
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Within ARM’s Reach: Compilation of Left-Linear Rewrite Systems
via Minimal Rewrite Systems

W.J. Fokkink, J.F.Th. Kamperman, H.R. Walters

Software Engineering (SEN)

SEN-R9721 November 30, 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9721
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Within ARM's Reach:

Compilation of Left-Linear Rewrite Systems

via Minimal Rewrite Systems

W.J. Fokkink

W.J.Fokkink@swan.ac.uk, http://www.swan.ac.uk/compsci/AllStaff/WJF.html.

University of Wales Swansea

Department of Computer Science, Singleton Park, Swansea SA2 8PP, Wales

J.F.Th. Kamperman

J.Kamperman@idr.nl, http://www.idr.nl/�jasper.

ID Research

Groningenweg 6, 2803 PV Gouda, The Netherlands

H.R. Walters

pum@babelfish.nl, http://www.babelfish.nl.

Babel�sh

Korenbloemweg 23, 2403 GA Alphen a/d Rijn, The Netherlands

and

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

A new compilation technique for left-linear term rewriting systems is presented, where rewrite

rules are transformed into so-called minimal rewrite rules. These minimal rules have such a simple

form that they can be viewed as instructions for an abstract rewriting machine (ARM).

1991 Mathematics Subject Classi�cation: 68N20: Compilers and Generators; 68Q05: Models of

Computation; 68Q42: Rewriting Systems and 68Q65: Algebraic speci�cation

1991 Computing Reviews Classi�cation System: D.3.4 [Programming Languages]: Processors -

Compilers; D.1.1 [Programming Techniques]: Applicative (Functional) Programming; F.3.2 [Log-

ics and Meanings of Programs]: Semantics of Programming Languages,Algebraic approaches

to semantics

Keywords and Phrases: minimal term rewriting systems, abstract machines, program transforma-

tions

Note: Part of this work is carried out under project SEN1.2 \Software development"

1. Introduction
A standard technique for speeding up the execution of a program in a formal (pro-
gramming) language is compilation of the program into the language of a concrete
machine (e.g., a microprocessor). In compiler construction (c.f. [1]), it is customary

1. Introduction 2

to use an abstract machine as an abstraction of the concrete machine. On the one
hand, this allows to hide details of the concrete machine in a small part of the com-
piler, and thus an easy reimplementation on other concrete machines. On the other
hand, a good design of the abstract machine enables a simple mapping from source
language into abstract machine language. A compiler consists of zero or more trans-
formations in the semantic domain of its source language, followed by a mapping
to a lower-level language. This procedure is repeated until the level of the concrete
machine is reached.
This paper presents a compilation technique for (single-sorted, unconditional) left-

linear term rewriting systems (TRSs). A rewrite rule is called left-linear if it does
not contain multiple occurrences of the same variable in its left-hand side. The
compilation is partly performed within the well-known source language domain: a
left-linear TRS is �rst transformed into a so-called minimal TRS (MTRS). The basic
restriction on a minimal rewrite rule is that it is not allowed to contain more than
two occurrences of function symbols at each side of the rule, and no more than
three occurrences of function symbols in total. Furthermore, only little di�erence
is allowed between the variable con�gurations on either side of a minimal rewrite
rule. The transformation of left-linear TRS into MTRS is based on a pattern match
algorithm using automata, from Ho�mann and O'Donnell [22]. As a result of its
simple pattern, the application of a minimal rewrite rule is an elementary operation.
An MTRS can therefore be transformed into a program for an abstract rewriting
machine (ARM). The instructions of ARM are such that they can be implemented
e�ciently on modern microprocessors. A previous version of ARM was introduced in
[26], while the transformation from left-linear TRS to ARM code was �rst described
in [27]. A more up-to-date overview was given in [25].
For the sake of compilation, it is imperative to �x a deterministic rewriting strat-

