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CHAPTER 1

On the Logic of Lying

Hans van Ditmarsch,1 Jan van Eijck,2 Floor Sietsma,3 Yanjing Wang4

ABSTRACT. We look at lying as an act of communication, where (i) the proposition that
is communicated is not true, (ii) the utterer of the lie knows (or believes) that what she
communicates is not true, and (iii) the utterer of the lie intends the lie to be taken as truth.
Rather than dwell on the moral issues, we provide a sketch of what goes on logically
when a lie is communicated. We present a complete logic of manipulative updating, to
analyse the effects of lying in public discourse. Next, we turn to the study of lying in
games. First, a game-theoretical analysis is used to explain how the possibility of lying
makes such games interesting, and how lying is put to use in optimal strategies for playing
the game. Finally, we give a matching logical analysis. Our running example of lying in
games is liar’s dice.

1. What is a Lie?

The church father St. Augustine, who wrote at length about lying in De Mendacio [3],
holds a subtle view on what lying is and what it is not. We will take his view as our point
of departure. Here is his famous quote on what lying is not.

For not every one who says a false thing lies, if he believes or opines
that to be true which he says. Now between believing and opining
there is this difference, that sometimes he who believes feels that he
does not know that which he believes, (although he may know himself
to be ignorant of a thing, and yet have no doubt at all concerning it, if
he most firmly believes it:) whereas he who opines, thinks he knows
that which he does not know. Now whoever utters that which he holds
in his mind either as belief or as opinion, even though it be false, he
lies not. For this he owes to the faith of his utterance, that he thereby
produce that which he holds in his mind, and has in that way in which
he produces it. Not that he is without fault, although he lie not, if
either he believes what he ought not to believe, or thinks he knows
what he knows not, even though it should be true: for he accounts an
unknown thing for a known.

1University of Sevilla. Email hvd@us.es
2CWI, Amsterdam. Email jve@cwi.nl
3CWI, Amsterdam. Email F.Sietsma@cwi.nl
4Peking University. Email wangyanjing@gmail.com
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6 1. ON THE LOGIC OF LYING

Augustine, De Mendacio (On Lying), ca. AD 395 [3]

And on what lying is:

Wherefore, that man lies, who has one thing in his mind and utters
another in words, or by signs of whatever kind. Whence also the heart
of him who lies is said to be double; that is, there is a double thought:
the one, of that thing which he either knows or thinks to be true and
does not produce; the other, of that thing which he produces instead
thereof, knowing or thinking it to be false. Whence it comes to pass,
that he may say a false thing and yet not lie, if he thinks it to be so as
he says although it be not so; and, that he may say a true thing, and yet
lie, if he thinks it to be false and utters it for true, although in reality
it be so as he utters it. For from the sense of his own mind, not from
the verity or falsity of the things themselves, is he to be judged to lie
or not to lie. Therefore he who utters a false thing for a true, which
however he opines to be true, may be called erring and rash: but he
is not rightly said to lie; because he has not a double heart when he
utters it, neither does he wish to deceive, but is deceived. But the fault
of him who lies, is the desire of deceiving in the uttering of his mind;
whether he do deceive, in that he is believed when uttering the false
thing; or whether he do not deceive, either in that he is not believed,
or in that he utters a true thing with will to deceive, which he does not
think to be true: wherein being believed, he does not deceive though
it was his will to deceive: except that he deceives in so far as he is
thought to know or think as he utters.

Augustine, [3]

We cannot do better than to follow Augustine in assuming that intent to mislead is part of
the definition of a liar. Thus, to us, lying that p is communicating p in the belief that ¬p
is the case, with the intent to be believed.

Note that we allow ourselves to deviate from Augustine a bit: we will use a logic that treats
knowledge as true belief, and we will occasionally switch between knowledge and belief,
so we will occasionally view lying about p as communication of p in the knowledge that
¬p is the case. Intention to be believed can be modelled as a preference relation different
from the accessibility relation for belief (plausibility). This is to account for the fact that
people can believe things for which they have no preference, and vice versa.

Our analysis is not intended as a contribution to epistemology. We are aware of the
philophical difficulties with the treatment of knowledge as (justified) true belief [21]. But
we endorse the following quote from the Stanford Encyclopedia of Philosophy:

Most likely, there isn’t one single concept of knowledge that permits
consensus on what the necessary and sufficient conditions of knowl-
edge are. [27]
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The moral sides to the issue of lying are clarified in the ninth of the ten commandments
(‘Thou shalt not bear false witness’) and the fourth of the five Buddhist precepts (‘I un-
dertake the precept to refrain from false speech’). On the other hand, in the Analects
of Confucius, Confucius is quoted as condoning a lie if its purpose is to preserve social
structure:

The Governor of She said to Confucius, ‘In our village we have an
example of a straight person. When the father stole a sheep, the son
gave evidence against him.’ Confucius answered, ‘In our village those
who are straight are quite different. Fathers cover up for their sons,
and sons cover up for their fathers. In such behaviour is straightness
to be found as a matter of course.’ Analects, 13.18.

Among philosophical treatises, the quoted text of Augustine is a classic.5 For more, see
[12] and [2] and the references therein.

Rather than dwell on the moral side of the issue of lying, in this paper we will study its
logic, focusing on simple cases of lying in game situations, and on a particular kind of
public announcement that may or may not be deceptive (we call these ‘manipulative up-
dates’). Thus, we abstract from the moral issues; we feel that it is important to understand
why lying is tempting (why and how it pays off) before addressing the choice between
condemnation and absolution.

The rest of the paper is structured as follows. First, in Section 2, we link up to the
generic logic of communication and change. Next, in Section 3, we develop our logic of
lying in public discourse, treating a lie as an update with a communication originating
from someone who believes it is not true. Next, we turn to lying in games, by analyzing
the game of Liar’s Dice, first in terms of game theory (Section 4), next in terms of (an
implementation of) our logical system (Section 5). Section 6 concludes with a reflection
on a crucial difference between lying in public discourse and lying in games: lying in
games does not induce false beliefs, because the communications in a bluffing game are
not deceptive or manipulative in our technical sense.

2. The Logic of Communication and Change

The logic of communication and change presented in [11] provides means to model com-
municative actions and actions that change the world, and their effects in given epistemic
situations. In this section we introduce the syntax and semantics of the logic. In the next
sections we show how this machinery can be put to use to analyse manipulation in public
discourse and to describe what goes on in the game of Liar’s Dice. Rather than use the
enhanced version based on the proposal in [17] to use propositional dynamic logic as a
logic of belief revision, we stick to simple doxastic models, with plausibility relations that
satisfy the KD45 axioms.

DEFINITION 1.1 (Doxastic models). Let a set of propositional variables P and a finite
set of agents N be given. A doxastic model is a triple M = (W,V,R) where W is a set of
worlds, V : W → P(P) assigns a valuation to each world w ∈ W, and R : N → P(W2)

5We found a site on the internet where the views of the writer De Mendacio on lying are expounded.
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assigns an accessibility relation
i
→ to each agent i ∈ N, satisifying transitivity, seriality

and euclidicity. (A binary relation R is euclidic if it satisfies ∀xyz((Rxy ∧ Rxz)→ Ryz).)

A pair M = (M,U) with U ⊆ W is a multiple-pointed doxastic model, indicating that the
actual world is among U.

Note that in a multiple-pointed doxastic model (M,U), U is allowed to be empty, indicat-
ing that the model pictures a doxastic situation that is incompatible with reality.

If we also want to model the intention to deceive, we need to use doxastic preference
models (W,V,R, S ), where S is a second relation for preference. Again, it is reasonable to
let S satisfy the KD45 postulates. But rather than carry such preference relations along in
the exposition, we will indicate at appropriate places how they can be dealt with.

