
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Refactoring test code

A. van Deursen, L.M.F. Moonen, A. van den Bergh, G. Kok

Software Engineering (SEN)

SEN-R0119 July 31, 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R0119
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Refactoring Test Code

Arie van Deursen

Leon Moonen

http://www.cwi.nl/�farie,leong/

farie,leong@cwi.nl

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Alex van den Bergh

Gerard Kok

http://www.software-improvers.com/

falex,gerardg@software-improvers.com

Software Improvement Group

Kruislaan 419, 1098 VA Amsterdam, The Netherlands

ABSTRACT

Two key aspects of extreme programming (XP) are unit testing and merciless refactoring. Given the fact

that the ideal test code / production code ratio approaches 1:1, it is not surprising that unit tests are being

refactored. We found that refactoring test code is di�erent from refactoring production code in two ways:

(1) there is a distinct set of bad smells involved, and (2) improving test code involves additional test-speci�c

refactorings. To share our experiences with other XP practitioners, we describe a set of bad smells that indicate

trouble in test code, and a collection of test refactorings to remove these smells.

2000 ACM Computing Classi�cation System: D.2.3, D.2.5, D.2.7, D.2.9, K.6.3

Keywords and Phrases: Refactoring, unit testing, extreme programming

Note: Published in Proceedings of the 2nd International Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP2001), 20{23 May 2001, Cagliari, Italy.

Note: Work carried out under projects SEN-1.1, Software Renovationand SEN-1.2, Domain-Specific Lan-
guages.

1. INTRODUCTION

“If there is a technique at the heart ofextreme programming(XP), it is unit testing” [1]. As part of their
programming activity, XP developers write and maintain (white box) unit tests continually. These tests are
automated, written in the same programming language as the production code, considered an explicit part of
the code, and put under revision control.

The XP process encourages writing a test class for every class in the system. Methods in these test classes
are used to verify complicated functionality and unusual circumstances. Moreover, they are used to document
code by explicitly indicating what the expected results of a method should be for typical cases. Last but not
least, tests are added upon receiving a bug report to check for the bug and to check the bug fix [2]. A typical
test for a particular method includes: (1) code to set up the fixture (the data used for testing), (2) the call of the
method, (3) a comparison of the actual results with the expected values, and (4) code to tear down the fixture.
Writing tests is usually supported by frameworks such asJUnit [3].

2

The test code / production code ratio may vary from project to project, but is ideally considered to approach
a ratio of 1:1. In our project we currently have a 2:3 ratio, although others have reported a lower ratio.1 One
of the corner stones of XP is that having many tests available helps the developers to overcome their fear for
change: the tests will provide immediate feedback if the system gets broken at a critical place. The downside
of having many tests, however, is that changes in functionality will typically involve changes in the test code
as well. The more test code we get, the more important it becomes that this test code is as easily modifiable as
the production code.

The key XP practice to keep code flexible is “refactor mercilessly”: transforming the code in order to bring
it in the simplest possible state. To support this, a catalog ofcode smellsand a wide range of refactorings is
available, varying from simple modifications up to ways to introduce design patterns systematically in existing
code [5].

When trying to apply refactorings to the test code of our project we discovered that refactoring test code
is different from refactoring production code. Test code has a distinct set of smells, dealing with the ways in
which test cases are organized, how they are implemented, and how they interact with each other. Moreover,
improving test code involves a mixture of refactorings from [5] specialized to test code improvements, as well
as a set of additional refactorings, involving the modification of test classes, ways of grouping test cases, and
so on.

The goal of this paper is to share our experience in improving our test code with other XP practitioners. To
that end, we describe a set oftest smellsindicating trouble in test code, and a collection oftest refactorings
explaining how to overcome some of these problems through a simple program modification. This paper
assumes some familiarity with the xUnit framework [3] and refactorings as described by Fowler [5]. We will
refer to refactorings described in this book usingName (F:page#)and to our test specific refactorings described
in section 3 usingName(#).