egy. We apply rightmost innermost rewriting, which reduces the redex that is closest
to the rightmost leaf of the parse tree of a term. The innermost strategy is known
to be an e�cient implementation method. Furthermore, we impose a speci�city or-
dering on rewrite rules, such that if the left-hand sides of two di�erent rewrite rules
can be uni�ed, then the rewrite rule with the more speci�c left-hand side has higher
priority. This choice makes sense, because reversal of this priority would mean that
the rewrite rule with the more speci�c left-hand side would never applied. We will
give a precise formal de�nition of speci�city ordering, and show that it is an e�cient
implementation method. Most implementations of functional languages are based
on so-called textual orderings, where the priority of a rewrite rule depends on the
position of this rule in the layout of the TRS. Textual orderings have an unclear
semantics, and often hamper the e�ciency and clarity of implementations.
The reduction of a term by the original left-linear TRS, with respect to our pre-

ferred rewriting strategy, is performed by the resulting ARM program as follows.
First, the function symbols and variables of the term are collected on a so-called
control stack, in a rightmost innermost fashion. The elements are popped from the
control stack, one by one, to trigger the execution sequences of ARM instructions
that belong to rewrite rules in the MTRS. This execution simulates the reduction
of the term by the left-linear TRS, and if this reduction terminates, then the exe-
cution will produce the resulting normal form. In contrast with other compilation

1. Introduction 3

techniques for functional languages, this technique also applies to open terms.
To speed up the compilation of MTRSs into ARM code, we introduce the notion

of a locus, which assigns a natural number to each function symbol. Intuitively, the
locus indicates the point of interest in the list of arguments of a function symbol.
For example, if a minimal rule contains three function symbols, then the loci of the
function symbols at the head of the left- and right-hand side of the rule indicate
which argument at the left- or right-hand side contains a function symbol. If this
argument is at the left-hand side, then the locus allows fast pattern-matching with
respect to this argument. If this argument is at the right-hand side, then the locus
allows fast continuation of innermost rewriting at this argument. If the locus of
an MTRS satis�es these, and other related requirements, then it will be called a
strati�cation.
In principle, our compilation technique can handle TRSs that are not left-linear.

However, such TRSs require checks on syntactic equality, which have a complexity
that is related to the sizes of the terms to be checked. An e�cient way to deal
with TRSs that are not left-linear is to de�ne an equality function eq(s; t), which
evaluates to true if and only if s and t are syntactically equal. This equality function
can be incorporated in the rewrite rules, to eliminate multiple occurrences of the
same variable in the left-hand side of a rewrite rule; see [25, page 28] for an elaborate
example.
We do not consider conditional TRSs [8], where rewrite rules are allowed to carry

conditions. A sensible way to compile a conditional TRS properly, is to eliminate the
conditions in its rewrite rules �rst. For example, conditions of the form s # t, i.e., s
and t have the same normal form, can be expressed by means of an equality function.
Therefore, the problems involved with the implementation of conditions in rewrite
rules are orthogonal to the matters that are investigated in this paper. Bergstra
and van den Brand [6] have implemented an e�cient compiler which eliminates the
conditions from a conditional TRS.
We consider only single-sorted signatures, because a TRS over a many-sorted

signature can be treated as a TRS over a single-sorted signature, after it has been
type-checked. That is, suppose that a TRS over a many-sorted signature is to
rewrite a term over this signature. Then a parser should �rst check whether the
rewrite rules and the term satisfy the syntactic restrictions that are imposed by
many-sortedness. If this is the case, then the reducts of the term will all satisfy
these syntactic restrictions automatically, so that types can be ignored.
This research was started with the aim to support the equational language ASF+

SDF [31, 15], which is a combination of Algebraic Speci�cation Formalism [7] and
Syntax De�nition Formalism [21]. Our main goals are a well-structured, clearly
described and e�cient implementation. The detailed description of the implemen-
tation is given in the current paper, where the reader may convince her/himself
that the implementation is well-structured. The compilation of left-linear TRS into
ARM code increases the number of rewrite steps in a linear fashion. The complex-
ity of executing a single rewrite step, however, decreases. In practice, this leads to
comparable performance. In [20, Table 9], favourable execution times were reported
concerning the equational programming language Epic [48, 49], which has been im-
plemented by means of the ARM methodology. Based on these experiences, and by

