
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Epic and ARM -- User’s Guide --

H.R.Walters

Software Engineering (SEN)

SEN-R9724 December 31, 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9724
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Epic and ARM
{ User's Guide {

H.R.Walters

pum@babel�sh.nl

Babel�sh

Korenbloemweg 23, 2403 GA Alphen a/d Rijn, The Netherlands

and

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

We give a brief introduction to Epic and to ARM (they are discussed in more detail elsewhere). We show

how to use the Epic compiler and how to execute ARM code. Then we describe ARM's API (application

programmer's interface) which allows ARM to be used as a plug-in library. We describe how to access external

functions from ARM and how to add external data types.

1991 Mathematics Subject Classi�cation: 68N17: Logic Programming; 68N20: Compilers and Generators;

68Q05: Models of Computation; 68Q40: Symbolic Computation; 68Q42: Rewriting Systems and 68Q65:

Algebraic speci�cation

1991 Computing Reviews Classi�cation System: D.1.1 [Programming Techniques]: Applicative (Functional)

Programming; D.3.4 [Programming Languages]: Processors - Compilers; D.1.6: Logic Programming; F.3.2

[Logics and Meanings of Programs]: Semantics of Programming Languages, Algebraic approaches to

semantics; F.4.1 [Mathematical Logic and Formal Languages]: Logic Programming.

Keywords and Phrases: Epic, ARM, compiler, interpreter, term rewriting systems, abstract machines, program

transformations

Note: Part of this work is carried out under project SEN1.2 \Software development"

2

How to read this guide

This is the user's manual of Epic and ARM. If you know what term rewriting is and want to
use ARM immediately, you should just read the introduction and Section 1, which explains
how to use the Epic compiler and (stand-alone) ARM interpreter.
If you want to use ARM as a plug-in term-rewriting library in your application, you should

also read Section 4 of this guide.
In chapter 5 we introduce Epic. It is discussed more formally in [KW96b]. In Appendix

II we discuss the given construct, which is an extension of Epic. We describe a tool that
translates programs using given to equivalent Epic programs. Note that the Epic compiler
uses this construct.
Several aspects concerning Epic and ARM have already been published elsewhere, and will

not be discussed in this guide. In particular we refer to [WK96], which presents the de�nition
of Epic's syntax and semantics, and [FKW97], which presents a formal description of ARM.

3

Table of Contents

Introduction 6

1 Using Epic and ARM 9

1 Using the Epic compiler : 9
2 Using the ARM interpreter : 10
3 Example : 11

3.1 Numbers : 12
3.2 Io : 12
3.3 Bincalc : 14
3.4 Making the tool : 14

4 Generating trace information : 14
4.1 Number of reductions : 15
4.2 Garbage collection activity : 15
4.3 Memory usage : 16
4.4 Trace functions : 17
4.5 Trace from : 18
4.6 Trace with arguments : 18
4.7 Trace ARM instructions : 19
4.8 Trace ARM instructions with stackdump : 20
4.9 Produce pro�ling information : 22

5 How to use Traces : 23
5.1 Performance : 23
5.2 Unde�ned functions : 23
5.3 Inter-module type-checking and external functions : : : : : : : : : : : : : : : : 23
5.4 In�nite loops : 23

2 A brief introduction to Epic 24

1 Epic : 24

4

1.1 Identi�ers : 24
1.2 Program structure : 24

2 Intra-modular static semantics : 25
3 Modularity : 26
4 Features : 26

4.1 Speci�city : 27
4.2 Innermost strategy : 28

5 Epic's API : 28
6 Input and output : 29

6.1 Lifting : 29

3 ARM's Machine Model 31

4 ARM's API: using ARM as a plug-in library 33

1 Preliminaries : 33
1.1 Types : 33
1.2 Characters and strings : 33
1.3 Loading terms : 34

2 API : 34
2.1 Behavior : 34

3 API functions : 35
3.1 ARM set up arguments: nonereturns: void : 37
3.2 ARM load arm file arguments: char *namereturns: void : : : : : : : : : : 37
3.3 ARM link arguments: nonereturns: void : 37
3.4 ARM clear arguments: nonereturns: void : 37
3.5 ARM ready arguments: nonereturns: void : 37
3.6 ARM reduce arguments: nonereturns: void : 37
3.7 ARM protect arguments: ARM refreturns: void : : : : : : : : : : : : : : : : : : : 37
3.8 ARM unprotect arguments: ARM refreturns: void : : : : : : : : : : : : : : : : : 37
3.9 ARM lift input arguments: nonereturns: ARM ref : : : : : : : : : : : : : : : : 37
3.10 ARM push arguments: char *returns: void : 37
3.11 ARM apush arguments: ARM refreturns: void : 37
3.12 ARM pushopq arguments: ARM Xclass, char *returns: void : : : : : : : : 37
3.13 ARM class of arguments: char *returns: ARM Xclass : : : : : : : : : : : : : : 37
3.14 ARM display arguments: int, ARM ref, intreturns: void : : : : : : : : : 38
3.15 ARM ofs arguments: ARM refreturns: char * : 38
3.16 ARM size arguments: ARM refreturns: unsigned long : : : : : : : : : : : : : : 38
3.17 ARM child arguments: ARM ref, unsigned longreturns: ARM ref : : : 38
3.18 ARM set error functions arguments: see belowreturns: void : : : : : : : 38
3.19 ARM DEBUG STATUS (this is a variable) type: int : : : : : : : : : : : : : : : : : : 38
3.20 ARM set debug functions arguments: see belowreturns: void : : : : : : : 38
3.21 ARM trace gc arguments: intreturns: void : 39
3.22 ARM memstat arguments: intreturns: void : 39
3.23 ARM count rewr arguments: unsigned long, intreturns: void : : : : : : : : 40
3.24 ARM profile arguments: intreturns: void : 40

5

3.25 ARM dump degree arguments: intreturns: void : : : : : : : : : : : : : : : : : : : 40
3.26 ARM trace degree arguments: intreturns: void : : : : : : : : : : : : : : : : : : 40
3.27 ARM stack dump depth arguments: unsigned longreturns: void : : : : : : 40
3.28 ARM term dump depth arguments: unsigned longreturns: void : : : : : : : 40
3.29 ARM trace from arguments: char *returns: void : : : : : : : : : : : : : : : : : : 40

5 External values and functions 41

1 Introduction and overview : 41
2 Preliminaries : 42

2.1 Global memory management : 42
2.2 The opaque structure : 42
2.3 Methods : 42
2.4 Class : 43
2.5 Initializer : 43
2.6 Emergency handler : 44

3 Functions : 44
3.1 Preliminaries : 45
3.2 External functions : 45

I References 47

References : 47

II The given construct 51

1 Introduction : 51
2 Conditions : 51

2.1 Case determination and auxiliary values : 52
3 Given : 52
4 Semantics : 53
5 Degiven : 54

IIIThe stand-alone interpreter 55

1 Literate Programming in NoWeb : 55
2 The function main : 56

6

Introduction

ARM is an abstract machine model for an e�cient term rewriting engine. Epic is a language
in which unconditional, left-linear term (graph) rewriting systems can be expressed. At the
time of writing this guide the current Epic/ARM version is 1.0.2.
Epic is mainly intended to be generated by other tools, such as compilers or theorem

provers. It can be used by hand { the Epic compiler is in fact hand-written in Epic, { but it
is spartan and not for the faint of heart.
Term (graph) rewriting systems are becoming increasingly important for the implemen-

tation of theorem provers [GL91, Fra94, GG91, KZ89, Bou94], veri�cation tools, algebraic
speci�cations [EM85, BHK89, Vis96, HM93], compiler generators [ESL89], language pro-
totyping [vDHK96], program analyzers [BDHF96] and functional programming languages
[PvE93].
The Epic compiler translates Epic sources into ARM object code. This code { which is

represented textually and is vaguely reminiscent of assembler code, { is suitable input for the
ARM interpreter. The ARM interpreter can be used stand-alone, in which case it loads a
number of ARM �les and proceeds to reduce an input term, or it can be used as a plug-in
library in an application, in which case the application can direct it to load ARM object �les,
to reduce terms, etcetera.
Below is an Epic module in which addition and multiplication on binary numbers are

de�ned. Note that the type names are misleading because (currently) the names of types are
ignored. In Epic only the names of a function and the number of its arguments are signi�cant.

module Numbers

types

o: -> Nat; i: -> Nat;

ap : Nat # Nat -> Nat;

plus : Nat # Nat -> Nat;

times : Nat # Nat -> Nat;

rules

ap(o,X) = X;

7

ap(X,ap(Y,Z)) = ap(plus(X,Y),Z);

plus(o,X) = X;

plus(i,o) = i;

plus(i,i) = ap(i,o);

plus(i,ap(X,Y)) = ap(X,plus(i,Y));

plus(ap(X,Y),Z) = ap(X,plus(Y,Z));

times(o,X) = o;

times(i,X) = X;

times(ap(X,Y),Z) = ap(times(X,Z),times(Y,Z));

In this module, �ve function symbols are de�ned. The constants o and i, representing the
binary digits 0 and 1 (Epic identi�ers can not be numeric); the function ap, which represents
appending a bit at the end of a string of bits; and the functions plus and times with their
usual meaning. Further details (including a proof of correctness) of this program are discussed
in [WZ95].
The module Numbers can be put in an Epic source �le \numbers.ep". The Epic/ARM

environment uses the extension .ep for Epic sources (and .arm for ARM �les). Now, we can
apply the Epic compiler:

$ epic numbers.ep

We will indicate what you type in a unix shell with \$" (you should not type the character
\$" itself, though).
The command above invokes the Epic compiler, which produces the ARM code for Numbers

in a �le numbers.arm.
In addition to this ARM �le, an executable unix script is produced which can invoke the

ARM interpreter. The script is useful when many ARM �les are used, or when non-standard
compilation options are used. We will discuss this later. In our simple example the script
will only read something like

/.../bin/arm -r/.../numbers.arm $*

We can invoke the script by typing

$ numbers

Or, assuming the ARM interpreter can be found in our current unix path, and the ARM
�le is in our working directory, by (note the absence of a space after -r):

$ arm -rnumbers.arm

This starts the interpreter which loads the ARM �le and proceeds to wait for a term in
pre�x-bracketed textual notation on standard input (note that there is no prompt to indi-
cate that ARM is waiting). We can type in times(ap(ap(i,o),i),ap(ap(i,i,o)))<cr>,

8

{ where <cr> signi�es pressing the return key, { and ARM will reduce this term, resulting in
ap(ap(ap(ap(i,i),i),i),o) being produced on standard output. In some UNIX environ-
ments the output may actually be overwritten with the next prompt. This is due to the fact
that ARM does not produce an additional newline character. In this case we could invoke
the module as follows instead, which assures that we can see the output.

$ numbers; echo

9

Chapter 1

Using Epic and ARM

In this section we discuss how to use Epic and ARM. We refer to Chapter 5 for an introduction
to Epic.

1. Using the Epic compiler

The Epic compiler is invoked as follows:

$ epic options epic-and-arm-�les

The epic-and-arm-�les are a sequence of �les with extension .ep or .arm. Extension .ep

signi�es that the �le should be compiled to ARM code and should be included in the tool;
extension .arm signi�es that the �le has already been compiled, and should merely be included
(e.g., library modules).
The Epic compiler compiles all Epic �les, and produces a shell script which invokes the

ARM interpreter with all indicated ARM �les.
The Epic compiler accepts the following options:

--version

print the current version

-ofoo
the generated shell script will be named foo. The default is the name of the last Epic
or ARM �le (without extension) appearing on the command line invoking the Epic
compiler.

-S

the tool uses lifted I/O. See Section 6 for details.

-abar
the parse-reduce-pretty-print function will be called bar instead of the default ppp-foo.

2. Using the ARM interpreter 10

-Edir
use dir to locate executables and libraries, rather than the default (as de�ned during
installation).

-local

use the location where Epic and ARM were created rather than where they were in-
stalled, to locate executables and libraries (i.e., use pre�x rather than exec-pre�x).

-Ddir
use dir to �nd sources and produce objects and scripts, rather than the working direc-
tory.

Invoking the Epic compiler compiles all Epic �les (resulting in ARM �les) and produces
a script with the name of the tool in which the ARM interpreter is invoked with the right
ARM �les and other options. This script can be used to activate the tool.

2. Using the ARM interpreter

The ARM interpreter is invoked as follows:

$ arm options

By default ARM reads its input from standard input (stdin), and produces its result
on standard output (stdout). Error messages and debugging and tracing information are
produced on the standard error stream (stderr).
ARM accepts the following options:

-l

lift the input and lower the output. See Section 6 for details.

-afoo
apply function foo to the input. Used mainly in conjunction with -l in order to indicate
the parse-reduce-pretty-print function.

-r�le
read the ARM �le file.

-msize
limits ARM's maximal memory usage. Size is a digit from 0 to 9 and sets the memory
limit to a value of 1 Mb, 2 Mb, 5 Mb, 10 Mb, 20 Mb, 50 Mb, 100 Mb, 200 Mb, 500 Mb
and 1 Gb, respectively. Reaching the maximum is a fatal error for ARM. This option
is used to debug programs suspected of in�nite recursion.

-Rcount
print and limit the total number of used reduction steps. After a successful run, prints
the number of (semi) reduction steps used. When this number reaches count, ARM
quits with a fatal error. Use 0 for in�nity (i.e., the number is printed but the limit
is never reached). Note that the number printed is usually somewhat larger than the
actual number of rewrite steps; ARM counts building a node when the outer-most
function symbol can not be reduced as a separate step.

