Tu − 2Tc + Td

∆n2
. (7)Substituting the interpolation values in equation (7) and olleting terms by order in h gives

−1st-order: D‖

∆s2

(

cT7 (xr + xl) + cT8 (yr + yl)
)

+
D⊥

∆n2

(

cT7 (xu + xd) + cT8 (yu + yd)
)

,

0th-order: D‖

∆s2

(

cT4 (x
2
r + y2l ) + cT5 (y

2
r + y2l ) + cT6 (xryr + xlyl)

)

+
D⊥

∆n2

(

cT4 (x
2
u + y2d) + cT5 (y

2
u + y2d) + cT6 (xuyu + xdyd)

)

,

1st-order: D‖

∆s2

(

cT2 (x
2
ryr + x2

l yl) + cT3 (y
2
rxr + y2l xl)

)

+
D⊥

∆n2

(

cT2 (x
2
uyu + x2

dyd) + cT3 (y
2
uxu + y2dxd)

)

,

9



where the −1st- and 1st-order term should be zero, and the 0th-order terms should be equal to A3. Thisgives the following requirements
xr,u + xl,d = 0, yr,u + yl,d = 0, x2

r,uyr,u + x2
l,dyl,d = 0, xr,uy

2
r,u + xl,dy

2
l,d = 0,

xryr + xlyl = 2b1b2∆s2, y2r + y2l = 2b22∆s2, x2
r + x2

l = 2b21∆s2,

xuyu + xdyd = −2b1b2∆n2, y2u + y2d = 2b21∆n2, x2
u + x2

d = 2b22∆n2.These requirements are ful�lled by the loation set desribed by (5).We also apply entered di�erening for the �rst-order terms in A2:
A2 =

(

D‖ −D⊥

)

(

−b2
b1u − b1d
2∆n

+ b1
b2u − b2d
2∆n

)

Tr − Tl

2∆s
. (8)Substituting the interpolation values in equation (8) and olleting terms by order in h gives

0th-order: D‖ −D⊥

4∆s∆n

[

(−b2c
b1
7 + b1c

b2
7 )(xu − xd) + (−b2c

b1
8 + b1c

b2
8 )(yu − yd)

]

[

cT7 (xr − xl) + cT8 (yr − yl)
]

,

1st-order:−D‖ −D⊥

4∆s∆n
b2

[

cb14 (x2
u − x2

d) + cb15 (y2u − y2d) + cb16 (xuyu − xdyd)
]

[

cT7 (xr − xl) + cT8 (yr − yl)
]

+

D‖ −D⊥

4∆s∆n
b1

[

cb24 (x2
u − x2

d) + cb25 (y2u − y2d) + cb26 (xuyu − xdyd)
]

[

cT7 (xr − xl) + cT8 (yr − yl)
]

−

D‖ −D⊥

4∆s∆n
b2
[

cT4 (x
2
r − x2

l ) + cT5 (y
2
r − y2l ) + cT6 (xryr − xlyl)

]

[

cb17 (xu − xd) + cb18 (yu − yd)
]

+

D‖ −D⊥

4∆s∆n
b1
[

cT4 (x
2
r − x2

l ) + cT5 (y
2
r − y2l ) + cT6 (xryr − xlyl)

]

[

cb27 (xu − xd) + cb28 (yu − yd)
]

.After substitution of the loation set we have that the 0th-order terms are equal to A2 and the 1st-orderterms are zero.Finally we apply entered di�erening for the �rst-order terms in A1 to obtain the approximation
A1 = −

(

D‖ −D⊥

)

(

−b1
b2r − b2l
2∆s

+ b2
b1r − b1l
2∆s

)

Tu − Td

2∆n
. (9)Substituting the interpolation values in equation (9) and olleting terms by order in h gives

0th-order:− D‖ −D⊥

4∆s∆n

[

(b2c
b1
7 − b1c

b2
7 )(xr − xl) + (b2c

b1
8 − b1c

b2
8 )(yr − yl)

]

[

cT7 (xu − xd) + cT8 (yu − yd)
]

,

1st-order:−D‖ −D⊥

4∆s∆n
b1

[

cb24 (x2
r − x2

l ) + cb25 (y2r − y2l ) + cb26 (xryr − xlyl)
]

[

cT7 (xu − xd) + cT8 (yu − yd)
]

