
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Pretty-Printing within the ASF+SDF Meta-Environment: a Generic
Approach

Mark van den Brand, Merijn de Jonge

Software Engineering (SEN)

SEN-R9904 March 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9904
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Pretty-Printing within the ASF+SDF Meta-Environment: a
Generic Approach

Mark van den Brand
CWI

P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
Mark.van.den.Brand@cwi.nl

Merijn de Jonge
Programming Research Group, University of Amsterdam
Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands

mdejonge@wins.uva.nl

ABSTRACT

The automatic generation of formatters for (programming) languages within the ASF+SDF Meta-Environment is
a research topic that is concerned with the construction of language specific formatters (or pretty-printers) given a
language definition in SDF.

In this paper, we give an overview of pretty-printers that have been developed within this project and observe
that these pretty-printers are eitherlanguage dependentor non-customizable. Language independence and cus-
tomizability are inevitable properties of pretty-printers however, when faced with the problem of formatting many
different, evolving languages. Therefore, we introduce in this paper a generic framework for pretty-printing and
describe an instantiation of the framework that forms a language independent and customizable pretty-printer.

1991 Computing Reviews Classification System: D.2.1, D.2.3, D.2.6, D.2.7, D.2.m, D.3.2, I.7.2.

Keywords and Phrases: Design, Documentation, Languages, Document Preparation, Program Generators.

Note: Work carried out under project SEN-1.4, ASF+SDF

1 Introduction

The automatic generation of formatters (or pretty-printers) for programming languages within the ASF+SDF Meta-
Environment (Klint, 1993) has been a research topic for a long time. This research is concerned with the construc-
tion of language specific formatters given a language definition in the syntax definition formalism SDF (Heering
et al., 1989). Development of powerful formatting tools is essential for the industrial acceptance of ASF+SDF

(Deursenet al., 1996). The renovation factories described in van den Brandet al. (1997c), for instance, depend
not only on flexible parsing technology and fast transformations but also on powerful pretty-print tools.

The pretty-printers that were designed for and integrated with the Meta-Environment, have one disadvantage
in common: they depend on VTP (Borraset al., 1989; Borras, 1989). VTP is the internal tree representation of
terms and modules within the Meta-Environment. It is defined as part of the Centaur system, a generic interactive
environment generator (Borraset al., 1989), on top of which the ASF+SDF Meta-Environment has been built. This
dependency of the pretty-print tools on VTP makes them unusable outside the Centaur system. The development
of a new Meta-Environment (van den Brandet al., 1997f, 1997d), not based on Centaur, therefore requires a
reimplementation of these tools.

In this paper we emphasize the importance of generic pretty-printers to belanguage independentandcustomiz-
able. The observation that none of the existing pretty-printers do satisfy both properties motivates the development
of newpretty-printers, rather than reimplementing existing ones. We therefore introduce a generic framework for
pretty-printing and discuss a particular instantiation of this framework that forms the pretty-print system for the
new Meta-Environment.

1

The paper is organized as follows: Section 2 describes and classifies the pretty-printers that have been designed
before. We discuss the motivation for the development of new pretty-print tools in Section 3. Section 3.2 describes
a generic framework for pretty-printing and a particular instantiation of the framework. Conclusions, related work,
and directions for future work are described in Section 5. Appendix A contains a complete description of BOX,
the markup language that is used in the generic pretty-print framework. An elaborated example of the use of the
pretty-print system that we present in this paper is included in Appendix B.

2 Classification of Pretty-Printing Approaches

In this section we will give a brief historical overview of the various pretty-printing approaches that have been used
in the ASF+SDF Meta-Environment. A more detailed overview of these pretty-printing facilities can be found in
van den Brand (1995). Based on this overview we will give a classification of the approaches with respect to
customizability, language dependence, and their dependence on the internal abstract syntax tree representation and
implementation of the ASF+SDF Meta-Environment. This classification is used to locate problems in the various
approaches and to formulate design properties for a new pretty-print approach that is introduced in this paper.

Approach 1: VTP and PPML. The very first version of the pretty-printer was based on VTP (Borraset al.,
1989; Borras, 1989), the internal abstract syntax tree representation of modules and terms, and on the pretty-print
engine PPML (Morcos-Chounet and Conchon, 1986). This pretty-printer was implemented in LELISP (Chailloux
et al., 1984) and constructs a PPML term for arbitrary VTP trees. For each node in the VTP tree a corresponding
PPML term is constructed based on a restricted number of heuristics. The PPML term is interpreted by the PPML
formatter engine which generates the formatted textual representation of the VTP tree. The main advantage of this
pretty printer was its good performance. The incorrect output that was sometimes generated by the PPML engine
and the inflexibility of the pretty-printer (only by writing a LELISP program the output of the pretty-printer could
be adapted), motivated the development of a new generation of pretty-printers.

Approach 2: VTP and ToLATEX. One of the strong features of the ASF+SDF Meta-Environment is the transla-
tion of (parts of) ASF+SDF modules to LATEX. This feature promotes literate programming and the integration of
ASF+SDF specifications in LATEX documents.

The tooltolatex (Visser, 1994), traverses a VTP tree and generates LATEX code. It was developed indepen-
dent of the pretty-printer based on PPML. This tool only supports the formatting of ASF+SDF modules. Although
the tool formats very nicely, it is difficult to adapt because most formatting rules were hard coded in LELISP.

Approach 3: VTP and BOX. Motivated by the restrictions of the first pretty-printer implementation, a prelimi-
nary version of the BOX language was designed (Vos, 1990). This work was the starting point of a whole range of
tools to improve the pretty-print facilities of the ASF+SDF Meta-Environment. The initial BOX language evolved
to the BOX language described in van den Brand and Visser (1996).

BOX is a language independent, intermediate representation used as markup language to describe the intended
layout of text. In general, the process of pretty-printing involves the construction of a formatting for an input term
over a languageL, and the generation of an output term over a languageL0 which respects this formatting. BOX

allows both tasks to be separated in afront-end(also calledformatter in this text), dedicated to the formatting of
an input term (i.e., the construction of a BOX term), and aback-endwhich translates BOX to some output format.
The advantage of this division is the separation of parts in a pretty-printer that depend on the input language and
parts that depend on the output format. A pretty-printer within this setting, is the composition of a front-end and a
back-end. The output of a front-end and the input of a back-end are connected by BOX.

BOX first use was to replace PPML in the process of formatting ASF+SDF terms and modules. A front-end,
implemented in LELISP, generated a BOX term by traversing the VTP tree. This BOX term was processed by the
back-endbox2text to obtain the corresponding textual representation. The back-end is specified in ASF+SDF

and compiled to C using the ASF to C compiler (Kamperman and Walters, 1993). This approach produces correct
output but is still inflexible. Nevertheless, this combination of front-end and back-end still forms the default pretty-
printer of the ASF+SDF Meta-Environment.