3. Example 11

-S

print ARM's memory usage as blocks are allocated.

-G

print garbage collection information (total number of used and freed nodes at each
garbage collection).

-T

trace Epic functions. For each reduction print the reduced Epic function.

-Ffunction
start tracing only after the �rst reduction of the function function. Used to skip large
traces before things get interesting.

-A

(implies -T) Also print a number of arguments to that function. Note that ARM does
not know the arity of functions. Hence a �xed number is displayed each time; see the
-L and -Y options.

-D

(implies -T) Also print a number of elements on top of each ARM stack (see -L, -X and
-Y options).

-M

trace individual ARM instructions.

-L

limit the depth of stackdumps (otherwise the entire stack is displayed) and the depth
of terms be printed (otherwise the entire terms are printed) when the -A or -D options
are used.

-Xdepth
set the depth of stacksdumps to depth.

-Ydepth
set the depth of the part of a term to be printed to depth.

-P

produce pro�ling information on Epic functions and ARM instructions. This informa-
tion concerns the number of times a function has reduced or an instruction has been
executed. Note that this option requires a lot of execution time.

In Section 1.4 we will discuss the generated output when various tracing options are used.

3. Example

To illustrate the previous sections, we will present an example: Bincalc. Note that a full
introduction to Epic is given in Chapter 5.
Bincalc is a binary calculator written in Epic. It consists of three modules, one of which is

the module Numbers from the introduction. Here are the three Bincalc modules: Numbers,
Io, and Bincalc.

3. Example 12

3.1 Numbers
In this module, �ve function symbols are de�ned. The constants o and i, representing the
binary digits 0 and 1; the function ap, which represents appending a bit at the end of a
string of bits; and the functions plus and times with their usual meaning. Further details
(including a proof of correctness) of this program are discussed in [WZ95].
Note that Epic is single-sorted and that the use of sort-names is somewhat misleading;

only the number of arguments of a function is signi�cant.

module Numbers

types

o : -> Nat;

i : -> Nat;

ap : Nat # Nat -> Nat;

plus : Nat # Nat -> Nat;

times : Nat # Nat -> Nat;

rules

ap(o,X) = X;

ap(X,ap(Y,Z)) = ap(plus(X,Y),Z);

plus(o,X) = X;

plus(i,o) = i;

plus(i,i) = ap(i,o);

plus(i,ap(X,Y)) = ap(X,plus(i,Y));

plus(ap(X,Y),Z) = ap(X,plus(Y,Z));

times(o,X) = o;

times(i,X) = X;

times(ap(X,Y),Z) = ap(times(X,Z),times(Y,Z));

3.2 Io
In the module Io a parser and pretty-printer for binary expressions with addition and multi-
plication are de�ned.
All characters allowed in the input are de�ned explicitly (Epic doesn't have pre-de�ned

functions). Note that all characters and the string constructors str, eos and cat must be
declared when they are use. Even though they are built-in into ARM (in order to be able
to lift terms, see Section 6 for details), they are not built-in into Epic. The annotation free

means that no rules will be de�ned for them in any module. See Section 3 for more details
on this.
The functions de�ned in the module Numbers that will be used in this module must be

declared as external, meaning that they are used here but are de�ned elsewhere. See Section
3 for more details on this.
Module Io uses one of Epic's short-hand features: the term `foo` is short-hand for

the string-term str(`f, str(`o, str(`o, eos))). The term `bar`+X is short-hand for
str(`b, str(`a, str(`r, X))).
The parser de�ned here maintains a tuple consisting of the expression recognized so-far, and

the string of not-yet inspected characters. Function nb skips non-blanks. Function parse-exp
parses either an expression enclosed in parentheses, or a constant. The function parse-num

reads a sequence of zeroes and ones, and computes their proper value. The function trail

handles in�x operators (which are interpreted from right to left). The auxiliary function
enc-exp reads an expression enclosed in parentheses, and the aft-exp skips the closing

3. Example 13

parenthesis of such an expression.
Note that the parser produces a term which consists of functions de�ned in the module

Numbers. Such a term is implicitly reduced to its value. Hence, the Bincalc tool has a parser
and a pretty-printer, but no explicit reduce function. The pretty-printer is trivial. Note the
use of cat.
The annotations free and external signify functions used but not de�ned in this module.

Free means that it isn't de�ned in any module; external means that it is de�ned in another
module (or at least is implicitly or explicitly free there).

module Io

types

nn: -> Char ffreeg;
' : -> Char ffreeg;
'(: -> Char ffreeg;
'): -> Char ffreeg;
'*: -> Char ffreeg;
'+: -> Char ffreeg;
'0: -> Char ffreeg;
'1: -> Char ffreeg;
eos : -> Text ffreeg;
str : Char # Text -> Text ffreeg;
cat : Text # Text -> Text ffreeg;
o : -> Nat fexternalg;
i : -> Nat fexternalg;
ap : Nat # Nat -> Nat fexternalg;
plus : Nat # Nat -> Nat fexternalg;
times : Nat # Nat -> Nat fexternalg;
parse : Text -> Nat;

get-val : Tuple -> Text;

enc-exp : Tuple -> Text;

aft-exp : Num # Text -> Tuple;

plus-exp : Num # Tuple -> Tuple;

mul-exp : Num # Tuple -> Tuple;

nb : Text -> Text;

parse-num : Text # Nat -> Tuple;

parse-exp : Text -> Tuple;

trail : Text # Nat -> Tuple;

tuple : Nat # Text -> Tuple ffreeg;
print : Num -> Text;

rules

parse(Txt) = get-val(parse-exp(nb(Txt)));

get-val(tuple(Val,Rest)) = Val;

parse-exp(`(`+Txt) = enc-exp(parse-exp(nb(Txt)));

enc-exp(tuple(Val,Rest)) = aft-exp(Val,nb(Rest));

aft-exp(Val,`)`+Rest) = trail(nb(Rest),Val);

parse-exp(Txt) = parse-num(Txt,o);

parse-num(`0`+Txt,Val) = parse-num(Txt,plus(Val,Val));

parse-num(`1`+Txt,Val) = parse-num(Txt,plus(plus(Val,Val),i));

parse-num(Txt,Val) = trail(Txt,Val);

trail(`+`+Txt,Val1) = plus-exp(Val1,parse-exp(Txt));

4. Generating trace information 14

plus-exp(Val1,tuple(Val2,Rest)) = tuple(plus(Val1,Val2),Rest);

trail(`*`+Txt,Val1) = mul-exp(Val1,parse-exp(Txt));

mul-exp(Val1,tuple(Val2,Rest)) = tuple(times(Val1,Val2),Rest);

trail(Txt,Val) = tuple(Val,Txt);

nb(`nn`+Txt) = Txt ;

nb(` `+Txt) = Txt ;

nb(Txt) = Txt;

print(ap(A,B)) = cat(print(A),print(B));

print(o) = `0`;

print(i) = `1`;

3.3 Bincalc
The module Bincalc is trivial.

module Bincalc

types

ppp bincalc: Text -> Text;

parse: Text -> Nat fexternalg;
print: Nat -> Text fexternalg;

rules

ppp bincalc(Text) = print(parse(Text));

3.4 Making the tool
Bincalc is made by invoking Epic as follows

$ epic -S numbers.ep io.ep bincalc.ep

This compiles the three modules, and produces the script bincalc shown below. If you
are unfamiliar with shell scripts, please skip to the next section.
Note that the -l and -a options have been added due to the -S option.

#! /bin/sh

function=ppp bincalc

PREFIX=/.../epic

EPREFIX=/.../epic

EP=$EPREFIX

case $1 in

-local) EP=$PREFIX

shift 1;;

*) : ;;

esac

$EP/bin/arm -r/.../epic/examples/bincalc/io.arm n
-r/.../epic/examples/bincalc/numbers.armn
-r/.../epic/examples/bincalc/bincalc.armn
-l -a$function $*

4. Generating trace information

In this section we discuss the output generated by various tracing options of ARM. We use
the Bincalc example, and we have used the following invocation of ARM.

$ echo " txt" | arm options -rio.arm -rnumbers.arm -rbincalc.arm -l -appp bincalc

4. Generating trace information 15

Here, options signify the various tracing options used in each example, and txt signi�es the
binary computation used for each example. We used two di�erent computations: \1 + 1"
and \1 * 10 * 11 * 100 * 101 * 110 * 111 * 1000 * 1001 * 1010 * 1011 * 1100 * 1101 * 1110
* 1111 * 10000 * 10001 * 10010 * 10011 * 10100 * 10101 * 10110 * 10111 * 11000 * 11001
* 11010 * 11011 * 11100 * 11101 * 11110 * 11111 * 100000 * 100001 * 100010 * 100011 *
100100 * 100101 * 100110 * 100111 * 101000 * 101001 * 101010 * 101011 * 101100 * 101101 *
101110 * 101111 * 110000 * 110001 * 110010 * 110011 * 110100 * 110101 * 110110 * 110111
* 111000 * 111001 * 111010 * 111011 * 111100 * 111101 * 111110 * 111111". The latter,
which computes 63! (the faculty of 63) is used mainly to make sure the garbage collector is
activated (once). We'll abbreviate this string to \63!" in this section (this is only used in our
presentation, and is not signi�cant for ARM).
Below we only give the tracing information, and do not show ARM's normal output (the

result of the computation).

4.1 Number of reductions
description:

Print the number of semi rewrite steps. A semi rewrite step is a proper rewrite
step or an internal step in which a sub-term has been found to be irreducible, and
is built as a normal form. ARM can not distinguish these two situations.

options:

-R0

computation:

63!

output:

reductions: 144767

4.2 Garbage collection activity
description:

Trace garbage collector activity. The garbage collector is called once in this
computation.

options:

-G

computation:

63!

output:

[gc:114 nds in use, 30606 nds freed]

4. Generating trace information 16

4.3 Memory usage
description:

Show type and sizes in bytes (individual and sum-total so far, labeled sigma)
of allocated memory blocks. Note that ARM is designed to support individual
threads of execution, but that this is not yet supported; hence a structure called
Thread is allocated. The types include the following:

clss: class, used to store class information of (internal) types of memory blocks.

body: used to store the executable code of ARM functions

uses,

hdrs: both are used to store references between ARM functions

id's: used to store function names

glob: a global block to hold the entire ARM state

thrd: one ARM thread

Astk,

Cstk,

Tstk,

Xstk: one stack (argument, control, traversal and auxiliary). See Section 3 for
further explanations.

heap: one chunk of heap storage

ts: one chunk of memory to hold oating point numbers

options:

-S

computation:

63!

output:

clss: block of 39 (sigma= 39)

clss: block of 39 (sigma= 78)

clss: block of 39 (sigma= 117)

clss: block of 39 (sigma= 156)

body: block of 10054 (sigma= 10210)

uses: block of 32058 (sigma= 42268)

hdrs: block of 6458 (sigma= 48726)

id's: block of 10267 (sigma= 58993)

clss: block of 39 (sigma= 59032)

clss: block of 39 (sigma= 59071)

clss: block of 39 (sigma= 59110)

clss: block of 39 (sigma= 59149)

glob: block of 27 (sigma= 59176)

thrd: block of 71 (sigma= 59247)

4. Generating trace information 17

Cstk: block of 30759 (sigma= 90006)

Astk: block of 30759 (sigma= 120765)

Tstk: block of 30759 (sigma= 151524)

Xstk: block of 30759 (sigma= 182283)

heap: block of 491558 (sigma= 673841)

clss: block of 39 (sigma= 673880)

flts: block of 160058 (sigma= 833938)

hdrs: block of 6458 (sigma= 840396)

4.4 Trace functions
description:

Trace reduced functions. This option results in all function names being printed
when they are reduced. Note that the Epic compiler introduces many auxiliary
functions during compilation. Such functions contain the symbol # in their name.
The role of these functions falls beyond the scope of this report. See [FKW97] for
more details. Ignoring lines without this symbol may produce clearer information,
which we have shown in the second column
The auxiliary symbol stop is used by ARM to recognize the end of computation

options:

-T

computation:

1+1

output:

ppp bincalc ppp bincalc

parse parse

"parse#N#0" o

o parse-num

"parse-exp#0#1#1" i

parse-num plus

i plus

"parse-num#DS#str#DS#'1#0#RB#N#N#1#RB#2#RB#3#R" parse-num

plus parse-exp

"parse-num#DS#str#DS#'1#0#RB#N#1#R" o

plus parse-num

"parse-num#DS#str#DS#'1#0#RB#1#R" i

parse-num plus

parse-exp plus

o parse-num

"parse-exp#0#1#1" plus-exp

parse-num plus

i o

"parse-num#DS#str#DS#'1#0#RB#N#N#1#RB#2#RB#3#R" ap

plus print

"parse-num#DS#str#DS#'1#0#RB#N#1#R" print

4. Generating trace information 18

plus print

"parse-num#DS#str#DS#'1#0#RB#1#R" stop

parse-num

"trail#DS#str#DS#'+#0#RB#1#R"

plus-exp

plus

o

"plus#DS#i#DS#i#1#R"

ap

"plus-exp#1#DS#tuple#0#R"

"parse#0#R"

print

print

"print#DS#ap#N#0#RB#1#R"

print

"print#DS#ap#0#R"

stop

4.5 Trace from
description:

Start tracing at the �rst reduction of this symbol. Note that this can be used
together with all other tracing options (T, A, M, D)

options:

-Fplus-exp

computation:

1+1

output:

plus-exp

plus

o

"plus#DS#i#DS#i#1#R"

ap

"plus-exp#1#DS#tuple#0#R"

