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ABSTRACT. This is a case-study in knowledge representation and dynamic epistemic protocol
verification. We analyze the ‘one hundred prisoners and a lightbulb’ puzzle. In this puzzle it is
relevant what the agents (prisoners) know, how their knowledge changes due to observations,
and how they affect the state of the world by changing facts, i.e., by their actions. These actions
depend on the history of previous actions and observations. Part of its interest is that all actions
are local, i.e. not publicly observable, and part of the problem is therefore how to disseminate
local results to other agents, and make them global. The various solutions to the puzzle are
presented as protocols (iterated functions from agent’s local states, and histories of actions, to
actions).
The paper consists of three parts. First, we present different versions of the puzzle, and their
solutions. This includes a probabilistic version, and a version assuming synchronicity (the
interval between prisoners’ interrogations is known). The latter is very informative for the
prisoners, and allows different protocols (with faster expected termination). Then, we model
the puzzle in an epistemic logic incorporating dynamic operators for the effects of information
changing events. Such events include both informative actions, where agents become more
informed about the non-changing state of the world, and factual changes, wherein the world
and the facts describing it change themselves as well. Finally, we verify the basic protocol to
solve the problem.
Novel contributions in this paper are: Firstly, Protocol 2 and Protocol 4. Secondly, the mod-
elling in dynamic epistemic logic in its entirety — we do not know of a case study that combines
factual and informational dynamics in a setting of non-public events, or of a similar proposal
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to handle asynchronous behaviour in a dynamic epistemic logic. Thirdly, our method to verify
dynamic epistemic protocols by reasoning over possibly infinite execution sequences of these
protocols.
A precursor of the present paper, entitled ‘One hundred prisoners and a lightbulb – logic and
computation’ (van Ditmarsch et al., 2010), was presented at KR 2010, Toronto. The differences
with the present contribution are as follows: the former contains a section with computational
results (expected runtime of different protocols before termination), whereas the focus of the
present paper is the verification of one of the presented protocols in the former.

KEYWORDS: protocol, verification, dynamic epistemic logic, math puzzle, multi-agent system
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1. Protocols

A group of 100 prisoners, all together in the prison dining area, are told that they
will be all put in isolation cells and then will be interrogated one by one in a room
containing a light with an on/off switch. The prisoners may communicate with one
another by toggling the light-switch (and that is the only way in which they can com-
municate). The light is initially switched off. There is no fixed order of interrogation,
or fixed interval between interrogations, and the same prisoner may be interrogated
again at any stage. When interrogated, a prisoner can either do nothing, or toggle
the light-switch, or announce that all prisoners have been interrogated. If that an-
nouncement is true, the prisoners will (all) be set free, but if it is false, they will all be
executed. While still in the dining room, and before the prisoners go to their isolation
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cells, can the prisoners agree on a protocol that will set them free (assuming that at
any stage every prisoner will be interrogated again sometime)?

1.1. Origin

This riddle is known as the ‘one hundred prisoners and a lightbulb’ problem. We
made some investigations on the puzzle’s origin, but we did not find references before
2001. On an IBM Research 2002 website (IBM Research, 2002) a 23 prisoner version
is given and it is mentioned that “this puzzle has been making the rounds of Hungarian
mathematicians’ parties”. See also (Dehaye et al., 2003; Winkler, 2004; Wu, 2002)
and http://wuriddles.com/.

1.2. Knowledge

Knowledge plays a crucial role in the formulation of the riddle and in its analysis.
To solve the riddle it is only required that some prisoner knows that all prisoners
have been interrogated, not that all prisoners know that, and certainly not that this
is common knowledge. It is impossible to satisfy the latter (and even any growth
of common knowledge is impossible, see the logical analysis) — unless the interval
between interrogations is known in advance.

