
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

boxenv.sty: A LaTeX style file for formatting BOX expressions

Merijn de Jonge

Software Engineering (SEN)

SEN-R9911 May 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9911
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

boxenv.sty : A LATEX Style File for
Formatting BOX Expressions

Merijn de Jonge
CWI

P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
M.de.Jonge@cwi.nl

ABSTRACT

BOX is a language independent mark-up language. It is designed for use within a
generic pretty-print framework to connect source language dependentfront-endsto
target language dependentback-ends. A front-end translates a term over a language
to BOX to describe its intended layout. Back-ends translate BOX terms to arbitrary
output formats. The toolbox2latex is a back-end that generates LATEX code using
specialized LATEX commands and environments defined in the style fileboxenv.sty .
This style file is required in order to process the generated document by LATEX. This
paper describes how to integrate the generated LATEX files within your documents, and
it describes the low-level interface and implementation of theboxenv.sty style file.

1991 Computing Reviews Classification System: D.2.1, D.2.3, D.2.6, D.2.7, D.2.m,
D.3.2, I.7.2.

Keywords and Phrases: typesetting, pretty-printing, box language, software documen-
tation, document preparation, LATEX.

Note: Work carried out under project SEN-1.4, ASF+SDF

1 Introduction

This document describes the use and implementation of theboxenv.sty style file,
which, in combination withbox2latex , is used to format arbitrary BOX expressions.

The style file and the programbox2latex are part of the generic pretty-print sys-
tem described in [7]. A generic pretty-printer according to that article, consists of a
front-end and a back-end which are connected by the language independent mark-up
language BOX. A front-end translates a term over some language to a BOX expres-
sion which describes the intended layout of that term. A back-end translates a BOX

expression to some output format. In [7] three back-ends are described: i)box2text
which translates a BOX expression to its textual representation; ii)box2asfix which
updates the layout in an AsFix [8] term according to a BOX term; iii) box2latex
which translates a BOX term to LATEX.

1

operator space options description
H hs Formats its sub-boxes horizontally.
V vs, is Formats its sub-boxes vertically.
HV hs, vs, is Respects line width by formatting its sub-boxes horizon-

tally and vertically.
A hs, vs Formats its sub-boxes in a tabular.
ALT Depending on the available width, formats its first or sec-

ond sub-box.

Table 1:Available positional BOX operators and supported space options (hs defines horizontal
layout between boxes,vs defines vertical layout between boxes, andis defines left indentation).

Thebox2latex back-end uses special LATEX environments for its translation of
BOX. For each BOX operator a corresponding LATEX environment is used. The transla-
tion from BOX to LATEX consists of recursively translating the BOX operators in a BOX

term to their corresponding LATEX environments. For example, text placed within the
H BOX operator will be put in aHBOXenvironment bybox2latex . The style file
boxenv.sty , in which these environments are defined, is required in order to be able
to process the generated files by LATEX.

This document is organized as follows: First we give a brief overview of the BOX

language. Then we describe the user interface ofboxenv.sty in Section 3. That
section describes how the style file can be integrated in your LATEX documents and how
it can be customized. Section 3 concludes with an example which demonstrates the
use ofboxenv.sty within your documents. In Section 4 we describe the system in-
terface, which consists of separate LATEX environments for each existing BOX operator.
We give examples of the use of each of these environments. Conclusions and directions
for future work are described in Section 5. The implementation of the user and system
interface is described in Appendix A. This part is probably of interest only for people
intending to adapt, modify, or extend the package.

For a detailed description of the generic pretty-print system as a whole, and the
BOX mark-up language we refer to [7].

2 The BOX Language

BOX is a language independent mark-up language designed to describe the intended
layout of text. BOX was introduced in [9]. The BOX language supported bybox2-
latex andboxenv.sty is based on a more recent version described in [7]. This
section contains a brief overview of the BOX language as used bybox2latex and
boxenv.sty , and how it differs from the language described in [7]. For a compre-
hensive description of the language we refer to [7].

Boxes. The smallest boxes are strings. More complex boxes can be constructed by
composingboxes usingbox-operators. BOX supports two types of operators:posi-
tional operators andnon-positionaloperators.

2

operator description
F Operator to specify fonts and font attributes.
KW Dynamic font operator to format keywords.
VAR Dynamic font operator to format variables.
NUM Dynamic font operator to format numbers.
MATH Dynamic font operator to format mathematical symbols.
LBL Operator used to define a label for a box.
REF Operator to refer to a labeled box.
C Operator to represent lines of comments.
L Operator to construct a sequence of characters of arbitrary length.

Table 2:Available non-positional BOX operators.

Positional operators. Positional operators specify the relative positioning of boxes.
Examples of positional BOX operators are theH andV operators, which format their
sub-boxes horizontally and vertically, respectively:

H [B1 B2 B3] = B1 B2 B3

V [B1 B2 B3] =

B1

B2

B3

The exact formatting of each BOX operator can be controlled using BOX options. For
example, to control the horizontal layout between boxes, theH operator supports the
hs space option:

Hhs=2 [B1 B2 B3 = B1 B2 B3

Table 2 summarizes all available positional BOX operators including their supported
space options.

The BOX language that is supported bybox2latex and boxenv.sty has
evolved slightly since [7] because theHOV operator (which, depending on the available
width, either formats all of its sub-boxes horizontally or formats them all vertically) is
no longer available. Instead, the more generalALT box has been introduced. This op-
erator formats its first sub-box when it does not exceed the right margin or otherwise,
it formats its second sub-box:

ALT [B1 B2] =

B1

or

B2

Non-positional operators. The BOX language supports four types of non-positional
operators: font operators to control the textual appearance of BOX expressions, cross
reference operators to create links between boxes, a comment operator for formatting
comments, and a line operator to construct a sequence of characters of arbitrary length.
All available non-positional BOX operators are listed in Table 2.

3

Option Accepted
Values

Description

refstyle none No cross referencing is used.
normal Cross referencing is performed using the LATEX

commands\label and\ref .
hyperref The commands \hypertarget and

\hyperlink from the packagehyper-
ref [5] are used for cross referencing. Select
this option when your document is processed by
pdflatex [6] in order to obtain hyperlinks in
the generated PDF output.

visiblespace true Use the symbol ‘ ’ to display spaces in quotes
strings.

false Do not use the special symbol ‘’ to display
spaces in quoted strings.

Table 3: Supported options and accepted values. Options are selected by passingop-
tion=value to boxenv. The cross reference mechanism can also be selected using the
macronrefstyle (see Section 3.1). The use of ‘’ can be enabled/disabled using the macro
nvisiblespace (see Section 3.2).

3 User Interface

The toolbox2latex generates a LATEX file that represents the formatting specified in
the BOX expression that was passed tobox2latex . To use such LATEX files in your
document, you should include theboxenv.sty style file in your document. This file
defines the macros and environments corresponding to the BOX operators.

To include the style file in your document add the following to the preamble of your
document:

\usepackage[options]{boxenv}

The style file supports a number of options to customize the final output produced
by LATEX. These options are optional and can be omitted. The options together with
accepted values are listed in Table 3 and are described in more detail in Section 3.1
and 3.2.

The toolbox2latex generates a separate LATEX file for each BOX term. These
files can be included in your document using the\input command. For example, a
generated filef.tex can be included using the following LATEX command:

\input{f.tex}

After processing the file by LATEX, a DVI file is generated which respects the formatting
defined in the BOX expression(s).

4

fm=sf ntextsf
rm ntextrm
tt ntexttt

se=md ntextmd
bf ntextbf

sh=up ntextup
it ntextit
sc ntextsc
sl ntextsl
em ntextem

font family font series font shape

Table 4: This table shows the BOX font options to specify font family, font series, and font
shape. The table shows the accepted values, and the relation to corresponding LATEX commands.