"parse#0#R"

print

print

"print#DS#ap#N#0#RB#1#R"

print

"print#DS#ap#0#R"

stop

4.6 Trace with arguments
description:

Trace reduced functions and show some arguments. Use default values (no more
than four stack-items, terms no deeper than three)

4. Generating trace information 19

options:

-T -A -Fplus-exp

computation:

1+1

output:

plus-exp() i tuple(i,str(nn,eos))
plus() i i str(nn,eos)
o() str(nn,eos)
"plus#DS#i#DS#i#1#R"() o str(nn,eos)
ap() i o str(nn,eos)
"plus-exp#1#DS#tuple#0#R"() ap(i,o) str(nn,eos)
"parse#0#R"() tuple(ap(i,o),str(nn,eos))
print() ap(i,o)

print() o

"print#DS#ap#N#0#RB#1#R"() str('0,eos)

print() i str('0,eos)

"print#DS#ap#0#R"() str('1,eos) str('0,eos)

stop() cat(str('1,eos),str('0,eos))

4.7 Trace ARM instructions
description:

Trace individual ARM instructions. This option is used mainly to debug ARM,
compilers and the external functions. Each ARM cycle the instruction executed
is printed.
The instruction such as dockD are discussed in some detail in [FKW97].

options:

-M -Fplus-exp

computation:

1+1

output:

usageD

skipD

tpushaD

dockD

tdropD

retractD

cpushD

gotoD

usageD

tpushaD

dockD

4. Generating trace information 20

tpushaD

dockD

tdropD

cpushD

gotoD

� � � skipped a bit

aabuildD

aabuildD

aabuildD

recycleD

usageD

retractD

cpushD

gotoD

usageD

tpushaD

dockD

tdropD

aabuildD

aabuildD

aabuildD

recycleD

aabuildD

recycleD

f stop

4.8 Trace ARM instructions with stackdump
description:

Produce a stackdump at each ARM cycle. The top few elements of each of the
three ARM stacks are shown.
The instruction such as dockD are discussed in some detail in [FKW97].

options:

-D -Fplus-exp

computation:

1+1

output:

CS 3:"parse#0#R" print stop

AS 2: i tuple(i,str(nn,eos))
TS 0:

usageD

CS 3:"parse#0#R" print stop

4. Generating trace information 21

AS 2: i tuple(i,str(nn,eos))
TS 0:

skipD

CS 3:"parse#0#R" print stop

AS 1: tuple(i,str(nn,eos))
TS 1: i

tpushaD

CS 3:"parse#0#R" print stop

AS 1: tuple(i,str(nn,eos))
TS 2: tuple(i,str(nn,eos)) i

dockD

CS 3:"parse#0#R" print stop

AS 2: i str(nn,eos)
TS 2: tuple(i,str(nn,eos)) i

tdropD

CS 3:"parse#0#R" print stop

AS 2: i str(nn,eos)
TS 1: i

retractD

CS 3:"parse#0#R" print stop

AS 3: i i str(nn,eos)
TS 0:

cpushD

CS 4:"plus-exp#1#DS#tuple#0#R" "parse#0#R" print

AS 3: i i str(nn,eos)
TS 0:

gotoD

� � � skipped a large part

CS 2:"print#DS#ap#0#R" stop

AS 2: str('1,eos) str('0,eos)

TS 0:

recycleD

CS 1:stop

AS 2: str('1,eos) str('0,eos)

TS 0:

aabuildD

CS 1:stop

AS 1: cat(str('1,eos),str('0,eos))

TS 0:

recycleD

CS 0:

AS 1: cat(str('1,eos),str('0,eos))

TS 0:

f stop

4. Generating trace information 22

4.9 Produce pro�ling information
description:

Produce pro�ling information concerning the use of Epic functions and of ARM
instructions.
The output shown here is exactly as it is produced by ARM.

options:

-P

computation:

63!

output:

trs profiling: steps 144767 %steps

parse 1 0.0

"parse#N#0" 1 0.0

"parse#0#R" 1 0.0

stop 1 0.0

mul-exp 62 0.0

"mul-exp#1#DS#tuple#0#R" 62 0.0

parse-exp 62 0.0

"trail#DS#str#DS#'*#0#RB#1#R" 62 0.0

"parse-exp#0#1#1" 63 0.0

"parse-num#DS#str#DS#'0#0#RB#1#R" 129 0.1

i 192 0.1

"parse-num#DS#str#DS#'1#0#RB#N#N#1#RB#2#RB#3#R" 192 0.1

"parse-num#DS#str#DS#'1#0#RB#N#1#R" 192 0.1

"parse-num#DS#str#DS#'1#0#RB#1#R" 192 0.1

"times#DS#ap#N#0#RB#1#RB#2#R" 253 0.2

"print#DS#ap#N#0#RB#1#R" 289 0.2

"print#DS#ap#0#R" 289 0.2

parse-num 384 0.3

times 568 0.4

print 579 0.4

"plus#DS#i#DS#ap#0#RB#1#R" 7186 5.0

"plus#DS#i#DS#i#1#R" 7377 5.1

o 7440 5.1

"plus#DS#ap#0#RB#1#R" 24155 16.7

plus 31854 22.0

ap 63181 43.6

arm profiling: cycles 1178677 %steps

tpusha 235848 20.0

dock 202751 17.2

adrop 134805 11.4

retract 99525 8.4

goto 79859 6.8

5. How to use Traces 23

recycle 64908 5.5

cpush 64907 5.5

tdrop 49599 4.2

aabuild 47825 4.1

retractn 46986 4.0

ausage 46796 4.0

skip 7248 0.6

cusage 193 0.0

5. How to use Traces

In this section we briey sketch when trace information might be useful, and which trace
information should then be generated. We do not attempt to be exhaustive.

5.1 Performance
Number of reductions per second can be measured using the UNIX time command together
with the 'number of reductions' trace. The fact that semi-reduction steps are counted intro-
duces an bias which is generally not signi�cant.
Complexity of algorithms (in number of rewrite steps) can also be computed using the

'number of reductions' trace, possibly together with the 'trace from' option.
Improving the performance of programs should be done by identifying (sets of) functions

which are responsible for the largest amounts of time used. The pro�ling option results in
an overview of reduced functions, ordered by number of reductions.

5.2 Unde�ned functions
Epic's current type-checker does not ag unde�ned functions. Using the 'trace functions'
option (-T) produces its name. The UNIX tail command can be used to skip the unwanted
parts of the trace information.

5.3 Inter-module type-checking and external functions
Epic has no inter-modular type checker. Also, external functions aren't type-checked. If a
functions implementation (in C or in Epic) disagrees with its use in an (other) module, values
will wrongly be introduced on or removed from the argument stack, leading to run-time errors
or other inexplicable behavior. Tracing functions with arguments, and possibly tracing ARM
instructions (possibly with stackdump) may help to locate the problem. Using the 'race from'
option helps to keep the amount of information down; however, it is usualy advisable to dump
trace information on �le, and to go through it using an editors search command.

5.4 In�nite loops
An in�nite loop is very often the cause of \out of memory" errors. Inspecting memory
usage (-M option) may indicate the problem in more detail (in�nite recursion leads to stack
blocks being created; in�nite term building to heap blocks being added). Inspecting garbage
collection also discloses in�nite term building because no nodes are released. Use the -T

option to identify in�nite loops: the same sequence of functions is repeated ad in�nitum.

24

Chapter 2

A brief introduction to Epic

In this chapter we will discuss Epic, focussing especialy on less standard aspects. We will
discuss Epic, static semantics modularity, the API of the Epic compiler, and lifting of input
and output.

1. Epic

1.1 Identi�ers
In Epic, two kinds of identi�ers are distinguished: upper-case identi�ers and general identi-
�ers. Upper-case identi�ers start with an upper-case letter followed by zero or more alfanu-
meric characters, underscores, dashes and single quotes (i.e., [A-Z][- 'A-Za-z0-9]*).
General identi�ers fall in three categories:

� Ordinary identi�ers start with a lower-case letter or an underscore followed by zero or
more alfanumerics, dashes, underscores or single quotes (i.e., [a-z][- 'A-Za-z0-9]).

� Character identi�ers start with a single quote followed by a printable ASCII character
(e.g., 'a, ' or 'n), or with a backslash followed by another backslash, one of the letters
t, n, r, or three digits (e.g., nn, nn, n000 or n255).

� Quoted identi�ers start with a double quote, followed by an arbitrary string in which
double quotes have been escaped with a backslash, followed by a double quote (e.g.,
"n"quotes galore!n"").

Finally, comments consist of a dollar sign follwed by arbitrary text up to the end of the
line.

1.2 Program structure
An Epic program consists of a set of modules. Each module has a name, a types section and
a rules section.

2. Intra-modular static semantics 25

The types section consists of the word typesa followed by a sequence of types. A type is
the name of the function (a general identi�er), followed by a colon, followed by zero or more
upper-case identi�ers separated by the symbol #, followed by and arrow (->), followed by an
upper-case identi�er, followed by zero or more attributes enclosed in braces and separated by
comma's, followed by a semi-colon. The attributes are discussed in Section 3, below. Epic is
single-sorted, which implies that only the number of arguments of a function is signi�cant;
the names can be used for documentary purposes but this can be misleading.
Examples:

'c : -> Char {free};

plus : Nat # Nat -> Nat;

trace : Str # X -> X {external};

"plus:Nat#Nat->Nat": X # X -> X;

The rules section consists of the word rules followed by a sequence of rules. A rule consists
of a term followed by the symbol =, followed by a term followed by a semi-colon. See also
Appendix II.
A term can be one of the following:

� an upper-case identi�er, in which case it is a variable;

� a general identi�er (signifying a function) possibly followed by one or more terms sep-
arated by comma's and enclosed in parentheses;

� a back-quote character followed by a sequence of characters in which the back-quote
character has been escaped with n followed by a back-quote character, possibly followed
by the character + and an upper-case identi�er. This construct is short-hand for string-
terms. For example, `hi!nn` is short for the term str('h, str('i, str('!, str(nn,
eos)))) and ` `+X0 is short for str(' , X0). See also Section 4.1.2;

� a vertical bar followed by a class name followed by a colon followed by a string in which
the vertical bar has been escaped with n followed by a vertical bar. This signi�es an
external value. See also Chapter 5.

2. Intra-modular static semantics

Epic places only minimal restrictions on modules, ensuring that the module can be meaning-
fully implemented. Type-checking is insu�cient to properly support human users.
The following restrictions apply and are checked by the compiler:

� Every function that occurs in the rules section should appear in the types section.

� The arity of a function in its declaration in the types section (i.e., the number of upper-
case identi�ers between : and ->) and in all its uses in the rules section must coincide.
That is, if its arity is zero, it should always appear without following parentheses, and
if it is some n > 0 the number of terms appearing between parentheses should be n;

� No function should appear more than once in the types section.

� A function with attribute free should not be de�ned (i.e., appear as the outer-most
function symbol on the left-hand side of a rule);

3. Modularity 26

� A function with attribute external should not be de�ned (i.e., appear as the outer-most
function symbol on the left-hand side of a rule);

� The left-hand side of a rule should not be a sole variable;

� Rules must be left-linear (no variable should occur more than once in the left-hand side
of any rule);

� Each variable occuring in the right-hand side of a rule must also occur in the left-hand
side of that rule.

3. Modularity

Epic supports modularity mainly in order to allow for separate compilation. Some features
commonly associated with modularity are not supported. Most notably: Epic has no local
(hidden) functions; all function names are global.
A function is de�ned in a module if it occurs as the outer-most function symbol in the left-

hand side of a rule. A function should be de�ned in at most one module. This requirement
isn't checked by Epic or ARM. If a function is accidentaly de�ned in more than one module,
and those modules are compiled and loaded in ARM, then the last de�nition loaded takes
precedence. This feature can be used to re-de�ne built-in functions, but apart from that it
can be a source of problems.
A module can use functions de�ned in other modules (or functions built-in in ARM). Such

a function must be declared with the external or free attribute. If a function is declared
free it means that it is de�ned in no module and isn't built-in in ARM. If it is declared
external it means that it is de�ned in another module, or is built-in in ARM.
Declaring a function free, or declaring it without an attribute and including no rule that

de�nes the function, results in an internal de�nition being created for the function. This is
the 'de�nition' responsible for building a node when the function application is irreducible.
Declaring a function external suppresses this internal de�nition. Hence, aan external

function should be de�ned in another module or in ARM, or it must be free in at least one
module or it must occur without annotation in a module which does not de�ne the function.
There are a few static semantic rules that an Epic program must adhere to. At the time

of writing no tool exists which checks these constraints.

� A function that is declared external must be built-in in ARM, must be de�ned in
another module in the program, or must occur without annotation in a module which
does not de�ne the function. It can also be declared free in some module, but this is
misleading.

� The arity of a function must be used consistent in all modules that de�ne or use it.

4. Features

In this section we discuss the two features in which Epic distinguishes itself from term rewrit-
ing in general: speci�city order and right-most inner-most reduction. Whereas term rewriting
in general is non-detereministic, Epic has deterministic operational semantics. One reason
for this is the fact that debugging non-deterministic program is an order more complicated
that debugging deterministic programs. Another reason is the fact that Epic's deterministic
operational semantics can be implemented very e�ciently using ARM.

4. Features 27

4.1 Speci�city
The speci�city order is a partial order on rules modulo alpha-conversion (i.e., we regard all
variables as the same). Consider two rules s = t and u = v in which all variables have
been replaced by x, and consider the pre-order traversals of s and u, say, s1; s2; :::; sm and
u1; u2; :::; un, where each si and uj is a function symbol or x. Let k be the smallest index
such that for all i < k, si equals ui. Three possibilities could exist:

� both sk and uk are function symbols, which are unequal by de�nition. In this case the
two rules are mutually exclusive: if one is applicable, the other is not. We regard the
rules as unordered;

� one of sk and uk is a variable and the other is a function symbol. In this case the rule
where the k-th symbol is a variable is said to be more general, and where it is a function
symbol is said to be more speci�c.