1.3. Solution with counter and non-counter

Of course, the answer to the riddle is: “Yes, they can.” The typical problem solver
thinks that all prisoners must have the same role. But because the prisoners are all
together prior to the execution of a protocol, they can assign themselves different
roles. For n > 2 prisoners, a protocol to solve the riddle with two different roles for
prisoners is as follows:

PROTOCOL 1. — The n prisoners appoint one amongst them as the counter. All
non-counting prisoners follow the following protocol: the first time they enter the
room when the light is off, they turn it on; on all other occasions, they do nothing. The
counter follows a different protocol. The first n− 2 times that the light is on when he
enters the interrogation room, he turns it off. The next time he enters the room when
the light is on, he (truthfully) announces that everybody has been interrogated.

1.4. Non-counters can count too

A non-counter may learn that all have been interrogated before the counter. Con-
sider the case of three prisoners 0, 1, and 2, where 0 is the counter, and the event
sequence ( prisoner interrogated, state of light, : · · · )

− : 1+ : 0− : 1− : 2+ : 1+ : 0− : · · ·
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Non-counter 1 is interrogated and turns on the light. Next time he is interrogated the
light is off: he concludes that the counter must have been interrogated. Then he is
interrogated again and sees the light on: this can only be because prisoner 2 has now
been interrogated for the first time. He therefore knows that all have been interrogated,
and could announce so. This is before the counter is able to make that announcement:
in the above sequence, next.

PROTOCOL 2. — As protocol 1, plus for the non-counters two cases: (i) if your first
interrogation the light is off, then (turn it on according to 1 and) count the number
of times you subsequently see the sequence ‘light off – light on’, and announce that
all have been interrogated after observing this sequence n − 2 times; (ii) if your first
interrogation the light is on, then after being interrogated again when the light is off
(turn it on according to 1 and) count the number of times you subsequently see the
sequence ‘light off – light on’, and announce that all have been interrogated after
observing this sequence n− 3 times.

1.5. When the initial state of the light is not known

The riddle can also be solved when it is not known if the light is initially on or
off. This is not trivial. Assume that the light was initially on, and execute Protocol 1.
One of the counter’s n − 1 observations that the light is on, is then due to the initial
state of the light. One of the non-counters may never have been interrogated. In that
case, the counter will falsely announce that every prisoner has been interrogated. But
if we were to increase the count by 1 in Protocol 1, and count to n instead of to n− 1,
assume that the light was initially off. Now the protocol will not terminate, because
the counter will observe only n− 1 times that the light is on.

That it is not known what the state of the light is, creates an uncertainty in the
count. We can overcome this by having each non-counter count more than the amount
of uncertainty.

PROTOCOL 3. — The n prisoners appoint one amongst them as the counter. All non-
counting prisoners follow the following protocol: the first two times they enter the
room when the light is off, they turn it on; on all other occasions, they do nothing. The
counter follows a different protocol. The first 2n− 3 times that the light is on when
he enters the interrogation room, he turns it off. Then the next time he enters the room
when the light is on, he (truthfully) announces that everybody has been interrogated.

For example, in the situation where there are 3 prisoners, the counter has to count
until 2 · 3 − 2 = 4. This comprises three cases: light originally off, and both non-
counter 1 and non-counter 2 turn it on twice; light originally on, non-counter 1 turns
it on twice, non-counter 2 turns it on once; light originally on, non-counter 2 turns it
on once, non-counter 2 turns it on twice.
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1.6. Uniform role protocol

In the protocols so far, different prisoners perform different roles, and that was
the key to solving the puzzle. There is a protocol where all prisoners play the same
role, but it is probabilistic. It was suggested by Paul-Olivier Dehaye (in a personal
communication). This protocol is easier to present in terms of tokens:

Imagine each prisoner to hold a token worth a variable number of points, initially
one. Turning the light on if it is off, means dropping one point. Leaving the light on
if it is on, means not being able to drop one point. (Before, only a non-counter could
drop a point.) Turning the light off if it is on, means collecting one point. Leaving the
light off if it is off, means not being able to collect one point. (Before, only the counter
collects points.) Protocols terminate once a prisoner has n points.

PROTOCOL 4. — Entering the interrogation room, consider the number of points
you carry. If the light is on, add one. Let m be this number. Let a function Pr :
{0, ..., n} → [0, 1] be given, with Pr(0) = Pr(1) = 1, 0 < Pr(x) < 1 for x 6=
0, 1, n, and Pr(n) = 0. You drop your point with probability Pr(m), otherwise you
collect it. The protocol terminates once a prisoner has collected n points.