2. Preliminaries 4

further insights reported in this paper, it can be stated that the compilation of a
left-linear TRS via a strati�ed MTRS into an ARM program leads to an e�cient
implementation.
Questions on the correctness of compilation of programming languages date back

to McCarthy [37]. The question whether our compilation strategy for left-linear
TRSs is correct can be answered in several ways. Firstly, the intuitive explanations
that are given for the transformations, from left-linear TRS to strati�ed MTRS and
then to ARM code, help to understand why the compilation is correct. Secondly, the
technology has been tested thoroughly, in the sense that it has been implemented,
and works satisfactorily, in Epic. An outline of a formal correctness proof for the
transformation of left-linear TRS into strati�ed MTRS was presented in [27, 25].
That proof is based a new notion of simulation, which relates the reductions graphs
of the transformed TRS to the reductions graphs of the original TRS. If such a
simulation is proved to be sound, complete and termination preserving, then it can
be concluded that the transformation constitutes a correct compilation step, see [16].
This technique can also be applied to prove correctness of the transformation from
strati�ed MTRS into ARM code. However, such a correctness proof is beyond the
scope of the present paper.
This paper is set up as follows. Section 2 presents the necessary preliminaries

from term rewriting. In Section 3 the syntactic format for MTRSs is de�ned, and
it is shown how to transform a left-linear TRS into a strati�ed MTRS. In Section 4
the syntax and semantics of ARM are given, and it is shown how to transform an
MTRS into an ARM program. Finally, Section 5 discusses related work.

Acknowledgements. We would like to thank Jan Bergstra, Mark van den Brand,
Jan Heering, Paul Klint, Jaco van de Pol, and John Tucker for their support.

2. Preliminaries
This section introduces some preliminaries from term rewriting; for more background
see e.g. [14, 32].

2.1 Term Rewriting Systems
De�nition 2.1 A signature � consists of:

- a countably in�nite set V of variables u; v; w; x; y; z; :::;

- a non-empty set F of function symbols f; g; h; :::, disjoint with V, where each
function symbol f is provided with an arity ar (f), being a natural number.

Function symbols of arity 0 are called constants. In the sequel, = denotes syntactic
equality between terms, and =� denotes syntactic equality modulo �-conversion, i.e.,
modulo renaming of variables.

In the next de�nitions we assume a signature � = (V ;F ; ar).

De�nition 2.2 T(�) denotes the set of terms `; p; q; r; s; t; ::: over �, being the
smallest set satisfying:

- V � T(�);

2. Preliminaries 5

- if f 2 F and t1; :::; tar(f) 2 T(�), then f(t1; :::; tar(f)) 2 T(�).

A (possibly empty) sequence t1; :::; tk of terms will sometimes be abbreviated to
vector notation ~t, and j~tj will denote the length k of this sequence.

De�nition 2.3 A substitution is a mapping � : V ! T(�). Each substitution is
extended to a mapping from terms to terms in the standard way.

De�nition 2.4 A rewrite rule is an expression `! r with ` and r terms, where:

1. the left-hand side ` is not a single variable;

2. all variables that occur in the right-hand side r also occur in the left-hand side
`.

A term rewriting system (TRS) R consists of a �nite set of rewrite rules.

De�nition 2.5 A rewrite rule ` ! r is left-linear if each variable occurs no more
than once in its left-hand side `.
A TRS is left-linear if all its rules are so.

De�nition 2.6 A rewrite rule f(x1; :::; xk) ! r with x1; :::; xk distinct variables is
most general.
A TRS R is simply complete if for each f for which there is a rule in R with

left-hand side f(~t), there is also a most general rule in R with left-hand side f(~x).

In the next section we will de�ne for each left-linear TRS R over a signature �, a
binary rewrite relation!R on T(�) which allows at most one possible reduction for
each term in T(�).