� m = n = k � 1. In this case the left-hand sides are identical modulo �-conversion.
Formally this is forbidden to ensure that speci�city is a partial order. In practice this
isn't checked, and the Epic compiler will pick one of the rules at compile time.

When two rules are applicable to the same redex, one of them is more speci�c than the
other. Rewriting using the speci�city order means that in this case the most speci�c rule will
be applied. Note that if a more general rule would be favored over of a more speci�c rule,
the more speci�c rule would never be applied.
Speci�city combines an expressive power available in most languages (if...then...else, or a

case- or switch-statement with a default case) with pattern matching.
In addition, speci�city can be implemented very e�ciently: the partialy ordered set of

rules with the same function symbol as outer-most function symbol is compiled into a single
pattern-matching automaton. Recognizing a redex as an instance of one member of this set
requires a single pass through the automaton, in an amount of time practically independent
of the size of the set.
Examples:

� a simple case discrimination.

vowel('a) = true;

vowel('e) = true;

vowel('i) = true;

vowel('o) = true;

vowel('u) = true;

vowel(X) = false;

� a non-trivial case in which the rules are ordered from most speci�c to most general.
Note that rule 1 is more speci�c than rule 3 due to the fact that speci�city is based on
pre-order.

f(g(a), X) = ...; $1

f(g(X), g(Y)) = ...; $2

f(X, g(a)) = ...; $3

f(X,Y) = ...; $4

5. Epic's API 28

4.2 Innermost strategy
A term can contain many redexes. For Epic to be deterministic means that one of the redexes
must be singled out. Epic uses the right-most inner-most strategy: the right-most redex which
does not contain a redex is reduced at all times. Note that for inner-most strategies it doesn't
matter whether we go from left to right or vice versa: the same reductions occur, but in a
di�erent order. There is a di�erence when compared to outer-most strategies, which have
better properties. As an example, consider the following:

if(true, X, Y) = X;

if(false, X, Y) = Y;

In an inner-most strategy the values of X and Y have already been reduced before one is
selected. Using an outermost strategy, this overhead is avoided. In Epic the overhead could
be avoided by using an auxiliary function, or the given construct shown in Appendix II.
Outer-most strategies can be implemented less e�ciently than inner-most strategies be-

cause more datastructures need to be built. In ARM the only data-structures built are those
of normal forms. Furthermore, after a reduction, the place where to look for the next redex
is within the instantiated right-hand side (values of variables are already in normal form).
These two facts contribute to Epic's (ARM's) e�cient implementation.

5. Epic's API

Epic is de�ned formally in [WK96]. Epic is in fact de�ned as an abstract datatype for the
representation of left-linear non-conditional term rewriting systems. The language Epic we
discuss currently is { strictly speaking { only one concrete instance of a textual representation
of term rewriting systems; the one for which a map from textual representation to this abstract
data type representation has been provided (namely, the Epic parser which is part of the Epic
compiler). This situation has two important consequences:

� When term rewriting systems in another concrete language than Epic, or in some ab-
stract (internal) representation, must be processed, they can be implemented without
actually translating that language or that internal representation to concrete Epic. The
following approaches are preferable:

{ To process another language than Epic, a parser for that language should be made
which produces a data structure that can be handled by the Epic compiler. This
approach avoids producing and analizing concrete Epic.

{ To process an internal representation, an abstract data type interface needs to be
de�ned to allow the Epic compiler to handle the internal representation directly.

To use these approaches, a user's manual of the API of the Epic compiler should be
available. Currently that document does not exist, although the information can be
obtained from [WK96] and Appendix A, pp. 127|162 of [Kam96].

� Inconveniences and awkwardnesses are often contained in the concrete Epic language
rather than in Epic's structure. The most notable example is the misleading notation
of sorts in function types (a remnant of earlier plans): it is trivial to alter the parser so

6. Input and output 29

that only the number of arguments could be indicated and not their type. Alternatively
a choice for a type system could be made (e.g., many sorted or order-sorted), and a
type checker could be produced which checks for compliance according to that system.

6. Input and output

An important notion, especially when creating stand-alone applications, is that of lifted I/O.
We will �rst discuss I/O.
Running an imperative program involves not only the program but also the data it operates

on (�les, including keyboard and screen). Functional, equational and logic programs (e.g.,
Epic programs) do not have side-e�ects1, which means no �les are modi�ed during execution.
Instead, such programs describe how a term can be reduced to its value (which is also a

term). The contents of �les to be inspected could be contained in the initial term, and the
contents of modi�ed �les could be part of the �nal term. In this sense it is reasonable to
refer to the initial term to be reduced as `the input' and to the normal form being produced
as `the output'.

6.1 Lifting
As mentioned, Epic is primarily intended to be generated. For this reason Epic supports
only pre�x-bracketed notation of terms (that is, plus(X,Y) rather than X + Y). Clearly
more freedom in notation would be preferable for humans; see [vDHK96] for an excellent
presentation on this issue.
However, Epic and ARM are intended to create tools in many di�erent circumstances, most

of which use data in other representations. Even though the Epic programs are written using
pre�x-bracketed notation, the resulting tools must be able to process arbitrary texts.
Epic and ARM support this by o�ering you a choice: by default, pre�x-bracketed notation

is used (we have seen this in the introduction of this guide), but other texts can be handled
as well.
In that case, the text o�ered as input is �rst lifted to a generic pre�x-bracketed form

consisting of the constant eos, representing the empty string (i.e., end-of-string); the two-
place function str, which has a character and a string-term as arguments; and any ASCII
character such as 'a, '$, '', nn, n000, etcetera. For example, the line of text \Hello!"
followed by a new-line character, is lifted to the term str('h, str('e, str('l, str('l,

str('o, str('!, str(nn, eos))))))) (see Section 4.2.1.2 for more details).
We refer to this phenomenon as lifting the input, and, similarly, lowering the output. For

output one additional constructor is suitable: the two-place function symbol cat which has
two strings as arguments. Using cat allows us to produce output in chunks (for example,
lines of text) without having to transform the entire output into one huge string. We will see
examples of this in Section 1.3.3.2.
When lifted input is used, the program must de�ne a function that analyses the text and

transforms it into a term suitable to the application. For example, the string \1 + 1" may

1Actually most functional languages { including Epic { do provide for side-e�ects, which is often regarded
as an impure but pragmatic aspect. In Appendix 5 we will see how Epic o�ers the ability to de�ne functions
with side-e�ects, which can be used to read/write from/to �les and I/O devices.
Recently, formal models have been developed which explain what I/O means in the context of side-e�ect

free languages [AvGP92, P-JW93, Mog89, WK95]. No such model is implemented in Epic/ARM, and we will
not go into it in this report.

6. Input and output 30

initially be lifted to str('1, str(' , str('+, str(' , str('1,eos))))), but may have
to be transformed into plus(one,one) before it can be processed further. A function that
analyzes text and translates it to an abstract syntax is called a parser or scanner.
Similarly, the output must be converted to a textual representation. A function that does

this is called a pretty-printer (whether its product is pretty or not).
Epic assumes the existence of a function which parses the input, performs the action

implemented by the tool, and pretty-prints the output (in this report we call this function
the parse-reduce-pretty-print function). If the application is called foo, then the default
name of this function is ppp-foo.
The default name is part of the following convention (which is not required by Epic). A

tool called foo consists of a parser, a pretty-printer and functionality that implements the
tools' proper action (i.e., foo). The parser is a one-place function which accepts a string as
argument and produces a term in the abstract syntax of foo, and which is named p-foo.
The pretty-printer is a one-place function that accepts a term in the abstract syntax of foo
and produces a string, and which is called pp-foo. Foo could be implemented by applying
some function (say, foo) to the result of the parse. In this case the tool is implemented by a
function ppp-foo, which is de�ned as follows:

ppp-foo(X) = pp-foo(foo(p-foo(X)));

It is also possible that foo is implemented less operational, by reductions on its abstract
syntax directly, in which case ppp-foo is de�ned as

ppp-foo(X) = pp-foo(p-foo(X));

In any case, when lifted I/O is used, Epic assumes the existence of a one-place function
(which can have any name, but is by default assumed to be ppp-foo).

31

Chapter 3

ARM's Machine Model

In this chapter we sketch ARM's machine model so that the API described in the next chapter
can be properly understood. In [FKW97] we describe the machine model in more detail, and
also discuss the compilation process from Epic to ARM.
ARM uses three stacks and a heap. The heap is a repository where dags (directed, acyclic

graphs) are kept which represent terms. In the remainder of this section we abstract from
the heap: when we say that a term is put on the stack we actually mean that that term is
represented in the heap as a dag, and that a pointer to that dag is put on the stack.
The three stacks are:

� the control stack (CS), which contains function symbols that have not yet been reduced;

� the argument stack (AS), which contains terms that have been normalized, but have
not yet been matched;

� the traversal stack (TS), which contains the values of variables stored during matching.

ARM uses the right-most inner-most reduction strategy: the right-most redex which does
not contain another redex is reduced at all times. From this it follows that when a function
is reduced, its arguments have already been normalized.
In addition, ARM uses an automaton for redex recognition; the Epic compiler translates an

Epic program to a so-called minimal term rewriting system (MTRS) in which the automaton
is encoded using auxiliary functions (we have seen some of these pass by in Section 1.4).
As an example, we will consider the application of the rule f(g(X),h(Y))=r(X,g(Y)) to

the term f(g(s),h(t)), where s and t are two terms, and g(s) and h(t) are normal forms.
This rule is translated by the Epic compiler to an MTRS which includes rules similar to
those shown here (the \#" signs are part of the identi�ers). Note that we will not go into this
translation process (see [FKW97] for that).

f(g(X),Y) = f#g(X,Y); $ 1

32

f#g(X,h(Y)) = f#g#h(X,Y); $ 2

f#g#h(X,Y) = f#g#h#g(X,g(Y)); $ 3

f#g#h#g(X,Y) = r(X,Y); $ 4

In our example the top of CS is f, and AS contains g(s) as top, and h(t) as second element.

� in the �rst cycle rule 1 is checked and (since it is applicable) is applied. Sub-term s is
moved from within the top of AS to TS, and symbol f is replaced by f#g.

� in the second cycle rule 2 is checked. Note that it is only interested in the second
argument of f#g#h, which (and this is no coincidence) is conveniently located at the
top of AS. The symbol h is matched, and the sub-term t is moved from within the top
of AS to TS. Symbol f#g is replaced by f#g#h.

� in the third cycle the top of TS is moved to AS, symbol f#g#h is replaced by f#g#h#g

on CS, and symbol g is pushed on CS.

� in the fourth and subsequent cycles g(t) is normalized. When it is, it is left on AS and
control passes automatically to the function f#g#h#g.

� in the �nal cycle of our example rule 4 is applied. Term s (still on TS) is moved to AS,
and r replaces f#g#h#g on CS.

� in subsequent cycles r(s,g(t)) is normalized, leaving its result on AS.

In order to understand ARM's API, the following invariants are relevant:

� unevaluated function symbols go on CS;

� TS and AS hold normalized terms;

� when a function from an Epic program is evaluated, its arguments are on AS, the
�rst argument on top (this is untrue for the auxiliary functions produced by the Epic
compiler to encode the automaton);

� when matching for an Epic function has succeeded the values of arguments are stored
(in pre-order) on the traversal stack;

� after a term has been normalized, its value is left on AS.

33

Chapter 4

ARM's API: using ARM as a plug-in library

In this chapter we discuss how ARM (via Epic) can be used as a plug-in library. This is useful
for applications such as: theorem provers [GL91, Fra94, GG91, KZ89, Bou94], veri�cation
tools, algebraic speci�cations [EM85, BHK89, Vis96, HM93], compiler generators [ESL89],
language prototyping [vDHK96], program analyzers [BDHF96] and functional programming
languages [PvE93].
The stand-alone interpreter discussed in the Chapter 1 is in fact a fairly small program

which uses ARM's API in one particular way. As a concrete example of how to use the API,
this program is included in Appendix III.

1. Preliminaries

1.1 Types
The API de�nes the following type-names:

ARM_ref: a pointer to the structure used to represent terms.

ARM_Xclass: a pointer to a structure representing a class, which must be used in the API
to handle external data types such as oats.

1.2 Characters and strings
ARM assumes the following convention for the representation of strings as terms.
The characters are represented as constants with the names 'a, 'b, etc. for all printable

ASCII characters and the space character; nn, nt and nr for the remaining whitespace; and
nddd, where ddd is a three digit decimal number, for all remaining ASCII characters.
Strings are constructed of the constant eos, representing the empty string; the free function

symbol str, which takes a character and a string as argument, and has type string; and the
free function symbol cat, which takes two strings as argument, and has type string.
These conventions are used when lifting input and lowering output. With lifted I/O, the

input text is represented as a string of characters as described above, using eos and str, and

2. API 34

output is produced from the sequence of characters encountered in pre-order in the normal
form, which must be a string as described above, containing eos, str and cat. The free
constructor cat allows the production of a textual normal form in string segments without
the need to concatenate all segments in one at string.
Hereafter we will refer to strings as described above as string-terms in order to avoid

confusion with C strings.