[7] proposes to model doxastic actions as doxastic models, with valuations replaced by
preconditions. (See also: [4, 5, 6, 8, 9, 13, 18, 19, 23].) [11] proposes to add substitutions
for modelling change in the world (this proposal is based on [15]). See also [14]. The
story of update logic with substitutions is retold for a fragment in [22].

DEFINITION 1.2 (Substitutions). L substitutions are functions of type L → L that dis-
tribute over all language constructs, and that map all but a finite number of basic propo-
sitions to themselves. L substitutions can be represented as sets of bindings

{p1 7→ φ1, . . . , pn 7→ φn}

where all the pi are different. If σ is a L substitution, then the set {p ∈ P | σ(p) , p} is
called its domain, notation dom(σ). Use ε for the identity substitution. Let SubL be the
set of all L substitutions.

This notion of ‘domain’ is from the logic programming tradition (see, e.g., [1]).

DEFINITION 1.3 (Doxastic Models under a Substitution). If

M = (W,V,R)

is a doxastic model and σ is a L substitution (for an appropriate doxastic language L),
then Vσ

M is the valuation given by λp ∈ P · [[σ(p)]]M . In other words, Vσ
M assigns to p

the set of worlds w in which σ(p) is true. For M = (W,V,R), call Mσ the model given by
(W,Vσ

M ,R).

Note6 that the functor σ 7→ [σ] given by [σ] : V 7→ Vσ is contravariant, i.e., [τ ◦ σ] =
[σ] ◦ [τ]. Cf. also [1].

DEFINITION 1.4 (Action models for a given language L). Let a finite set of agents N and
a doxastic languageL be given. An action model forL is a quadruple A = (W, pre, sub,R)
where

• W is a set of action states or events,
• pre : W → L assigns a precondition to each action state,
• sub : W → SubL assigns a substitution to each action state and

6With thanks to one of our reviewers.
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• R : N → P(W2) assigns a transitive, serial and euclidic accessibility relation
i
→ to each agent i ∈ N.

A pair A = (A, S ) with S ⊆ W is a multiple-pointed action model, indicating that the
actual event that takes place is a member of S .

The doxastic language L is defined as follows.

DEFINITION 1.5 (L). Assume p ranges over the set of basic propositions P, i ranges over
the set of agents N. The formulas of L are given by:

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [α]φ | [A, S ]φ,
α ::= i |?φ | α1 ∪ α2 | α1;α2| α

∗,

where (A, S ) is a multiple-pointed finite L (action) model.

We employ the usual abbreviations. In particular, φ1 ∨ φ2 is shorthand for ¬(¬φ1 ∧ ¬φ2),
φ1 → φ2 for ¬(φ1 ∧¬φ2), 〈α〉φ for ¬[α]¬φ, 〈A, S 〉φ for ¬[A, S ]¬φ. Note that the standard
doxastic language is a sublanguage of L, with “[i]φ” and “[(∪i∈N i)∗]φ” interpreted as
“Biφ” and “Cφ”, respectively.7

Let MOD be the class of multiple-pointed doxastic models and ACT the class of multiple-
pointed finite L models. Then L-update is an operation of the following type:

⊗ : MOD × ACT→ MOD.

The operation ⊗ and the truth definition forL are defined by mutual recursion, as follows.

DEFINITION 1.6 (Update, Truth). Given a multiple-pointed doxastic model (M,U) and
an action model (A, S ), we define

(M,U) ⊗ (A, S )

as

((W ′,V ′,R′),U′),

where

W ′ := {(w, s) | w ∈ WM , s ∈ WA,M |=w pres},

V ′(w, s) := {p ∈ P | M |=w subs(p)},

(w, s)
i
→ (w′, s′) ∈ R′ :≡ w

i
→ w′ ∈ RM and s

i
→ s′ ∈ RA,

U′ := {(u, s) | u ∈ U, s ∈ S , (u, s) ∈ W ′},

7The reason to employ multiple-pointed models for updating is that it allows us to handle choice. Suppose
we want to model the action of testing whether φ, followed by a public announcement of the result. This involves
choice: if the outcome of the test is affirmative, then do this, else do that. Choice is modelled in a straightforward
way in multiple-pointed action models. Once we allow multiple-pointed action models, it is reasonable to also
take our doxastic models to be multiple-pointed, with the multiple points constraining the whereabouts of the
actual world.
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and where the truth definition is given by:

M |=w > always

M |=w p :≡ p ∈ VM(w)
M |=w ¬φ :≡ not M |=w φ

M |=w φ1 ∧ φ2 :≡ M |=w φ1 and M |=w φ2

M |=w [α]φ :≡ for all w′ with w
α
→ w′ M |=w′ φ

M |=w [A, S ]φ :≡ (W ′,V ′,R′) |=(w,s) φ for all (w, s) ∈ U′,

where ((W ′,V ′,R′),U′) = (M, {w}) ⊗ (A, S ).

In this definition
i
→ is the doxastic relation for i in the model M,

?φ
→ is the relation {(w,w) |

M |=w φ},
α1∪α2
→ is the relation

α1
→ ∪

α2
→,

α1;α2
→ is {(x, y)|∃z(x

α1
→ z)&(z

α2
→ y)}, and

α∗

→ is the
reflexive transitive closure of

α
→.

In [11] it is shown that this logic is axiomatized by the axioms and inference rules of
doxastic PDL, plus appropriate axioms for the doxastic relations (in this case, the KD45

axioms for the
i
→ relations), plus a set of reduction axioms that are generated from the

action models by means of a process of program transformation. In the next section we
will use (appropriate fragments of) this logical system to model what goes on in manip-
ulative communication, and in Section 5 we will employ it to analyze what goes on in
Liar’s Dice.

3. The Logic of Lying in Public Discourse

We get lied to in the public domain, all the time, by people who have an interest in obfus-
cating the truth. In 1993 the tobacco company Philip Morris tried to discredit a report on
Respiratory Health Effects of Passive Smoking by founding, through a hired intermediary,
a fake citizen’s group called The Advancement of Sound Science or TASSC, to cast doubt
on it. Exxon-Mobile used the same organisation to spread disinformation about global
warming.8 Their main ploy: hang the label of ‘junk science’ on peer-reviewed scientific
papers on smoking hazards or global warming, and promote propaganda disguised as re-
search as ‘sound science’. It worked beautifully for a while, until the New York Times
exposed the fraud [24]. As a result, many educated people who should know better are
still in doubt about the reality of global warming, or think the issues are just too hard for
them to understand.

It has frequently been noted that the surest result of brainwashing in
the long run is a peculiar kind of cynicism, the absolute refusal to
believe in the truth of anything, no matter how well it may be estab-
lished. In other words, the result of a consistent and total substitution
of lies for factual truth is not that the lie will now be accepted as truth,
and truth be defamed as lie, but that the sense by which we take our
bearings in the real world—and the category of truth versus falsehood
is among the mental means to this end—is being destroyed.

8See http://www.exxonsecrets.org/html/orgfactsheet.php?id=6.
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Hannah Arendt, “Truth and Politics”, 1967 [2].

Below we will give a logic of possibly deceptive public speech acts, to model the effects
of lying in politics. Logically, lying in public and lying in private are quite different, just
as public announcement is quite different from private announcement. Incidentally, our
modelling shows quite clearly that Arendt is right about the grave consequences of lying
in politics (Proposition 1.10 below).