Approach 4: BOX and Formatter Generator. The inability of the user to influence the pretty-printing of terms
motivated the development of a formatter generator (van den Brand and Visser, 1996). Given a language definition

2

Language VTP tree Overlapping
Approach Customizable Dependent Based Code

VTP and PPML no no yes yes
VTP andtolatex limited no yes yes

VTP and BOX no no yes no
generated pretty-printer as:

executable specification yes yes no no
stand-alone tool no yes no no

Table 1:Classification of pretty-print approaches.

in SDF, the formatter generator generates a formatter for that language as a set of ASF+SDF conditional rewrite
rules. These rewrite rules define mappings from language patterns to BOX expressions. The BOX expressions
define how the patterns should be formatted and can be overruled by the user.

The resulting specification can be compiled using the ASF to C compiler to obtain a stand-alone front-end.
Together with the back-endbox2text , it forms a pretty-printer which can replace the default pretty-printer
provided by the ASF+SDF Meta-Environment. This approach has been used among others to obtain pretty-printers
for SEAL (Koorn, 1994), COBOL (van den Brandet al., 1997e), and PROLOG (Brunekreef, 1996).

Because a generated formatter can be adapted only by modifying rewrite rules, it cannot be customized any
further after compilation. As a consequence, a recompilation of the formatter is required whenever its output has
to be adapted. A pretty-printer, composed of a generated formatter as front-end, and a back-end, thus can be used
in two ways: (i) as executable specification; this pretty-printer is customizable but cannot be used as stand-alone
pretty-printer or be used to replace the default pretty-printer; (ii) as stand-alone pretty-printer after compilation to
C: the stand-alone pretty-printer thus obtained is non-customizable but can be used to replace the default pretty-
printer of the Meta-Environment.

There are several disadvantages related to the approach of the formatter generator. First of all, the generated
formatters are language dependent. As a result, a separate formatter is required for each language. Secondly,
pretty-printing languages under development is not supported. Instead, each time the language is adapted a new
formatter has to be generated, otherwise the formatter would generate incorrect output. Thirdly, the formatter can
be used only to format terms. Thus, ASF+SDF specifications cannot be formatted with the generated formatters.
Finally, the use of the pretty-printers, either as executable specifications or as stand-alone pretty-printers, is not
satisfactory because the executable specifications cannot be used in a stand-alone setting, whereas the compiled
pretty-printers are non-customizable.

The generated formatters produce BOX as output which can be processed by back-ends to translate to some out-
put format. Besidesbox2text , a new back-end has been developed that translates BOX expressions to TEX code.
The combination of this back-end with generated front-ends provides a facility to develop powerful typesetting
tools. In Brunekreef (1995) all PSF specifications are typeset using this combination of techniques.

Classification of Pretty-Printers. The pretty-printers that we have described in this section can be classified
according to a number of properties. This classification proved to be helpful in locating problems of existing pretty
printers and formulating design properties for new pretty-printers.

We will distinguish four properties: i) Customizable; pretty printers that satisfy this property can be customized
by the user to obtain language specific pretty-printers; ii) Language dependent: this property specifies whether or
not a pretty-printer is restricted to format programs of a single language only; iii) VTP tree based: specifies whether
the pretty-printer depends on a VTP tree traversal; iv) Overlapping code. A pretty-printer forms a mapping from a
term over some input language to some output format. Many pretty-print techniques require this complete mapping
to be defined separately for each combination of input language and output format. Redefining this mapping results
in overlapping code when only the input language (or output format) of several pretty-printers differs. The property
‘Overlapping code’ indicates whether a significant part of the code of a pretty-printer has been implemented for
another pretty-printer as well.

The classification of the pretty-printers described in this section according to these four properties is depicted
in Table 1. From this table we see that the pretty-printers are either language dependent or non-customizable.
Furthermore, pretty-printers that are based on BOX contain less overlapping code. Finally, we observe that all
pretty-printers that have been integrated within the Meta-Environment depend on the Centaur system because they

3

require a traversal of the VTP tree. This classification of existing pretty-printers is used in the next section to
motivate the development of new pretty printer tools for use within a new ASF+SDF Meta-Environment.

3 A Generic Pretty-Print Approach

The pretty-print tools described in the previous section that have been integrated within the Meta-Environment
(approaches 1, 2, and 3), all depend on the internal tree representation (VTP) of Centaur. These tools traverse a
parse tree represented as VTP tree to pretty-print the concrete syntax. As a consequence they are all bound to the
Centaur system. Because Centaur was implemented in LELISP (Chaillouxet al., 1984), the pretty-printers were
(at least partly) implemented in LELISP as well, in order to have access to VTP trees. This dependence on the
Centaur system and their implementation in LELISP not only makes it hard to develop new or adapt (maintain)
existing pretty-print tools, it also makes their reuse outside the Centaur system impossible.

Breaking the dependency between the ASF+SDF system and LELISP/Centaur was a strong motivation for the
development of a new Meta-Environment (van den Brandet al., 1997f, 1997d). This new Meta-Environment uses
AsFix (van den Brandet al., 1997a) as parse tree representation for ASF+SDF modules (see Section 3.1). AsFix is
designed to represent structured data and, in contrast with VTP trees, to be exchangeable between a heterogeneous
collection of tools.

Tools used within the new Meta-Environment which require access to the abstract representation of ASF+SDF

modules have to be designed to operate on AsFix terms. As a consequence, a reimplementation of the pretty-print
tools is required to reuse them within this new Meta-Environment.

One could argue that the generated formatters (according to approach 4 in Section 2) do not depend on the
implementation of the ASF+SDF Meta-Environment because they do not require direct access to parse trees and
thus provide a pretty-print mechanism that is also usable within a new Meta-Environment. Because of the language
dependency of the generated formatters however, we do not consider this approach acceptable asdefaultpretty-
printer in a new Meta-Environment.

For the reimplementation of the pretty-print tools, only the BOX based pretty-print tools as described in the
previous section are considered because of the advantage that the separation of a pretty-printer in a front-end and
a back-end provides.

Observe that the BOX based tools described in the previous section are either language dependent or non-
customizable. A formatter generated by the formatter generator on the one hand, is highly customizable. However,
the language dependence of the generated formatters requires separate formatters for each language. The default
pretty-printer of the current Meta-Environment on the other hand, is able to format terms over different language
definitions. Unfortunately, it does not support customization of the generated output at all.