3.1 Cross Referencing

Theboxenv.sty style file implements cross referencing according to the BOX oper-
atorsLBL andREF (see Section 4 for a description of the relation between these BOX

operators and the corresponding LATEX code). The style file supports several cross ref-
erencing mechanisms which can be selected using therefstyle option. The mech-
anisms that are currently supported are listed in Table 3. A particular type of cross ref-
erencing can be selected by passing the optionrefstyle=<reference style>
to boxenv.sty , or by calling the macro\refstyle{<reference style>} .refstyle

For example, to specify thathyperlink andhypertarget should be used, the
optionhyperref should be passed toboxenv.sty as follows:

\usepackage[refstyle=hyperref]{boxenv}

At any time a different mechanism can be selected using the\refstyle macro. For
example, to overrule the cross reference mechanism that was selected globally one
could issue the command:

\refstyle{normal}

By default, the cross reference mechanismnormal is selected.

3.2 Visible Spaces

Visualization of spaces can be controlled using the optionvisiblespace and thevisiblespace

macro\visiblespace . When set totrue , spaces occurring in a BOX string are
displayed as ‘’, otherwise an ordinary (invisible) space character is used. To use the
visible space character, pass the optionvisiblespace=true to the style file:

\usepackage[visiblespace=true]{boxenv}

Use the macro\visiblespace , to overrule the globally selected space symbol. To
disable the use of the visible space character, use\visiblespace{false} . By
default, the use of ‘’ is disabled.

5

Font operator Corresponding LATEX macro

KW ndef nKWf#1fntextbf f#1gg
VAR ndef nVARf#1 fntextit f#1gg
NUM ndef nNUMf#1fntextrm f#1gg
MATH ndef nMATHf#1fnensuremath f#1gg

Table 5:Dynamic font operators supported by the BOX language and their corresponding (de-
fault) LATEX definitions. The mappings from dynamic font operators to LATEX fonts can be re-
defined in the special configuration file ‘box-fonts.def ’ which is read byboxenv.sty .

3.3 Fonts

Fonts can be controlled by several BOX operators. According to [7], these font opera-
tors define fonts either statically or dynamically. Static fonts, specified using the BOX

F operator, are translated bybox2latex directly to LATEX commands. The supported
font options are based on the LATEX commands for specifying font attributes. Font col-
ors can be specified in BOX by name (using thecl font option) and are translated to the
LATEX \color command (which requires the use of thecolor.sty style file in your
document). Font sizes can be specified symbolically using thesz font option. BOX

uses the same symbolic name mechanism as LATEX to specify font sizes (e.g.,tiny ,
large , etc.). The remaining font options and their relation to LATEX commands are
displayed in Table 4.

Dynamic font operators are interpreted when processed by LATEX. The box-
env.sty style file contains default mappings from these operators to LATEX fonts. For
example, text defined within theVAR font operator (VAR[some-text]) translates
by default to italics (\textit{some-text}).

The style package allows these mappings to be customized manually by redefining
the mappings in a configuration file (the file ‘box-fonts.def ’) somewhere in your
TEXINPUTSsearch path. When this file exists it is loaded and its definitions override
the default definitions.

For example, to change the default mapping of theVAR font operator, we can add
a new macro definition to the filebox-fonts.def :

\def\VARf#1{{\color{red}#1}}

This definition ofVARf results in a red coloring of text specified within aVAR font
operator. In Table 5 all dynamic font operators of the BOX language and the corre-
sponding (default) LATEX macros are listed.

3.4 Example

In this section we demonstrate the use of theboxenv.sty style file and the integra-
tion of files generated bybox2latex within your document according to the LATEX
file depicted in Figure 1.

6

ndocumentclass farticle g

nusepackage[refstyle=none,visiblespace=false] fboxenv g

nbegin fdocument g
nsection fFile1 g

ninput fFile1.tex g

nsection fFile2 g

f

nrefstyle fhyperref g

nvisiblespace ftrue g

ninput fFile2.tex g

g

nsection fFile3 g

ninput fFile3.tex g

nendfdocument g

Figure 1:A sample LATEX document to demonstrate the use ofboxenv.sty .

The LATEX document of Figure 1 uses theboxenv.sty style file. The options
refstyle andvisiblespace are used to disable cross referencing and the use of
‘ ’ as space character. The file contains three sections each of which imports a file
(generated bybox2latex). The first file is typeset according to the options speci-
fied in the documents preamble (i.e., no cross referencing and no ‘’ as space charac-
ter). Before the second file is processed by LATEX, cross referencing and visiblespace
are enabled. Thus, the symbol ‘’ will be used as space character and the macros
hypertarget andhyperlink will be used for cross referencing during format-
ting of the second file. Because both macros are called within a LATEX environment,
their values are restored when this environment is closed. Hence, the third file is again
formatted without cross referencing and without using ‘’.

4 System Interface

Theboxenv.sty style file defines a number of high-level macros/environments, and
low-level macros/environments that form their implementation. This section describes
the relation between BOX operators and their corresponding high-level LATEX environ-
ments and macros. Implementation details and a description of the low-level interface
are postponed to Appendix A.

The high-level environments and macros correspond directly to BOX operators and
form the system interface ofboxenv.sty . For each BOX operator a corresponding
environment or macro is defined. One exception is formed by the BOX comment oper-
ator for which no corresponding macro or environment is defined (see the description
of the latextext environment below).

7

All environments and macros described in the remaining of this section are definedboxenv

within theboxenv environment. This environment initializes the BOX related envi-
ronments as well as several formatting parameters. Furthermore, it is responsible for
saving several TEX/LATEX parameters when this environment is entered and restoring
them upon exit.

Theboxenv environment has one optional parameter: the desired maximum line
width. BOX operators that take the line width into account (i.e., theHV and ALT
operators) will break a line into lines of smaller width when the desired line width is
exceeded. Within thelatextext environment (see below), the width parameter is
used to format paragraphs of text of this width.

When the width parameter is not specified\linewidth is used as default value.

Example:

\documentclass{article}
\usepackage{boxenv}

\begin{document}

\begin{boxenv}[.5\linewidth]
...

\end{boxenv}

\end{document}

The environmentHBOXcorresponds to the BOX operatorH. Text within theHBOXHBOX

environment is formatted horizontally without line breaking. In the current imple-
mentation, line breaking is not switched off by theHBOXenvironment. Instead, line
breaking should be prevented by using non-breakable spaces. This may change in a
future release ofboxenv.sty . This environment requires one argument: the inter-
word spacing factor (corresponding to thehs space option).

Example:

\begin{HBOX}{2}
An˜example˜of˜the˜use˜of˜the˜HBOX˜environment.˜%
Note˜the˜use˜of˜non-breakable˜spaces˜to˜prevent˜%
line˜breaking.

\end{HBOX}

The VBOXenvironment corresponds to theV operator. Paragraphs of text within aVBOX

VBOXenvironment are placed vertically. When entering aVBOXenvironment, the left
margin is set to the current horizontal position. As a result, subsequent paragraphs
are placed exactly below\begin{VBOX} . Observe that text is not placed vertically
automatically. To force a line to be placed below another, either a new paragraph should
be started or an explicit line break should be inserted.

The VBOXenvironment requires two arguments. The first argument specifies the
inter-line space factor (according to thevs space option). It is used to specify the verti-
cal distance between subsequent lines. The second argument specifies the indentation

8

of lines (according to theis space option). Note that theis space option defines layout
between sub boxes. As a consequence, indentation within theVBOXenvironment starts
at the second paragraph.

Example:

\begin{VBOX}{0}{3}
Within this environment normal inter-line spacing is\\

used. Subsequent lines are indented 3 units \\
(currently this corresponds to 3 ex).