1.3 Loading terms
The simplest way to load a term for normalization is to push its function symbols (in pre-
order) onto the control stack. This is done in the READY state by a sequence of push-es.
There are several circumstances when parts of a term have already been normalized. To

name a few:

� ARM is used by a tool which performs sequences with more or less related terms. Each
subsequent term may contain (parts of) previous terms;

� Sharing is necessary or double work is to be avoided. Pushing the function symbols of,
say, f(s; s) would lead to s being normalized twice, and to a dag in which two distinct
copies of s's normal form occur.

The result of a normalization can be protected from the garbage collector if it is to be used
later on. (see functions ARM protect and ARM unprotect).
Terms that have been protected can be re-used in subsequent computation. This is done

by pushing those terms on the argument stack (see function ARM apush). Since the control
stack holds unreduced function symbols and the argument stack holds normal forms, only
certain terms can be reduced in one go: terms in which the pre-order traversal contains a
contiguous sequence of uninterpreted function symbols followed by a contiguous sequence
of normal forms. For example, if s is a protected reference to an established normal form,
then f(s; s) can be reduced by pushing f on the control stack, and pushing s twice on the
argument stack (see functions ARM push and ARM apush). However, f(s; g(s)) can not be
handled in one go. Instead, g(s) must be normalized, resulting in its normal form u, and
then f(s; u) can be normalized. Note that protecting s is necessary while the normal form of
g(s) is computed because it is used again in f(s; u).

2. API

2.1 Behavior
At all times, ARM is in one of �ve states:

INITIAL: memory has not yet been allocated;

CLEAN: memory is allocated; no ARM programs have yet been loaded;

SPECIFIC: one or more ARM programs have been loaded;

LINKED: the ARM programs have been linked and are ready for execution;

READY: ARM has accepted (part of) a term and is ready to reduce it.

3. API functions 35

Note that ARM has no way of knowing when an entire term has been loaded. It is the
responsibility of the application to make sure that a well formed term is loaded.
Actions can be performed in accordance with the following process expression. Here capital

identi�er signify states, and lower-case identi�ers signify action performed by calling the
related function in the API, or errors or warning that have been generated by ARM. The
symbol \." signi�es a transition to a new state and the symbol \+" signi�es choice.

INITIAL = setup . CLEAN +

(warning . INITIAL +

fatal error)

CLEAN = load arm . SPECIFIC +

clear . CLEAN +

(warning . CLEAN +

load error . CLEAN +

fatal error)

SPECIFIC = clear . CLEAN +

load arm . SPECIFIC +

link . LINKED +

(warning . SPECIFIC +

load error . CLEAN +

fatal error)

LINKED = load arm . SPECIFIC +

clear . CLEAN +

ready . READY +

(protect + unprotect) . LINKED +

(warning . LINKED +

load error . CLEAN +

fatal error)

READY = (push + apush + pushopq) . READY +

reduce . LINKED +

(warning . READY +

run time error . LINKED +

load error . CLEAN +

fatal error)

Note that fatal error's terminate ARM's execution.

3. API functions

The application programming interface of ARM o�ers the functions listed below. In the
following sections we will discuss each function in detail.

ARM set up: set up memory structures for stacks, heap and (ARM)
code.

ARM load arm file: load a single ARM �le.
ARM link: link all loaded ARM code.
ARM clear: forget all previously loaded ARM code.
ARM ready: prepare for accepting an input term.
ARM reduce: reduce the pushed term to normal form.
ARM protect: protect a normal form from garbage collection during

subsequent reduces.
ARM unprotect: allow the space occupied by a term to be recycled.
ARM lift input: lift the entire input to a string-term representation.

3. API functions 36

ARM push: push one function symbol on the C stack.
ARM apush: push one normal form on the argument stack.
ARM pushopq: push an external value.
ARM class of: given the name of an external type, produce the cor-

responding class.
ARM display: print the textual representation of a normal form

(when indicated, lower the term, which must then be
a string-term).

ARM ofs: given a normal form, yield its outermost function
symbol.

ARM size: given a normal form, produce the number of immedi-
ate sub-terms (i.e., the arity of the ofs).

ARM child: given a normal form and an index i, produce the i-th
immediate sub-term of the term.

ARM set error functions: Set the four error reporting functions. The functions
take an error message and produce void. From left
to right the functions handle warning; run-time error
(to LINKED); arm-error (to CLEAN) and fatal error
(must exit).

ARM DEBUG STATUS: this variable controls whether tracing / debugging /
pro�ling information is generated.

ARM set debug functions: Set the thirteen tracing/monitoring functions. The
functions have di�erent argument types and produce
void. From left to right the functions control how
tracing/monitoring information is collected or pre-
sented for: ARM mnemonics (-M option); Epic func-
tions (-T option); each semi-rewrite step; obsolete;
stacks display (-D option); arguments display (-A op-
tion); the moment the from-function (-F option) is
found; start of a garbage collection; end of a garbage
collection; allocation of a memory block; display of
the name of a memory block; display of the number
of reductions used; and display of pro�ling informa-
tion. Default actions of these functions have been
shown in Section 1.4.

ARM trace gc: trace garbage collection activity.
ARM memstat: produce information of memory usage as blocks are

allocated.
ARM count rewr: count the number of (semi) reductions. Abort if the

indicated maximum number is exceeded.
ARM profile: collect pro�ling information.
ARM dump degree: set degree of stack dumping: 0 for none; 1 for (stack-

depth) arguments (ARM doesn't know arities of func-
tion symbols, so a �xed number is displayed for every
function); 2 for a full dump of all stacks (stackdepth
deep).

ARM trace degree: set degree of tracing: 0 for none; 1 for function sym-
bols only; 2 for individual ARM instructions.

ARM stack dump depth: set maximal displayed depth of stacks during stack-
dump.

ARM term dump depth: set maximal displayed depth of terms during stack-
dump.

ARM trace from start tracing from the �rst (semi) reduction of this
symbol.

3. API functions 37

We will now describe these functions in detail:

3.1 ARM set up arguments: none returns: void
Initialize all data structures.

3.2 ARM load arm file arguments: char *name returns: void
Load the ARM �le with the given name.

3.3 ARM link arguments: none returns: void
Link all loaded ARM code.

3.4 ARM clear arguments: none returns: void
Forget all previously loaded ARM code. Note that currently no garbage collection
is available for code storage. Hence the occupied memory is not released.

3.5 ARM ready arguments: none returns: void
Prepare for accepting a subject term.

3.6 ARM reduce arguments: none returns: void
Reduce the term just (a)push-ed on the stacks using the loaded ARM programs.
Leave the result on the Argument stack.

3.7 ARM protect arguments: ARM ref returns: void
Protect term t from the garbage collector. This term must be a (sub-)term from
a normal form that has just now been produced (or was protected earlier).

3.8 ARM unprotect arguments: ARM ref returns: void
Remove the protection of a term t that was protected earlier.

3.9 ARM lift input arguments: none returns: ARM ref

Lift the entire input stream to a string-term.

3.10 ARM push arguments: char * returns: void
Push the indicated function symbol on the Control Stack.

3.11 ARM apush arguments: ARM ref returns: void
Push the given term on the Argument Stack.

3.12 ARM pushopq arguments: ARM Xclass, char * returns: void
Push an external value on the Control Stack. Note that an external value is some-
what comparable to a constant, and can accordingly be pushed on the Control
Stack.

3.13 ARM class of arguments: char * returns: ARM Xclass

Return a pointer to the class structure with the given name.

3. API functions 38

3.14 ARM display arguments: int, ARM ref, int returns: void
Print the textual representation of a term. If the �rst argument is zero, the term
is printed in normal pre�x-bracketed notation. Otherwise, the term must be a
string-term and it is lowered. Sub-terms of the term that are not string-terms are
printed in pre�x-bracketed notation between square brackets.
The third argument indicates to which stream printing should occur. If it is

zero, the standard output stream is used; otherwise the standard error stream is
used.

3.15 ARM ofs arguments: ARM ref returns: char *
Given a term, yield the name of the outermost function symbol.

3.16 ARM size arguments: ARM ref returns: unsigned long
Given a term, yield the arity (i.e., the number of immediate sub-terms).

3.17 ARM child arguments: ARM ref, unsigned long returns: ARM ref
Return the sub-term with the given index. The �rst sub-term has index 1.

3.18 ARM set error functions arguments: see below returns: void
This function is used to set the four error/warning functions. These functions all
have type void(*err1)(char *msg,...). They get a printf-compatible format
followed by zero or more values as argument and return void. The functions are
used for the following types of exceptions:

� Warning. I.e. all situations which are unexpected but not fatal (as far as
ARM is concerned). Example: applying ARM child with an index which is
too large.

� Run-time error. I.e. all situations during rewriting which prohibit further
reductions but which leave ARM in an otherwise repairable state. Example:
out of memory.

� Load error. Recoverable errors encountered during loading. Example: ARM
�le not found.

� Fatal errors. All other caught errors. This fourth error-handler is not sup-
posed to return.

3.19 ARM DEBUG STATUS (this is a variable) type: int
This variable controls whether ARM produces any debugging/tracing/pro�ling
information. If the variable is zero, no such information is produced.

3.20 ARM set debug functions arguments: see below returns: void
This function is used to set the functions that produce tracing and monitoring
information. These function all produce void, and have arguments depending on
their functionality. The functions are called when ARM DEBUG STATUS and when
the individual ag that controls their behavior is set (see subsequent sections).

� ARM trace show mnemonic. Arguments: char *. Called each ARM cycle.
The argument is the name of the ARM instruction, which is printed by
default.

3. API functions 39

� ARM trace show fun. Arguments: char *. Called each (semi) rewrite step.
The argument is the name of the function being reduced, which is by default
printed.

� ARM trace semi step. Arguments: none. Called each (semi) rewrite step.
By default the counter is incremented.

� ARM trace semi step fun. Arguments: ARM fun. obsolete

� ARM trace display stacks. Arguments: char *. Called each ARM cycle
in order to provide a stackdump (by default). The argument is the ARM
instruction involved.

� ARM trace display args. Arguments: char *. Called each ARM cycle in
order to provide a dump of the arguments (by default). The argument is the
ARM instruction involved.

� ARM trace from fun found. Arguments: none. Called when the from-fun is
found.

� ARM trace start gc. Arguments: none. Called when the garbage collector
starts a collection. By default, \[gc: " is printed.

� ARM trace stop gc. Arguments: long, long. Called when the garbage
collector �nishes its collection. The arguments are the number of nodes
currently in use and the number of freed nodes. By default they are printed.

� ARM trace alloc. Arguments: long, long. Called when a global block of
memory is allocated. The arguments are the size of this block and the total
size allocated so far.

� ARM trace blockname. Arguments: char *. Called when a global block of
memory is allocated. The name is the type of block allocated (see Section
1.4 for details).

� ARM trace show reds. Arguments: long. Called after normalization. The
argument is the total number of semi rewrite steps used, which is printed by
default.

� ARM trace show profiles. Arguments: none. Called after normalization
in order to display tracing information. Note that the raw data from which
statistics are created are encoded in ARM's data structures.

3.21 ARM trace gc arguments: int returns: void
Sets GC monitoring. Argument non-zero means \monitor GC activity". At the
beginning and end of each garbage collection cycle the functions ARM trace start gc

and ARM trace stop gc are called. By default they print a message, the number
of nodes currently in use, and the number of nodes just collected.

3.22 ARM memstat arguments: int returns: void
Sets memory usage monitoring. A non-zero argument means \monitor memory
usage". For every global block of memory that is allocated the two functions
ARM trace alloc and ARM trace blockname are called.

3. API functions 40

3.23 ARM count rewr arguments: unsigned long, int returns: void
Sets rewrite step monitoring and limitation. Second argument non-zero means
\monitor memory usage".The �rst argument is the maximum number of rewrite
steps allowed. Exceeding this number leads to a run-time error.

3.24 ARM profile arguments: int returns: void
Sets pro�ling monitoring. Argument non-zero means \collect and display pro�ling
information". Note that collecting pro�ling information, due to limitations in the
current implementation, takes a signi�cant amount of time.

3.25 ARM dump degree arguments: int returns: void
Set the degree of dump information that needs to be displayed. Value 0 means:
no information; value 1 means arguments only (-A option); and value 2 means
stackdump (-D option).

3.26 ARM trace degree arguments: int returns: void
Set the degree of trace information that needs to be displayed. Value 0 means: no
information; value 1 means Epic functions (-T option); and value 2 means ARM
mnemonics (-M option).

3.27 ARM stack dump depth arguments: unsigned long returns: void
Set the depth to which stacks are dumped (ARM dump degree 1 or 2; options -A
or -D).

3.28 ARM term dump depth arguments: unsigned long returns: void
Set the depth to which terms are dumped (ARM dump degree 1 or 2; options -A or
-D). Any sub-term deeper than this level is shown as ..., such as f(a,g(...)).

3.29 ARM trace from arguments: char * returns: void
Start tracing/dumping after the �rst reduction of the given function. Note that
the name should not be longer than 199 characters.

41

Chapter 5

External values and functions

Adding externals to Epic and ARM is reasonably straightforward. However, the source code
of the interpreter must be modi�ed. The ARM distribution contains oats as an example of
how to use externals.