For a pretty-printer to be usable in general, it should be language independentandcustomizable. Both require-
ments have motivated the development of a new set of pretty-print tools, instead of just reimplementing the existing
pretty-print tools. The new tools are again divided infront-endsandback-ends. A front-end (or formatter) takes a
parse tree over an input languageL as input and generates a BOX term as output. A back-end takes a BOX term
as input and generates as output a term over some output formatL0. A pretty-printer is constructed by connecting
the output of a front-end to the input of a back-end, using BOX as intermediate representation. Before describing
this generic pretty-print framework and an instantiation (which forms the pretty-print system for the new Meta-
Environment) in Section 3.2, we will first discuss AsFix and BOX briefly in Section 3.1 and 3.2, respectively. The
front-end and back-ends that instantiate the generic pretty-print framework are described in Section 4.1 and 4.2.

3.1 AsFix

AsFix (ASF+SDF Prefix Notation) (van den Brandet al., 1997a) is a parse tree representation for ASF+SDF

terms and modules, designed to be exchangeable between a heterogeneous collection of tools. AsFix contains all
information of the original source text, this includes in particular the original source text itself (that is, all keywords,
white space, comments, etc. are preserved). AsFix is implemented as instance of the more general ATerm (short
for Annotated Terms) representation (van den Brandet al., 1997b). Within the new Meta-Environment AsFix
is used to replace VTP as module (and term) representation. AsFix is suitable for pretty-printing because it not
only contains the parse tree (used to select pretty-print rules), but also the original source text (required to support
comments in the pretty-printed output).

4

3.2 BOX Language

In the generic pretty-print framework the input language dependent parts and the output format dependent parts
are separated in front-ends and back-ends, respectively. Front-ends and back-ends are connected using a language
independent intermediate representation, called BOX (see Figure 1). BOX is a mark-up language to describe the
intended layout of text. A BOX expression is constructed by composing sub-boxes using BOX operators. These
operators specify the relative ordering of boxes. Examples of BOX operators are theH andV operator which format
boxes horizontally and vertically, respectively:

H [B1 B2 B3] = B1 B2 B3

V [B1 B2 B3] =

B1

B2

B3

The exact formatting of each BOX operator can be customized using BOX options. For example, to control the
horizontal layout between boxes theH operator supports thehs space option.

Hhs=2 [B1 B2 B3] = B1 B2 B3

For a description of BOX in general we refer to van den Brand and Visser (1996) were the BOX language was
introduced.

In this section we describe how we deviate from the original BOX language. We slightly adapted the original
BOX language described in van den Brand and Visser (1996) because of a few irregularities that would make
the development of BOX based tools very hard. A detailed description of the syntax and the functionality of the
adapted BOX language can be found in Appendix A.

Adaptation of Positional BOX Operators. In general, positional BOX operators (like theH andV operators)
specify the relative positioning of their sub-boxes. For example, theH operator specifies that its sub-boxes are
separated by horizontal layout. TheI andWD operators of the original BOX language deviate from this model.
The I operator, which operates on a single box, is used to specify left indentation. It has only effect in a vertical
context:

V [B1 I[B2] B3] =

B1

B2

B3

Here we see that theI operator specifies how the boxesB1 andB2 are positioned. AlthoughB1 is not a sub-box,
theI operatordoesspecify its relative positioning toB2.

The WD operator from the original BOX language does not specify the relative positioning of its sub-boxes
either. The operator translates to an empty box with (horizontal) dimensions equal to its argument.

To make the BOX language more regular, we removed both operators. To provide left indenting similar to the
I operator, we introduced a new space option ‘is’. The is space option specifies horizontal layout to be placed
between sub-boxes. Similar to theI operator, indentation is in effect only in vertical mode.

Vis=3 [B1 B2] = V [B1 I [B2]] =
B1

B2

To be able to specify horizontal spacing equal to the width of some box (like theWD operator), we allow horizontal
spacing to be specified as a BOX expression.

V
is= B1

[B1 B2] = V [B1 H [WD [B1] B2]] =
B1

B2

5

BOX

L1 ! BOX

Ln ! BOX

BOX ! O1

BOX ! On

back-endsfront-ends

Figure 1:A generic framework for pretty-printing.

Adaptation of Non-Positional BOX Operators. Besides theI andWD positional BOX operators, we removed
a few non-positional operators as well.

The rather complicated mechanism to express the formatting of comments using the operatorsHPAR, VPAR
andPAR, has been simplified. We replaced the three operators by the single comment operator ‘C’.

Finally, we removed theO operator. TheO operator translates to the vertical composition of two of its sub-
boxes separated by a horizontal bar. Because this operator is too strongly related to ASF+SDF (it is used solely to
format conditional equations of ASF+SDF specifications), it has been replaced by the more general line operator
‘L’. The L operator translates to a horizontal bar of width equal to the width of its first sub-box. The bar is
constructed from characters of its second sub-box.

4 A Generic Pretty-Print Framework

By using BOX as intermediate representation, we are able to create a generic, extensible pretty-print framework.
In Figure 1 this generic framework is depicted. Programs in this figure are denoted by ellipses, the rectangle in the
figure denotes data. The framework can be instantiated bypluggingfront-ends and back-ends into the system. Each
front-end forms a mapping from terms over an input languageLi to BOX, each back-end translates BOX to some
output formatOi. Language independence of the pretty-print system means that the system does not depend on
the input language. Language independence is supported within our framework since it allows different front-ends
to be plugged in. In Figure 2 a particular instantiation of the framework is depicted. As in Figure 1, we denote data
by rectangles and programs by ellipses. The figure shows the generic framework instantiated with one front-end
(the programasfix2box , see Section 4.1) and three back-ends (the programsbox2asfix , box2text , and
box2latex , described in Section 4.2). Together, the front-end and back-ends form the pretty-print system of the
new Meta-Environment.

The figure displays two combinations of programs that have AsFix as input and as output. The first combination
(asfix2box andbox2asfix) shows that after formatting the layout in an AsFix term (containing the parse
tree) an AsFix term with the same parse tree is obtained. The fact that parsing the formatted text of a given AsFix
term produces an AsFix term again, with the same parse tree, is expressed by the second combination of tools
(asfix2box , box2text , andparser).

4.1 From AsFix to BOX

A front-end within the pretty-printer setting takes a termT over some languageL as input and generates a BOX

term that represents the pretty-printed termT . Because the pretty-print system is to be used within the new Meta-
Environment in which terms are represented in AsFix, we initially limited our attention to the development of
front-ends based on AsFix only.

Given an SDF definition of a languageL, a termT overL can be represented in AsFix and formatted with the
formatterasfix2box . Using AsFix as term representation makes the formatter language independent because
any term represented in AsFix can be formatted byasfix2box .