2. TEST CODE SMELLS

This section gives a overview of bad code smells that are specific for test code.

Smell 1: Mystery Guest.
When a test uses external resources, such as a file containing test data, the test is no longer self contained.
Consequently, there is not enough information to understand the tested functionality, making it hard to use
that test as documentation. Moreover, using external resources introduces hidden dependencies: if some force
changes or deletes such a resource, tests start failing. Chances for this increase when more tests use the same
resource. The use of external resources can be eliminated using the refactoringInline Resource (1). If external
resources are needed, you can applySetup External Resource (2)to remove hidden dependencies.

Smell 2: Resource Optimism.
Test code that makes optimistic assumptions about the existence (or absence) and state of external resources
(such as particular directories or database tables) can cause non-deterministic behavior in test outcomes. The
situation where tests run fine at one time and fail miserably the other time is not a situation you want to find
yourself in. UseSetup External Resource (2)to allocate and/or initialize all resources that are used.

Smell 3: Test Run War.
Such wars arise when the tests run fine as long as you are the only one testing but fail when more programmers
run them. This is most likely caused by resource interference: some tests in your suite allocate resources such
as temporary files that are also used by others. ApplyMake Resource Unique (3)to overcome interference.

Smell 4: General Fixture.
In the JUnit framework a programmer can write a setUp method that will be executed before each test method
to create a fixture for the tests to run in.

Things start to smell when the setUp fixture is too general and different tests only access part of the fixture.
Such setUps are harder to read and understand. Moreover, they may make tests run more slowly (because they

1This project started a year ago and involves the development of a product called DocGen [4]. Development is done by a small team of
five people using XP techniques. Code is written in Java and we use the JUnit framework for unit testing.

2. Test Code Smells 3

do unnecessary work). The danger of having tests that take too much time to complete is that testing starts
interfering with the rest of the programming process and programmers eventually may not run the tests at all.

The solution is to use setUp only for that part of the fixture that is shared by all tests using Fowler’sExtract
Method (F:110)and put the rest of the fixture in the method that uses it usingInline Method (F:117). If, for
example, two different groups of tests require different fixtures, consider setting these up in separate methods
that are explicitly invoked for each test, or spin off two separate test classes usingExtract Class (F:149).

Smell 5: Eager Test.
When a test method checks several methods of the object to be tested, it is hard to read and understand, and
therefore more difficult to use as documentation. Moreover, it makes tests more dependent on each other and
harder to maintain.

The solution is simple: separate the test code into test methods that test only one method using Fowler’s
Extract Method (F:110), using a meaningful name highlighting the purpose of the test. Note that splitting into
smaller methods can slow down the tests due to increased setup/teardown overhead.

Smell 6: Lazy Test.
This occurs when several test methods check the same methodusing the same fixture(but for example check
the values of different instance variables). Such tests often only have meaning when considering them together
so they are easier to use when joined usingInline Method (F:117).

Smell 7: Assertion Roulette.
“Guess what’s wrong?” This smell comes from having a number of assertions in a test method that have no
explanation. If one of the assertions fails, you do not know which one it is. UseAdd Assertion Explanation (5)
to remove this smell.

Smell 8: Indirect Testing.
A test class is supposed to test its counterpart in the production code. It starts to smell when a test class contains
methods that actually perform tests on other objects (for example because there are references to them in the
class-to-be-tested). Such indirection can be moved to the appropriate test class by applyingExtract Method
(F:110) followed byMove Method (F:142)on that part of the test. The fact that this smell arises also indicates
that there might be problems with data hiding in the production code.

Note that opinions differ on indirect testing. Some people do not consider it a smell but a way to guard tests
against changes in the “lower” classes. We feel that there are more losses than gains to this approach: It is much
harder to test anything that can break in an object from a higher level. Moreover, understanding and debugging
indirect tests is much harder.