1. Introduction and overview

Externals are used to represent data for which it would be ine�cient or impractical to use
ordinary term representation. For example, though oating point arithmetic can be expressed
in Epic, the computations would probably be very ine�cient compared to the calculations
o�ered on most computer hardware. As a second example, the representation of �les in Epic
is ine�ective, and representing them as external values is more appropriate.
In Epic, externals are trivially supported. Anything of the form |smiley:(:-)|, where

smiley can be any name, and where (:-) can be an arbitrary string in which the character
| has been escaped with n, is a constant and is passed on to ARM. Any function that is
declared as fexternalg but isn't de�ned in any module must be de�ned in ARM. I.e., the
external functions de�ned as described in this section can be used in Epic when they are
declared fexternalg.
For example, consider the following Epic module.

module Smiley

types

combine : Smiley \# Smiley -> Smiley {external};

new : -> Smiley;

rules

new = combine(|smiley:(:-)|,|smiley:[;=]|);

In ARM, external values are represented as indirectly referenced entities; just as a term is
represented in the heap as a dag, but is handled by way of a pointer into the heap, so is an
external value represented by some data in a chunk of memory and is handled by way of a
pointer to that memory.

2. Preliminaries 42

ARM uses a notion of \classes" to handle external values. The class de�nes a class-variable
(holding the name of the external type), and three methods. The �rst method (the reader)
is used to interpret a string representation of the external value; the second (the printer) to
print an external value, and the third (comparison) to determine equality of external values.
When ARM code is read, a construct like |foo:bar| is unpacked. The name part (foo) is
used to identify a class. Then that class's reader is applied to the second part, to produce the
internal representation of the external value. Conversely, when an external value is produced
on output, its printer is applied.
In the next sections we will discuss all aspects that must be covered in order to use externals

in some detail. We will develop an external type foo which in C is represented as a type
fooType (i.e., fooType might be an array, structure or other type).

2. Preliminaries

2.1 Global memory management
In the �le threads.h a structure thread is de�ned which holds pointers to all memory in use
(threads were at one point in time intended to facilitate multi-processor ARM; thence the
name). In this structure a �eld of type opq (for opaque) must be present for each external
type. For example, we could add the following line.

opq fooSpace;

Secondly, space must be allocated. This is done during initialization, in the initializer for
an external type. It is done by including the following line:

Thread->fooSpace = (opq)new_array(20000,sizeof(Rfoo),"foos");

In this example, space is reserved for 20000 foo's. Note that ARM will extend this space
as needed. However, no garbage collection occurs for external values. The string "foos" is
used in memory usage monitoring, and is best laid-out if it is four characters long.

2.2 The opaque structure
A structure must be de�ned to hold external values. It contains a pointer to its class, and
the actual value, and should look like:

typedef struct _foo Rfoo, *Xfoo;

struct _foo {

ARM_Xclass class;

fooType val;

};

2.3 Methods
Three methods should be de�ned for each external type: a reader, a writer and a comparison.
The reader function is as follows:

opq str2foo(char *s)

{ fooType f;

Xfoo o;

/* interpret the string s and put the established value in f */

2. Preliminaries 43

...

o = (Xfoo)local_arr_entry((Xarray)Thread->fooSpace,fooClass);

o->val = f;

return (opq)o;

}

The call to local array entry allocates one foo structure in the appropriate space.
The writer function is as follows:

void showfoo(opq q)

{ out2(stderr,"|float:");

/* produce the textual representation of the foo value in ((Xfloat)q)->val */

...

out2(stderr,"|");

}

The macro out2 is de�ned in the �le basics.h.
The equality function is as follows:

int eqfoo(opq q1,opq q2)

{ if (/* (((Xfloat)q1)->val) and (((Xfloat)q2)->val) are equal */)

return 1;

else

return 0;

}

2.4 Class
The class is a structure built by ARM to represent class-variable and speci�c functions for
an external type. Classes are handled by pointers to that structure, which are of type
ARM Xclass. By convention, the class of a type foo is referred to by ARM Xclass fooClass.
The class is created during initialization, in the initializer for an external type. It is created

as follows:

fooClass = new_class("foo",&str2fo,&showfoo,&eqfoo);

2.5 Initializer
The initializer is called when ARM is initialized. In it, a class is created, space is allocated,
and functions are made known for tracing and linking purposes. The initializer yields the
external class.
The initializer must be called from the function init externals as follows:

new_external(foo);

This does some bookkeeping, and also calls the function init foos shown below (note that
the macro new external appends a letter \s" after the type name foo to get init foos)).
The initializer looks like

3. Functions 44

ARM_Xclass init_floos()

{ fooClass = new_class("foo",&str2foo,&showfoo,&eqfoo);

Thread->fooSpace = (opq)new_array(20000,sizeof(Rfoo),"foos");

/* definition of foo-functions */

xfundef("addF",f_addF);

/* declaration of use of other functions */

xfunuse("true",v_true);

return fooClass;

}

The de�nition and use of functions is discussed in Section 5.3, below.

2.6 Emergency handler
The emergency handler is called when ARM has encountered a recoverable error. Since ARM
doesn't know where the error originated, all data structures must be re-initialized (only the
class is re-used). Previously allocated space is returned to the system, and new space is
allocated. Otherwise it is similar to the initializer.
The emergency handler must be called from the function emergency externals in the �le

externals.c as follows:

emergency_foos();

In order to call it, the function must be declared immediately before emergency externals.

void emergency_foos();

The emergency handler looks like

ARM_Xclass init_floats()

{ kill_array((Xarray)Thread->fooSpace);

Thread->fooSpace = (opq)new_array(20000,sizeof(Rfoo),"foos");

/* definition of foo-functions */

xfundef("barQ",f_barQ);

/* declaration of use of other functions */

xfunuse("true",v_true);

}

The de�nition and use of functions is discussed in Section 5.3, below.

3. Functions

External values are manipulated from Epic via functions declared as external. These func-
tions are written in C, and there existence must be made known in ARM for linking purposes.
In addition, when (external or Epic) functions are used, their use must also be made known
to ARM, so that linking can be done properly.

3. Functions 45

3.1 Preliminaries
For every function de�ned elsewhere (as an external function or in Epic) that is used in
this external package, a variable must be declared for linking purposes, and the use of that
function must be declared.
The variable is declared by

static ARM_fun v_true;

Its use is made known in the initializer, as follows.

xfunuse("true",v_true);

This tells ARM that the Epic function true will be used and that in our external code we
will refer to it by the variable v true (examples follow below).
Every function that is de�ned must be declared as such in the initializer, as follows

xfundef("barB",f_barB);

3.2 External functions
By convention, external functions are called something like f barB. Here, f helps to avoid
name-clashes with other functions in your application. In addition, it identi�es the name as
that of a function. With the function a control variable may be associated, in which case it is
called v barB. The letter B is appended to avoid name-clashes with similar functions for other
external packages, such as f addF for addition on oats, f addI for addition on integers. In
our example we use B for foo-functions.
Here is the general lay-out of external functions.

preamble(f_barB)

external f_barB()

{ constituent

entryQ(f_barB,"f_barB");

/* the actual body */

dispatchQ(IP);

xferQ;

}

In the body of the function, the arguments are available on the argument stack. They can
be retrieved with the macro's APtop, APscnd, and APnth(n), which retrieve the top, second,
or n-th (for n >= 0) element. In addition APpop pops one element (and yields its value, and
APdrop(n) drops n (for n >= 0) elements.
It is good practice to check if the arguments of an external function have the right type.

This is done, for example, as follows:

Qtcopq(APtop,fooClass,"barB")

3. Functions 46

This statement checks that the current top of the argument stack belongs to the class foo.
The string is the name of the function it is called from, for error reporting purposes.
The actual value of type fooType is retrieved by:

((Xfoo)APpop)->val

Suppose two foo-values can be bar-red by the function bar. Then the external version
might look like:

preamble(f_barB)

external f_barB()

{ constituent

Qtcopq(APtop,fooClass,"barB")

Qtcopq(APscnd,fooClass,"barB")

Ref1 = (ARM_ref)local_arr_entry((Xarray)Thread->fooSpace,fooClass); /*1*/

((Xfoo)Ref1)->val = bar(((Xfoo)APpop)->val, (((Xfoo)APpop)->val)); /*2*/

APpsh = Ref1; /*3*/

dispatchQ(IP);

xferQ;

}

In the line marked /*1*/ a new space is created for the new foo value. In the line marked
/*2*/ its value is set to the bar of the the top and the second value on the argument stack.
Note that APpop implies their removal. In the line marked /*3*/ the new value is pushed on
the argument stack.

47

Appendix I

References

References

[AK91] Hassan A��t-Kaci. Warren's Abstract Machine. A Tutorial Reconstruction. The
MIT Press, 1991.

[Aug85] Lennart Augustsson. Compiling pattern matching. In J.P. Jouannaud, editor,
Functional Programming Languages and Computer Architecture, volume 201 of
Lecture Notes in Computer Science, pages 368{381. Springer-Verlag, 1985.

[AvGP92] P.M. Achten, J.H.G. van Groningen, and M.J. Plasmeijer. High-level speci�cation
of i/o in functional languages. In John Launchbury, editor, Proceedings Glasgow
Workshop on Functional Programming. Springer-Verlag, 1992.

[BDHF96] J.A. Bergstra, T.B. Dinesh, J. Heering, and J. Field. A complete transformational
toolkit for compilers. In Hanne Riis Nielson, editor, Programming Languages and
Systems { ESOP'96, number 1058 in Lecture Notes in Computer Science, pages
92{107. Springer-Verlag, 1996.

[BHK89] J.A. Bergstra, J. Heering, and P. Klint. The algebraic speci�cation formalismASF.
In J.A. Bergstra, J. Heering, and P. Klint, editors, Algebraic Speci�cation, ACM
Press Frontier Series, pages 1{66. The ACM Press in co-operation with Addison-
Wesley, 1989. Chapter 1.

[Bou94] Adel Bouhoula. Su�cient completeness and parameterized proofs by induction.
In Proceedings of the International Conference on Programming Language Imple-
mentation and Logic Programming, PLILP '94, 1994.

[CCM85] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine. In
J.-P. Jouannaud, editor, Functional Programming Languages and Computer Archi-
tecture, volume 201 of Lecture Notes in Computer Science, pages 50{64. Springer-
Verlag, 1985.

References 48

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cations, Vol. I, Equations
and Initial Semantics. Springer-Verlag, 1985.

[ESL89] H. Emmelmann, F-W. Schr�oer, and R. Landwehr. BEG - a Generator for E�-
cient Back Ends. In Proceedings of the Sigplan '89 Conference on Programming
Language Design and Implementation. In SIGPLAN Notices, Vol. 24, Number 7.

[FKW97] W.J. Fokkink and J.F.Th. Kamperman and H.R. Walters. Within ARM's Reach:
Compilation of Left-Linear Rewrite Systems via Minimal Rewrite Systems. Tech-
nical Report SEN-R97xx, CWI, 1997. Submitted for publication elsewhere.

[Fra94] Ulrich Fraus. Inductive theorem proving for algebraic speci�cations - TIP system
user's manual -. Technical report, Passau, 1994.

[FW87] Jon Fairbairn and Stuart Wray. Tim: A simple, lazy abstract machine to execute
supercombinators. In Gilles Kahn, editor, Functional Programming Languages and
Computer Architecture, volume 274 of Lecture Notes in Computer Science, pages
34{45. Springer-Verlag, 1987.

[Gar90] Hubert Garavel. Compilation of lotos abstract data types. In S.T. Vuong, edi-
tor, Formal Description Techniques, II, pages 147{162. Elsevier Science Publishers
B.V. (North-Holland), 1990. IFIP, 1990.

[GG91] S.J. Garland and J.V. Guttag. A Guide to LP, The Larch Prover. MIT, November
1991.

[GHM88] A. Geser, H. Hussmann, and A. M�uck. A compiler for a class of conditional term
rewriting systems. In S. Kaplan and J.-P. Jouannaud, editors, Proceedings of the
First International Workshop on Conditional Term Rewriting Systems, volume
308 of Lecture Notes in Computer Science, pages 84{90. Springer-Verlag, 1988.

[GL91] K.B. Gallagher and J.R. Lyle. Using program slicing in software maintenance.
IEEE Transactions on Software Engineering, 17(8):751{761, 1991.

[HF+96] Pieter H. Hartel, Marc Feeley, et al. . Benchmarking implementations of functional
languages with \pseudoknot", a oat-intensive benchmark. Journal of Functional
Programming, 6(4), 1996.

[HM93] B.M. Hearn and K. Meinke. ATLAS: A type language for algebraic speci�ca-
tion. In Jan Heering, Karl Meinke, Bernhard M�oller, and Tobias Nipkow, editors,
Higher-Order Algebra, Logic, and Term Rewriting, number 816 in Lecture Notes
in Computer Science, pages 146{168. Springer-Verlag, 1993.

[Kam96] J.F.Th. Kamperman. Compilation of Term Rewriting Systems. PhD thesis, Cen-
trum voor Wiskunde en Informatica, 1996.

[Kap87] S. Kaplan. A compiler for conditional term rewriting systems. In P. Lescanne,
editor, Proceedings of the First International Conference on Rewriting Techniques,
volume 256 of Lecture Notes in Computer Science, pages 25{41. Springer-Verlag,
1987.

[Ken90] R. Kennaway. The speci�city rule for lazy pattern-matching in ambiguous term
rewrite systems. In N. Jones, editor, ESOP '90 - Proceedings of the Third European
Symposium on Programming, volume 432 of Lecture Notes in Computer Science,

References 49

pages 256{270. Springer-Verlag, 1990.

[KI89] H. Klaeren and K. Indermark. E�cient implementation of an algebraic speci�-
cation language. In M. Wirsing and J.A. Bergstra, editors, Proceedings of the
METEOR workshop on Algebraic Methods: Theory, Tools and Applications. Pas-
sau 87, volume 394 of Lecture Notes in Computer Science. Springer-Verlag, 1989.