Of course, terms over different languages have to be pretty-printed differently. The front-endasfix2box
therefore is parameterized such that it can be instantiated with language dependent pretty-print rules. Hence,

6

Table

CFG

Generator

Pretty-Print
Tables

AsFix

BOX box2asfix

box2latex LATEX

asfix2box

box2text Text

parser

Figure 2:A particular instantiation of the generic pretty-print framework.

asfix2box is agenerictool because this parameterization separates generic code from language specific pretty-
print rules.

The pretty-print rules define how specific language constructs are to be pretty-printed. That is, a pretty-print
rule forms a mapping from a context-free language construct to a BOX-term. To be usable in practice, modifying
the pretty-print tables by hand should be easy. Pretty-print tables are therefore presented to the user as mappings
from SDF productions to BOX expressions. These mappings will be discussed in the next section.

4.1.1 Pretty-Print Tables

The front-endasfix2box is a generic, language independent tool. The tool is parameterized with a set of pretty-
print tables. Given such a set of tablesasfix2box constructs a BOX term by applying the pretty-print rules
to an input term. The pretty-print tables describe how language constructs should be pretty-printed. The use of
pretty-print tables thus separates generic code from language dependent pretty-print rules. The SDF definition of
the context-free syntax of pretty-print tables is displayed below1:

context-free syntax
Sdf-CfFunction “,” BOX! Sdf-Entry
“[” SdfEntry* “]” ! SdfTable

A pretty-print table consists of zero or more entries. Each entry is formed by a context-free production in SDF

together with a BOX expression, denoting how the language construct should be formatted.

Example 4.1 Consider the language definition of the data type Bool in SDF below:

context-free syntax
“True” ! Bool
“False” ! Bool
Bool “=n” Bool ! Bool
Bool “n=” Bool ! Bool

To construct a pretty-print table for this grammar, we specify for each context-free production a BOX expression:

1All code examples and program listings in this paper are formatted using the generic pretty-printer described in this paper. First,asfix2-
box is used to obtain a BOX expression describing the intended layout. Thenbox2latex is used to obtain corresponding LATEX code.

7

[

“True” ! Bool, KW [“True”]

“False”! Bool, KW [“False”]

Bool “=n” Bool ! Bool, H [1 “=n” 2]

Bool “n=” Bool ! Bool, H [1 “n=” 2]
]

Given this table, the constants “True” and “False” will be pretty-printed as keywords. The productions defining the
operators “=n” and “n=” are both formatted horizontally. Note the use of numbered place holders (“1” and “ 2”)
to denote BOX expressions corresponding to non-terminal symbols in the left-hand side of the SDF productions.

�

From the example we see that it is rather straightforward to define a pretty-print table given a language definition
in SDF. The user just creates a pretty-print entry for each context-free production by specifying the production and
the corresponding BOX expression. Productions for which no pretty-print entry exists are formatted horizontally
using theH operator.

A more elaborated example of defining pretty-print tables and their use is presented in Appendix B.

4.1.2 Modularization of Pretty-Print Tables

The front-endasfix2box accepts a sequence of pretty-print tables as input. A sequence of tablest1; t2; : : : ; tn
is ordered in such a way thatti > tj wheneveri < j. From matching entries within different tables only the entry
defined in the table with highest order is applied. From matching entries defined in a single table, the first entry is
selected. This ordering of pretty-print tables specifies exactly which pretty-print rule will be applied when several
matching entries exist.

The ability to pass a sequence of tables toasfix2box and the ordering of tables allows for a modular struc-
turing of pretty-print tables. We suggest a modular structuring where the pretty-print tables follow the import
structure of the corresponding SDF grammar (i.e., for each constituting module of the grammar a separate pretty-
print table is defined). The pretty-print table corresponding to an SDF module can be reused whenever the SDF

module itself is reused. The ordering of tables allows the user to customize pretty-print rules by redefining them
in pretty-print tables corresponding to importing modules.

4.1.3 Automatic Generation of Pretty-Printers

The generic toolasfix2box can be instantiated with a number of pretty-print tables to adapt its default operation.
Together,asfix2box and the pretty-print tables for a languageL form a formatter for the languageL. In order
to generate a formatter for a language automatically, only a set of pretty-print tables has to be generated.

The generation of pretty-print tables is independent ofasfix2box and therefore different tools can be used
to generate these tables. A typical table generator (see Figure 2) takes a (modular) SDF definition as input and
generates for each module a table containing the context-free productions and corresponding BOX expressions.
Such a tool can implement the heuristics used in van den Brand and Visser (1996) and in the default pretty-printer
of Section 2. The modular structure of the tables generated by such a tool allows for an incremental pretty-
print approach. After some production in an SDF module has been added or modified, only the pretty-print table
corresponding to that module needs to be regenerated.

Automatic generation and manually fine-tuning of pretty-print tables can interfere. Taking advantage of the
ordering of tables, we propose the separation of generated tables and tables that are modified by hand. When the
latter is given precedence over the generated table, the user is always able to customize the generated pretty-print
rules. Tool support can provide the ability to warn the user for non-matching entries in the non-generated table
(i.e., entries for which a corresponding production no longer exists).

4.2 Back-ends

In this section we will briefly discuss the back-endsbox2asfix , box2text , andbox2latex (see Figure 2).
From these back-ends onlybox2asfix is new. The other back-ends have been implemented before, but the
adaptation of the BOX language required a reimplementation of these back-ends. Fortunately, the reimplementation

8

is either trivial (box2text) or it forms an overall improvement of the old implementation (in the case ofbox2-
latex).

From BOX to AsFix. In general a pretty-printer takes a parse tree of a languageL as input and generates a string
over a languageL0 as output. Remember from Section 3.1 that AsFix is a parse tree representation that contains
layout information. This property of AsFix allows for a pretty-printer that generates a parse tree as output (i.e., it
returns the initial parse tree in which layout has been updated). Generation of parse trees with updated layout as
output of a pretty-printer is a performance issue basically. A performance improvement is obtained because tools
that operate on parse trees can use the output of the pretty-printer directly (no parsing is required to construct the
parse tree from the output of the pretty-printer).

The back-endbox2asfix takes as input an AsFix term and a BOX term describing how the lexical elements
in the AsFix term should be formatted. The back-end returns as output the original AsFix term in which the lexical
elements are formatted conforming to the BOX term.

From BOX to Text. The back-endbox2text takes a BOX term as input and generates a string containing
the pretty-printed term as output. This translation has been implemented before but cannot be reused unmodified
because the BOX language has been adapted (see Section 3.2). Fortunately, the back-endbox2asfix already
implements the translation from BOX to text (the lexical information contained in AsFix terms is represented as
text strings), so reimplementingbox2text is trivial. We just reuse parts ofbox2asfix .