De�nition 2.7 t 2 T(�) is a normal form for a rewrite relation !R if there does
not exist a t0 2 T(�) with t!R t0.

2.2 Rewriting Strategy
A deterministic rewriting strategy is determined by two priorities:

1. if the left-hand sides of several rewrite rules match with the same term, then
it selects which rewrite rule is preferred to reduce this term;

2. if several subterms of a term match with left-hand sides of rewrite rules, then
it selects which of these subterms is actually reduced.

For the �rst preference we adopt speci�city ordering, meaning that if the left-hand
sides of two di�erent rewrite rules can be uni�ed, then the rewrite rule with the most
speci�c left-hand side has higher priority. Speci�city ordering is based on ideas in
[5], where the semantics of such orderings on term rewriting systems was studied
thoroughly for the �rst time.
For the second preference we adopt rightmost innermost rewriting, which selects

the subterm closest to the rightmost leaf of the parse tree of the term. In general,
the innermost rewriting strategy is an e�cient implementation method for rewrite
systems.
First, we present the precise de�nition of speci�city ordering.

2. Preliminaries 6

De�nition 2.8 The syntactic speci�city ordering < on terms is de�ned by:

- x < f(t1; :::; tar(f));

- f(s1; :::; sar(f)) < f(t1; :::; tar(f)) if s1 =� t1; :::; si�1 =� ti�1; si < ti, for some
i 2 f1; ::; ar(f)g.

The speci�city ordering � is de�ned on rewrite rules by

` < `0) `! r � `0 ! r0:

If two terms ` and `0 can be uni�ed, say �(`) = �0(`0) for certain substitutions �
and �0, then it is easy to see that either ` < `0 or `0 < ` or ` =� `0. So in order
to avoid situations in which two rewrite rules apply to the same term, and neither
of these rules has priority over the other, it su�ces to exclude TRSs that contain
two di�erent rules of which the left-hand sides are equal modulo �-conversion. In
practice, such ambiguities can be resolved by giving one of these rules priority over
the other, in which case the rule with lower priority is never applied.
We proceed to present the precise de�nition of rightmost innermost rewriting,

with respect to speci�city ordering.

De�nition 2.9 Given a TRS R over signature �, the binary rewrite relation !R

is de�ned on T(�) inductively as follows.

1. All variables in V are normal forms for !R.

2. Assume that we already de�ned !R for t1; :::; tar(f). Then !R is de�ned for
f(t1; :::; tar(f)) as follows.

� (Rightmost Innermost) If, for some i 2 f1; :::; ar(f)g, ti+1; :::; tar(f)
are normal forms for !R, and ti !R s, then

f(t1; :::; tar(f))!R f(t1; :::; ti�1; s; ti+1; :::; tar(f)):

� (Specificity) Suppose that t1; :::; tar(f) are normal forms for !R. If
` ! r is the greatest rewrite rule in R (with respect to the speci�city
ordering �) such that f(t1; :::; tar(f)) = �(`) for a certain substitution �,
then

f(t1; :::; tar(f))!R �(r):

If such a rewrite rule does not exist in R, then f(t1; :::; tar(f)) is a normal
form for !R.

!R is a subrelation of the standard rewrite relation for R without any rewriting
strategy. Furthermore, normal forms for!R are also normal forms for this standard
rewrite relation.
Since the subscriptR is usually clear from the context, in general it will be omitted

from!R. The overloading of ! is by convention.

3. Minimal Term Rewriting Systems 7

3. Minimal Term Rewriting Systems
In this section it is shown how each left-linear TRS can be transformed into a simply
complete TRS which contains only `minimal' rewrite rules. These rules have such
a simple form that they can be viewed as instructions for an abstract rewriting
machine. Furthermore, function symbols will be supplied with a `locus' value, such
that the minimal TRS (MTRS) is `strati�ed'. These locus values will be important
for the e�cient compilation of a minimal TRS into an abstract rewriting machine,
in Section 4.