Smell 9: For Testers Only.
When a production class contains methods that are only used by test methods, these methods either (1) are not
needed and can be removed, or (2) are only needed to set up a fixture for testing. Depending on functionality of
those methods, you may not want them in production code where others can use them. If this is the case, apply
Extract Subclass (F:330)to move these methods from the class to a (new) subclass in the test code and use that
subclass to perform the tests on. You will often find that these methods have names or comments stressing that
they should only be used for testing.

Fear of this smell may lead to another undesirable situation: a class without corresponding test class. The
reason then is that the developer (1) does not know how to test the class without adding methods that are
specifically needed for the test and (2) does not want to pollute his production class with test code. Creating a
separate subclass helps to deal with this problem.

Smell 10: Sensitive Equality.
It is fast and easy to write equality checks using the toString method. A typical way is to compute an actual
result, map it to a string, which is then compared to a string literal representing the expected value. Such tests,
however may depend on many irrelevant details such as commas, quotes, spaces, etc. Whenever the toString
method for an object is changed, tests start failing. The solution is to replace toString equality checks by real
equality checks usingIntroduce Equality Method (6).

4

Smell 11: Test Code Duplication.
Test code may contain undesirable duplication. In particular the parts that set up test fixtures are susceptible
to this problem. Solutions are similar to those for normal code duplication as described by Fowler [5, p. 76].
The most common case for test code will be duplication of code in the same test class. This can be removed
usingExtract Method (F:110). For duplication across test classes, it may provide helpful to mirror the class
hierarchy of the production code into the test class hierarchy. A word of caution however: moving duplicated
code from two separate classes to a common class can introduce (unwanted) dependencies between tests.

A special case of code duplication istest implication: test A and B cover the same production code, and
A fails if and only if B fails. A typical example occurs when the production code gets refactored: before this
refactoring, A and B covered different code, but afterwards they deal with the same code and it is not necessary
anymore to maintain both tests.

3. REFACTORINGS

Bad smells seem to arise more often in production code than in test code. The main reason for this is that
production code is adapted and refactored more frequently, allowing these smells to escape.

One should not, however, underestimate the importance of having fresh test code. Especially when new
programmers are added to the team or when complex refactorings need to be performed, clear test code is
invaluable. To maintain this freshness, test code also needs to be refactored.

We definetest refactoringsas changes (transformations) of test code that: (1) do not add or remove test
cases, and (2) make test code better understandable/readable and/or maintainable.

The production code can be used as a (simple) test case for the refactoring: If a test for a piece of code
succeeds before the test refactoring, it should also succeed after the refactoring (and no, replacing all test code
byassert(true) is not considered a valid refactoring). This obviously also means that you should not modify
production code while refactoring test code (similar to not changing tests when refactoring production code).

While working on our test code, we encountered the following refactorings:

Refactoring 1: Inline Resource.
To remove the dependency between a test method and some external resource, we incorporate that resource in
the test code. This is done by setting up a fixture in the test code that holds the same contents as the resource.
This fixture is then used instead of the resource to run the test. A simple example of this refactoring is putting
the contents of a file that is used into some string in the test code.

If the contents of the resource are large, chances are high that you are also suffering fromEager Test(5)
smell. Consider conductingExtract Method (F:110)or Reduce Data (4)refactorings.

Refactoring 2: Setup External Resource.
If it is necessary for a test to rely on external resources, such as directories, databases, or files, make sure the
test that uses them explicitly creates or allocates these resources before testing, and releases them when done
(take precautions to ensure the resource is also released when tests fail).

Refactoring 3: Make Resource Unique.
A lot of problems originate from the use of overlapping resource names, either between different tests run done
by the same user or between simultaneous test runs done by different users.

Such problems can easily be prevented (or repaired) by using unique identifiers for all resources that are
allocated, for example by including a time-stamp. When you also include the name of the test responsible for
allocating the resource in this identifier, you will have less problems finding tests that do not properly release
their resources.

Refactoring 4: Reduce Data.
Minimize the data that is setup in fixtures to the bare essentials. This will have two advantages: (1) it make
them better suitable as documentation, and (2) your tests will be less sensitive to changes.