From BOX to LATEX. The box2latex back-end generates LATEX code according to the layout information
contained in BOX terms. A mapping from BOX to TEX has been implemented before, but the modification of the
BOX language required a reimplementation. In addition to the tool that has been defined before,box2latex
supports the mapping from lexical tokens to LATEX commands, similar to the tool ToLATEX (Visser, 1994). These
mappings give the user fine control over which symbols to use in the generated LATEX code.

Example 4.2 Mappings of lexical tokens can be defined in a table. Each entry in the table contains a mapping from
a BOX string to a LATEX command. To use the mathematical symbols ‘^’ and ‘_’ for instance, for the specification
of Example 4.1, the following table can be passed tobox2latex :

[
“=n” ! ”$nwedge$”
“n=” ! ”$nvee$”

]

box2latex will now replace all occurrences of ‘/\ ’ by the LATEX macro ‘\wedge ’ and ‘\/ ’ by the macro
‘\vee ’. �

The generated LATEX code can be processed bypdflatex (Thanh, 1998) to produce a PDF document. The
cross referencing mechanism of BOX in combination with the hyperref package (Rahtz, 1998) results in interactive
documents with hyperlinks.

5 Concluding Remarks

This paper gives an overview of the different pretty-printers that have been developed for the ASF+SDF Meta-En-
vironment. The development of a new Meta-Environment not based on Centaur and LELISP requires a reimple-
mentation of the pretty-printers because the pretty-printers that have been integrated within the ASF+SDF Meta-
Environment depend on VTP and LELISP. The observation that existing pretty-printers are either language depen-
dent or non-customizable motivated the development of new pretty-print tools rather than the reimplementation of
existing ones.

We introduced a generic framework and described an instantiation of this framework. This instantiation, con-
sisting of a front-end and several back-ends, forms the pretty-printer of the new Meta-Environment. This sys-
tem has been specified as a number of ASF+SDF specifications. We generated stand-alone executables from the
specifications using the new ASF+SDF to C compiler (van den Brandet al., 1999), which translates ASF+SDF

specifications to C.

9

Future Work. The pretty-print system that we developed has several drawbacks that require further investigation.
First, we mention the dependency of the generic framework that we introduced upon the BOX language, which is
used to connect front-ends to back-ends. This tiny language might turn out to be too weak in practice. We want to
investigate whether this language requires extension or whether another intermediate representation proves to be
more powerful and useful.

Secondly, the current pretty-print table generator is not fully satisfactory. It creates a pretty-print table for an
SDF grammar but it does not take the structure of the productions into account in order to ‘guess’ suitable BOX

expressions. We want to develop a new generator similar to the formatter generator described in Section 2, that
uses heuristics for the generation of appropriate BOX expressions.

Finally, we emphasize that the front-endasfix2box is not as powerful as the formatter generator of Sec-
tion 2. The latter supports any pattern to be adapted in the generated formatter, whileasfix2box only supports
adaptation of BOX expressions corresponding to individual productions. This ‘locality’ ofasfix2box might be
no problem for its use as default pretty-printer in the Meta-Environment. However, in order to have complete con-
trol over the pretty-printed output, this limitation ofasfix2box is too strong. We suggest generating formatters,
similar to those generated by the formatter generator, in addition toasfix2box which can be plugged into the
generic framework and do give more control over the pretty-printed output. Adapting the existing formatter gen-
erator to generate formatters which accept terms over the new BOX language would probably be a good approach
as well.

Related Work. The notion of boxes for formatting text is not new. BOX like languages include TEX (Knuth,
1984) and PPML (Morcos-Chounet and Conchon, 1986; Borras, 1989). The language BOX is based on PPML
and as a consequence, both languages are quite similar. We refer to van den Brand and Visser (1996) for a
comprehensive description of formatters and BOX-like languages.

Functional approaches of pretty-printing are described in Hughes (1995) and Swierstraet al. (1998). These
approaches use a set of combinators to express the desired layout of text. Most of these combinators correspond
to BOX operators. For example, the>|< combinator is used to place its arguments horizontally (similar to theH
operator), the>-< combinator places its arguments vertically (like theV operator).

Obtaining interactive documents from BOX terms has been a research topic for several years. In van der
Graaf (1997) the back-endbox2html is developed. Unfortunately, several BOX operators (like theHOV and
L operators) cannot be expressed in terms of HTML operators. As a consequence the translation to HTML is
currently not satisfactory. Fortunately, we are able to obtain interactive documents anyhow, because the LATEX
code that we generate from BOX can be translated to PDF.

Acknowledgments We would like to thank Paul Klint (CWI) and Joost Visser (UvA) for reading earlier drafts
of this paper.

A The BOX Language

BOX is a mark-up language to describe the intended layout of text. A preliminary of BOX, based on PPML (Morcos-
Chounet and Conchon, 1986) was introduced in Vos (1990). BOX itself was described before in van den Brand and
Visser (1996). In this section we describe a new version of the BOX language. Section 3.2 contains the motivation
for this new version and a comparison with the version of van den Brand and Visser (1996).

Expressions over the BOX language can be constructed bycomposingboxes usingbox-operators. These op-
erators specify the relative positioning of boxes. BOX supports several of thesepositionaloperators (described in
detail in Section A.1). Examples of positional operators are theH andV operators which format their sub-boxes
horizontally and vertically, respectively. The exact formatting of the positional operators can be controlled by
means of options. These options allow for instance, the horizontal and vertical layout within theH andV operators
to be controlled.

Besides positional operators, BOX also containsnon-positionaloperators. These operators are used to control
how sub-boxes are displayed. These operators include font operators to specify font parameters (font family, font
color, etc.) and operators for cross referencing.

10

Syntax of the basic positional BOX operators and space options in SDF:
exports

context-free syntax
“hs” ! SPACE-SYMBOL
“vs” ! SPACE-SYMBOL
“is” ! SPACE-SYMBOL
SPACE-SYMBOL “=” INT ! S-OPTION
SPACE-SYMBOL “=” BOX! S-OPTION
S-OPTION* ! S-OPTIONS

context-free syntax
BOX-STRING ! BOX
BOX* ! BOX-LIST
“H” S-OPTIONS “[” BOX-LIST “]” ! BOX
“V” S-OPTIONS “[” BOX-LIST “]” ! BOX
“HV” S-OPTIONS “[” BOX-LIST “]” ! BOX
“HOV” S-OPTIONS “[” BOX-LIST “]” ! BOX

The syntax of the alignment BOX operator is defined as follows:
context-free syntax

“A” A-OPTIONS S-OPTIONS “[” BOX-LIST “]” ! BOX
“R” “[” BOX-LIST “]” ! BOX
“l” S-OPTIONS ! A-OPTION
“c” S-OPTIONS ! A-OPTION
“r” S-OPTIONS ! A-OPTION
“(” fA-OPTION “,”g* “)” ! A-OPTIONS

Observe how space options are combined with column definitions to defineinter-columnspacing. The space options that
follow the alignment options defineinter-row spacing.