\end{VBOX}

TheHVBOXenvironment corresponds to theHV BOX operator. Within this environ-HVBOX

ment line breaking is used whenever possible to construct lines that do not exceed the
right margin of the surroundingboxenv environment. Since some text within the
HVBOXenvironment might not be breakable (for instance text within theHBOXenvi-
ronment), the breaking mechanism does not guarantee to succeed. This may result in
lines that still exceed the right margin.

Because theHVBOXenvironment is a combination of horizontal and vertical place-
ment of text (i.e., theHBOXandVBOXenvironments), it requires three arguments. The
first argument specifies the inter-word space factor (corresponding to the BOX hs space
option). The second argument specifies the inter-line spacing factor (corresponding to
thevs space option). The last argument specifies the indentation factor (corresponding
to theis space option).

Example:

\begin{HVBOX}{1}{0}{0}
Text within this environment has normal inter-word and
inter-line spacing (hs=1 and vs=0). Subsequent lines
are not indented (is=0).

\end{HVBOX}

TheALTBOXenvironment corresponds to the BOX ALT operator. TheALTBOXenvi-ALTBOX

ronment requires two arguments. When the width of the text corresponding to the first
argument does not exceed the desired width of the surroundingboxenv environment,
that text is used. Otherwise, the text corresponding to the second argument is used.

Example:

\begin{ALTBOX}{%
\begin{HBOX}{1}

This˜text˜is˜preferred˜when˜it˜fits˜on˜a˜single˜line%
\end{HBOX}%
}{%
\begin{VBOX}{0}{0}

Otherwise, this text is used
\end{VBOX}%
}

\end{ALTBOX}

9

Alignment Generated template

left #nhfill
right nhfill#

center nhfill# nhfill

Table 6:Templates generated bybox2latex for left, right, and centered alignment.

TheABOXenvironment corresponds to the BOX A operator. This environment is im-ABOX

plemented using the alignment mechanism of TEX (see [4] and [3] for a description of
TEXs alignment). As a consequence, text within this environment should accomplish
the syntax of alignments in TEX (i.e., columns should be separated by ‘&’, rows should
be separated by ‘ncr’). This environment requires a single argument that specifies the
template of the alignment. The templates that are generated by the toolbox2latex
for left, right and centered alignment, corresponding to thel, r, andc alignment options
are depicted in Table 6.

Example:

\begin{ABOX}{#&˜\hfill#\cr}
first & row\cr
second & row\cr

\end{ABOX}

This environment corresponds to the BOX L line operator. It draws a line of width ap-LBOX

proximately equal to the width of the textt within theLBOXenvironment. TheLBOX
environment requires one argument that specifies the strings that is used to construct
the line. Whens equals ‘=’ the LATEX command\hrule is used to construct the line.
In this case the width is equal to the width oft. In all other cases, a line is constructed
by takingn copies ofs such that(n� 1) � j s j<j t j� n � j s j.

Example:

\begin{LBOX}{=}
This would draw a line using \hrule of width exactly
equal to this text.

\end{LBOX}

Text within this environment is formatted as ordinary text. That is, all TEX/LATEX pa-latextext

rameters that are modified within theboxenv environment are restored. The only
exceptions are the\hsize and the\linewidth parameters. Thelatextext
environment thus respects the width of the surroundingboxenv environment. The
latextext environment has no corresponding BOX operator. The environment is
used by thebox2latex tool to format text within the BOX C operator. Strings oc-
curring inside aC operator are placed in alatextext environment by the tool after
the initial comment characters (‘%%’) are removed.

10

Example:

\begin{latextext}
Except for the right margin, all parameters modified
within the boxenv environment are restored in the
latextext environment.

\end{latextext}

The macro\boxlabel corresponds to the BOX operatorLBL. The macro is used toboxlabel

define a new label. The exact LATEX code to which the macro expands depends on the
cross reference style that is selected (see Section 3). The macro has two arguments.
The first argument specifies the name of the label. The second argument specifies the
text that is to be labeled.

Example:

\boxlabel{mylabel}{Text that should be labeled}

The macro\boxref corresponds to the BOX operatorREF and is used to refer-boxref

ence to some label. Undefined references are discarded. The way that references
are displayed depends on the cross reference mechanism that is selected (see Sec-
tion 3). When ‘refstyle=none ’ is specified, referencing is disabled. The de-
fault (i.e., ‘refstyle=normal ’) is to display defined references using the LATEX
command\ref . How references are displayed when the stylehyperref is se-
lected (‘refstyle=hyperref ’), depends on the options passed to the style package
hyperref [5] and whether or not the LATEX file is processed bypdflatex [6].

The macro requires two arguments. The first argument specifies the name of the
label to refer to. The second argument specifies the text to display as label.

Example:

\boxref{the label to refer to}{Text displayed as label}

4.1 Example

In this section the use of some of the environments defined inboxenv.sty is demon-
strated by means of a number of small examples. This section is not intended to provide
a complete demonstration of theboxenv.sty style file, but rather to give some intu-
ition about how to use the environments and what the resulting output looks like.

HBOX. Horizontal text can be formatted using theHBOXenvironment. The LATEX
code below forms a small example of the use of this environment:

\begin{HBOX}{5}%
a˜line˜of˜horizontal˜text%

\end{HBOX}

11

This example results in a single line of text. Individual words are separated by a rather
large amount of horizontal space because an inter-word value of5 (which corresponds
to 5ex) was passed as argument to the environment. When processed by LATEX the fol-
lowing result is obtained:

a line of horizontal text

VBOX. Text can be formatted vertically using theVBOXenvironment. Each para-
graph within this environment is placed below the preceding paragraph and is option-
ally indented to the right. The left margin within aVBOXenvironment equals the
horizontal position where theVBOXstarts:

\begin{HBOX}{1}%
some˜prefix.˜%
\begin{VBOX}{0}{3}%

\begin{HBOX}{1}a˜line˜of˜horizontal˜text\end{HBOX}%

\begin{HBOX}{1}a˜second˜line˜of˜text\end{HBOX}%

\begin{HBOX}{1}a˜third˜line˜of˜text\end{HBOX}%
\end{VBOX}%

\end{HBOX}

This example shows the composition of aVBOXenvironment within aHBOXenviron-
ment. TheVBOXenvironment is preceded by horizontal text and, as a consequence,
the left margin within theVBOXenvironment is set to the position after this text. The
VBOXenvironment contains three lines of text, each line is formatted horizontally (be-
cause the corresponding text is placed within anHBOXenvironment). There is no extra
vertical space inserted between subsequent lines. There is horizontal layout inserted
between lines due to the non-zero value passed as argument to the environment. Con-
sequently, the second and third lines are indented to the right:

some prefix. a line of horizontal text
a second line of text
a third line of text

LBOX. Width calculation of text is performed by theLBOXenvironment. In the ex-
ample below a vertical composition is constructed consisting of a line of text formatted
horizontally, and a horizontal bar of equal width:

\begin{VBOX}{0}{0}
\begin{HBOX}{1}a˜line˜of˜horizontal˜text\end{HBOX}%

\begin{LBOX}{=}%
\begin{HBOX}{1}a˜line˜of˜horizontal˜text\end{HBOX}%

\end{LBOX}%
\end{VBOX}%

12

LATEX formats and calculates the width of the text within theLBOXenvironment but
without outputting the formatted text. Instead, it constructs a bar of equal width. Be-
cause theHBOXandLBOXare placed within a vertical environment, both the text and
the horizontal bar are positioned below each other:

a line of horizontal text

The LBOXenvironment constructs a sequence of symbols as passed as argument to
the environment. When the symbol ‘=’ is passed (as is the case in the example), a
horizontal bar is constructed using the\hrule command.