First, take the protypical example of lying about p. Picture an initial situation where agent
a knows that p, and agent a knows that agents b, c do not know that p. One way to picture
this initial situation is like this:

2 : p 3 : p

0 : p 1 : p
bc

bc bc

abc

The grey shading indicates that 0 is the actual world. Two worlds are x-connected if
there is an x-path from one to the other. E.g., 0 and 3 are b-connected. Note that agent
a believes (or even: knows) that p, but agents b, c also consider it possible that agent a
believes the opposite (which is the case in world 1), or that agent a does have no beliefs
whatsoever about p (the situation in worlds 2 and 3).

In typical examples of bearing witness in court, the situation is often a bit different. In
cases of providing an alibi, for example, the question ‘Was the accused at home with you
during the evening of June 6th?’ is posed on the understanding that the witness is in a
position to know the true answer, even if nobody can check that she is telling the truth.

Let us assume that everyone knows that a knows whether p. The picture now becomes:

0 : p 1 : p
bc

Assume agent a sends a group communication to b, c to the effect that ¬p. Would this be
a correct communication model for the lie that ¬p?

0 : ¬p 1 : >
a

It is easy to see that this cannot be right. The result of this update is a model that has no
actual worlds, i.e., an inconsistent model. The actual worlds of an update are pairs (w, e)
where w is an actual world of the input doxastic model and e an actual event of the update
model, and w satisfies the precondition of e. Since the actual world has p true, and the
precondition of the actual action is ¬p, there are no such pairs.
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Rather, the misleading communication should be modelled as a KD45 action model, as
follows (reflexive arrows not drawn):

0 : > 1 : ¬p
bc

The misleading agent a knows that no truthful communication is being made, but the
two agents b, c mistakenly believe that ¬p is being truthfully asserted. The fact that the
originator of the lie does believe that p is true can be taken on board as well, of course:

0 : Ba p 1 : ¬p
bc

In the context of doxastic preference models, the precondition for the actual action could
be extended even further, with the intent to mislead: in a’s most preferred worlds, his
victims believe that ¬p. We will omit the formal details in the interest of readability.

Updating the initial model with this action model gives:

(0, 0) : p (1, 1) : p
bc

Note that the precondition Ba p forces the actual event 0 to match with the actual world 0,
so that the new model has an actual world (0, 0). Similarly for world 1 and event 1.

This is a model where a believes that p, where b, c mistakenly believe that ¬p, and where
b, c also believe that a believes that ¬p. Note that the model is KD45: beliefs are still
consistent ([i]φ → 〈i〉φ holds in the model), but the model is not truthful anymore (there
are φ and i for which [i]φ → φ does not hold). The postulate of truthfulness has been
replaced by the weaker postulate of consistency (the D postulate [i]φ→ 〈i〉φ).

This way to model lying suggests a natural generalization of the well-studied concept of
a public announcement. In the logic of public announcements [25, 19], a public announ-
cement !φ is always taken to be a true statement. Unfortunately, this is not completely
realistic.

A more realistic version of public announcements leaves open the possibility of deceit, as
follows. A possibly deceptive public announcement φ is a kind of ‘if then else’ action. In
case φ is true, the announcement is a public update with φ, in case φ is false, the public
is deceived into taking φ as true. The manipulative update with p, in a setting where the
public consists of a, b, c, looks like this:
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0 : ¬p

1 : p

2 : p

bc

There are two actual events, one for the situation where p is true — in this case, the public
is duly informed — and one for the situation where p is false — in this case the public is
misled to believe that p. This action model can be simplified, as follows:

0 : ¬p 1 : p
bc

Call this the two-pointed manipulative update for φ. We will refer to this action model as
Uφ. The variation on this action model where only event 0 is actual will be referred to as
U0
φ. This action model denotes the lie with φ. The variant with only event 1 actual will be

referred to as U1
φ. This action model denotes the public announcement with φ.

Let us introduce operations for these actions. The manipulative update with φ is denoted
‡φ, and its two variants are denoted ¡φ (for the lie that φ) and !φ (for the public announce-
ment that φ).

Now it turns out that the logic of individual belief and manipulative update, has a simple
axiomatisation in terms of reduction axioms, just like the logic of individual knowledge
and public announcement.

φ ::= p | ¬φ | φ1 ∧ φ2 | Biφ | [‡φ1]φ2 | [¡φ1]φ2 | [!φ1]φ2

Interpretation as sketched above:

• [‡φ]ψ is true in a model M at a world w if ψ is true in both (w, 0) and (w, 1) of
updated model M ⊗ U.

• [¡φ]ψ is true in a model M at a world w if ψ is true in (w, 0) of updated model
M ⊗ U0.

• [!φ]ψ is true in a model M at a world w if ψ is true in (w, 1) of updated model
M ⊗ U1.

Complete axiomatisation: the usual KD45 axioms for Bi, modus ponens, necessitation for
Bi, ‡φ, ¡φ and !φ, and reduction axioms for the [‡φ], [¡φ], [!φ] modalities:

[‡φ]ψ ↔ [¡φ]ψ ∧ [!φ]ψ
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This defines the effect of [‡φ] in terms of those of [!φ] and [¡φ]. Next, we have the usual
reduction axioms for public announcement:

[!φ]p ↔ φ→ p

[!φ]¬ψ ↔ φ→ ¬[!φ]ψ
[!φ](ψ1 ∧ ψ2) ↔ [!φ]ψ1 ∧ [!φ]ψ2

[!φ]Biψ ↔ φ→ Bi[!φ]ψ

Finally, the reduction axioms for lying:

[¡φ]p ↔ ¬φ→ p

[¡φ]¬ψ ↔ ¬φ→ ¬[¡φ]ψ
[¡φ](ψ1 ∧ ψ2) ↔ [¡φ]ψ1 ∧ [¡φ]ψ2

[¡φ]Biψ ↔ ¬φ→ Bi[!φ]ψ

The final axiom of this list is the most interesting: it expresses that believing ψ after a lie
that φ amounts to the belief that a public announcement of φ implies ψ, conditioned by
¬φ.

Since all these axioms have the form of equivalences, completeness of the calculus of
manipulation and individual belief follows from a reduction argument, as in the case of
public announcements with individual knowledge. We refer to [11] for a general perspec-
tive on proving communication logics complete by means of reduction axioms.

THEOREM 1.1. The calculus of manipulation and individual belief is complete.

Another way to see that the logic is complete is by means of the observation that this is the
special case of the LCC logic where updates are restricted to manipulations, announce-
ments and lies, and where doxastic programs are restricted to individual accessibilities.
Then apply the equivalence between [A, s]Biφ and pre(A, s)→

∧
{t|s

i
→t}

Bi[A, t]φ.

Interestingly, our logic of manipulation is closely related to the variation on public an-
nouncement that is used in [20] to analyse the ‘surprise exam puzzle’, where public an-
nouncement of φ is defined as an operation that restricts the doxastic alternatives of the
agents to the worlds where φ is true, i.e., Mφ is the model where each Ri gets replaced
by Rφ

i given by Rφ
i (w) = [[φ]] ∩ Ri(w). Using †φ for this alternative announcement, the

corresponding reduction axiom is [†φ]Biψ ↔ Bi(φ → [†φ]ψ). This same definition and
reduction axiom can be found in [22], but neither author cites the other on this.

At first sight, this alternative semantics for announcement takes us outside of the frame-
work sketched in Section 2 above. However, if †φ is alternative announcement, then we
have:

PROPOSITION 1.2. M,w |= [†φ]ψ iff M,w |= [‡φ]ψ.

Alternative announcement turns out to be the same as manipulative updating, and our
analysis can be viewed as a decomposition of alternative announcement into public lying
and (regular) public announcement.