Figure 3:Syntax of positional BOX operators in SDF.

A.1 Positional BOX-Operators

The most elementary boxes are strings enclosed in double quotes. Smaller boxes can be composed to form new
boxes using the positional BOX operators that specify the relative ordering of the smaller boxes. The syntax in
SDF of the positional BOX operators is depicted in Figure 3.

TheH andV operators are the basic positional BOX operators. They format their sub-boxes horizontally and
vertically, respectively. This behavior is depicted in the diagrams below:

H [B1 B2] = B1 B2 V [B1 B2] =
B1

B2

When the line width is taken into account, theH andV operators can be combined to obtain conditional operators.
Depending on the amount of space left, boxes are placed horizontally or vertically. BOX contains two conditional
operators. The first operator (‘HOV’), places all its sub-boxes horizontally when they fit on a single line, otherwise,
they are all placed vertically. This can be expressed in terms ofH andV operators as:

HOV [B1 B2 B3] =

H [B1 B2 B3]

or

V [B1 B2 B3]

TheHOV operator maximizes the number of lines occupied when its sub-boxes do not fit on a single line.
The second conditional operator minimizes the number of lines occupied. TheHV operator calculates a com-

bination ofH andV operators as follows:

11

operator hs vs is remarks

H X

V X X

HOV X X X Indentation is used only when the formatting occupies
multiple lines.

HV X X X idem.
A X X The hs space option defines theinter-columnspacing,

thevs option defines theinter-row spacing.
R

Table 2:Supported space options for each positional BOX operator.

HV [B1 B2 B3] =

H [B1 B2 B3]

or

V [H [B1 B2] B3]

or

V [B1 H [B2 B3]]

or

V [B1 B2 B3]

TheHV operator calculates the layout of the sub-boxes in such a way that the number of lines is minimized and
the lines are maximal filled. This operator is typically used when a list of items is to be pretty-printed.

H, V, HOV, andHV are the basic positional BOX operators. Each of these operators can be accompanied
with a number of options to control the layout between sub-boxes. The following options are supported:hs
for horizontal spacing,vs for vertical spacing, andis for shifting horizontally in a vertical context (indentation).
Certain combinations of options and BOX operators do not make sense, e.g., theH operator in combination with
the optionsvs or is. Table 2 summarizes the available space options for each BOX operator.

In order to get a more sophisticated layout such as columns, the BOX alignment operator can be used. It is a
combination of the operatorA, to indicate that an alignment is constructed, andR operators to represent individual
rows. TheA operator must be used with a set of alignment options, namelyl, c, andr to indicate whether the
columns should be left, centered, or right aligned, respectively. The number of alignment options defines the
number of columns. For example:

A (l; c; r) [R [B1 B2 B3]

R [B4 B5 B6]]
=

B1 B2 B3

B4 B5 B6

To define the layout between columns, each alignment option can contain anhs space option. To define the layout
between rows, theA operator supports thevs space option.

font parameter description

fn font name
fm font family
se font series
sh font shape
sz font size
cl font color

font operator used to format

KW keywords
VAR variables
NUM numbers
MATH mathematical symbols

(a) (b)

Table 3: Table (a) displays the font parameters supported by theF BOX operator, table (b) displays the supported dynamic
font operators.

12

The static font operatorF, the dynamic operators, and the font options are defined as:
exports

context-free syntax
FONT-PARAM “=” BOX-INT ! F-OPTION
FONT-PARAM “=” FID ! F-OPTION
F-OPTION* ! F-OPTIONS
“F” F-OPTIONS ! FONT-OPERATOR
FONT-OPERATOR “[” BOX “]” ! BOX
FONT-OPERATOR “(” BOX-LIST “)” ! BOX-LIST
“fn” ! FONT-PARAM
“fm” ! FONT-PARAM
“se” ! FONT-PARAM
“sh” ! FONT-PARAM
“sz” ! FONT-PARAM
“cl” ! FONT-PARAM
“KW” ! FONT-OPERATOR
“VAR” ! FONT-OPERATOR
“NUM” ! FONT-OPERATOR
“MATH” ! FONT-OPERATOR

The cross reference operators are defined as:
context-free syntax

“LBL” “[” BOX-STRING “,” BOX “]” ! BOX
“REF” “[” BOX-STRING “,” BOX “]” ! BOX

The syntax of the comment operator is:
context-free syntax

“C” “[” BOX-LIST “]” ! BOX
Finally the line operator looks like:

context-free syntax
“L” “[” BOX BOX “]” ! BOX

Figure 4:Syntax of non-positional BOX operators in SDF.

A.2 Non-positional BOX-Operators

There are four different types of non-positional BOX operators: the font operators to change the textual appearance
of BOX expressions, the cross reference operators to create links between boxes, the comment operator to indicate
that a BOX expression contains comments, and the line operator to draw lines of characters of arbitrary length. The
syntax in SDF of these non-positional BOX operators is depicted in Figure 4.

Font Operators. BOX font operators are used to change the textual appearance of the argument box expression.
Fonts can be characterized by the parameters font name, font family, font series, font shape, font size, and font
color. The most general font operator isF. By means of font parameters the desired font can be controlled.
Table 3(a) summarizes the supported font parameters.

By using theF font operator, fonts are defined statically. BOX also support fonts to be defined dynamically
using special font operators. These operators are used to format specific language constructs like keywords and
variables. The mapping from these operators to fonts is deferred to the back-ends. The user can customize these
font mappings at any time after the BOX expression has been constructed. Table 3(b) summarizes the supported
dynamic font operators.

Cross Reference Operators. BOX has limited support for cross referencing using theLBL andREF operators.
The operatorLBL is used to define a label for a box, the operatorREF is used to refer to a labeled box. Back-ends
can implement these operators to enable cross referencing in the generated output. Currently, only the back-end
box2latex fully support cross referencing (see Section 4.2). By default, this tool translates theLBL andREF
operators to the LATEX commands ‘nlabel’ and ‘nref’, respectively.