3.1 Minimal Rewrite Rules
A minimal rewrite rule is left-linear, and is not allowed to contain more than two
occurrences of function symbols at each side of the rule, and no more than three oc-
currences of function symbols in total. Furthermore, only little di�erence is allowed
between the variable con�gurations on either side of a minimal rewrite rule.

De�nition 3.1 A rewrite rule is called minimal if it is left-linear and has one of
the following �ve forms:

M1 f(~x; g(~y); ~z) ! h(~x; ~y; ~z)
M2 f(~x; ~y; ~z) ! h(~x; g(~y); ~z)
M3 f(~x; ~y) ! h(~x; z; ~y) z 2 ~x; ~y

M4 f(~x; ~y; ~z) ! h(~x; ~z)
M5 f(~x; y) ! y

A TRS is minimal is all its rules are so.

3.2 Locus
For the sake of the e�ciency of the compilation of MTRSs, we will need a so-called
locus, which maps function symbols to natural numbers. A basic characteristic of
a locus is that function symbols that occur in normal forms have locus 0. Since we
use the innermost rewriting strategy, this implies that function symbols that occur
inside the left-hand side of a rewrite rule should have locus 0. For convenience we
require the same for function symbols that occur inside the right-hand side of a
rewrite rule.

De�nition 3.2 A locus for a TRS R over (V ;F ; ar) is a function L : F ! N such
that:

1. whenever L(f) 6= 0, there is a most general rule in R with left-hand side f(~x);

2. for each left- or right-hand side h(~t) of a rewrite rule inR, the function symbols
that occur in ~t all have locus 0.

In the case of an MTRS, we want the locus to be a `strati�cation', so that it provides
valuable information for implementation purposes.

- For minimal rules of type M1, the locus should indicate which argument at
the left-hand side contains a function symbol, to enable fast pattern matching
with respect to such arguments.

3. Minimal Term Rewriting Systems 8

- For minimal rules of type M2, the locus should indicate which argument at
the right-hand side contains a function symbol, to enable fast continuation of
(innermost) rewriting at such arguments.

- For minimal rules of type M3, the locus should indicate at which position in
the right-hand side an argument from the left-hand side has to be copied.

- For minimal rules of type M4 with j~yj 6= 0, the locus should indicate which
arguments at the left-hand side have to be deleted.

These intuitions are incorporated in the following de�nition.

De�nition 3.3 Assume an MTRS M over (V ;F ; ar), and a locus L : F ! N. The
pair (M; L) is called strati�ed if (using the notations from De�nition 3.1 for rules
of types M1-5):

1. for each rule in M of type M1, L(f) = L(h) = j~xj;

2. for each rule in M of type M2, L(f) = L(h) = j~xj;

3. for each rule in M of type M3, L(f) = L(h) = j~xj;

4. for each rule in M of type M4 with j~yj 6= 0, L(f) = L(h) = j~xj;

5. for each rule in M of type M5, L(f) = j~xj.

Note that a strati�cation does not impose restrictions on the loci of function symbols
f and h for minimal rewrite rules of the form f(~x) ! h(~x). The construction of a
strati�cation for an MTRS will depend on the incorporation of such rewrite rules.
We now continue to show how to transform a left-linear TRS into a strati�ed sim-

ply complete MTRS; in Section 3.3 the original TRS will be made simply complete,
in Sections 3.4 and 3.5 the left- and right-hand sides of rewrite rules will be mini-
mized, respectively, and �nally in Section 3.6 the resulting simply complete MTRS
will be strati�ed.

3.3 Simple Completeness
In the transformations that will be described in the next sections, we are going to
manipulate function symbols at the head of left-hand sides of rewrite rules. In order
to make sure that these manipulations do not a�ect the resulting normal forms, �rst
we add most general rules, to make the TRS simply complete. Note that in a simply
complete TRS, function symbols that occur at the head of a left-hand side do not
occur in normal forms. The transformation is an adaptation of a transformation
introduced by Thatte [44].
Assume a left-linear TRS R over � = (V ;F ; ar). The following program adds

most general rules, to obtain a simply complete left-linear TRS.