[KW93a] J. F. Th. Kamperman and H.R. Walters. ARM, abstract rewriting machine. Tech-
nical Report CS-9330, Centrum voor Wiskunde en Informatica, 1993. Available
by ftp from ftp.cwi.nl:/pub/gipe as KW93.ps.Z.

[KW93b] J.F.Th. Kamperman and H.R. Walters. ARM { Abstract Rewriting Machine. In
H.A. Wijsho�, editor, Computing Science in the Netherlands, pages 193{204, 1993.

[KW95] J.F.Th. Kamperman and H.R. Walters. Minimal term rewriting sys-
tems. Technical Report CS-R9573, CWI, december 1995. Available as
http://www.cwi.nl/epic/articles/CS-R9573.ps.Z. To appear in the proceedings of
the 11th Workshop on Abstract Data Types, published by Springer-Verlag.

[KW96a] J.F.Th. Kamperman and H.R. Walters. Minimal Term Rewriting Systems. In
Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors, Recent Trends in Data
Type Speci�cation, volume 1130 of Lecture Notes in Computer Science, pages 274{
290. Springer Verlag, 1996.

[KW96b] J.F.Th. Kamperman and H.R. Walters. Simulating TRSs by Minimal TRSs: a
simple, e�cient, and correct compilation technique. Technical Report CS-R9605,
CWI, january 1996. Available as http://www.cwi.nl/epic/articles/CS-R9605.ps.Z.

[KZ89] Deepak Kapur and Hantao Zhang. RRL: Rewrite rule laboratory user's manual.
Technical Report 89-03, The University of Iowa, 1989.

[MOI95] Aart Middeldorp, Satoshi Okui, and Tesuo Ida. Lazy narrowing: Strong complete-
ness and eager variable elimination. In Proceedings of the 20th Colloquium on Trees
in Algebra and Programming, Lecture Notes in Computer Science. Springer-Verlag,
1995.

[Mog89] E. Moggi. Computational lambda calculus and monads. In Logic in Computer
Science. IEEE, 1989.

[P-JW93] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In
ACM Symposium on Principles Of Programming Languages (POPL), pages 71{84,
1993.

[PvE93] M.J. Plasmeijer and M.C.J.D. van Eekelen. Functional Programming and Parallel
Graph Rewriting. Addison Wesley, 1993.

[Ram92] Norman Ramsey. Literate programming tools need not be complex. Technical Re-
port TR-351-91, Department of Computer Science, Princeton University, October
1991, revised September 1992.

[Sch88] Ph. Schnoebelen. Re�ned compilation of pattern-matching for functional lan-
guages. Science of Computer Programming, (11):133{159, 1988.

[SG90] Wolfram Schulte and Wolfgang Grieskamp. Generating e�cient portable code for

References 50

a strict applicative language. In Phoenix Seminar and Workshop on Declarative
Programming, Hohritt (Sasbachwalden, Germany), Lecture Notes in Computer
Science. Springer-Verlag, 1990. to appear.

[SSD91] David Sherman, Robert Strandh, and Ir�ene Durand. Optimization of equational
programs using partial evaluation. ACM SIGPLAN Notices, 26(9):72{82, septem-
ber 1991.

[Str89] Robert Strandh. Classes of equational programs that compile into e�cient ma-
chine code. In N. Dershowitz, editor, Rewriting Techniques and Applications,
third international conference, Lecture Notes in Computer Science, pages 449{461.
Springer-Verlag, 1989.

[vDHK96] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping. An
Algebraic Speci�cation Approach, volume 5 of AMAST Series in Computing. World
Scienti�c Publishing Inc., april 1996.

[Vis96] Eelco Visser. Multi-level speci�cations. In A. van Deursen, J. Heering, and P. Klint,
editors, Language Prototyping. An Algebraic Speci�cation Approach, volume 5 of
AMAST Series in Computing. World Scienti�c Publishing Inc., april 1996.

[Wal94b] H.R. Walters. Implementing tools by algebraic speci�cation. In R.Giegerich and
J.H.Hughes, editors, Functional programming in the Real World, volume 89 of
Dagstuhl Seminar Report. Schloss Dagstuhl, 1994.

[War77] D.H.D. Warren. Implementing prolog - compiling predicate logic programs. Tech-
nical Report DAI Research Reports 39 and 40, Department of Arti�cal Intelligence,
Edinburgh University, 1977.

[WB90] Dietmar Wolz and Paul Boehm. Compilation of lotos data type speci�cations.
In E. Brinksma, G. Scollo, and C.A. Vissers, editors, Protocol Speci�cation, Test-
ing, and Veri�cation, IX, pages 187{202. Elsevier Science Publishers B.V. (North-
Holland), 1990. IFIP, 1990.

[WK96] H.R. Walters and J.F.Th. Kamperman. Epic 1.0 (unconditional), An equational
programming language. Technical Report CS-R9604, CWI, january 1996.

[WK95] H.R. Walters and J.F.Th. Kamperman. A model for I/O in Equational Languages
with Don't Care Non-determinism. In Magne Haveraaen, Olaf Owe and Ole-Johan
Dahl, editors, Recent Trends in Data Type Speci�cation, number 1130 in Lecture
Notes in Computer Science, pages 522|535. Springer-Verlag, 1995.

[WZ95] H.R. Walters and H. Zantema. Rewrite systems for integer arithmetic. In Jieh
Hsiang, editor, Rewriting Techniques and Applications, number 914 in Lecture
Notes in Computer Science, pages 324|338. Springer-Verlag, 1995.

51

Appendix II

The given construct

1. Introduction

\Given" is a construct that provides you with some of the expressive power of conditions,
without the (model-theoretic) problems of conditions. Before looking at given, let's �rst
consider conditions.

2. Conditions

A condition is a test that must be veri�ed before a rule can be applied. That is, even when
the left-hand side of a rule matches, it is taken to be inapplicable if its condition(s) fail. For
example, consider the following rule:

lookup(Name1,list(Name2,Data,List)) = Data <= Name1 == Name2;

Here, lookup(Name1,list(Name2,Data,List)) = Data is only applied when Name1 and
Name2 are equal.
Conditions are an expressive mechanism in practice, but their use can lead to di�culties

when inequality is considered. Note that even when explicit inequalities aren't allowed, they
occur implicitly due to the speci�city ordering, as the following example illustrates:

f(a,Y,Z) = a <= Y == Z;

f(X,Y,Z) = b;

Clearly, the second rule is more general than the �rst, but any term of the form f(a,s,t)

reduces to b if and only if s and t are unequal. Testing for f(a,S,T) == b is identical to
testing for the inequality of S and T.
The di�culties stemming from inequality are also easily illustrated. Consider the following

program (we use explicit inequality for brevity here):

a = c <= a != b

a = b <= a != c

Intuition doesn't help to tell us what this program means, and many implementations
which support inequalities get stuck in an in�nite loop, when reducing \a". Note that formal

3. Given 52

models do exist for speci�cations such as this, but they don't really help us. In this case the
program has two (equally reasonable) models: one in which a and c are equal, but unequal
to b, and one the other way around.

2.1 Case determination and auxiliary values
Two further uses of conditions are

� case-determination: the condition is used to check the outermost function symbol of an
argument (possible sub-terms are assigned to auxiliary variables);

� auxiliary values: the condition is used to compute some auxiliary value (and possibly
assign it to an auxiliary variable).

Case-determination An example of the �rst use is the following. We assume integers have
been de�ned consisting of function symbols zero, succ (for plus one) and pred (for minus
one), and the functions div (for integer division) and mod (for modulo). We de�ne a function
print which computes a textual representation of a number.

print(zero) = `0`;

print(X) = cat(print(div(X,ten)),print(mod(X,ten))) <= X == succ(Y);

print(X) = cat(`-`,cat(print(div(minus(X),ten)),

print(mod(minus(X),ten)))) <= X == pred(Y);

print(succ(zero)) = `1`;

...

print(succ(... succ(zero)...)) = `9`;

ten = succ(... succ(zero)...);

Auxiliary values We de�ne sets consisting of the function symbols emptyset and set, and
assume there is a function \has" which can determine if a set contains an element. We de�ne
a function \ins" which inserts an element in a set. Note that the condition \has(Set,Name)
== true" tests for equality, but isn't harmful in the sense indicated in the previous section,
as we will discuss in Section II.4.

ins(Name,Set) = Set <= has(Set,Name) == true;

ins(Name,Set) = set(Name,Set) <= has(Set,Name) == false;

ins(Name,emptyset) = set(Name,emptyset);

3. Given

Given is a construct that has expressive power somewhat comparable to conditions, but does
not lead to the di�culties sketched in the previous section. With the given construct case
determination and auxiliary values are available, but not general term comparison.
As a single example, we will show how the rules de�ning plus from Section 1.3 (which we

will �rst show as a reminder) could be de�ned using the given construct. Note that we do
not suggest this to be a good idea in general. In many cases it is an improvement because
auxiliary functions do not have to be made explicit; in some cases (such as the one below) it
appears to be a matter of taste.

plus(o,X) = X;

plus(i,o) = i;

4. Semantics 53

plus(i,i) = ap(i,o);

plus(i,ap(X,Y)) = ap(X,plus(i,Y));

plus(ap(X,Y),Z) = ap(X,plus(Y,Z));

These rules are equivalent to:

plus(X,Y) = given X,Y as

o,Z: Y

i,o: i

i,i: ap(i,o)

i,ap(P,Q): ap(P,plus(i,Q))

ap(P,Q),Z: ap(P,plus(Q,Y));

Note that Z is used twice as a place-holder which matches always and the value of which
isn't used (since it is equal to that of Y, which is used).
The given construct can be used in the right-hand side of a rule, in any position where a

term can be used. It has the form \given terms as clauses", where terms are a list of one or
more terms separated by comma's, and clauses is a sequence of one or more clauses separated
by whitespace, which have the form \terms : term". The number of terms between given

and as must be equal to that before \:" in each of the clauses. Of course, the given construct
can be nested. Due to the absence of a terminator of the sequence of clauses, an ambiguity
arises. This can be solved by terminating the sequence with the (optional) keyword nevig,
as the following example shows.

plus(X,Y) = given X as

o: Y

i: given Y as

o: i

i: ap(i,o)

ap(P,Q): ap(P,plus(i,Q)) nevig

ap(P,Q): ap(P,plus(Q,Y));

4. Semantics

So far we haven't explained why the given construct could not lead to the di�culties sur-
rounding conditions. The answer is simple: given does not allow us to check for equality of
arbitrary terms. It allows us to compute auxiliary value and to do case determination. If
the case is a normal form, this constitutes checking equality, but this is also possible in Epic
itself. Note that in practice conditions are used very often to compute auxiliary values or to
do case determination.
The meaning of the given construct is de�ned by a trivial map to pure Epic. We will

sketch this de�nition. The meaning of the rule

s = given X,... as

t1,...: u1

t2,...: u2

...

is de�ned as the meaning of the set of rules

s = f(X,...);

f(t1,...) = u1;

f(t2,...) = u2;

5. Degiven 54

...

Here, f is a new function symbol that is not otherwise used.

5. Degiven

Degiven is a tool that translates Epic programs in which the given construct is used into
equivalent Epic programs without that construct. The tool is a �lter, which means that it
reads a text (an Epic module with the given construct) from standard input and produces
and equivalent module without that construct on output.
The tool doesn't have any options, so it is called as follows:

degiven < module.epg > modul.ep

Note that we use the extension .epg for Epic programs with the given construct.
Finally, note that this �lter is written in Epic with the given construct, and that it uses

lifted I/O to handle the input language.

55

Appendix III

The stand-alone interpreter

1. Literate Programming in NoWeb

This appendix is a literate program, which means that program and documentation are
derived from a single source. The program is divided in chunks, whose de�nition may be
distributed over the document. As an example, consider the �rst part of the chunk example
text:

55a hexample text 55ai�
This is example text A

The label in the left margin (consisting of the page number, 55, and possibly a letter) can
be used to quickly �nd the de�nitions of this chunk.
A chunk may be used in the de�nition of another chunk:

55b hexample.�le 55bi�
hexample text 55ai
Above, we have texts A and B

This code is written to �le example.file.

Chunks with names that do not contain spaces are written to �les with the same name as
the chunk. So, for this example, the �le example.file will contain the text:

This is example text A

This is example text B

Above, we have texts A and B

The second line is also part of the chunk `example text', but this part of the chunk is de�ned
later:

55c hexample text 55ai+�
This is example text B

2. The function main 56

2. The function main

In this section we present the function main, which uses the API in a straightforwardmanner.
This function is the `default' Arm interpreter as used by the Epic/Arm environment.