+

D‖ −D⊥

4∆s∆n
b2

[

cb14 (x2
r − x2

l ) + cb15 (y2r − y2l ) + cb16 (xryr − xlyl)
]

[

cT7 (xu − xd) + cT8 (yu − yd)
]

−

D‖ −D⊥

4∆s∆n
b1
[

cT4 (x
2
u − x2

d) + cT5 (y
2
u − y2d) + cT6 (xuyu − xdyd)

]

[

cb27 (xr − xl) + cb28 (yr − yl)
]

+

D‖ −D⊥

4∆s∆n
b2
[

cT4 (x
2
u − x2

d) + cT5 (y
2
u − y2d) + cT6 (xuyu − xdyd)

]

[

cb17 (xr − xl) + cb18 (yr − yl)
]

.After substitution of the loation set (5) we have that the 0th-order terms are equal to A1 and the 1st-orderterms are zero.We all this method aligned Vandermonde or aligned symmetri depending on the oe�ients. In pratiewe derease ∆s and ∆n with inreasing anisotropy, and we may simply and safely take ∆s = ∆n.
10



3.3.2 Curvature TermsThe aligned shemes presented before assume that the diretion does not hange up to the interpolationpoints r, l, u, d. Now we onsider a numerial treatment of the terms b1s , b1n , b2s , b2n based on �eld lineurvature. First we write the terms as
b1s = xss, b1n = ynn, b2s = yss, b2n = −xnn.This leads to the following equations for S,N :

S = −b2ynn − b1xnn,

N = −b1yss + b2xss.The urvature terms an be approximated by
xss =

xr + xl

∆s2
, yss =

yr + yl

∆s2
, xnn =

xu + xd

∆n2
, ynn =

yu + yd

∆n2
, (10)where the positions r, l, u, d are not to be onfused with the positions we used for the aligned stenil depitedin �gure 4. We are now expliitly looking for urvature. Given an interpolation funtion for b1 and b2within the stenil area we an apply traing to �nd subsequent points. We go from the enter point to theinterpolation points r, l, u, d by applying the (seond-order aurate) modi�ed Euler sheme (Heun):tangential diretion:

x∗
k = xk−1 ±∆s∗b(xk−1, yk−1)

xk = xk−1 ±
1

2
∆s∗ (b(xk−1, yk−1) + b(x∗

k, y
∗
k)) , k = 1, · · ·K,normal diretion:

x∗
k = xk−1 ±∆n∗b⊥(xk−1, yk−1)

xk = xk−1 ±
1

2
∆n∗ (b⊥(xk−1, yk−1) + b⊥(xk, yk)) , k = 1, · · ·K,where K is the number of substeps, and where x0 = y0 = 0 (see �gure 5). The values ∆s = K∆s∗ and

∆n = K∆n∗ are used in equation (10).

Figure 5: Approximate trak of �eld lineRepeatedly stepping in s, n-diretion and applying the interpolation of b inreases the omputational ost.The bene�t though is that we an easily ontrol the auray with whih we follow the �eld line, simply byhanging the number of traing steps.Still note that the approah to more aurately determine S,N an only improve the auray of A1 and11



A2.3.4 Exat Di�erentiation after InterpolationWe an also �nd a diret approximation of the various spatial derivatives involved in the anisotropi di�usionoperator, by writing the interpolation funtion (4) in terms of s, n and by taking the appropriate derivativesof this rewritten funtion. Then, the interpolation funtions for b1 and b2 need to be applied to �nd the �nalform of the approximation. We use the non-onservative form
Tt = D‖f

T
ss +D⊥f

T
nn + f

D‖
s fT

s + fD⊥
n fT

n +
(

D‖ −D⊥

) (

SfT
s −NfT

n

)

,where the terms with f represent the derivatives of the bi-quadrati interpolation funtions for the quanti-ties denoted by the supersript, i.e., fT is the interpolation funtion for the temperature. The �rst-orderdi�erentials are written as
f
D‖
s fT

s + fD⊥
n fT

n = (cT7 b1 + cT8 b2)(c
D‖

7 b1 + c
D‖

8 b2) + (−cT7 b2 + cT8 b1)(−cD⊥
7 b2 + cD⊥

8 b1).The di�usive terms are given by
D‖f

T
ss +D⊥f

T
nn = 2D‖

(

c4b
2
1 + c5b

2
2 + c6b1b2

)