Procedure \Add Most General Rules" applied to (R;F ; ar).

If R is simply complete, then output (R;F ; ar).

Else, select a function symbol f 2 F for which there is a rule in R with left-
hand side f(~t), but no most general rule with left-hand side f(~x). Add a fresh
function symbol f c to F , of arity ar(f), and add a most general rule

3. Minimal Term Rewriting Systems 9

f(~x) ! f c(~x)

For all left-hand sides g(~s) of rules in R (with g = f as well as g 6= f), replace
each occurrence of f in ~s by f c.

The resulting TRS is still left-linear, because the new rewrite rule is so. Apply
the procedure \Add Most General Rules" to this left-linear TRS.

Intuition The intuition behind the transformation of R is as follows. The new
rewrite rule f(~x)! f c(~x) is the desired most general rule with left-hand side f(~x).
Innermost rewriting and speci�city ordering together ensure that this rewrite rule is
innocuous, in the sense that it only replaces occurrences of f at the head of normal
forms by f c (c is mnemonic for `constructor'). Since occurrences of f inside left-hand
sides of rewrite rules in R only apply to normal forms, due to innermost rewriting,
such occurrences of f are replaced by f c.

Termination The program above terminates for each allowed input. Namely, each
application of the procedure strictly decreases the number of function symbols f for
which there is a rewrite rule with left-hand side f(~t), but no most general rule with
left-hand side f(~x).

Since the program \Add Most General Rules" is terminating, it produces a simply
complete left-linear TRS. We provide this TRS with a locus by de�ning L(f) = 0 for
all function symbols f . Note that this locus trivially satis�es the two requirements
of De�nition 3.2.

3.4 Minimization of Left-Hand Sides
Assume a simply complete left-linear TRS R over � = (V ;F ; ar), with a locus
L : F ! N. The following program transforms R in such a way that the left-hand
sides of its non-minimal rules contain only one function symbol.

Procedure \Minimize Left-Hand Sides" applied to (R; L;F ; ar).

If each non-minimal rewrite rule in R contains only one function symbol its
left-hand side, then output (R; L;F ; ar).

Else, let i be the smallest index for which there is a left-hand side f(~x; g(~t); ~s)
of a non-minimal rewrite rule in R with j~xj = i.

For each g 2 F for which there exists a non-minimal rewrite rule of the form
f(~x; g(~t); ~s)! r with j~xj = i, introduce a fresh function symbol fg, with arity
ar(f) + ar(g)� 1 and locus i. Replace each such rule f(~x; g(~t); ~s) ! r with
j~xj = i by a rule

fg(~x;~t; ~s)! r (3.1)

Furthermore, for each fg add a left-linear rule

f(~x; g(~y); ~z)! fg(~x; ~y; ~z) (3.2)

If for some fg there is not yet a most general rule, then add a fresh function
symbol fd to F , of arity ar(f) and with locus i (d is mnemonic for `duplicate').
For each such fg add a most general rule

3. Minimal Term Rewriting Systems 10

fg(~x; ~y; ~z)! fd(~x; g(~y); ~z) (3.3)

In this case, replace all left-hand sides of rewrite rules in R of the form f(~v; ~q)
with j~vj > i by fd(~v; ~q), and add a most general rule

f(~w)! fd(~w) (3.4)

The resulting TRS is still simply complete, because among rules (3.1) and
(3.3) there is a most general rule for each fg, and if fd is introduced, then
the most general rule for f in the original TRS (which exists due to simple
completeness) becomes a most general rule for fd in the resulting TRS, and
rule (3.4) is a most general rule for f . Furthermore, the resulting TRS is still
left-linear, because all the new rules are so. Finally, the extension of L to the
fresh function symbols fd and fg is still a locus, because there are most general
rules for all these function symbols, and they do not occur inside any left- or
right-hand side of the resulting TRS.

Apply the procedure \Minimize Left-Hand Sides" to the resulting TRS.