56 hthe function main 56i�
main(int argc, char *argv[])

{ int i;

ARM_ref result;

hcomline arg analysis 62i
ARM_set_error_functions(

&ARM_warning, &ARM_run_time_error,

&ARM_load_error, &ARM_fatal_error);

ARM_set_debug_functions(

&ARM_default_show_mnemonic, &ARM_default_show_fun,

&ARM_default_semi_step, &ARM_default_semi_step_fun,

&ARM_default_display_stacks, &ARM_default_display_args,

&ARM_default_from_fun_found, &ARM_default_start_gc,

&ARM_default_stop_gc, &ARM_default_alloc,

&ARM_default_blockname, &ARM_default_show_reds,

&ARM_default_show_profiles);

ARM_set_up();

for (i=0; i<libi; i++) {

ARM_load_arm_file(library[i]);

}

ARM_link();

ARM_ready();

if (preapply[0]) {

ARM_push(preapply);

}

if (lifted_io) {

ARM_apush(ARM_lift_input());

} else {

do_term();

}

result = ARM_reduce();

ARM_display(lifted_io,result,0);

return 0;

}

2. The function main 57

57 harm.h* 57i�
/*** ***\

*** The Arm interpreter: ***

** a high-performance engine **

* for hybrid term rewriting *

Design & implementation

* H.R. Walters *

** (c) 1995, 1996 CWI **

*** (c) 1997 Babelfish ***

*** ***/

#ifndef arm

#define arm

#pragma export on

typedef unsigned long nat32;

typedef nat32 ARM_fun;

extern nat32 ARM_MAXSIZE;

extern nat32 ARM_MAXREWR;

extern long ARM_generation;

typedef struct _ARM_class *ARM_Xclass;

typedef struct _ARM_node *ARM_ref;

void ARM_set_up();

void ARM_load_arm_file(char *name);

void ARM_link();

void ARM_ready();

void ARM_clear();

void ARM_push(char *name);

void ARM_apush(ARM_ref term);

void ARM_pushopq(ARM_Xclass class,char *name);

ARM_ref ARM_lift_input();

ARM_Xclass ARM_class_of(char *name);

ARM_ref ARM_reduce();

ARM_ref ARM_protect(ARM_ref term);

void ARM_unprotect(ARM_ref term);

void ARM_display(int lifted,ARM_ref t,int err);

char *ARM_ofs(ARM_ref t);

unsigned long ARM_size(ARM_ref t);

ARM_ref ARM_child(ARM_ref t,unsigned long i);

void ARM_set_error_functions(

2. The function main 58

void(*err1)(char *msg,...),void(*err2)(char *msg,...),

void(*err3)(char *msg,...),void(*err4)(char *msg,...));

extern void (*ARM_Warn)(char *msg,...);

extern void (*ARM_RTErr)(char *msg,...);

extern void (*ARM_LDErr)(char *msg,...);

extern void (*ARM_Fatal)(char *msg,...);

extern void (*ARM_trace_show_mnemonic)(char *fn);

extern void (*ARM_trace_show_fun)(char *name);

extern void (*ARM_trace_semi_step)();

extern void (*ARM_trace_semi_step_fun)(ARM_fun f);

extern void (*ARM_trace_display_stacks)(char *name);

extern void (*ARM_trace_display_args)(char *name);

extern void (*ARM_trace_from_fun_found)();

extern void (*ARM_trace_start_gc)();

extern void (*ARM_trace_stop_gc)(long count1, long count2);

extern void (*ARM_trace_alloc)(long chunk, long total);

extern void (*ARM_trace_blockname)(char *n);

extern void (*ARM_trace_show_reds)(long l);

extern void (*ARM_trace_show_profiles)();

void ARM_default_show_mnemonic(ARM_fun fn);

void ARM_default_show_fun(char *name);

void ARM_default_semi_step();

void ARM_default_semi_step_fun(ARM_fun f);

void ARM_default_display_stacks(char *f);

void ARM_default_display_args(char *f);

void ARM_default_from_fun_found();

void ARM_default_start_gc();

void ARM_default_stop_gc(long count1, long count2);

void ARM_default_alloc(long chunk, long total);

void ARM_default_blockname(char *n);

void ARM_default_show_reds(long count);

void ARM_default_show_profiles();

extern nat32 ARM_count,ARM_MAXREWR;

extern int ARM_DEBUG_STATUS;

extern int ARM_DBGMSK;

extern nat32 ARM_count;

extern struct tms *ARM_tmx;

extern long ARM_termdpth, ARM_stckdpth;

extern char ARM_frmfid[200];

2. The function main 59

extern nat32 ARM_frmfun;

extern int ARM_frmmsk;

void ARM_trace_gc(int i);

void ARM_memstat(int i);

void ARM_count_rewr(unsigned long max,int i);

void ARM_profile(int i);

void ARM_dump_degree(int i);

void ARM_stack_dump_depth(unsigned long l);

void ARM_term_dump_depth(unsigned long l);

void ARM_trace_degree(int i);

void ARM_trace_from(char *funsym);

/* here starts previous debug.h */

extern unsigned long ARM_count;

extern int ARM_DBGMSK;

extern unsigned long ARM_count;

extern long ARM_termdpth, ARM_stckdpth;

extern char ARM_frmfid[200];

extern unsigned long ARM_frmfun;

extern int ARM_frmmsk;

#define FRMTRC 1 /* produce statistics only after reducting this */

#define GCINFO 2 /* gc statistics */

#define STKDMP 4 /* produce stackdump each cycle */

#define MNMTRC 8 /* print uarm instruction each cycle */

#define FUNTRC 16 /* print TRS fun being evaluated each reduction */

#define SZINFO 32 /* print initial memory size */

#define RCOUNT 64 /* count (semi) rewrite steps */

#define PRFTIM 128 /* count (semi) rewrite steps */

#define PRFCNT 256 /* count (semi) rewrite steps */

#define DBGLMT 512 /* limit the depth of terms and the depth of stackdumps */

#define ARGDMP 1024 /* produce stackdump each cycle */

void tracefunction(ARM_fun f,void *IP,ARM_ref *AP,ARM_ref *CP);

#define Qshowname(n) \

if (ARM_DEBUG_STATUS && ARM_DBGMSK & SZINFO) { \

ARM_trace_blockname(n); \

}

#define Qtcopq(r,c,m) \

if (tag(r) != opqtag || ((opq)r)->class != c) { \

ARM_Warn("bad opaque in %s",m); \

2. The function main 60

}

#endif

This code is written to �le arm.h.

2. The function main 61

61 hmain.c* 61i�
/*** ***\

*** The Arm interpreter: ***

** a high-performance engine **

* for hybrid term rewriting *

Design \& implementation

* H.R. Walters *

** (c) 1995, 1996 CWI **

*** (c) 1997 Babelfish ***

*** ***/

#include "stdio.h"

#include "stdarg.h"

#include "arm.h"

#include "sys/time.h"

#define Kb 1024L

unsigned long units[10] = {1,2,5,10,20,50,100,200,500,Kb};

#define LIBBUFSZ 4000

#define LIBRARIES 200

char libbuf[LIBBUFSZ], *libhere=libbuf;

char *library[LIBRARIES];

int libi=0;

char preapply[200];

int lifted_io;

int TheChar;

char TheBuf[1024];

hdefault error functions 64i

hexternal value scanner do_opq 65i

hfunction symbol scanner do_fun 66i

hinput term parser do_term 67i

hthe function main 56i

This code is written to �le main.c.

2. The function main 62

62 hcomline arg analysis 62i�
while (--argc > 0) {

unsigned long OPTVAL;

char OPT[2];

if (sscanf(*++argv,"-%1s",OPT) == 1) {

switch (OPT[0]) {

case 'm': if (sscanf(*argv,"-%1s%lu",OPT,&OPTVAL) != 2) goto huh;

if (OPTVAL<0||OPTVAL>9) goto huh;

ARM_MAXSIZE = units[OPTVAL]*Kb*Kb;

break;

case 'a': if (sscanf(*argv,"-%1s%200s",OPT,preapply) != 2) goto huh;

break;

case 'l': lifted_io = 1;

break;

case 'r': if (sscanf(*argv,"-%1s%200s",OPT,libhere) != 2) goto huh;

library[libi++] = libhere;

while (*libhere) {

libhere++;

}

libhere++;

if (libhere-libbuf > LIBBUFSZ-200 || libi > LIBRARIES) {

ARM_Warn("too many libraries");

}

break;

case 'L': ARM_DBGMSK |= DBGLMT; ARM_DEBUG_STATUS = 1; break;

case 'A': ARM_DBGMSK |= ARGDMP; ARM_DEBUG_STATUS = 1; break;

case 'G': ARM_DBGMSK |= GCINFO; ARM_DEBUG_STATUS = 1; break;

case 'D': ARM_DBGMSK |= STKDMP; ARM_DEBUG_STATUS = 1; break;

case 'M': ARM_DBGMSK |= MNMTRC; ARM_DEBUG_STATUS = 1; break;

case 'T': ARM_DBGMSK |= FUNTRC; ARM_DEBUG_STATUS = 1; break;

case 'S': ARM_DBGMSK |= SZINFO; ARM_DEBUG_STATUS = 1; break;

case 'R': if (sscanf(*argv,"-%1s%9u",OPT,&OPTVAL) != 2) goto huh;

ARM_MAXREWR = OPTVAL;

ARM_DBGMSK |= RCOUNT; ARM_DEBUG_STATUS = 1; break;

case 'P': ARM_DBGMSK |= PRFTIM | PRFCNT; ARM_DEBUG_STATUS = 1; break;

case 'F': if (sscanf(*argv,"-%1s%200s",OPT,ARM_frmfid) != 2) goto huh;

ARM_DEBUG_STATUS = 1; break;

case 'X': if (sscanf(*argv,"-%1s%lu",OPT,&OPTVAL) != 2) goto huh;

ARM_termdpth = OPTVAL; ARM_DEBUG_STATUS = 1; break;

case 'Y': if (sscanf(*argv,"-%1s%lu",OPT,&OPTVAL) != 2) goto huh;

ARM_stckdpth = OPTVAL; ARM_DEBUG_STATUS = 1; break;

default:

huh:

fprintf(stderr,

2. The function main 63

" -m# size 0-9 for max space 1 Mb - 1 Gb; default is 1 Gb\n"

" -aid apply the function `id' to input\n"

" -l lift input, lower output\n"

" -rfile read `file' as library (additional arm file)\n"

" -L limit the stackdepth and termdepth in debug tracing\n"

" -Xn set the term depth in tracing to n (4)\n"

" -Yn set the stack depth in tracing to n (4)\n"

" -G display GC info\n"

" -A produce a dump of args to TRS function\n"

" -D produce stackdump each cycle\n"

" -M trace uarm machine instructions\n"

" -T trace TRS functions\n"

" -Fid produce trace after first reduction for this function\n"

" -S print initial memory size\n"

" -R# count (semi) rewrite steps; quit if > # (0 for never)\n"

" -P produce profiling information\n"

);

exit(0);

}

}

}

2. The function main 64

64 hdefault error functions 64i�
void ARM_warning(char *fmt,...)

{ va_list args;

fprintf(stderr,"\n*** WARNING\n");

va_start(args,fmt);

vfprintf(stderr,fmt, args);

va_end(args);

fprintf(stderr,"\n");

exit(1);

}

void ARM_run_time_error(char *fmt,...)

{ va_list args;

fprintf(stderr,"\n*** RUN TIME ERROR\n");

va_start(args,fmt);

vfprintf(stderr,fmt, args);

va_end(args);

fprintf(stderr,"\n");

ARM_emergency_linked();

exit(1);

}

void ARM_load_error(char *fmt,...)

{ va_list args;

fprintf(stderr,"\n*** LOAD ERROR\n");

va_start(args,fmt);

vfprintf(stderr,fmt, args);

va_end(args);

fprintf(stderr,"\n");

ARM_emergency_clean();

exit(1);

}

void ARM_fatal_error(char *fmt,...)

{ va_list args;

fprintf(stderr,"\n*** FATAL ERROR\n");

va_start(args,fmt);

vfprintf(stderr,fmt, args);

va_end(args);

fprintf(stderr,"\n");

exit(1);

2. The function main 65

}

65 hexternal value scanner do_opq 65i�
void do_opq()

{ ARM_Xclass class;

char *buf;

buf=TheBuf;

while ((TheChar = getc(stdin))!=':') {

*buf++ = TheChar;

}

*buf = '\0';

class = ARM_class_of(TheBuf);

buf=TheBuf;

while ((TheChar = getc(stdin))!='|') {

*buf++ = TheChar;

}

TheChar = getc(stdin);

*buf = '\0';

ARM_pushopq(class,TheBuf);

}

2. The function main 66

66 hfunction symbol scanner do_fun 66i�
void do_fun()

{ char *buf=TheBuf;

if (TheChar == '\'') {

*buf++=TheChar; *buf++=getc(stdin); TheChar = getc(stdin);

} else if (TheChar == '\\') {

*buf++=TheChar; TheChar = getc(stdin);

switch (TheChar) {

case 'n': case 'r': case 't': case '\\':

*buf++=TheChar; break;

default:

*buf++=TheChar; *buf++=getc(stdin); *buf++=getc(stdin);

}

TheChar = getc(stdin);

} else if (TheChar == '"') {

*buf++=TheChar;

while ((TheChar = getc(stdin)) != '"') {

if (TheChar == '\\') {

*buf++=TheChar; *buf++=getc(stdin);

} else *buf++=TheChar;

}

*buf++=TheChar; TheChar=getc(stdin);

} else {

while ((TheChar>='a' && TheChar<='z')

|| (TheChar>='A' && TheChar<='Z')

|| (TheChar>='0' && TheChar<='9')

|| TheChar=='_' || TheChar=='\'' || TheChar=='-') {

*buf++=TheChar;

TheChar = getc(stdin); }

}

*buf = '\0';

if (TheBuf[0]=='\0') {

ARM_LDErr("illegal char in id: (%d)\n",(long)TheChar);

}

ARM_push(TheBuf);

}

2. The function main 67

67 hinput term parser do_term 67i�
void do_term()

{ int balance=0;

TheChar = getc(stdin);

for (;;) {

switch (TheChar) {

case ' ':

case '\t':

case '\r':

case '\n': TheChar = getc(stdin); break;

case '(': balance++; TheChar = getc(stdin); break;

case ',': TheChar = getc(stdin); break;

case ')': balance--;

if (balance==0) return; else TheChar = getc(stdin); break;

case EOF: if (balance) ARM_RTErr("unexpected end of file");

return;

case '|': do_opq();

if (balance==0) return; else break;

default: do_fun();

if (balance==0 && TheChar != '(')

return; else break;

}

}

}