Dropping a point if you do not carry one, means doing nothing: therefore also
Pr(0) = 1. Under the above conditions, the protocol terminates. Better odds than any
non-zero probability give a Pr that is decreasing in the 1−

⌊
n
2

⌋
range and that is zero

on the dn2 e − n range.

Let us explain the example of four prisoners a, b, c, d. Choose Pr(0) = Pr(1) =
1, P r(2) = 0.5, P r(3) = 0, P r(4) = 0. Consider the following interrogation se-
quence, where the lower index stands for the number of points plus the state of the
light, and where the upper index stands, for the case of Pr(2), for outcome drop (1)
or collect (0).

− : a1+ : b12+ : c02− : d1+ : b02− : c02− : c12+ : b3− : c1+ : b4

Prisoner a gets there first, turns on the light (= drops his point), then b comes in, flips
a coin, heads, so does not turn off the light (= does not collect point), then c comes in,
flips a coin, tails, so does turn off the light, then d, light on, then b again, who turns
the light off this time and now has 3 points. Crucially, at this point b is designated
as the ‘counter’: as Pr(3) = Pr(4) = 0, b will never drop a point but only collect
them, until termination. Prisoners a and d already play no role anymore: anyone
dropping a single point has count 0, whether the light is on of off does not matter
now as Pr(0) = Pr(1) = 1 and, as already mentioned, dropping a point if you do
not carry one, means doing nothing. Prisoner b now has to wait for c to subsequently
drop his token consisting of two points, subject to chance. In the sequence above, the
transition “−c12+” means that the light is off, c throws heads, so drops one of his two
points by turning on the light.

It is important to realize that we cannot define Pr(2) = 0, because then a situation
can be reached where (as in the above sequence) two players ‘stick to their points’ so



6 Journal of Applied Non-Classical Logics. Volume v – No. n/2007

that the protocol will never terminate. But we also cannot have Pr(2) = 1, because
then no prisoner will ever get more than two points, and the protocol will also not
terminate. Probability plays an essential role in this protocol.

1.7. Synchronization

Assume the prisoners (commonly) know that a single interrogation per day takes
place. This is very informative. Now we have, for example, that if the counter is not
interrogated on the first day, he still learns that the light is on, as another prisoner must
have been interrogated and turned on the light. On this assumption of synchronization
other protocols can be conceived, of which we present a few.

1.8. Dynamic counter assignment

This protocol consists of two stages.

PROTOCOL 5. — The protocol is divided in two stages. Stage I takes n days. During
the first n− 1 days of this stage, the first prisoner to enter the room twice turns on the
light. Suppose this is on day m. At day n of stage I: if the light is off, announce that
everybody has been interrogated. Otherwise, turn off the light. Stage II starts on day
n + 1. The designated counter is the prisoner twice interrogated on day m in stage
I . In stage II , execute Protocol 1, except that: the counter turns off the light n −m
times only and announces the n− (m− 1)nd time he sees the light on that everybody
has been interrogated (he knows that during the first m days of stage I already m− 2
other prisoners have entered the interrogation room); non-counters who saw the light
off in stage I do nothing; the remaining non-counters act according to Protocol 1.

1.9. Head counter and assistant counters

A more involved scenario from (Wu, 2002) employs a head counter and assistant
counters. Again the protocol consists of two stages, both finite. These are repeated
until termination. We describe them informally.