The procedure \Minimize Left-Hand Sides" is based on an e�cient pattern-matching
strategy using automata similar to Ho�mann and O'Donnell [22] (see also [47, Chap-
ter 3]). We give an example.

Example 3.4 Let a, b, c and d be constants, and f , f c, g and h unary functions.
Consider the following simply complete left-linear TRS:

f(g(a)) �! b

f(g(x)) �! c

f(h(a)) �! d

f(x) �! f c(x)

Pattern-matching of a term f(t) with respect to the left-hand sides of this TRS can
be expressed by the following automaton.

(1)

(1)
(1)

(2)
(4)

(3)

(2)

��
��

��
��

��
��
��
��

��
��

��
��

��
��

��
��?

�
�

�
�

�=

?

?

?

Q
Q

Q
Q

Qk

?

Z
Z
Z
Z
Z~

HHHHHj

t 6= g(s)
t 6= h(r)

f(t)

fg(s)

t = g(s)

t = h(r)

r 6= a

r = a

s 6= a

d

f c(t)

fd(t)

s = a

fh(r)

c

b

Note that matching with respect to the function symbol g in the left-hand sides of
the �rst and the second rule is shared. The procedure \Minimize Left-Hand Sides"

3. Minimal Term Rewriting Systems 11

transforms the original TRS into a TRS that mimics this automaton. The labels
attached to a transition yield the syntactic requirement under which this transition
is applied, together with the number of the minimal rule in the procedure \Minimize
Left-Hand Sides" that captures this transition. The state names correspond with the
reducts of f(t) after application of these minimal rules.

Intuition The intuition behind the transformation of R is as follows. The rules
(3.2) constitute a �rst step towards checking whether a term p matches with a left-
hand side in R of the form f(~x; g(~t); ~s) with j~xj = i. If a rule in (3.2) reduces a term
p to a term p0, then there are two possibilities:

� either p indeed matches with the left-hand side of a rule f(~x; g(~t); ~s)! r with
j~xj = i in R, in which case p0 can be reduced to r by a rule (3.1);

� or such matchings all fail, in which case a rule (3.3) reduces p0 back to p, where
a superscript d is attached to f , to avoid that p is matched with a rule in (3.2)
again.

Rewrite rules in R of the form f(~v; ~q)! r with j~vj > i only apply to terms which do
not match with any left-hand sides in R of the form f(~x; g(~t); ~s) with j~xj = i, due to
the speci�city ordering. In particular, such rewrite rules may apply to terms which
have been reduced subsequently by a rule in (3.2) and a rule in (3.3). So if there
exists a rule in (3.3), then rewrite rules f(~v; ~q) ! r with j~vj > i in R are replaced
by fd(~v; ~q) ! r. In this case, rule (3.4) makes sure that the superscript d is also
attached to occurrences of f in terms which cannot be reduced by any rules in (3.2).

Remark 3.5 Since R is simply complete, the function symbol f does not occur in any of its normal
forms. Therefore, the adaptation of R does not inuence the representations of its normal forms.
So there is no need to change occurrences of f inside left-hand sides into fd; a rewrite rule with an
occurrence of f inside its left-hand side is never applied, owing to the innermost rewriting strategy.

Note that the choice of loci for the function symbols fd and fg, namely i, ensures
that the minimal rules (3.2) and (3.3) are strati�ed.

Termination The program \Minimize Left-Hand Sides" terminates for each al-
lowed input. Namely, in each subsequent call of the procedure, the total number N
of occurrences of function symbols in left-hand sides of non-minimal rules strictly
decreases. This can be seen by considering the e�ect of each separate step in the
procedure on the value of N .

� Replacing occurrences of function symbol f by function symbol fd does not
inuence N .

� (3.2), (3.3) and (3.4) introduce minimal rules, which again does not inuence
N .