5 Concluding Remarks

The toolbox2latex translates BOX expressions to LATEX code by replacing BOX

operators to corresponding LATEX environments. Theboxenv.sty style file contains
the implementation of these environments and macros. This style file is required in
order to be able to process the generated files by LATEX.

This article gives a brief overview of the BOX mark-up language and it describes
the use and implementation of theboxenv.sty style file.

Current Status and Limitations. The combination ofbox2latex and the style
file boxenv.sty currently implements most BOX operators. The following features
are not supported at this moment:

� TheF font operator does not support font name selection using thefn font option.

� Thehs andis space options cannot be specified as BOX expressions. This means
that a BOX expression likeHhs=H [:::]

[: : :] cannot be translated to LATEX.

In addition to these missing features there are also some semantical issues that have not
yet been solved. These include the formatting of non-horizontal BOX operators within
an alignment operator. At this moment we therefore do not support theV, ALT, and
HV operators within an alignment.

Another problem is formed by the page breaking algorithm. This algorithm is based
on the heuristic that a page break may occur only within a vertical context when the
vs space option is greater then zero. That is, we allow a page break to occur whenever
empty lines are inserted between subsequent boxes in a vertical context. Unfortunately,
this algorithm does not work correctly at the moment and needs improvement.

Future Work. Although the translation of BOX to LATEX is almost finished there are
still some remaining issues. These include the implementation of the missing fea-
tures, solving the semantical problems, and improving the page breaking mechanism.
Furthermore, we want to investigate the translation from BOX to HTML using the
translatorlatex2html . Although generating HTML in this way already works, the
result is not satisfactory because thelatex2html translator generates images from
the formatted BOX expressions (instead of using HTML tags).

13

Acknowledgments. We would like to thank Mark van den Brand (CWI), Paul Klint
(CWI), and Joost Visser (CWI) for reading earlier drafts of this paper.

References

[1] D. Carlisle. Thekeyvald package. available atftp://ftp.cstug.cz/pub/
tex/local/cstug/thanh/pdftex/ , 1998.

[2] Victor E. Unusual paragraph shaped.TUGboat, 11(1):51–53, 1990.

[3] Victor E. TEX by Topic a TEXnician’s Reference. Addison-Wesley, 1991.

[4] D. E. Knuth. The TEXbook, volume A of Computers & Typesetting. Addison-
Wesley, 1984. (Ninth printing, revised, October 1989).

[5] S. Rahtz. Hyperref. available athttp://www.tex.ac.uk/tex-archive/
macros/latex2e/contrib/supported/hyper%ref/ , 1998.

[6] T. H. Thanh. A TEX variant which can produce acrobat pdf instead of dvi. available
at ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/ ,
1998.

[7] M. G. J. van den Brand and M. de Jonge. Pretty Printing within the ASF+SDF
Meta-Environment: a Generic Approach. Technical Report SEN-R9904, CWI,
1999.

[8] M. G. J. van den Brand, P. Klint, P. Olivier, and E. Visser. AsFix, 1997. A struc-
tured data format for representation of parse trees with an extensive library with
generic, language independent functionality. In particular a format for ASF+SDF
specifications. (In preparation).

[9] M. G. J. van den Brand and E. Visser. Generation of formatters for context-free
languages.ACM Transactions on Software Engineering and Methodology, 5(1):1–
41, 1996.

14

A Implementation

This section describes the implementation of theboxenv style file. It describes the
implementation of the user and system interface introduced in Section 3 and Section 4,
as well as the environments and macros that are used by the interfaces.

The translation from BOX to LATEX requires the ability to type-set boxes horizon-
tally and vertically (with optional left indentation), and the ability to calculate the width
of boxes.

Horizontal placement and indentation is implemented by a new environment
(box@hangpar) that supports paragraphs with a hanging indentation. Entering a
box@hangpar environment marks the left margin of subsequent paragraphs. Closing
a box@hangpar environment restores the left margin. By nestingbox@hangpar
environments, one can gradually increase and decrease the indentation of lines and
paragraphs.

Calculation of the width of paragraphs is performed by thebox@width environ-
ment and is required for theALT andL operators. This calculation is rather compli-
cated and explained in detail in Section A.9. Since almost all BOX operators can be
expressed in terms of paragraphs with hanging indentation and width calculations, their
implementation is straightforward by using thebox@hangpar andbox@width en-
vironments.

All macros and variables that do not belong to the user interface ofboxenv.sty
(see Section 3) are prefixed withbox@ to make them inaccessible outside the style
file. Furthermore, to enforce that BOX environments are used from within theboxenv
environment only, all environments test whether or not they are embedded within the
boxenv environment.

A.1 Version

Code to specify author, the version ofboxenv , and last modification date.

1 \def\@fileversion{1.0}
2 \def\@filedate{1999/04/27}
3 \def\@author{Merijn de Jonge (mdejonge@cwi.nl)}

Identification of package file:

4 \NeedsTeXFormat{LaTeX2e}
5 \ProvidesPackage{boxenv}

6 \typeout{Package: ‘boxenv’
7 \@fileversion\space <\@filedate> (\@author)}

A.2 Processing Options Passed to boxenv

The refstyle and visiblespace options can be passed as key/value pairs to
boxenv . For this value passing mechanism we used thekeyvald package of [1].

8 \RequirePackage{keyval}

We define a new set (‘Boxenv’) of key/value pairs that contains the keys ‘refstyle’ and
‘visiblespace’, and we use the macros\refstyle and\visiblespace to process

15

the values corresponding to these options (see Table 3 for the list of values currently
accepted for both options).

9 \define@key{Boxenv}{refstyle}{%
10 \refstyle{#1}%
11 }

12 \define@key{Boxenv}{visiblespace}{%
13 \visiblespace{#1}%
14 }

refstyle The macro\restyle selects a cross reference mechanism according to its argument
(see Table 3 for the list of mechanisms currently available). For each mechanismm two
macros are defined\box@mlabel and\box@mref . When processing the selected
style we link the macros corresponding to the selected style to the macros\boxlabel
and\boxref .

15 \def\refstyle#1{%
16 \def\@tmpa{#1}%
17 \def\@normal{normal}%
18 \def\@none{none}%
19 \def\@hyperref{hyperref}%

The option ‘refstyle=normal ’ has been selected. We link\box@normallabel
and\box@normalref to \boxlabel and\boxref , respectively.

20 \ifx\@tmpa\@normal%
21 \def\boxlabel{\box@normallabel}%
22 \def\boxref{\box@normalref}%

The option ‘refstyle=none ’ has been selected. We link\box@nonelabel and
\box@noneref to \boxlabel and\boxref , respectively.

23 \else%
24 \ifx\@tmpa\@none%
25 \def\boxlabel{\box@nonelabel}%
26 \def\boxref{\box@noneref}%

The option ‘refstyle=hyperref ’ has been selected. We link the macros
\box@hyperlabel and \box@hyperref to \boxlabel and \boxref , re-
spectively.

27 \else%
28 \ifx\@tmpa\@hyperref%
29 \def\boxlabel{\box@hyperreflabel}%
30 \def\boxref{\box@hyperrefref}%

Display an error message when an invalid value has been specified.

31 \else%
32 \errmessage{Invalid refstyle option passed.}%
33 \fi%
34 \fi%
35 \fi%
36 }

16

boxspace The macro\boxspace is used to display significant spaces. Using the macro
\visiblespace , this macro can be redefined to use either an ordinary (invisible)
space (the symbol ‘˜’), or the symbol ‘’. By default the symbol ‘˜’ is used.

37 \def\boxspace{˜}%

visiblespace The macro\visiblespace is used to select the symbol that is used by LATEX to
display a space character (see Section 3.2 for a description of this macro).

When the valuetrue is passed to\visiblespace , we redefine the macro
\boxspace in order to display spaces as ‘’. Otherwise, we use an ordinary (in-
visible) space (using the LATEX character ‘˜’).