Assume there are 100 prisoners. There is one head counter, and there are nine as-
sistants. In each iteration, in stage I both head counter and assistants act as the counter
in Protocol 1, but they stop turning off lights after they have reached a maximum count
of 9 (together they can therefore count all non-counters). The other prisoners act as
non-counters in Protocol 1. In stage II the non-counters do nothing, the assistants act
as non-counters in Protocol 1, where now turning on a light means that they completed
their count to 9, and the counter adds 9 to his current count every time he sees a light
on, and then turns it off. On the final day of stage II , unless the announcement is
made, turn it off, and repeat stages I and II , until termination. (A further refinement
is possible, communicating the results of a stage I+II cycle to the next iteration.)
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1.10. Binary tokens protocol

The binary tokens scheme generalizes the example in the previous paragraph. It
was originally presented in (Wu, 2002; Dehaye et al., 2003). We can give different
roles to different prisoners, and we can give different meanings to turning on or off
the light on different days. We can think of the prisoners exchanging ‘tokens’ with
variable point values, as in Protocol 4. All prisoners start with a token worth one point.
In the head/assistant counter scenario, counter and assistants all collect 10 (their own
plus 9) in Stage I, and in Stage II the assistants deposit their 10-point tokens into the
room by turning on the light and the master counter collects these bigger tokens.

PROTOCOL 6 (BINARY TOKENS SCHEME). — Let n be the total number of pris-
oners, and suppose n is a power of 2. Define a sequence (Pk) of finite length that
dictates the number of points a lighted bulb is worth on day k. Every Pk must be a
nonnegative power of 2. There is one role for all prisoners:

– Keep an integer in your head; call it T . Initialize it to T = 1.
– Let Tm denote the mth bit of T expressed in binary (where the first bit is called

the 0th bit).
– Upon entering the room on day k, where Pk = 2m, go through four steps:

a) If the light is on, set T := T + Pk−1, and turn it off.
b) If T ≥ n, make the announcement.
c) If Tm = 1, turn the light on, and set T := T − Pk.
d) Else, if Tm = 0, leave the light off (i.e., do nothing).

The protocol is defined for n a power of 2, but it can be adjusted to any number
of prisoners. Notice that Step (1) amounts to taking a token worth Pk−1 points left
over from the previous day, and Step (3) amounts to depositing a token worth Pk

points. In short, all prisoners will collect and deposit tokens, where the values of
tokens are dictated by the sequence (Pk). In the computation section we present a
suitable sequence (Pk).

2. Logic

The riddle and its solution can be modelled in a dynamic epistemic logic wherein
we can model knowledge and also factual and epistemic change. We need all three.
The counter will make his announcement when he knows that all prisoners have been
interrogated. That is only true after it is true that all prisoners have been interrogated.
Switching the light changes the truth value of the proposition ‘the light is on’. This is
factual change. When the counter enters the interrogation room and sees that the light
is on, he makes an informative observation that results in the knowledge that one more
prisoner has been interrogated. This is epistemic change.
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2.1. Epistemic logic with epistemic and factual change

Dynamic epistemic logics involving both epistemic and factual change have been
proposed in (Baltag, 2002; van Ditmarsch et al., 2005; van Ditmarsch, 2006; van Ben-
them et al., 2006; Herzig et al., 2006; Kooi, 2007; van Ditmarsch et al., 2008). We
base our summary presentation on (van Ditmarsch et al., 2008).

The logical language contains atomic propositions, all the propositional inductive
constructs, and clauses Kaϕ, for ‘agent a knows ϕ’ (for example, the counter knows
that all non-counters have been interrogated), CBϕ, for ‘the agents in group B com-
monly know ϕ’ (for example, the prisoners commonly know that all prisoners have
been interrogated), and the dynamic modal construct [U, e]ϕ, for ‘after every exe-
cution of update (U, e), formula ϕ holds.’ The distinct events that the counter and
non-counters execute in the protocol will be modelled as such updates, for example,
‘if the light is on, counter a turns off the light.’ This allows us to formalize expressions
as ‘after the event (if the light is on, counter a turns off the light), a knows that at least
four prisoners have been interrogated.’ We interpret the language on pointed Kripke
models where the accessibility relations representing the knowledge of the players are
equivalence relations. Updates (U, e) can also be seen as such structures, where event
e is the designated point of update model U. If two events cannot be distinguished
by an agent, they are in the same equivalence class in the update model. For exam-
ple, at the time the interrogation takes place, the counter cannot distinguish any of the
distinct events of the non-counters being interrogated. Each event in an update model
has a precondition ϕ for execution and a postcondition consisting of a set of bindings
p := ψ to describe factual change. For example, above, the precondition is p for ‘the
light is on’ and the postcondition is p := ⊥ for ‘it becomes false that the light is on’,
i.e., ‘counter a turns off the light’. The execution of an update model in an epistemic
model is the computation of a restricted modal product, and this resulting structure can
be seen as the state of information after the event. The following subsections contain
details of the logic.