Regular public announcements can be expressed in terms of manipulative updating:
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PROPOSITION 1.3. ` [!φ]ψ↔ (φ→ [‡φ]ψ).

The proof is by induction on ψ and is left to the reader.

It is the case that the logic of public announcement and the logic of manipulation have the
same expressive power: this follows from the fact that they both reduce to multi-modal
KD45. But note that the logic of manipulative updating has greater ‘action expressivity’
than the logic of public announcement: the logic of [!φ] has no means to express an
operation mapping S5 models to KD45 models, and [‡φ] is such an operation.

As an example of reasoning with the calculus, we use the axioms to show that a manipu-
lative update followed by a belief is equivalent to a belief followed by the corresponding
public announcement:

PROPOSITION 1.4. ` [‡φ]Biψ↔ Bi[!φ]ψ.

PROOF.

[‡φ]Biψ↔ ([¡φ]Biψ∧[!φ]Biψ)↔ ((¬φ→ Bi[!φ]ψ)∧(φ→ Bi[!φ]ψ))↔ Bi[!φ]ψ.

�

An important difference between manipulative update and public announcement shows up
when we work out the preconditions of inconsistency after an update. For announcements
we get:

PROPOSITION 1.5. ` [!φ]⊥ ↔ ¬φ.

PROOF.

[!φ]⊥ ↔ [!φ](p ∧ ¬p)↔ ([!φ]p ∧ [!φ]¬p)↔ ([!φ]p ∧ (φ→ ¬[!φ]p))
↔ ((φ→ p) ∧ (φ→ ¬p))↔ ¬φ

�

This shows that a public announcement with φ leads to an inconsistent state iff the nega-
tion of φ is true. Similarly, it is easy to work out that a public lie that φ leads to an
inconsistency iff φ is true, i.e., we can derive

PROPOSITION 1.6. ` [¡φ]⊥ ↔ φ.

Using this we can work out the preconditions for inconsistency after a manipulative up-
date:

PROPOSITION 1.7. ` [‡φ]⊥ ↔ ⊥.

PROOF.

[‡φ]⊥ ↔ ([!φ]⊥ ∧ [¡φ]⊥)
Prop 1.6
↔ (¬φ ∧ φ)↔ ⊥

�
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This means that a manipulative update in a consistent state will never lead to inconsis-
tency.

The following proposition about public announcements can be proved by induction on φ.
It shows that if we update with an inconsistency, the resulting model is inconsistent:

PROPOSITION 1.8. ` [!⊥]φ↔ >.

In the case of manipulatively updating with an inconsistency, the result is not an inconsis-
tent model, but a model where all accessibilities have vanished. In the particular case of
an i-belief, we get:

PROPOSITION 1.9. ` [‡⊥]Biφ↔ >.

PROOF.

[‡⊥]Biφ↔ ([!⊥]Biφ ∧ [¡⊥]Biφ)↔ (> ∧ Bi[!⊥]φ)↔ Bi[!⊥]φ
Prop 1.8
↔ Bi> ↔ >.

�

After a manipulative update with an inconsistency, the public will no longer be able to
distinguish what is false from what is true.

Finally, the following proposition spells out under what conditions our ‘sense by which
we take our bearings in the real world’ is destroyed. This happens exactly when we are
manipulated into acccepting as truth what flatly contradicts our firm belief:

PROPOSITION 1.10. ` [‡φ]Bi⊥ ↔ Bi¬φ.

PROOF.

[‡φ]Bi⊥ ↔ ([!φ]Bi⊥ ∧ [¡φ]Bi⊥)↔ ((φ→ Bi[!φ]⊥) ∧ (¬φ→ Bi[!φ]⊥))
↔ ((φ→ Bi¬φ) ∧ (¬φ→ Bi¬φ))↔ Bi¬φ.

�
The full logic of manipulative updating, to which we now turn, consists of doxastic PDL
extended with manipulative updates, lies and announcements:

α ::= i |?φ | α1;α2 | α1 ∪ α2 | α
∗

φ ::= p | ¬φ | φ1 ∧ φ2 | [α]φ | [‡φ1]φ2 | [¡φ1]φ2 | [!φ1]φ2

Again, there is a complete axiomatisation: the axioms and rules of PDL, the axioms of
KD45, necessitation for [‡φ], [¡φ], [!φ], and the following reduction axioms for the three
update modalities.

The definition of ‡ in terms of ¡ and ! is as before:

[‡φ]ψ ↔ [¡φ]ψ ∧ [!φ]ψ
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Reduction axioms for public announcement are as follows:

[!φ]p ↔ φ→ p

[!φ]¬ψ ↔ φ→ ¬[!φ]ψ
[!φ](ψ1 ∧ ψ2) ↔ [!φ]ψ1 ∧ [!φ]ψ2

[!φ][i]ψ ↔ [?φ; i][!φ]ψ
[!φ][?χ]ψ ↔ [?φ; ?χ][!φ]ψ

[!φ][α1;α2]ψ ↔ [!φ][α1][α2]ψ
[!φ][α1 ∪ α2]ψ ↔ [!φ]([α1]ψ ∧ [α2]ψ)

[!φ][α∗]ψ ↔ [α′∗][!φ]ψ
where α′ such that [!φ][α]ψ↔ [α′][!φ]ψ

It can be shown by an inductive argument that for every doxastic program α, every
announcement !φ, and every postcondition ψ a doxastic program α′ exists such that
[!φ][α]ψ ↔ [α′][!φ]ψ. This α′, which does not have to be unique, can be found by
applying the above reduction axioms.

Reduction axioms for public lies:

[¡φ]p ↔ ¬φ→ p

[¡φ]¬ψ ↔ ¬φ→ ¬[¡φ]ψ
[¡φ](ψ1 ∧ ψ2) ↔ [¡φ]ψ1 ∧ [¡φ]ψ2

[¡φ][i]ψ ↔ [?¬φ; i][!φ]ψ
[¡φ][?χ]ψ ↔ [?¬φ; ?χ][!φ]ψ

[¡φ][α1;α2]ψ ↔ [¡φ][α1][α2]ψ
[¡φ][α1 ∪ α2]ψ ↔ [¡φ]([α1]ψ ∧ [α2]ψ)

[¡φ][α∗]ψ ↔ [α′;α′′∗][!φ]ψ
where α′ such that [¡φ][α]ψ↔ [α′][!φ]ψ
and α′′ such that [!φ][α]ψ↔ [α′′][!φ]ψ

Again, it can be shown by an inductive argument that for every doxastic program α, every
lie ¡φ, and every postcondition ψ, a doxastic programs α′ exists such that [¡φ][α]ψ ↔
[α′][!φ]ψ.

The α′ and α′′ in the axioms for α∗ can be viewed as the transformed versions of the
programs α, where the update operator acts as a doxastic program transformer. To give
an example, suppose α = i ∪ j, and we want to calculate the way common belief of i and
j is transformed by a public lie that φ. Then the transformed program for i ∪ j becomes
?¬φ; i ∪ j, i.e., we have:

[¡φ][i ∪ j]ψ↔ [?¬φ; i ∪ j][!φ]ψ.

Similarly for the way common belief of i and j is transformed by a public announcement:
the transformed program for i ∪ j becomes ?φ; i ∪ j, and we have:

[!φ][i ∪ j]ψ↔ [?φ; i ∪ j][!φ]ψ.
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Using these transformed programs, we see that the reduction axiom for (i ∪ j)∗ takes the
shape:

[¡φ][(i ∪ j)∗]ψ↔ [?¬φ; i ∪ j; (?φ; i ∪ j)∗][!φ]ψ.