38 \def\visiblespace#1{%
39 \def\@tmpa{#1}%
40 \def\@true{true}%
41 \def\@false{false}%
42 \ifx\@tmpa\@true%
43 \def\boxspace{\hbox{\tt\char‘\ }}%
44 \else%
45 \def\boxspace{˜}%
46 \fi%
47 }

Process

OptionsWithKV

In order to be able to specify a key/value pair to ‘\usepackage ’, we define the macro
\ProcessOptionsWithKV . This macro is copied from the hyperref package [5].

48 \def\ProcessOptionsWithKV#1{%
49 \let\@tempc\relax
50 \let\@tempa\@empty
51 \@for\CurrentOption:=\@classoptionslist\do{%
52 \@ifundefined{KV@#1@\CurrentOption}%
53 {}%
54 {\edef\@tempa{\@tempa,\CurrentOption,}}}%
55 \edef\@tempa{%
56

57 \noexpand\setkeys{#1}%
58 {\@tempa\@ptionlist{\@currname.\@currext}}}%
59 \@tempa
60 \AtEndOfPackage{\let\@unprocessedoptions\relax}%
61 }

Finally, we process the options in the set of key/value pairs ‘Boxenv’.
62 \ProcessOptionsWithKV{Boxenv}

A.3 Variable Declarations

The variable\box@leftmargin defines the left margin in abox@hangpar
environment. It corresponds to the horizontal offset from the beginning of the
box@hangpar environment.\box@indentation corresponds to theis space op-
tion passed to theV andHV operators. Both variables are used after starting a new
paragraph to set the value of\leftskip and\hangindent , respectively.

17

63 \newdimen\box@leftmargin
64 \newdimen\box@indentation

The variables below are used to store the results of\box@currentxpos and
\box@width , and to store temporary results during width calculation.

65 \newdimen\box@xpos
66 \newdimen\box@thewidth
67 \newdimen\box@widthincalculation

Inside the\box@width environment line widths are computed in order to calculate
the currentx position. The variable\box@lastlinewidth contains the width of
the last line of the most recent paragraph

68 \newdimen\box@lastlinewidth

The variables below are used to save LATEX settings when entering theboxenv
environment. They are restored when normal text has to be formatted within the
latextext environment.

69 \newdimen\box@linewidth
70 \newdimen\box@rightskip
71 \newdimen\box@parindent
72 \newcount\box@hyphenpenalty

The boolean\ifbox@inboxenv is used to test whether or not we are inside a
box@hangpar environment

73 \newif\ifbox@inboxenv

The three variables defined below are required in the macros\box@traverselines
and\box@thelinewidth , and in the environment\box@width for calculating
the length of paragraphs.

74 \newbox\box@investigation
75 \newbox\box@tester
76 \newbox\box@widthcalculation

Finally, a global variable is required that is used by\box@hspaceskip and
\box@vspaceskip to store their return value.

77 \newskip\box@tmpskip

A.4 Space Options

According to the BOX space options we define two macros that calculate the horizontal
and vertical spaceskip between words and lines, respectively.

78 \newcommand{\box@vspaceskip}[1]{\box@tmpskip=#1ex}%

79 \newcommand{\box@hspaceskip}[1]{%
80 \dimen0=#1em%
81 \dimen0=.3333\dimen0%
82 \box@tmpskip=\dimen0 plus \fontdimen3\font%
83 }%

18

A.5 Fonts

KWf

VARf

NUMf

MATHf

COMMf

As described in Section 3, theboxenv.sty file contains mappings from BOX font
operators to LATEX fonts. The following mappings are defined:

84 \def\KWf#1{\textbf{#1}}%
85 \def\VARf#1{\textit{#1}}%
86 \def\NUMf#1{\textrm{#1}}%
87 \def\MATHf#1{\ensuremath{#1}}%
88 \def\COMMf#1{\textrm{#1}}%

In order to allow a user to redefine these mappings to meet his particular needs with-
out modifyingboxenv.sty , he may define mappings in a configuration file ‘box-
fonts.def ’. The existence of this file is optional. When missing the default macros
are used.

89 \IfFileExists{box-fonts.def}{%
90 \input{box-fonts.def}%
91 \typeout{Using box-font definitions
92 from ‘‘box-fonts.def’’}%
93 }{%
94 \typeout{Using default box-font definitions.}%
95 }%

A.6 Implementation User Interface

boxenv This environment initializes several parameters of theboxenv style file. Therefore,
each BOX environment has to be embedded withinboxenv.sty . The environment
supports one optional argument (see Section 3).

96 \newenvironment{boxenv}[1][\linewidth]{%

First, we save several TEX/LATEX parameters. They are restored when entering the
latextext environment in order to be able to type-set normal text.

97 \box@linewidth=\linewidth%
98 \box@rightskip=\rightskip%
99 \box@hyphenpenalty=\hyphenpenalty%

100\box@parindent=\parindent%

Next, the text width (parameters\hsize and\linewidth) is set according to the
optional argument toboxenv :

101\linewidth=#1%
102\hsize=#1%

Initialization of variables is the next step. Observe that we configure a right skip with
a rubber length to allow a ragged right margin.

103\box@leftmargin=\z@%
104\box@indentation=\z@%
105\rightskip=0pt plus 1 fill%
106\parindent=0pt%

19

After initialization, we leave vertical mode and we set the flag\box@inboxenv
to true . This flag is inspected by other BOX-environments to verify that they are
embedded within theboxenv environment.

107\leavevmode%
108\box@inboxenvtrue%

We end the current paragraph explicitly when leaving the environment.
109}{\par}%

HBOX In Section 3 we described that the current implementation ofboxenv.sty does not
prevent inter-word line breaking and that it should be prevented by thebox2latex
tool (by using non-breakable spaces). The current implementation only prevents break-
ing of lines and pages at hyphens.

This implementation of theHBOXenvironment therefore consists of the configura-
tion of penalty parameters (\penalty , \linepenalty , and\hyphenpenalty)
and the configuration of inter-word spacing according to the parameter passed to the
environment.

110\newenvironment{HBOX}[1]{%
111\box@testforboxenv%
112\penalty10000%
113\linepenalty10000%
114\hyphenpenalty=10000%
115\box@hspaceskip{#1}\spaceskip=\the\box@tmpskip%
116}{}%

VBOX See Section 3 for a description of the environment and its parameters. TheVBOX
environment is implemented as abox@hangpar environment. Before entering the
box@hangpar environment we verify that theVBOXenvironment is enclosed by a
boxenv environment.

117\newenvironment{VBOX}[2]{%
118\box@testforboxenv%
119\begin{box@hangpar}{#1}{#2}%
120}{%
121\end{box@hangpar}%
122}%

HVBOX See Section 3 for a description of the environment, its parameters, and its use. The
implementation of theHV environment is similar to the implementation of theV envi-
ronment, by using thebox@hangpar environment. But, unlike theV environment,
theHV environment also configures the inter-word spacing for the horizontal format-
ting of text.

123\newenvironment{HVBOX}[3]{%
124\box@testforboxenv%
125\box@hspaceskip{#1}\spaceskip=\the\box@tmpskip%
126\begin{box@hangpar}{#2}{#3}%
127}{%
128\end{box@hangpar}%
129}%

20

ALTBOX TheALTBOXenvironment is implemented using the\box@width environment. First
the widthw of the text passed as argument#1 is calculated. Next,w is compared to the
maximal allowed widthmax (i.e., \linewidth � \box@xpos). Whenw � max,
the text passed as argument#1 is used, otherwise#2 is used.