2.2. Epistemic model

The models to present an information state in a multi-agent environment are the
Kripke models from epistemic logic. The set of states together with the accessibility
relations represent the information the agents have. If one state s has access to another
state t for an agent a, this means that, if the actual situation is s, then according to a’s
information it is possible that t is the actual situation.

Let a finite non-empty set of agents N and a countable set of propositional vari-
ables P be given. An epistemic model is a triple M = (S,R, V ) such that

– S is a non-empty set of possible states,
– R : N → ℘(S × S) assigns an accessibility relation to each agent a,
– V : P → ℘(S) assigns a set of states to each propositional variable.
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A pair (M, s), with s ∈ S, is called an epistemic state.

2.3. Update model

An epistemic model represents the information of the agents. Information change
should therefore be modelled as changes of such a model. One can model an information-
changing event in the same way as an information state, namely as some kind of
Kripke model: there are various possible events, which the agents may not be able to
distinguish. This is the domain of the model. Rather than a valuation, a precondition
captures the conditions under which such events may occur.

An update model (event model) for a finite set of agents N and a language L is a
quadruple U = (E,R, pre, post) where

– E is a finite non-empty set of events,
– R : N → ℘(E× E) assigns an accessibility relation to each agent,
– pre : E→ L assigns a precondition to each event,
– post : E→ (P → L ) assigns a postcondition to each event for each atom.

Each post(e) is required to be only finitely different from the identity function ε(p) =
p. The finite difference is called the domain dom(post(e)) of post(e). Note that the
domain of ε is empty, which explains its name. A pair (U, e) with a distinguished
actual event e ∈ E is called an update. We will denote

pre(e) = ϕ and post(e)(p1) = ψ1, ... and post(e)(pn) = ψn

using the expression

for event e: if ϕ, then p1 := ψ1, ..., and pn := ψn.

2.4. Execution of update model in epistemic model

The effects of these information changing events on an information state are as
follows. Given are an epistemic model M = (S,R, V ), a state s ∈ S, an update
model U = (E,R, pre, post) for a language L that can be interpreted in M , and an
event e ∈ E with (M, s) |= pre(e). The result of executing (U, e) in (M, s) is the
model (M ⊗ U, (s, e)) = ((S′, R′, V ′), (s, e)) where

– S′ = {(t, f) | (M, t) |= pre(f)},
– R′(a) = {((t, f), (u, g)) | (t, u) ∈ R(a) and (f, g) ∈ R(a)},
– V ′(p) = {(t, f) | (M, t) |= post(f)(p)}.
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2.5. Dynamic epistemic logic

Event models can be used to define a logic for reasoning about information change.
An update is associated with a dynamic operator in a modal language, based on epis-
temic logic. The updates are now part of the language: an update (U, e) is an induc-
tive construct of type α that should be seen as built from simpler constructs of type
ϕ, namely the preconditions and postconditions for the events of which the update
consists.

2.6. Language

Let a finite set of agents N and a countable set of propositional variables P be
given. The language L is given by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | CBϕ | [U, e]ϕ

where p ∈ P , a ∈ N , B ⊆ N , and (U, e) is a finite update (i.e., the domain of U is
finite) for N and L . We use the usual abbreviations, in particular for > (true) and ⊥
(false), we write 〈U, e〉 for ¬[U, e]¬ϕ, and [U]ϕ stands for

∧
f∈U[U, f]ϕ.

2.7. Semantics

The semantics of this language is standard for epistemic logic and based on the
product construction for the execution of update models. Below, R(B) is the reflexive
transitive closure of the union of all accessibility relations R(a) for agents a ∈ B.

Let an epistemic state (M, s) with M = (S,R, V ) be given. Let a ∈ N , B ⊆ N ,
and ϕ,ψ ∈ L .