This expresses that after a lie with φ, i and j have a common belief that ψ iff in the model
before the lie it holds that along all i∪ j paths that start from a ¬φworld and that pass only
through φ worlds, [!φ]ψ is true. Note that this is a ‘relativized common belief’ similar to
the relativized common knowledge that is needed to get a reduction style analysis going
of public announcement in the presence of common knowledge.

In fact, the style of axiomatisation that we have adopted is borrowed from the reduction
axioms formulated in terms of program transformations, in [11]. In the same manner as
in [11] we can derive:

THEOREM 1.11. The calculus of manipulative updating is complete.

In this section we have investigated the effect of lying in public discourse. In such a
setting the agents usually assume the other agents tell the truth and in the event of a lie,
the agents hearing the lie do not believe that the agent who announces the lie is actually
lying. This causes them to believe a false thing. In Section 5 we will analyse lying in a
different setting, where the agents are playing a game of Liar’s Dice and following a game
strategy. But first, we will give a game-theoretical analysis of the game to see how lying
affects a game’s outcome.

4. Liar’s Dice — Game-Theoretical Analysis

In his later years as a saint, Augustine held the opinion that lying, even in jest, is wrong,
but as the young and playful sinner that he was before his turn to seriousness he may well
have enjoyed an occasional game of dice. We will examine a simplified version of two-
person Liar’s Dice, and show by means of a game-theoretical analysis that it is precisely
the possibility of lying — using private information in order to mislead an opponent —
that makes the game interesting.

In our simplified version of Liar’s Dice, the die is replaced by a coin. A typical move of
the game is tossing a coin and inspecting the result while keeping it hidden from the other
player. Here is a description of what goes on, and what the options of the two players are.

• Players 1 and 2 both stake one euro: Player 1 bets on heads, Player 2 bets on
tails.

• Player 1 tosses a coin and observes the outcome (heads or tails), while keeping
it concealed from player 2.

• Player 1 announces either ‡Head or ‡Tail.
• If 1 announces ‡Tail, she then simply loses her one euro to player 2 and game

ends (for 1 bets on heads, so she announces defeat).
• If 1 announces ‡Head, she adds one euro to the stake and game continues.
• In response to ‡Head, 2 either passes (gives up) or challenges “I don’t believe

that, you liar”) and adds 1 euro to the stake.
• If 2 passes, 1 wins the stake, and the game ends.



4. LIAR’S DICE — GAME-THEORETICAL ANALYSIS 19

• If 2 challenges, and the toss was heads, 1 wins the stake, otherwise 2 wins the
stake. The game ends.

Player 1 has two information states: Heads and Tails, while player 2 has a single informa-
tion state, for player 2 cannot distinguish the two possible outcomes of the toss. We will
give a game theoretic analysis of how player 1 can exploit her ‘information advantage’
to the utmost, and of how player 2 can react to minimize her losses, on the assumption
that the procedure is repeated a large number of times. The following picture gives the
extensive game form. The first move is made by Chance; this move gives the outcome of
the coin toss. Then player 1 reacts, letting her move depend on the toss outcome. Finally,
player 2 decides whether to pass or challenge. This decision does not depend on the coin
toss; player 2 cannot distinguish the state where 1 announced ‡Head on seeing heads
from the state where she is bluffing. In the picture of the extensive game form (Figure 1)
this is expressed by a dotted line.

Chance

1 1

H T

−1, 1 2

‡T ‡H

2 −1, 1

‡H ‡T

1,−1 2,−2

P C

1,−1 −2, 2

P C

FIGURE 1. Extensive game form for Liar’s Toss game.

The leaves of the game tree indicate the payoffs. If the game sequence is Heads, ‡Tail,
the payoffs are −1 euro for player 1 and 1 euro for player 2. The same for the sequence
Tails, ‡Tail. Player 1 gets 1 euro and player 2 gets −1 euro for the sequences Heads,
‡Head, Pass, and Tail, ‡Head, Pass (these are the sequences where 2 gives up). The
sequence Heads, ‡Head, Challenge is a win for player 1, with payoff 2 euros, and −2
euros for player 2. The sequence Tails, ‡Head, Challenge, finally, is a win for player 2,
with payoff 2 euros, and −2 euros loss for player 1.

Player 1 has four strategies: (‡Head, ‡Head) (‡Head in case of heads and in case of
tails), (‡Head, ‡Tail) (‡Head in case of heads, ‡Tail in case of tails), (‡Tail, ‡Head),
and (‡Tail, ‡Tail). Player 2 has two strategies: Pass and Challenge. To find the strategic
game form, one has to take the average of the expected payoffs for the two cases of heads
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and tails. E.g., if player 1 plays (‡Head, ‡Tail) and player 2 responds with Challenge,
then in the long run in 1

2 of the cases the outcome will be heads, and player 1 wins 2 euros,
and in 1

2 of the cases the outcome will be tails, and player 1 loses 1 euro (for her strategy
is just to give up in such cases). Thus, the expected payoff is 1

2 × 2 − 1
2 × 1 = 1

2 euro
for player 1, and because the game is zero sum, − 1

2 euro for player 2. The strategic game
form is given by:

Pass Challenge
‡Head, ‡Head 1,-1 0,0
‡Head, ‡Tail 0,0 1

2 ,−
1
2

‡Tail, ‡Head 0,0 − 3
2 ,

3
2

‡Tail, ‡Tail -1,1 -1,1

It is easy to see that there is no pure strategy Nash equilibrium (a Nash equilibrium is a
combination of strategies, one for each player, with the property that neither of the players
can improve their payoff by unilaterally deviating from her strategy). Clearly, none of the
eight strategy pairs has this property.

Now let’s consider the strategy (‡Tail, ‡Tail) for 1. This is the strategy of the doomed
loser: even when the toss is heads the player still announces ‡Tail. This is obviously not
the best thing that 1 can do. Always announcing ‡Head gives a much better payoff in
the long run. In other words, the strategy (‡Tail,‡Tail) is strictly dominated by (‡Head,
‡Head). Similar for the strategy of the unconditional liar: (‡Tail,‡Head). It is also
strictly dominated by the strategy (‡Head,‡Head). Thus, we are left with:

Pass Challenge
‡Head,‡Head 1,-1 0,0
‡Head, ‡Tail 0,0 1

2 ,−
1
2

Suppose 1 plays (‡Head, ‡Head) with probability p and (‡Head, ‡Tail) with probability
1 − p. Then her expected value is p for her first strategy, and 1

2 (1 − p) for her second
strategy. Any choice of p where the expected payoff for p is different from that for 1 − p
can be exploited by the other player. Therefore, player 1 should play her first strategy
with probability p = 1

2 (1 − p), i.e., p = 1
3 , and her second strategy with probability

1− p = 2
3 . For player 2, we can reason similarly. Suppose 2 plays Pass with probability q

and Challenge with probability 1 − q. Again, the expected values for q and 1 − q should
be the same, for otherwise this mixed strategy can be exploited by the other player. The
expected value is −q for her first strategy and − 1

2 (1−q) for her second strategy. Thus, she
should play her first strategy with probability q = 1

2 (1− q), i.e., q = 1
3 . Neither player can

improve on her payoff by unilateral deviation from these strategies, so the mixed strategy
where 1 plays (‡Head, ‡Head) in 1

3 of the cases and 2 plays Pass in 1
3 of the cases is

a Nash equilibrium. In other words, the best that player 1 can do is always announcing
the truth and raise the stakes when her toss is heads, and lying in one third of the cases
when her toss is tails, and 2’s best response to this is to Pass in one third of all cases and
Challenge two thirds of the time.