130\newenvironment{ALTBOX}[2]{%
131\box@testforboxenv%
132\ifhmode\null\fi%
133\box@currentxpos%
134\dimen0=\linewidth%
135\advance\dimen0-\box@xpos%
136\edef\remainingwidth{\the\dimen0}%
137\edef\saved@xpos{\the\box@xpos}%
138\begin{box@width}%
139#1%
140\end{box@width}%
141\hskip\saved@xpos%
142\hskip-\box@xpos%
143\ifdim\box@thewidth>\remainingwidth%
144#2%
145\else%
146#1%
147\fi%
148}{}%

ABOX The ABOXenvironment is implemented as a TEX alignment (see Section 3 for a de-
scription ofABOX). Thebox2latex tool should construct a suitable string defining
the number and alignments of columns and the spacing between columns (according
to thehs space option). Furthermore, this tool is responsible for inter-line spacing (the
vs space option).

149\newenvironment{ABOX}[1]{%
150\box@testforboxenv%
151\tabcolsep=0pt
152\box@hspaceskip{1}\spaceskip=\the\box@tmpskip%
153\begin{box@hangpar}{0}{0}%
154\halign\bgroup%
155\hskip\box@indentation\hskip\box@leftmargin#1%
156}{%
157\egroup%
158\end{box@hangpar}%
159}%

LBOX TheLBOXenvironment draws a line or a sequence of characters according to the argu-
ment passed to the environment (see Section 3). The width of the line (or sequence
of characters) equals the width of the text within the environment. The environ-
ment is implemented using the\box@width environment which calculates the width
(\box@thewidth) of the text in the environment and the macro\box@wcopies
which draws a line or sequence of characters.

160\newenvironment{LBOX}[1]{%

21

161\box@testforboxenv%
162\def\char{#1}%
163\begin{box@width}%
164}{%
165\end{box@width}%
166\box@wcopies{\box@thewidth}{\char}%
167}%

latextext The latextext environment is used to type-set ordinary text within aboxenv en-
vironment. It is normally used to type-set text specified inC boxes after the initial
comment characters ‘%%’ have been removed. Parameters that were modified by BOX

macros are restored when entering this environment. These parameters include the left
margin, penalties,\spaceskip , and\hsize . The text is formatted as a separate
paragraph (i.e.,latextext starts and ends with an explicit\par command).

168\newenvironment{latextext}{%
169\box@testforboxenv%
170\let\par\endgraf%
171\leftskip=0pt%
172\rightskip=0pt%
173\hsize=\box@linewidth%
174\advance\hsize-\box@leftmargin%
175\hangindent=0pt%
176\hyphenpenalty=50%
177\par%
178\spaceskip=0pt%
179\parindent=\box@parindent%
180\ifhmode%
181\vbox%
182\fi%
183\bgroup%
184}{%
185\egroup%

We insert the command\hidewidth for the case that the text occurs within an align-
ment. By doing so, the width of the text within thelatextext environment does not
affect the width of entries within alignments (it will stick out to the right). In this way,
comments can be used within theA BOX operator without any problem. Observe that
\hidewidth is only inserted in horizontal mode.

186\ifhmode%
187\hidewidth%
188\fi%
189\par%
190}%

A.7 Cross Referencing

This section describes the implementation of the cross referencing mechanism. It con-
tains a description of the three different mechanisms that are currently implemented
(see Table 3).

22

boxlabel

boxref

The macros\boxlabel and \boxref are linked to different macros depend-
ing on the ‘refstyle’ option passed toboxenv . By default they are linked to
\box@normallabel and\box@normalref , respectively.

191\@ifundefined{boxlabel}{\def\boxlabel{\box@normallabel}}{}
192\@ifundefined{boxref}{\def\boxref{\box@normalref}{}}

box@nonelabel

box@noneref

The macros\box@nonelabel and\box@noneref are used when the option ‘ref-
style=none’ is passed toboxenv and disable the cross reference mechanism.

193\long\def\box@nonelabel#1#2{#2}
194\long\def\box@noneref#1#2{#2}

box@normallabel

box@normalref

Both macros are used when ‘refstyle=normal’ is passed toboxenv . These macros im-
plement a cross reference mechanism using the LATEX commands\label and\ref .

195\long\def\box@normallabel#1#2{\label{#1}#2}

A reference is only displayed when the corresponding label is defined. When no label
has been defined the reference is discarded.

196\long\def\box@normalref#1#2{%
197#2%
198\@ifundefined{r@#1}{}{%
199$ˆ{\mbox{\tiny\ref{#1}}}$}%
200}

Note that the labels are displayed in super-script using\tiny font.

box@hyperreflabel

box@hyperrefref

These macros are used when ‘refstyle=hyperref’ has been specified. When this op-
tion is specified, labeling and cross referencing is implemented using the macros
\hypertarget and \hyperlink , respectively. This style of cross referencing
is useful especially when the LATEX document is processed bypdflatex [6] to obtain
an interactive document. Cross references are then implemented as hyper-links. We
refer to [5] for a description of the macros\hypertarget and\hyperref . How
the labels and references are displayed in the final document is described in [5] as well.

201\long\def\box@hyperreflabel#1#2{\hypertarget{#1}{}#2}
202\long\def\box@hyperrefref#1#2{\hyperlink{#1}{#2}}

A.8 The hangpar Environment

This section describes the implementation of thebox@hangpar environment and the
macro\box@currentxposition that is used to implement the environment.

hangpar Thebox@hangpar environment is the most important building block of theboxenv
style file. It implements an environment in which subsequent paragraphs are left in-
dented according to the horizontal position where thebox@hangpar was entered.

For example:

a \begin{hangpar}{0}{0}b\\
c

\end{hangpar} d
is formatted as

a b
c d

23

The environment starts a new paragraph but doesnot start a new line. Likewise, text
that follows abox@hangpar environment is not placed on a new line.

Left indentation of subsequent lines is implemented by defining a new\par
macro. This macro sets\leftskip to thex position where the environment was
started. Furthermore,\hangindent is set according to the indentation factor passed
as argument to the environment. The indentation factor corresponds to theis space
option of theV andHV BOX operators.

203\newenvironment{box@hangpar}[2]{%
204\box@testforboxenv%
205\ifhmode\null\fi%

Initialization of box@hangpar is performed in a number of steps. First, the cur-
rentx position is determined (using\box@currentxpos , see below) and saved in
box@savedxpos because it might be changed by\par . Furthermore a new para-
graph is started.

206\box@currentxpos%
207\edef\box@savedxpos{\the\box@xpos}%
208\parskip=0pt%
209\parshape=0%
210\par%

After issuing the\par command we reset the currentx position.
211\global\box@xpos\box@savedxpos%

Next, we define a macro (\newpar) that extends the behavior of the old\par macro.
When the definition of\par is different from\newpar , we save the definition of
\par in \oldpar . The old definition is used in\newpar to ‘chain’ different ex-
tensions of the\par macro. Initially \oldpar equals\endgraf . Starting a new
paragraph therefore results in the chain\newpar ! \endgraf . In general, when-
ever a chain of extensions�0 : : : �i exists for the\par macro, the chain is extended to
obtain�0 : : : �i�i+1.

212\def\newpar{%
213\dimen0\hangindent%
214\oldpar%
215\box@indentation=\the\dimen0%
216\box@setpenalty%
217\leftskip=\box@leftmargin%
218\hangindent=\box@indentation%
219\hangafter=0%

A \par command starts a new line, hence we reset the value of\box@xpos to
box@leftmargin + box@indentation .

220\global\box@xpos\box@leftmargin%
221\global\advance\box@xpos\box@indentation%
222}%
223\ifx\par\newpar%
224\else%
225\let\oldpar=\par%
226\fi%
227\let\par\newpar%

24

Next, the vertical skip between paragraphs is configured according to the first argument
of box@hangpar . This corresponds to thevs space option of theV andHV operators.
Because the vertical space option should only affect boxes within theV andHV boxes,
the initial parskip is undone by an extra\vskip .