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Kaϕ iff for all t s.t. R(a)(s, t),M, t |= ϕ
M, s |= CBϕ iff for all t s.t. R(B)(s, t),M, t |= ϕ
M, s |= [U, e]ϕ iff M, s |= pre(e) implies M ⊗ U, (s, e) |= ϕ

A formula ϕ is valid, notation |= ϕ, iff, given an epistemic model (for agents N and
atoms P ), it is true in all its states.

2.8. Composition

Given two update models, their composition is another update model. Let update
models U = (E,R, pre, post) and U′ = (E′,R′, pre′, post′) and events e ∈ E and
e′ ∈ E′ be given. The composition (U, e) ◦ (U′, e′) of these update models is (U′′, e′′)
where U′′ = (E′′,R′′, pre′′, post′′) is defined as follows
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– E′′ = E× E′,
– R′′(a) = {((f, f ′), (g, g′)) | (f, g) ∈ R(a) and (f ′, g′) ∈ R′(a)},
– pre′′(f, f ′) = pre(f) ∧ [U, f]pre′(f ′),
– dom(post′′(f, f ′)) = dom(post(f)) ∪ dom(post′(f ′)); and if p ∈

dom(post′′(f, f ′)), then post′′(f, f ′)(p) = post(f)(p) if p 6∈ dom(post′(f ′)), and
[U, f]post′(f ′)(p) otherwise.

We can either sequentially execute two update models, or compute their composition
and execute that: |= [U, e][U′, e′]ϕ↔ [(U, e) ◦ (U′, e′)]ϕ.

3. One hundred prisoners in dynamic epistemic logic

To model the solution of the prisoners riddle as a multi-agent system, we need to
specify the set of agents, the set of relevant atomic propositions, provide an initial
epistemic model, and define the updates that are possible in that model. We focus on
the setting of Protocol 1. In that setting, only a single agent needs to be modelled, the
counter.

3.1. Agents, atoms, formulas

The set of agents consists of prisoner 0, the counter: N = {0}. The other prisoners
are called non-counters. We do not model their knowledge. Atomic proposition p
stands for ‘the light is on’. Atomic propositions qi, for 1 ≤ i ≤ n− 1, stand for ‘(now
or at a prior interrogation) non-counter i has turned on the light’. Formula

∧n−1
i=1 qi—

for which we write the shorthand
∧

i>0 qi—means that all non-counters have been
interrogated, and K0

∧
i>0 qi therefore means that the counter knows that all non-

counters have been interrogated. To observe the light, the counter must be under
interrogation, so this implies that all prisoners have been interrogated. Therefore we
do not need an atom q0 expressing that the counter has been interrogated.

3.2. Initial epistemic model

The initial model I consists of the single state where all atoms p, q1, . . . , qn−1 are
false, and that is accessible by the counter. This represents their state of knowledge
when they are in the dining area together, prior to the start of the interrogations.

3.3. Update model for the interrogation

An informal description of all relevant interrogation events is as follows. The lower
index refers to the name of the prisoner involved in the event. The variable lower index
i runs over all non-counters 1 ≤ i ≤ n− 1.
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event precond. postcondition
ei if > then p := qi → p and qi := p→ qi
e¬p0 if ¬p then ε
ep0 if p then p := ⊥

– ei: if the light is off, then turn it on in case you have not turned it on before, or
else do not change the state of the light; if the light is on, do not change the state of
the light.

– e¬p0 : if the light is off, do not change the state of the light.
– ep0: if the light is on, turn it off.

The update model I is non-deterministic choice between all these events, with the
obvious partitions for the prisoners between the events: the counter 0 can distinguish
events involving himself from each other and from any other event: ep0 6∼0 e¬p0 , and
ei 6∼0 ej for i 6= j, i, j > 0.

It is possible to view e¬p0 together with ep0 as a single event e0, because we can
consider it as a multi-pointed update model I with two points e¬p0 and ep0.