The game-theoretic analysis yields that lying pays off for player 1, and that player 2,
knowing this, may reasonably expect to catch player 1 on a lie in one sixth of all cases.
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The value of the game is 1
3 euro, and the solution is 1

3 (‡Head, ‡Head), 2
3 (‡Head, ‡Tail)

as player 1’s optimal strategy, and 1
3 Pass, 2

3 Challenge as player 2’s optimal strategy. It
is clear that the honest strategy (‡Head, ‡Tail) is not the optimal one for player 1: given
player 2 plays 1

3 Pass and 2
3 Challenge, the expected payoff for player 1 is only 1

6 if she
sticks to the honest strategy. Lying indeed pays off sometimes.

If we modify the game so that player 1 cannot lie anymore, by refusing her the privilege of
having a peek at the toss outcome, the game immediately becomes a lot less interesting.
In the extensive game form for this version, an extra dotted line indicates that player 1
cannot distinguish the outcome Heads from the outcome Tails. See Figure 2.

Chance

1 1

H T

−1, 1 2

‡T ‡H

2 −1, 1

‡H ‡T

1,−1 2,−2

P C

1,−1 −2, 2

P C

FIGURE 2. Modified game where player 1 has no information advantage.

Player 1 has just two strategies left, ‡Head and ‡Tail, and the strategic form of the game
becomes:

Pass Challenge
‡Head 1,-1 0,0
‡Tail -1,1 -1,1

The strategy ‡Tail for player 1 is weakly dominated by ‡Head, so it can be eliminated,
and we are left with:

Pass Challenge
‡Head 1,-1 0,0

The strategy pair (‡Head, Challenge) is a Nash equilibrium. The game-theoretic analysis
predicts that a rational player 1 will always play ‡Head, and a rational player 2 will
always Challenge, and the game becomes a pure zero-sum game of chance. Surely, it is
the possibility of lying that makes Liar’s Dice an interesting game.
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5. Liar’s Dice — Doxastic Analysis

In the game of Liar’s Dice, when player a announces Heads while she actually saw that
the outcome of the toss was Tails, she is announcing something which she believes to be
false with the intent to be believed. This certainly seems to be a lie. However, we usually
do not condemn people who tell such a lie in a game as untruthful. In fact, in this game
player a is supposed to lie sometimes, or she would never win. This is an important point:
player a intents player b to believe her, but she probably does not expect it, because player
b may very well expect player a to lie sometimes. In this section we will analyse the game
of Liar’s Dice from a doxastic viewpoint in order to answer the question: is lying really
lying, when one is actually supposed to lie?

For our analysis we will use the doxastic model checker DEMO [16]. Using DEMO, we
can automatically check the truth of formulas in a doxastic model. One of the authors,
Floor Sietsma, has extended DEMO with factual changes to allow action models with
substitutions and also with the possibility to store integer values (in the Bachelor’s Thesis
[26] dating from 2007). We will use this extended model checker. The code of this model
checker is available from

http://www.cwi.nl/˜sietsma/DEMO/.

We show how the game of Liar’s Dice can be modelled using DEMO, and we demonstrate
the doxastic models that we get if we trace a particular run of the game.

Fist we will closely examine the different actions that take place in the game and their
representations as action models. Let p represent the value of a penny, with 1 signifying
heads, and 0 signifying tails. Let agents a and b represent the two players, and let C1
represent the contents of the purse of player a (C for cash), and C2 that of player b,
with natural number values representing the amounts in euros that each player has in her
purse. These natural number registers are available in the new extension of DEMO. Let
S 1, S 2 represent the money at stake for each player. Factual change can be thought of
as assignment of new values to variables. This is an essential ingredient of the various
actions in the game:

Initialisation: Both players put one euro at stake, and they both know this. S 1 :=
1,C1 := C1 − 1, S 2 := 1,C2 := C2 − 1, together with public announcement of
these factual changes.

Heads: Factual change of the propositional value of a penny p to 1, with private
communication of the result to player a (p = 1 signifies heads).

Tails: Factual change of the propositional value of a penny p to 0, with private
communication of the result to player a. (p = 0 signifies tails).

Announce: Player a announces either ‡Head or ‡Tail. There are several ways to
model this and we will come back to this later.

Pass: Player b passes and loses, player a gets the stakes. C1 := C1+S 1+S 2, S 1 :=
0, S 2 := 0.

Challenge: Public setting of C2 := C2 − 1, S 2 := S 2 + 1, followed by public
announcement of the value of p. If the outcome is p then C1 := C1 + S 1 + S 2,
otherwise C2 := C2 + S 1 + S 2 and in any case S 1 := 0, S 2 := 0.
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We will show how these actions can be defined as doxastic action models in Haskell code
using DEMO.

module Lies
where
import DEMOFCR

We first define the cash and stakes of each player as integer registers.

c1, c2, s1, s2 :: Reg
c1 = (Rg 1); c2 = (Rg 2)
s1 = (Rg 3); s2 = (Rg 4)

This declares four integer registers, and gives them appropriate names. The initial con-
tents of the purses of the two players must also be defined. Let’s assume both players
have five euros in cash to start with.

initCash1, initCash2 :: Integer
initCash1 = 5
initCash2 = 5

Initialisation of the game: both players put one euro at stake. This is modelled by the
following factual change: S 1 := 1,C1 := C1−1, S 2 := 1,C2 := C2−1. The representation
of this in our modelling language is straightforward. We just represent the contents of the
registers at startup.

initGame :: EM
initGame = (Mo

[0]
[(0,([],[(s1,1),(s2,1),
(c1,(initCash1-1)),(c2,(initCash2-1))]))]
[a,b]
[(a,0,0),(b,0,0)]
[0])

Tossing the penny is a factual change of p to 0 or 1. The penny is tossed secretly and
before player a looks both players don’t know the value of the penny. Because of this
there are two worlds, one where p is set to 0 and one where p is set to 1, and neither of
the two players can distinguish these worlds.
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toss :: Integer -> FAM
toss c ags = (Mo

[0,1]
[(0,(Top,[(P 0,Neg(Top))],[])),
(1,(Top,[(P 0,Top)],[]))]
ags
[(ag,w,w’) | w <- [0,1],

w’ <- [0,1], ag <- ags]
[c])

Note that the action model has a list that assigns to each world a triple consisting of a
precondition, a change to the propositions, and a change to the registers. In world 0, the
precondition is > and the change is to set p to value ¬>, i.e.,⊥ (and there is no change
to the registers), and in world 1, the precondition is again > and the change is to set p to
value > (and again, there is no change to the registers).

After the penny is tossed player a looks under the cup without showing the penny to
player b. We define a generic function for computing the model of the action where a
group of agents looks under the cup. These models consist of two worlds, one where p is
true (heads) and one where p is false (tails), the agents in the group can distinguish these
two worlds and the other agents cannot.

look :: [Agent] -> FAM
look group ags = (Mo

[0,1]
[(0,(p,[],[])),(1,(Neg(p),[],[]))]
ags
([(ag,w,w’) | w <- [0,1], w’ <- [0,1],

ag <- (ags \\ group)] ++
[(ag,w,w) | w <- [0,1], ag <- group])
[0,1])

In this case, there are no changes to propositions or registers, but world 0 has precondition
p, and world 1 has precondition ¬p.

Now we define the models of the situation after the penny has been tossed and player a
has looked at the outcome, distinguishing the two outcomes of the toss:

headsg :: EM
headsg = upd (upd initGame (toss 1)) (look [a])

tailsg :: EM
tailsg = upd (upd initGame (toss 0)) (look [a])
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Before looking at the way to model the announcement of an outcome of the toss by player
a we will first define the action models for passing and challenging.