228\box@vspaceskip{#1}\parskip=\the\box@tmpskip%
229\vskip-\parskip%

Indentation according to theis space option (which is passed as second argument to
box@hangpar) is implemented using\hangindent . Since the value of this macro
is reset by LATEX after each new paragraph start, the desired left indentation is saved
in \box@indentation and used in\newpar to configure\hangindent after
a paragraph start. Note that theis space option specifies extra white spacebetween
boxes. This white space should thereforenot be put in front of the first line of text
within thebox@hangpar environment. For this reason\hangafter is set to1 to
take affect after the first line and setting\box@indentation is delayed until the
next paragraph (its future value is store in\hangindent).

230\box@hspaceskip{#2}\hangindent=\box@tmpskip%
231\box@indentation=\z@%
232\hangafter=1%

The last initialization step of thebox@hangpar environment is the configuration of
the left margin. It is configured by setting\leftskip to the currentx position.
Because\leftskip is reset by LATEX during a paragraph start, we save the currentx

position in\box@xpos . Its value is used in\newpar to re-configure\leftskip .

233\box@leftmargin=\box@xpos%
234\leftskip=\box@xpos%
235}

Ending abox@hangpar environment should restore the left margin. Furthermore,
whenever thebox@hangpar environment is ended in horizontal mode, we should
accomplish that text following thebox@hangpar environment is continued on the
same line. Whenever thebox@hangpar environment is ended in vertical mode, text
following the environment has to be placed under the environment and no indentation
is required.

To restore the left margin in horizontal mode a new paragraph should be started
to prevent LATEX from using this left margin for the current paragraph as well.
\box@currentxpos is used to obtain the currentx position and (as a side effect)
to start a new paragraph.\box@leftindent is used to accomplish that text starting
the new paragraph continues on the current line.

236{%
237\ifhmode%
238\box@currentxpos%
239\box@leftindent\box@xpos%
240\fi%
241}

box@currentxpos The macro\box@currentxpos determines the currentx position. The currentx
position is the horizontal position where the macro\box@currentxpos occurs in

25

the text (after type setting). More precisely, the currentx position equals the width of
the last line of the paragraph that is ended by\box@currentxpos .

We have implemented\box@currentxpos using the\predisplaysize
macro that gives access within a display to the width of the previous line. A display
ends the current paragraph and, as a consequence, ending the current paragraph is a
side effect of\box@currentxpos .

242\newcommand{\box@currentxpos}{%
243\begingroup%

Before opening a display, we disable page breaking before and after the display by
setting\predisplaypenalty and\postdisplaypenalty to 10000.

244\predisplaypenalty10000%
245\postdisplaypenalty10000%
246$$%

According to [4, page 188]\predisplaysize contains the width of the line pre-
ceding the display plus two ems in the current font. However, when the length of
that line depends on glue being stretched or shrunken,\predisplaysize is set to
\maxdimen . Finally, if there was no previous\line , \predisplaysize is set to
-\maxdimen . According to the value of\predisplaysize we set\box@xpos
to \predisplaysize � 2em, \linewidth , and zero, respectively.

247\ifdim\predisplaysize=-\maxdimen%
248 \global\box@xpos=\z@%
249\else
250 \ifdim\predisplaysize=\maxdimen%
251 \global\box@xpos=\linewidth%
252 \else%
253 \global\box@xpos=\predisplaysize%
254 \global\advance\box@xpos-2em%
255 \fi%
256\fi%

A display is assumed to take three lines [4, page 188]. We use negative display skips
to prevent\box@currentxpos from occupying these lines.

257\abovedisplayskip-\baselineskip%
258\belowdisplayskip-\baselineskip%
259\abovedisplayshortskip-\baselineskip%
260\belowdisplayshortskip-\baselineskip%

Finally, we end the display and the group and we are done.

261$$%
262\endgroup%
263}%

A.9 The box@width Environment

This section documents the implementation of the\box@width environment and
several macros that are required for this implementation.

26

The \box@width environment is able to calculate the maximum width of para-
graphs of text embedded in this environment. The width is stored in the global variable
\box@thewidth .

The algorithm for the calculation of the width of text is as follows: After each para-
graph end (by a\par command), we traverse the horizontal boxes constituting the
lines of the last paragraph (using\lastbox). Since LATEX keeps track of the width
of these boxes, we can obtain the width of each individual line during this traversal.
When a new maximum is found, the variable\box@thewidth is updated accord-
ingly. This variable thus contains the maximum line width of all paragraphs within
the environment after closing the environment. Traversing the horizontal boxes of a
paragraph was inspired by the traversal function described in [3, pages 53–54] and [2].

box@width The text within the\box@width environment is type-set within aminipage en-
vironment of width\linewidth � \box@xpos . Theminipage environment is
required because it enables us to use\lastbox (\lastbox cannot be used in verti-
cal mode). To prevent that the minipage is put on the current page, we use anlrbox
to store the minipage.

We define a new\par command that performs width calculation by traversing the
lines constituting the paragraph. Width calculation is therefore performed automati-
cally after issuing a\par command.

Remember from Section A.8 that the macro\box@currentxpos uses the value
of \predisplaysize within a display to calculate the currentx position. Remem-
ber also that a display ends the current paragraph. LATEX does not end the paragraph
using a\par command however. This results in two problems. First, within a display
we do not have access to the\lastbox of the previous paragraph. The paragraph can
therefore not be traversed which makes the width calculation impossible. Secondly, an
explicit \par command prior to a display sets\predisplaysize to zero within the
display. The macro\predisplaysize is in this case not suitable to calculate the
currentx position. As a consequence, the implementation of\box@currentxpos
from Section A.8 cannot be used in combination with the width calculation.

Since we have to traverse all lines of paragraphs for the width calculation, it is
rather easy to calculate the width of the last line of a paragraph (which corresponds to
the currentx position as defined in Section A.8). Within aminipage environment no
page breaks occur. For the width calculation this is no problem because the text remains
invisible after all. Page breaks are required outside the\box@width environment
however. Calculation of the currentx position outside the\box@width environment
can therefore not performed by traversing the lines of a paragraph.

To be able to calculate the width and the currentx position correctly, a re-definition
of \box@xposition is unavoidable.

The implementation of\box@width therefore consists of the re-definition of
\par and \box@currentxpos and the formatting of text in aminipage envi-
ronment of width\linewidth � \box@xpos .

264\newenvironment{box@width}{%
265\box@testforboxenv%

In order to support nested width calculation, we save the values of some global vari-
ables. These are restored after the current width calculation terminates.

27

266\edef\box@savedwidth{\the\box@widthincalculation}%
267\edef\box@savedlastlinewidth{\the\box@lastlinewidth}%
268\edef\box@savedxpos{\the\box@xpos}%

We use the value of\box@leftindent to accomplish that text following the
macro\box@currentxpos continuous on the same line. For the width calcula-
tion we start formatting text at position0 (ignoring the left margin) by setting the
variables\box@leftmargin , \leftskip , \box@xpos , and\hangindent to
\z@. To construct lines of correct width, we subtract the length of the left margin
(box@leftmargin) from the line width (\hsize and \linewidth). Then we
start a new paragraph but we continue formatting on the same line. Finally, we en-
ter an lrbox environment and we start aminipage of width \linewidth �

\box@xpos . The value of\rightskip has to be configured again since it is re-
set when entering theminipage environment.