3.4. Protocol

Execution of Protocol 1 consists of iteration of I until the termination condition
K0

∧
i>0 qi is satisfied. The correctness of our implementation of this protocol cannot

be expressed in the logical language, as the language does not contain an infinitary
modal operator expressing arbitrarily finite iteration of single events (and as in the
branching temporal structure resulting from iterated execution of I we cannot select
or indicate the terminating run). But we can formulate this on a metalevel. Section 4
verifies Protocol 1 in detail.

3.5. DEMO

We can think of validating the results in a model checker. The epistemic model
checker DEMO, written in Haskell, has been developed by Jan van Eijck (van Ei-
jck, 2007). A minor addition in functionality allows the specification of events also
involving factual change. With that, we can model ‘prisoners’ completely in DEMO.
The scripting language of the model checker matches the logic we present closely. It
should therefore not be seen as an independent way to determine the correctness of
the protocol. DEMO serves our purposes well because it allows us to determine the
truth of a given formula after a given event sequence very quickly, prior to thinking
systematically about a protocol with that formula as a postcondition.
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3.6. Logic of other protocols

The logic of other protocols require the modelling or more than one agent’s knowl-
edge. For example, in Protocol 2 all the prisoners count. We can adjust the event
models by changing termination condition K0

∧
i>0 qi into one for all prisoners:

n−1∨
j=0

Kj

∧
i>0

qi.

For details on logical aspects of other protocols see (van Ditmarsch et al., 2010).

4. Verification

To formally prove that Protocol 1 is correct, we need to do several things. In the
first place, we have to move from the original informal statement of a solution to a
formal version. Above we have used dynamic epistemic logic for this. In this section
we will enrich dynamic epistemic logic with a few additional features that effectively
turn dynamic epistemic logic into a formalism for describing how knowledge-based
programs (in the sense of (Fagin et al., 1997)) get executed.

Next we show formally that the formal version of the protocol (the dynamic epis-
temic logic program) matches the informal version step-by-step.

Finally we can apply program verification techniques to prove that the dynamic
epistemic logic program does what it is supposed to do. It then follows from this that
the informal protocol does what it is supposed to do.

Take the case of n prisoners. For i ∈ {0, . . . , n−1}, let ei be the event of the inter-
rogation of prisoner i. Let p express that the light is on. We will slightly streamline the
events ei by extending dynamic epistemic logic with two simple programming con-
structs: registers and successor. In particular, we assume a register c for storing natural
numbers (the counting register), we allow the factual change operation c := c+1, and
we assume that it is possible to check statements of the form c = n, where n is a
natural number. Assuming 0 to be the counter, this allows us to express the event e0
as the following ‘program’:

case

light: light := false, c := c + 1;

not light: skip

endcase

An interrogation sequence for n prisoners numbered 0, . . . , n− 1 is an infinite list
of natural numbers, with each number less than n. An example is:

σ = 0 : 1 : 2 : 3 : 4 : 5 : σ
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Another way to write the same σ is:

σ = [0,1,2,3,4,5] ++σ

where ++ is the operation that concats a finite list and a (finite or infinite) list. σi is i-th
member of σ, counting from 0.

σ is a fair interrogation sequence for n prisoners if

– for each i, 0 ≤ si < n (σ is a sequence for n prisoners), and
– for each i ∈ n and each j ∈ {0, . . . , n − 1} there is a k ∈ n with σi+k = j (at

each point i, each prisoner j will be interrogated at some future point i+ k).

Input-output can be modelled as follows:

Input: for the case where there are n prisoners: an infinite stream over {0, . . . , n−1},
i.e., a member of the set {0, . . . , n− 1}∞.

Output: a natural number (or the protocol runs forever).

The property we have to check is the following correctness statement: If σ is a fair
interrogation sequence for n prisoners, then protocol PROTn will output a natural
number k with the property that

{0, . . . , n− 1} ⊆ {σi | i < k}.

This is a formal version of the informal statement that after the k-th interrogation, all
of the n prisoners have been interrogated.

Let I be the initial epistemic model given before. Let M be the set of all Kripke
models with valuations over the signature. Let E be the set {(I, ei) | 0 ≤ i < n}.
From now on we will write (I, ei) as ei. Let U be the function M → E∞ → M∞

given by:
U M (e : es) =M ◦ e : U (M ◦ e) (es).