+ 2D⊥

(

c4b
2
2 + c5b

2
1 − c6b1b2

)

,and the urvature-dependent terms by
(

D‖ −D⊥

) (

SfT
s −NfT

n

)

= 2D‖

[

c7

(

b1c
b1
7 +

1

2
b1c

b2
8 +

1

2
b2c

b1
8

)

+ c8

(

b2c
b2
8 +

1

2
b2c

b1
7 +

1

2
b1c

b2
7

)]

+

2D⊥

[

c7

(

b2c
b2
7 −

1

2
b1c

b2
8 −

1

2
b2c

b1
8

)

+ c8

(

b1c
b1
8 −

1

2
b2c

b1
7 −

1

2
b1c

b2
7

)]

.The geometri term is reursive sine b1, b2 depend on x, y whereas the latter depend on b1, b2. We all thesemethods interp. Vandermonde or interp. symmetri, depending on the oe�ients that are used.4 Numerial ResultsIn this setion we show numerial results for two test ases. In both test ases b · ∇T is zero. Thisforeknowledge is not used though; the general expressions A1,A2,A3 and A4 aording to (3) are used. Wede�ne the anisotropy as
ς =

D‖

D⊥
,where D⊥ is one by default.4.1 Constant Angle of MisalignmentAs an initial test we onsider a simple steady di�usion problem. The imposed exat solution reads:

T (x, y) = xy [sin (πx) sin (πy)]
s
, x, y ∈ [0, 1],where s is large and the angle of misalignment α is set to a onstant value. The solution simulates atemperature peak. Computational results for this test ase are given in �gure 6. The error norm is de�nedby

ǫ∞ =
|T̃ − T |max

|T |max
,12
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Figure 6: Error ǫ∞ for test ases with onstant angles of misalignment, s = 10, ς = 109, at varying meshwidth, top: α = 5◦, bottom: α = 30◦, left: o-loated, right: staggered. In the plots for the o-loatedshemes all symmetri shemes overlap and likewise do all asymmetri shemes.where T̃ is the approximate temperature. It is lear from the �gure that the symmetri shemes onservethe order of auray independent of the anisotropy and angle of misalignment. The o-loated shemesare only slightly less aurate than the staggered. For larger values, the asymmetri shemes are less thanseond-order onvergent on oarse grids, but they regain seond-order onvergene on �ner grids.4.2 Varying Angle of MisalignmentAgain the problem is onsidered on a square domain, this time desribed by −0.5 ≤ x, y ≤ 0.5. The followingsteady-state solution is assumed on the domain
T (r) = 1− r3, r =

√

x2 + y2.The diretion in whih the parallel di�usion ats is given by
b =

1
√

x2 + y2

(

−y

x

)

. (11)Note that both ∇ · b and b · ∇T are zero. This implies that the term A2 omes into play only due tonumerial errors. Term A4 is exatly zero sine ∇D‖, ∇D⊥ are zero. Test ase 2 stresses terms A1 and A3,13



with added ontribution due to numerial errors in term A2.
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asymmetric, G. et al.Figure 7: Error ǫ∞ for test ases with varying misalignment, left: o-loated, right: staggered, top: ς = 103,bottom: ς = 109In �gure 7, we study the auray of the various shemes for two anisotropi ases, one being extremelyanisotropi, ς = 109. The main observation to be made from �gure 7 is that for the extremely anisotropi

ς = 109 ase only the aligned symmetri sheme and the interpolated symmetri sheme preserve theirseond-order of auray. All other shemes fail ompletely; they are all inonsistent for the ς = 109 testase.A detail to be observed from �gure 7 is that for extremely high levels of anisotropy the staggered,symmetri sheme of Günter at al shows a wiggle in the error onvergene. This is aused by the fat thatthis sheme beomes less well-onditioned with inreasing resolution. Günter et al [9℄ had problems withnumber representation for a fourth-order mimeti �nite di�erene sheme. They resolved this by inreasingthe number representation auray. Further, it an be shown that the analytial problem beomes ill-posedfor ς → ∞ (see Degond et al [22℄).Finally, in �gure 8 we still make a more extensive study of the behavior of the di�erent shemes at varyinganisotropy. Here, it appears again the better performane of our interpolated symmetri sheme and alignedsymmetri sheme; their errors do not inrease at inreasing anisotropy.
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