13

module Sdf
exports

sorts Sdf-Id Iterator CharClass Literal Module Section SyntaxSection CfFunction CfElem Attributes
FunOpName ListOpName

context-free syntax
“module” Sdf-Id Section* ! Module
“imports” Sdf-Id+ ! Section
“exports” SyntaxSection+ ! Section
“sorts” Sdf-Id+ ! SyntaxSection
“context-free” “syntax” CfFunction+ ! SyntaxSection
“+” ! Iterator
“*” ! Iterator
FunOpName CfElem* “!” Sdf-Id Attributes ! CfFunction
Literal “(” fCfElem “,”g* “)” “ !” Sdf-Id Attributes! CfFunction
Sdf-Id ! CfElem
Literal ! CfElem
Sdf-Id Iterator ListOpName ! CfElem
“f” Sdf-Id Literal “g” Iterator ListOpName ! CfElem

! Attributes
“f” fLiteral “,”g+ “g” ! Attributes

Figure 5:Partial syntax definition of SDF in SDF.

Comment Operator. The comment operatorC is used to represent user defined comments in the source text.
This operator accepts a sequence of BOX strings as sub-boxes each of which starts a new line of comment. Argu-
ment strings may contain newline characters which are interpreted and start a new line. The semantics of theC
operator with multiple sub-boxes containing newline characters is depicted below:

C [“s1nn : : : nn sn”] = C [“s1” : : : “sn”]

Depending on the back-end these strings are vertically formatted or in aHV style.

Line Operator. The last non-positional operator isL. This operator is used to create a line of characters equal to
the width of its first sub-box. This operator can be used for instance, to “draw” the vertical bar in ASF equations.
Its use is demonstrated by the following example:

V [H [B1 B2]

L [H [B1 B2] "="]]
= B1 B2

B Example

In this section we will demonstrate the pretty-printer that we described in this paper by means of a comprehensive
example. We will use part of the language definition of SDF defined in SDF to demonstrate the construction of a
pretty-print table and to demonstrate the generated output of the generic pretty-printer when it has been instantiated
with the pretty-print rules for SDF.

The Grammar of SDF. Before we construct a pretty-print table for SDF, we first show part of its definition in
SDF. The syntax definition of Figure 5 is taken from (Heeringet al., 1989) but has been greatly simplified by
removing several language constructs that are not of interest for this example. The figure also shows the intended
layout of SDF definitions. The BOX expressions that we define in the pretty-print table below, define a formatting
of SDF terms equivalent to the formatting of the SDF module in Figure 5.

14

[

“module” Sdf-Id Section *! Module, V is = 3 [H [KW [“module”] 1] V vs = 1 [2]]

“imports” Sdf-Id +! Section, H [KW [“imports”] HV [1]]

“exports” SyntaxSection +! Section, V is = 3 [KW [“exports”] V vs = 1 [1]]

“sorts” Sdf-Id +! SyntaxSection, H [KW [“sorts”] HV [1]]

“context-free” “syntax” CfFunction +! SyntaxSection,
V is = 3 [H [KW [“context-free”] KW [“syntax”]] A (l , l , l , l) [1]]

“+” ! Iterator, KW [“+”]

“*” ! Iterator, KW [“*”]

FunOpName CfElem * “!” Sdf-Id Attributes! CfFunction, R [H [1 2] KW [“!”] 3 4]

Literal “(” fCfElem “,”g* “)” “ !” Sdf-Id Attributes! CfFunction, R [H [1 “(” 2 “)”] KW [“ !”] 3 4]

Sdf-Id! CfElem, H [1]

Literal ! CfElem, H [1]

Sdf-Id Iterator ListOpName! CfElem, H [H hs = 0 [1 2] 3]

“f” Sdf-Id Literal “g” Iterator ListOpName! CfElem, H [H hs = 0 [“f” 1] H hs = 0 [2 “g” 3] 4]

! Attributes, H []

“f” fLiteral “,”g+ “g” ! Attributes, H hs = 0 [“f” 1 “g”]

fLiteral “,”g+, H [1 “,”]
]

Figure 6:A pretty-print table for the syntax definition of Figure 5.

A Pretty-Print Table for S DF. Given the partial language definition of SDF in Figure 5, we can specify a pretty-
print table for this language by specifying BOX expressions for each context-free production. This pretty-print
table is used to instantiate the toolasfix2box to obtain a language specific pretty-printer. Below we will discuss
several details of the pretty-print table for SDF. The complete table is displayed in Figure 6.

From Figure 5, we see that an SDF module basically consists of a sequence of sections. This sequence is
preceded by the keywordmodule and the name of the module. Similar to the formatting of the syntax definition
in Figure 5, these sections will be formatted vertically and left indented. Keywords will be formatted using the
KW operator. The keywordmodule and the module name are formatted horizontally. These formatting rules are
described by the pretty-print rule below:

“module” Sdf-Id Section*! Module,
V is=3 [H [KW [“module”] 1] V vs = 1 [2]]

An SDF module can contain zero or more imports sections. Each imports section consists of the keywordimports
and a number of module names. Formatting the module names horizontally may exceed the line width when the
imports section contains many module names. We therefore use theHV operator to allow the formatting of module
names to capture multiple lines.

“imports” Sdf-Id+! Section,
H [KW [“imports”] HV [1]]

The context-free functions in Figure 5 are formatted in such a way that the elements at both sides of the arrow are
left-aligned. This formatting is achieved using the alignment operator configured with four left-aligned columns.
The fourth column (which is not visible from Figure 5) is used to format optional attributes.

“context-free” “syntax” CfFunction+! SyntaxSection,
V is=3 [H [KW [“context-free”] KW [“syntax”]] A (l, l, l, l) [1]]

15

sorts Sdf-Id Iterator
CharClass Literal
Module Section
SyntaxSection
CfFunction CfElem
Attributes
FunOpName
ListOpName

sorts Sdf-Id Iterator CharClass Literal Module Section SyntaxSection CfFunction
CfElem Attributes FunOpName ListOpName

(a) Narrow (b) Wide

Figure 7:Different formatting depending on available width.

This entry specifies that context-free functions are formatted vertically (they are indented from the left by three
spaces). The context-free functions together form a tabular with four columns. Text in all four columns is left-
aligned.

Each context-free function in an SDF module forms a row in the tabular. Each row consists of four columns: the
elements at the left hand side of the arrow, the arrow itself, the target sort of the production and optional attributes.
The entries below are used to achieve the desired formatting of individual context-free functions:

FunOpName CfElem* “!” Sdf-Id Attributes ! CfFunction,
R [H [1 2] KW [“!”] 3 4]

Literal “(” fCfElem “,”g* “)” “ !” Sdf-Id Attributes ! CfFunction,
R [H [1 “(” 2 “)”] KW [“ !”] 3 4]

The pretty-print entries for the other language constructs are obvious and do not need any further discussion. The
complete pretty-print table for the grammar of Figure 5 is displayed in Figure 6.

Using the Pretty-Print Table for SDF. Now that a pretty-print table for the language SDF has been constructed,
we can instantiate the generic toolasfix2box to obtain a language specific pretty-printer for SDF. This instan-
tiated pretty-printer can be used to generate BOX for terms over SDF according to the rules in the pretty-print
table. The generated BOX terms can be translated to different output formats. Figure 5 for example, is obtained by
translating BOX to LATEX.