When player b passes, the stakes are added to player a’s cash: C2 := C2 + S 1 + S 1, S 1 :=
0, S 2 := 0. Player b never gets to see the actual value of the penny so there are no changes
in the knowledge of the agents about p. The model for this has only one world that
indicates the changes in the stakes and cash.

pass :: FAM
pass ags = (Mo

[0]
[(0,(Top,[],

[(s1,(I 0)),
(s2,(I 0)),
(c1,ASum [Reg c1,Reg s1,Reg s2])]))]

ags
[(ag,0,0) | ag <- ags]
[0])

Note that here for the first time we see changes to the registers.

When player b decides to challenge player a, the cup is lifted and both players get to know
the value of p. Then the stakes are added to the cash of player a in case of heads and player
b in case of tails, together with one extra euro from the cash of player b that player b added
to the stakes while challenging player a. So instead of S 2 := S 2 + 1,C2 := C2 − 1 and
after that C1 := C1 + S 1 + S 2 in case of heads and C2 := C2 + S 1 + S 2 in case of tails,
we use C1 := C1+S 1+S 2+1,C2 := C2−1 in case of heads and C2 := C2+S 1+S 2 in
case of tails. The action model for this has one world for the case of heads and one world
for the case of tails. Both players can distinguish these worlds because the cup was lifted,
and the stakes are divided differently in the two worlds.
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challenge :: FAM
challenge ags =
Mo
[0,1]
[(0,(Neg(p),[],

[(s1,(I 0)),
(s2,(I 0)),
(c2,ASum [Reg c2,Reg s1,Reg s2])])),

(1,( p ,[],
[(s1,(I 0)),
(s2,(I 0)),
(c2,ASum [Reg c2,I (-1)]),
(c1,ASum [Reg c1,Reg s1,Reg s2,I 1])]))]

ags
[(ag,w,w) | w <- [0,1], ag <- ags]
[0,1]

When player a announces ‡Head or ‡Tail the stakes change. In case of ‡Head C1 :=
C1 − 1, S 1 := S 1 + 1 and in case of ‡Tail C2 := C2 + S 1 + S 2, S 1 := 0, S 2 := 0.

announceStakes :: Integer -> FAM
announceStakes 0 ags =
Mo
[0]
[(0,(Top,[],[(s1,(I 0)),
(s2,(I 0)),
(c2,ASum [Reg c2,Reg s1,Reg s2])]))]

ags
[(ag,0,0) | ag <- ags]
[0]

announceStakes 1 ags =
Mo
[0]
[(0,(Top,[],[(s1,ASum [Reg s1,I 1]),
(c1,ASum [Reg c1,I (-1)])]))]

ags
[(ag,0,0) | ag <- ags]
[0]

Now the only thing we have to decide is how we will model the announcement of ‡Head
or ‡Tail. Suppose we would use the manipulative update ‡p or ‡¬p for this. This would
imply that the other player believes the claims that are made. However, in a real game
of Liar’s Dice player b knows that player a might very well be bluffing and she doesn’t
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really believe player a’s claim at all. So to correctly model the game we should not use the
manipulative update. When player a makes an announcement this doesn’t even change
player b’s knowledge and beliefs because player b doesn’t believe player a.

So instead of the manipulative update we should only use the model for changing the
stakes to model the announcement:

announce :: Integer -> FAM
announce = announceStakes

Now player b doesn’t know whether p is true but she knows she doesn’t know:

bKnows :: Form
bKnows = Disj [(K b (Neg p)), (K b p)]

Lies> isTrue (upd tailsg (announce 0)) bKnows
False
Lies> isTrue (upd tailsg (announce 0)) (K b (Neg bKnows))
True
Lies> isTrue (upd headsg (announce 0)) bKnows
False
Lies> isTrue (upd headsg (announce 0)) (K b (Neg bKnows))
True
Lies> isTrue (upd tailsg (announce 1)) bKnows
False
Lies> isTrue (upd tailsg (announce 1)) (K b (Neg bKnows))
True
Lies> isTrue (upd headsg (announce 1)) bKnows
False
Lies> isTrue (upd headsg (announce 1)) (K b (Neg bKnows))
True

Note that since we did not use the manipulative update to model player a’s announcement
(although it is easy to implement in DEMO, of course) the resulting models are still S5-
models.

Lies> isS5Model (upd headsg (announce 1))
True
Lies> isS5Model (upd headsg (announce 0))
True
Lies> isS5Model (upd tailsg (announce 1))
True
Lies> isS5Model (upd tailsg (announce 0))
True
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This means that no actual misleading is taking place at all! This is actually very plausible
because player b knows that player a’s announcement might very well be false. This
shows that lying only creates false belief if the person who lies is believed to be telling
the truth.

Now we can use these action models to do a doxastic analysis of a game of Liar’s Dice.
The different possible games are:

(1) Player a tosses tails and announces ‡Tail
(2) Player a tosses heads and announces ‡Tail
(3) Player a tosses tails and announces ‡Head and player b passes
(4) Player a tosses tails and announces ‡Head and player b challenges
(5) Player a tosses heads and announces ‡Head and player b passes
(6) Player a tosses heads and announces ‡Head and player b challenges

The models for these games are:

game1, game2, game3, game4, game5, game6 :: EM
game1 = gsm (upd tailsg (announce 0))
game2 = gsm (upd headsg (announce 0))
game3 = gsm (upd (upd tailsg (announce 1)) pass)
game4 = gsm (upd (upd tailsg (announce 1)) challenge)
game5 = gsm (upd (upd headsg (announce 1)) pass)
game6 = gsm (upd (upd headsg (announce 1)) challenge)

We will now consider these six different cases in turn.

Game 1 is the game where player 1 tosses tails and admits this.

In this case both players stake one euro and player b wins the stakes, so in the end player
a lost one euro and player b won one euro. This can be checked with DEMO:

Lies> isTrue game1 (eq (Reg c1) (ASum [I initCash1,I (-1)]))
True
Lies> isTrue game1 (eq (Reg c2) (ASum [I initCash2,I 1]))
True

Player b doesn’t get to know what the value of the penny was:

Lies> isTrue game1 bKnows
False

The model for game 1 is:

Lies> game1
Mo
[0,1]
[(0,([],[(R1,4),(R2,6),(R3,0),(R4,0)])),
(1,([p],[(R1,4),(R2,6),(R3,0),(R4,0)]))]
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[a,b]
[(a,0,0),(a,1,1),(b,0,0),(b,0,1),(b,1,0),(b,1,1)]
[0]

A picture of this model is below. There are two worlds, one where the toss was heads
and one where it was tails. Player a can distinguish these worlds, player b cannot because
player b never got to see the penny. In both worlds the cash of player a is 4 and that of
player b is 6 euros, because the division of the stakes doesn’t depend on the value of the
penny.

0 :
p,R14,R26,

R30,R40 1 :
p,R14,R26,

R30,R40
b

Game 2 is the game where player a falsely announces ‡Head. Just like in game 1, player
a loses one euro and player b wins one euro, and player b doesn’t get to know the value
of the penny.

Lies> isTrue game2 (eq (Reg c1) (ASum [I initCash1,I (-1)]))
True
Lies> isTrue game2 (eq (Reg c2) (ASum [I initCash2,I 1]))
True
Lies> isTrue game2 bKnows
False

The model for this game is almost the same as for game 1: the difference is that now the
world where p is true is actual instead of the world where p is false.