269\bgroup%
270\box@leftindent\box@xpos%
271\advance\hsize-\box@leftmargin%
272\linewidth\hsize%
273\box@leftmargin\z@%
274\leftskip\z@%
275\box@xpos\z@%
276\hangindent\z@%
277\par%
278\vskip-\parskip%
279\begin{lrbox}{\box@widthcalculation}%
280\box@widthincalculation=-\maxdimen%
281\dimen0=\linewidth%
282\advance\dimen0-\box@xpos%
283\begin{minipage}{\dimen0}%
284\rightskip=0pt plus 1fill%

The re-definition of\par extends the ‘chaining’ of\par macros. After a new para-
graph is started using\theoldpar , \box@traverselines is called to calculate
the width of the previous paragraph by traversing its lines.

285\def\newpar{%
286\theoldpar%
287\box@traverselines%
288}%
289\let\theoldpar=\par%
290\let\par=\newpar%

During the traversal of the lines of a paragraph, the width of the last line of the
paragraph is stored in\box@lastlinewidth . The new definition of the macro
\box@currentxpos first ends the current paragraph and then uses the value of
\box@lastlinewidth as currentx position. When the paragraph was empty,
\box@lastlinewidth equals�\maxdimen and we return the left most position
(i.e., \box@savedindentation).

291\def\box@currentxpos{%

Save the value of\box@indentation because it may be changed by\par .

28

292\edef\savedindentation{\the\box@indentation}%
293\par%
294\ifdim\box@lastlinewidth=-\maxdimen%
295\global\box@xpos\savedindentation%
296\else%
297\global\box@xpos=\box@lastlinewidth%
298\fi%
299}%
300%\vbox\bgroup%

We instantiate\box@investigateline such that\box@thelinewidth is
called by\box@traverselines to calculate the maximum line width.

301\let\box@investigateline\box@thelinewidth%
302}{%

When closing the\box@width environment, we end the current paragraph (to calcu-
late its width) and we close theminipage andlrbox environments.

303\par%
304\box@traverselines%
305\global\box@thewidth=\the\box@widthincalculation%
306\end{minipage}%
307\end{lrbox}%

To support nested width calculations, we restore the values of some global variables.
308\global\box@xpos=\box@savedxpos%
309\global\box@lastlinewidth=\box@savedlastlinewidth%
310\global\box@widthincalculation=\box@savedwidth%
311\egroup%
312}%

box@traverselines This macro traverses the horizontal boxes of a paragraph. The horizontal boxes
are accessed using the\lastbox macro. For each horizontal box the macro
\box@investigateline is called which can be instantiated differently to perform
different calculations. Furthermore, this macro stores in\box@lastlinewidth the
width of the last line (box) of the current paragraph. This variable is used to implement
\box@currentxpos in the\box@width environment.

The traversal and inspection of horizontal boxes of a paragraph using\lastbox
was inspired by the traversal function described in [3, pages 53–54] and [2] .

313\newcommand\box@traverselines{%
314\global\box@lastlinewidth=-\maxdimen%

The traversal function is a recursive function. The recursion is implemented in
\@box@traverselines . The macro\box@traverselines now consists
of the initialization of the variable\box@lastlinewidth and a single call to
\@box@traverselines .

315\def\@box@traverselines{%
316\begingroup%

We save\lastbox in \box@investigation and whenever it is a non-void box,
we call\@box@traverselines recursively, and\box@investigateline af-
terwards. Furthermore, we save the width of the last line in\box@lastlinewidth .

29

317\setbox\box@investigation=\lastbox%
318\ifvoid\box@investigation\else%
319\unskip%
320\count0=\lastpenalty%
321\unpenalty%
322\setbox\box@tester=\hbox{\unhcopy\box@investigation}%

Calculate the width of the last line.

323\ifdim\box@lastlinewidth=-\maxdimen%
324\global\box@lastlinewidth=\wd\box@tester%
325\global\advance\box@lastlinewidth\the\box@indentation%
326\fi%
327{\@box@traverselines}%
328\box@investigateline%

After traversing the box, we put it back and restore the penalty that we have removed
before.

329\hbox{\box@indentation\dimen0\unhbox\box@investigation}%
330\penalty\count0%
331\fi%
332\endgroup%
333}%
334\@box@traverselines%
335}%

box@thelinewidth This macro is used to calculate the maximum width of a sequence of lines. The
maximum width so far is stored in\box@widthincalculation . The line
that is to be inspected is stored in\box@tester . Whenever a new maximum
has been found (in the case that\wd\box@tester + \box@indentation >

\box@widthincalculation), \box@widthincalculation is updated.

336\newcommand{\box@thelinewidth}{%
337\begingroup%
338\dimen0=\the\wd\box@tester%
339\advance\dimen0\box@indentation%
340\ifdim\dimen0>\box@widthincalculation%
341 \global\box@widthincalculation=\the\dimen0%
342\fi%
343\endgroup%
344}%

A.10 Miscellaneous Macros

This section, which concludes the implementation details ofboxenv.sty , describes
the implementation of the remaining macros.

box@leftindent This macro inserts horizontal white space to accomplish that text following the macro
\box@leftindent continues on the current line.

345\def\box@leftindent#1{%
346\aftergroup\insertindent%

30

347\gdef\insertindent{%
348\dimen0=#1%
349\advance\dimen0-\box@leftmargin%
350\advance\dimen0-\box@indentation%
351\makebox [\dimen0]{}%
352}%
353}

box@testforboxenv This macro outputs an error message when the boolean\box@inboxenv yields
false. The BOX environments should not be used outside aboxenv environment.
This macro is used to enforce that the environments are surrounded by aboxenv en-
vironment.

354\newcommand{\box@testforboxenv}{%
355\ifbox@inboxenv\else%
356\errmessage{Use of environment outside ‘‘boxenv’’
357 environment.}%
358\fi%
359}

box@setpenalty We should restrict the number of places in abox@hangpar environment where page
breaks may occur. The macro\box@setpenalty is therefore used after each para-
graph start to configure the penalties.

We allow a page break between two paragraphs within in aVBOXor HVBOXenvi-
ronment to occur only when their vertical space factor (thevs space option) is greater
than zero. No page breaks are allowed in other environments (except thelatextext
environment). Since text withinlatextext is formatted as ordinary text, penalties
are restored to their default values within this environment.

360\newcommand{\box@setpenalty}{%

When\parskip equals zero (i.e., theis space option equals zero), we disable page
breaking by setting\penalty to 10000. Otherwise, a default penalty of50 is used.

361\ifdim\parskip=\z@%
362\penalty10000%
363\else%
364\penalty 50%
365\fi%

We always disable page breaks between lines and after discretionary hyphens.

366\linepenalty10000%
367\interlinepenalty=10000%
368\hyphenpenalty=10000%
369}%

box@wcopies The macro\box@wcopies constructs a line of width approximately equal to#1 .
The exact width of the line depends on#2 :

� When#2 equals the symbol ‘=’, a line is constructed using\hrule . Its width
equals#1 .

31

� Otherwise, a line is constructed by takingn copies of#2 such that:n� j#2 j �
#1 < (n+ 1)� j#2 j.

370\newcommand{\box@wcopies}[2]{%
371\if#2=%
372\vskip-1.5\baselineskip%
373\leavevmode\hbox to #1 {\leaders\hrule\hfill}%
374\else%
375 \newbox\tmp%
376 \setbox\tmp=\hbox{}%
377 \loop\ifdim#1>\wd\tmp%
378 \setbox\tmp\hbox{#2\box\tmp}%
379 \repeat%
380 \hbox{\hbox to \box@leftmargin{\box\tmp}}%
381\fi%
382}%

box@absval \box@absval is a little macro that expands to the absolute value of its argument.

383\def\box@absval#1{\ifnum#1<\z@ -\fi#1}%

ifundefined This macro checks whether its argument has been previously defined in the document.
It has been taken from [4, page 40, page 308].

384\def\ifundefined#1{%
385\expandafter\ifx\csname #1\endcsname%
386\relax%
387}

32