Then if the sequence of events starts e, e′, e′′, . . ., the image of UI starts

I ◦ e0, I ◦ e0 ◦ e1, I ◦ e0 ◦ e1 ◦ e2, . . .

Let T be the function M∞ → n ∪ {∞} given by

T (M : ms) = T0(M : ms)

Ti(M : ms) =

{
i if M |= K0(p ∧ c = n− 2),
Ti+1(ms) otherwise.

Now consider the following diagram:
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{0, . . . , n− 1}∞ n ∪ {∞}

{e0, . . . , en−1}∞ M∞

map (λi 7→ ei)

PROTn

UI

T

THEOREM 7 (CORRECTNESS). — For all fair streams σ the diagram commutes on
a natural number.

Proof: Induction on the number of prisoners n.

Case n = 2: PROT2 ends after the first occurrence of 10 in the input stream. By
fairness, 10 must occur in the stream. After e1e0 occurs in the event stream,K0(p∧c =
0) is true in the resulting epistemic model, and T halts at the position of that model.

Induction step: assume the diagram commutes for all fair streams σ for PROTn.
We have to show that it also commutes for all fair streams for PROTn+1. Let n be
the last prisoner that has not been counted (rename prisoners if necessary). From the
induction hypothesis we get that there is some k with

Mk |= K0(p ∧ c = n− 2).

Now recall that we are considering PROTn+1, so instead of quitting, the counter
switches off the light and increments c. Since σ is fair, the pattern n · · · 0 has to
occur after position k. Execution of en followed by · · · followed by execution of e0
will create a model M with M |= K0(p ∧ c = n− 1).

5. Further research

5.1. Puzzle

We keep discovering and designing more versions of the riddle. Protocol 4 was
a recent addition. The authors of (Dehaye et al., 2003) mention generalizations to
the computation of any Turing-computable function with n arguments by n prisoners
communicating this way—termination is when a prisoner declares the output of the
computation.
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5.2. Logic

For our modelling purposes, the logic we presented has restrictions: we cannot
refer to past events in preconditions, we cannot really express asynchronous behaviour,
we cannot express arbitrary finite execution (‘Kleene-star’) of events, and we cannot
select single runs of a protocol. As a consequence, we cannot formulate the correctness
statement for the protocols we have considered inside our logic. On the positive side,
the logic we have presented is axiomatizable, as there are model checking tools for
verification, etc. Let us explore what is needed to lift these restrictions.

The protocol prescribes that a non-counter i turns the light on, except when he has
done so before. We have introduced atomic propositions qi in the language that are
initially false, become true when non-counter i turns on the light, and then remain
true forever. The protocol then prescribes that a non-counter turns the light on, except
when qi is true. An intuitively more appealing proposal would not use such auxil-
iary variables qi. If a dynamic epistemic logic with (arbitrary) past operators were to
exist..., then we could express directly that a non-counter will turn on the light un-
less he has done it before, such that a single atom suffices to model the entire riddle.
Works reporting progress in this area are (Sack, 2007; Aucher et al., 2007; Renne et
al., 2009).

In a linear temporal modal logic (LTL) fair scheduling of prisoners and correctness
of the protocol can be expressed directly, unlike in dynamic epistemic logic. Temporal
logics are also suited to express asynchronous behaviour. We are investigating alter-
native modellings in temporal epistemic logic. A relation between dynamic epistemic
logics and branching time temporal logics is by way of tree models (forests) à la (van
Benthem et al., 2009) that are induced by repeated update model execution. See also
(Wang, 2010).

5.3. Computation

For each of the presented protocols, we can ask what the time complexity is of
expected termination, given a scheduling policy of interrogation. A fair scheduling
policy is where prisoners are randomly selected for interrogation. A sequence pro-
duced with fair scheduling has the property that at any time, every prisoner will be
interrogated again. It is unknown what the minimum is of expected termination for
this policy—it is 3500 interrogations more or less. This has already been investigated
with extensive simulations and trials, without a conclusive answer. Details are found
in (Wu, 2002; Dehaye et al., 2003; van Ditmarsch et al., 2010).
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