Lies> game2
Mo
[0,1]
[(0,([],[(R1,4),(R2,6),(R3,0),(R4,0)])),
(1,([p],[(R1,4),(R2,6),(R3,0),(R4,0)]))]
[a,b]
[(a,0,0),(a,1,1),(b,0,0),(b,0,1),(b,1,0),(b,1,1)]
[1]

The picture of this model is:
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0 :
p,R14,R26,

R30,R40 1 :
p,R14,R26,

R30,R40
b

The third game is the case where player a tosses tails but falsely announces ‡Head and
player b passes. In this case player a stakes two euros and player b stakes one euro, and
player a gets to keep the stakes, so the final payoff is that player a wins one euro and
player b loses one euro:

Lies> isTrue game3 (eq (Reg c1) (ASum [I initCash1,I 1]))
True
Lies> isTrue game3 (eq (Reg c2) (ASum [I initCash1,I (-1)]))
True

Player b passes, so the cup is never lifted and player b doesn’t know the value of the
penny:

Lies> isTrue game3 bKnows
False

The model for this game is:

Lies> game3
Mo
[0,1]
[(0,([],[(R1,6),(R2,4),(R3,0),(R4,0)])),
(1,([p],[(R1,6),(R2,4),(R3,0),(R4,0)]))]

[a,b]
[(a,0,0),(a,1,1),(b,0,0),(b,0,1),(b,1,0),(b,1,1)]
[0]

This model has the same two worlds as the models for game 1 and 2 except for the changes
in the player’s cash.

In the fourth game, player a tosses tails but falsely announces ‡Head and player b chal-
lenges player a. This means that both players stake one extra euro and then the cup is
lifted and player b gets the stakes.

In this case player b does know the value of the penny:

Lies> isTrue game4 bKnows
True

The payoffs are −2 euros for player a and 2 euros for player b:

Lies> isTrue game4 (eq (Reg c1) (ASum [I initCash1,I (-2)]))
True



5. LIAR’S DICE — DOXASTIC ANALYSIS 31

Lies> isTrue game4 (eq (Reg c2) (ASum [I initCash2,I 2]))
True

The model for this game is:

Lies> game4
Mo
[0]
[(0,([],[(R1,3),(R2,7),(R3,0),(R4,0)]))]
[a,b]
[(a,0,0),(b,0,0)]
[0]

This model has only one world because none of the players consider any other world
possible, because both players know the values of the penny. In this world p is false
(because the toss was tails), player a’s cash is 3 euros and player b’s cash is 7 euros. A
picture of this model is below.

0 :
p,R13,R27,

R30,R40

The fifth game is the game where player a tosses heads and truthfully announces this and
player b passes. In this case the cup isn’t lifted so player b doesn’t know the value of the
penny again:

Lies> isTrue game5 bKnows
False

The payoffs are 1 for player a and −1 for player b:

Lies> isTrue game5 (eq (Reg c1) (ASum [I initCash1,I 1]))
True
Lies> isTrue game5 (eq (Reg c2) (ASum [I initCash2,I (-1)]))
True

The model for game 5 has two worlds again because player b doesn’t know the value of
the penny.

Lies> game5
Mo
[0,1]
[(0,([],[(R1,6),(R2,4),(R3,0),(R4,0)])),
(1,([p],[(R1,6),(R2,4),(R3,0),(R4,0)]))]

[a,b]
[(a,0,0),(a,1,1),(b,0,0),(b,0,1),(b,1,0),(b,1,1)]
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[1]

In game 6 player a tosses heads and truthfully announces this and player b challenges
player a. In this case both players add one extra euro to the stakes, the cup is lifted and
player a gets to keep the stakes. The model for this has one world where p is true, player
a has 7 euros and player b has 3 euros.

Lies> game6
Mo
[1]
[(1,([p],[(R1,7),(R2,3),(R3,0),(R4,0)]))]
[a,b]
[(a,1,1),(b,1,1)]
[1]

In this case player b knows the value of the penny and the payoffs are 2 euros for player
1 and −2 euros for player 2:

Lies> isTrue game6 bKnows
True
Lies> isTrue game6 (eq (Reg c1) (ASum [I initCash1,I 2]))
True
Lies> isTrue game6 (eq (Reg c2) (ASum [I initCash2,I (-2)]))
True

Our analysis shows that even though in the game of Liar’s Dice, lying takes place accord-
ing to the definition of Augustine, no misleading is taking place and the players are never
duped into believing a falsehood. This is shown by the fact that all updates in the game
are S5 updates.

6. Conclusion

There are still two discrepancies in the paper that we have to address. The first one is
between our treatment of lying in public discourse and our treatment of lying in games.
As we have seen, lying in public discourse can lead to KD45 models, which illustrates the
fact that genuine misleading takes place. We argued that the players in a game like Liar’s
Dice are never actually misled, so in a sense no real lying takes place here at all. Still,
lying in public discourse and lying in games seem to be connected somehow.

The difference between the two settings could be seen as a difference in the protocol
the agents are following. In public discourse, the agents usually assume that they are
following the protocol “only speak the truth”. Therefore, when one of them deviates from
the protocol by telling a lie, the others believe him and are misled. In the game of Liar’s
Dice, the protocol is “say anything in order to improve your payoff”. Since all agents
know that the others are following the protocol, they do not believe each other’s lies. The
issue of protocol dynamics in epistemic modelling is explored further in [28].

The second discrepancy is between the game-theoretical analysis of lying in games in
terms of mixed strategies that use probabilities, and the logical analysis in terms of truth
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values. To see that these perspectives do still not quite match, consider the game situation
where player 1 tosses the penny, observes the result, and announces ‘heads’. In our logical
analysis this does not lead to the false belief of player 2 that the coin has landed heads;
it does not lead to a belief change at all. But the game-theoretical analysis reveals that a
rational agent would have formed a belief about the probability that the claim is true. So
it seems that the logical analysis is still too crude.

This defect could be remedied by using probabilistic beliefs and probabilistic updates, in
the style of [10], which would allow us to express the probability of actions in the game.
With these, we can model the fact that the game-theoretical analysis in terms of mixed
strategies is common knowledge. For if this is the case, it is common knowledge that
if the toss is tail, then player 1 will announce ‘heads’ with probability 1

3 and ‘tails’ with
probability 2

3 .

Interestingly, this is also relevant for the first discrepancy. For why are the players not
duped into believing falsehoods, in the game of Liar’s Dice? Because they look further
than a single run of the game, and they know that as the game gets repeated they can
adhere to mixed strategies. Therefore, an analysis in terms of manipulative probabilistic
updates might work for both lying in public discourse and lying in games.

But there is need here for further work. Even if we switch to a probabilistic version of the
logic of communication and change, we have to attach probabilities to the update actions
that we start with. This leaves open the problem of how to use logic to derive the correct
Nash equilibria in the first place. In future work we will explore the possibility of letting
agents find such solutions by iterative playing of the game and updating their probabilities
until a fixpoint representing an equilibrium is reached.

Other areas of future work are the connection of the logic of lying with belief revision and
the modelling of agency. Believing a lie might have the consequence that an initial true
belief is given up in favour of a false one. This will only happen, however, if the original
true belief is held weakly enough to be replaced by the lie. In modelling a lie as a publicly
announced falsehood that is believed by the audience we have left out the liar. To get the
liar back into the picture, one has to analyse the preconditions for a lie, in terms of the
doxastics of the input model. For agent i to be the originator of a lie, i has to believe φ
and announce ¬φ, so Biφ is a precondition of the lying action. This issue will be taken up
in future work.

Finally, we must mention the fact that in philosophy and logic there is a long standing in-
terest in liar paradoxes. Now it seems that our language is not powerful enough to express
such paradoxes. What happens if we add a mechanism for self reference to dynamic dox-
astic logic? Does this immediately lead to either incompleteness or inconsistency? What
is the simplest possible way of expressing liar paradoxes in (an extension of) dynamic
doxastic logic, and what happens as a result?
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