Refactoring 5: Add Assertion Explanation.
Assertions in the JUnit framework have an optional first argument to give an explanatory message to the user
when the assertion fails.

4. Related Work 5

Testing becomes much easier when you use this message to distinguish between different assertions that
occur in the same test. Maybe this argument should not have been optional?

Refactoring 6: Introduce Equality Method.
If an object structure needs to be checked for equality in tests, add an implementation for the “equals” method
for the object’s class. You then can rewrite the tests that use string equality to use this method. If an expected
test value is only represented as a string, explicitly construct an object containing the expected value, and use
the new equals method to compare it to the actually computed object.

4. RELATED WORK

Fowler [5] presents a large set of bad smells and refactorings that can be used to remove them. The difference
between his work and ours is that we focus on smells and refactorings that are typical for test code whereas his
book focuses more on production code. The role of unit tests in [5] is also more geared towards proving that a
refactoring didn’t break anything than to be used as documentation of the production code.

Instead of focusing on cleaning test code which already has bad smells, Schneider [6] describes how to
prevent these smells right from the start by discussing a number of best practices for writing tests with JUnit.

The C2 Wiki contains some discussion on the decay of unit test quality and practice as time proceeds2,
and on the maintenance of broken unit tests3 Opinions vary between repairing broken unit tests, deleting them
completely, and moving them to another class in order to make them less exposed to changes (which may lead
to ourIndirect Testing(8) smell).

5. CONCLUSIONS

In this paper, we have looked at test code from the perspective of refactoring. While working on our XP
project, we observed that the quality of the test code was not as high as the production code. Test code was
not refactored as mercilessly as our production code, following Fowler’s advice that it is okay to copy and edit
test code, trusting our ability to refactor out truly common items later[5, p. 102]. When at a later stage we
started to refactor test code more intensively, we discovered that test code has its own set of problems (which
we translated into smells) as well as its own repertoire of solutions (which we formulated as test refactorings).

The contributions of this paper are the following:

� We have collected a series of test smells that help developers to identify weak spots in their test code;

� We have composed a set of specific test refactorings enabling developers to make improvements to their
test code in a systematic way;

� For each smell we have given a solution, using either a potentially specialized variant of an existing
refactoring from [5] or one of the dedicated test refactorings.

The purpose of this paper is to share our experience in refactoring test code of our ongoing XP project with
other XP practitioners. We believe that the resulting smells and refactorings provide a valuable starting point
for a larger collection based on a broader set of projects. Therefore, we would like to invite readers interested
in further discussion on this topic to the C2 Wiki4.

An open question is how test code refactoring interacts with the other XP practices. For example, the
presence of test code smells may indicate that your production code has some bad smells. So trying to refactor
test code may indirectly lead to improvements in production code. Furthermore, refactoring test code may
reveal missing test cases. Adding those to your framework will lead to a more complete test coverage of the
production code. Another question is at what moments in the XP process test refactorings should be applied.
In short, the precise interplay between test refactoring and the XP practices is a subject of further research.

2 http://c2.com/cgi/wiki?TwoYearItch
3 http://c2.com/cgi/wiki?RefactorBrokenUnitTests
4 http://c2.com/cgi/wiki?RefactoringTestCode

6

References

1. K. Beck. Embracing change with extreme programming.IEEE Computer, 32(10):70–77, October 1999.

2. K. Beck.Extreme Programming Explained. Embrace Change. Addison Wesley, 1999.

3. K. Beck and E. Gamma. Test infected: Programmers love writing tests.Java Report, 3(7):51–56, 1998.

4. A. van Deursen, T. Kuipers, and L. Moonen. Legacy to the extreme. InExtreme Programming and Flexible
Processes in Software Engineering; Proceedings XP2000. Addison-Wesley, 2001. To appear.

5. M. Fowler.Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

6. A. Schneider. JUnit best practices.Java World, 12, 2000.http://www.javaworld.com/javaworld/
jw-12-2000/jw-1221-junit.html.