Depending on the available width for pretty-printing, the final output may differ according to the semantics of
theHV andHOV operators. Figure 7 shows how theHV operator formats its sub-boxes differently depending on
the available width for pretty-printing. Both figures show the sorts section of the SDF module depicted in Figure 5,
pretty-printed with the rules defined in the table of Figure 6. Because of the limited horizontal space available
in Figure 7(a), more lines are occupied to format the module names without exceeding the right margin than in
Figure 7(b).

References

Borras, P. (1989).PPML - Reference manual & compiler implementation. INRIA, Sophia-Antipolis.

Borras, P., Cl´ement, D., Despeyroux, T., Incerpi, J., Lang, B., and Pascual, V. (1989). CENTAUR: the system. In
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-
opment Environments, pages 14–24. Appeared asSIGPLAN Notices24(2).

van den Brand, M. G. J. (1995). Pretty printing in the ASF+SDF Meta-Environment: Past, Present, and future.
In M. G. J. v. d. Brand, A. van Deursen, T. Dinesh, J. Kamperman, and E. Visser, editors,ASF+SDF’95: a
workshop on Generating Tools from Algebraic Specifications, number Technical Report, P9504, pages 155–174.
http://www.wins.uva.nl/research/prog/reports/ .

van den Brand, M. G. J. and Visser, E. (1996). Generation of formatters for context-free languages.ACM Trans-
actions on Software Engineering and Methodology, 5(1), 1 – 41.

16

van den Brand, M. G. J., Klint, P., Olivier, P., and Visser, E. (1997a). AsFix. A structured data format for repre-
sentation of parse trees with an extensive library with generic, language independent functionality. In particular
a format for ASF+SDF specifications.

van den Brand, M. G. J., Klint, P., Olivier, P., and Visser, E. (1997b). ATerms: Representing structured data
for exchange between heterogeneous tools. Technical report, Programming Research Group, University of
Amsterdam.

van den Brand, M. G. J., Sellink, A., and Verhoef, C. (1997c). Generation of components for software renovation
factories from context-free grammars. In I. Baxter, A. Quilici, and C. Verhoef, editors,Proceedings Fourth
Working Conference on Reverse Engineering, pages 144–153. Available athttp://adam.wins.uva.nl/
˜x/trans/trans.html .

van den Brand, M. G. J., Kuipers, T., Moonen, L., and Olivier, P. (1997d). Implementation of a prototype for the
new ASF+SDF Meta-Environment. In A. Sellink, editor,Proceedings of the 2nd International Workshop on the
Theory and Practice of Algebraic Specifications, Electronic Workshops in Computing. Springer verlag.

van den Brand, M. G. J., Sellink, A., and Verhoef, C. (1997e). Obtaining a COBOL grammar from legacy code
for reengineering purposes. In A. Sellink, editor,Proceedings of the 2nd International Workshop on the Theory
and Practice of Algebraic Specifications, Electronic Workshops in Computing. Springer verlag.

van den Brand, M. G. J., Heering, J., and Klint, P. (1997f). Renovation of the old ASF+SDF Meta-Environment
— current state of affairs. In A. Sellink, editor,Proceedings of the 2nd International Workshop on the Theory
and Practice of Algebraic Specifications, Electronic Workshops in Computing. Springer verlag.

van den Brand, M. G. J., Klint, P., and Olivier, P. (1999). Compilation and memory management for ASF+SDF.
To appear in CC’99.

Brunekreef, J. (1995).On Modular Algebraic Protocol Specification. Ph.D. thesis, University of Amsterdam.

Brunekreef, J. (1996). A transformation tool for pure Prolog programs: the algebraic specification. Technical
Report P9607, University of Amsterdam, Programming Research Group. Available by anonymous ftp atftp:
//ftp.wins.uva.nl/pub/programming-research/reports/1996/P9607.ps.Z .

Chailloux, J., Devin, M., and Hullor, J.-M. (1984). LeLisp, a portable and efficient Lisp system. InProceedings
ACM symposium on Lisp and Functional Programming, Austin, Texas.

Deursen, A. v., Heering, J., and Klint, P., editors (1996).Language Prototyping: An Algebraic Specification
Approach, volume 5 ofAMAST Series in Computing. World Scientific Publishing Co.

van der Graaf, M. (1997). A specification of Box to HTML in ASF+SDF. Technical Report P9720, University
of Amsterdam, Programming Research Group. Available by anonymous ftp atftp://ftp.wins.uva.nl/
pub/programming-research/reports/1997/P9720.ps.Z .

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. (1989). The syntax definition formalism SDF — Reference
manual.SIGPLAN Notices, 24(11), 43–75. Most recent version available at URL:http://www.cwi.nl/
˜gipe/ .

Hughes, J. (1995). The design of a pretty-printing library. InFirst International Spring School on Advanced
Functional Programming Techniques, LNCS. Bastad, Sweden.

Kamperman, J. F. T. and Walters, H. (1993). ARM, abstract rewriting machine. Technical Report CS-9330,
Centrum voor Wiskunde en Informatica.ftp://ftp.cwi.nl/pub/gipe/reports/KW93.ps.Z .

Klint, P. (1993). A meta-environment for generating programming environments.ACM Transactions on Software
Engineering and Methodology, 2, 176–201.

Knuth, D. E. (1984).The TEXbook, volume A ofComputers & Typesetting. Addison-Wesley. (Ninth printing,
revised, October 1989).

Koorn, J. W. C. (1994).Generating Uniform User-Interfaces for Interactive Programming Environments. Ph.D.
thesis, University of Amsterdam.

17

Morcos-Chounet, E. and Conchon, A. (1986). PPML: a general formalism to specify prettyprinting. In H.-J.
Kugler, editor,Information Processing 86, pages 583–590. Elsevier.

Rahtz, S. (1998). Hyperref. available athttp://www.tex.ac.uk/tex-archive/macros/latex2e/
contrib/supported/hyperref/ .

Swierstra, D. S., Azero, P., and Saraiva, J. (1998). Designing and implementing combinator languages. InThird
International Summer School on Advanced Functional Programming. Braga, Portugal.

Thanh, T. H. (1998). A TEX variant which can produce acrobat pdf instead of dvi. available atftp://ftp.
cstug.cz/pub/tex/local/cstug/thanh/pdftex/ .

Visser, E. (1994).ASF+SDF to LATEX, User Manual. University of Amsterdam, Programming Research Group.

Vos, K. (1990).Pretty for an easy touch of beauty. Master’s thesis, Programming Research Group, University of
Amsterdam.

18