� In (3.1), for some f and i, rewrite rules of the form f(~x; g(~t); ~s) ! r with
j~xj = i are replaced by rules fg(~x;~t; ~s) ! r. Amongst the rewrite rules that
are replaced, there is at least one which is non-minimal. Since the left-hand
side of each replacement contains one function symbol less than its original, and
minimal rules stay minimal, it follows that the replacements in (3.1) strictly
decrease the value of N .

3. Minimal Term Rewriting Systems 12

Since the program \Minimize Left-Hand Sides" is terminating, it produces a simply
complete left-linear TRS with a locus, where the left-hand sides of its non-minimal
rules contain only one function symbol.

3.5 Minimization of Right-Hand Sides
Assume a simply complete left-linear TRS R over � = (V ;F ; ar), in which each
non-minimal rewrite rule contains only one function symbol in its left-hand side.
Also assume a locus L : F ! N. The following program minimizes the right-hand
sides of rewrite rules in R.

Procedure \Minimize Right-Hand Sides" applied to (R; L;F ; ar).

If R is minimal, then output (R; L;F ; ar).

Else, select a rewrite rule f(~v)! r in R that is not minimal. We distinguish
three cases, depending on whether r contains zero, one, or more than one
function symbols.

Case 1: r = vk for some k < ar(f).

Then add a fresh function symbol fd to F , of arity k and with locus k,
and replace the rule f(~v) ! r in R by the following two most general
rules:

f(~v) ! fd(v1; :::; vk)
fd(v1; :::; vk) ! vk

Case 2: r = h(~w).

Since f(~v) ! h(~w) is not minimal, ~v = ~x; ~y; ~z and ~w = ~x; ~u; ~z where ~u

has length l > 0, and the �rst and last element of ~u are not the �rst and
last element of ~y, respectively. We call ~u the non-compliant segment of
f(~v)! h(~w).

Then add a fresh function symbol fd to F , of arity ar(f) + 1 and with
locus j~xj, and replace the rule f(~v) ! r in R by the following two most
general rules:

f(~x; ~y; ~z) ! fd(~x; u1; ~y; ~z)
fd(~x; u0; ~y; ~z) ! h(~x; u0; u2; :::; ul; ~z)

where u0 is a fresh variable.

Case 3: r = h(~w; g(~s);~t).

Then add a fresh function symbol hg to F , of arity ar (h)+ ar(g)� 1 and
with locus j~wj, and replace the rule f(~v) ! r in R by the following two
most general rules:

f(~v) ! hg(~w;~s;~t)
hg(~x; ~y; ~z) ! h(~x; g(~y); ~z)

The resulting TRS is still simply complete, because in all cases a most general
rule is introduced for the fresh function symbol fd or hg, and the most general
rule f(~v)! r is replaced by another most general rule for f . Furthermore, the
resulting TRS is still left-linear, and its non-minimal rules still contain only

3. Minimal Term Rewriting Systems 13

one function symbol in their left-hand sides, because all the new rules satisfy
these properties. Finally, the extension of L to the fresh function symbol fd

or hg is still a locus, because there is a most general rule for each of these
function symbols, and they do not occur inside any left- or right-hand side of
the resulting TRS.

Apply the procedure \Minimize Right-Hand Sides" to the resulting TRS.

Intuition In all cases, the selected non-minimal rewrite rule f(~v)! r is replaced by
two new rewrite rules, which together are able to simulate the rewrite steps de�ned
by f(~v)! r. One of these new rules is minimal, while the other is, in a certain sense,
\smaller" than the original rule f(~v)! r (see the termination argument below).
Note that in all cases the locus of the fresh function symbol fd or hg is chosen in

such a way that (one of) the minimal rewrite rule(s) that is introduced is strati�ed.

Termination The program above terminates for each allowed input. This can be
seen by considering the separate cases in the procedure.

� In case 1, the number of non-minimal rules is decreased by one. Moreover,
this number is not increased in the cases 2 and 3. Hence, case 1 can only be
applied a �nite number of times.

� In case 3, the total number of occurrences of function symbols in right-hand
sides of non-minimal rules strictly decreases. Moreover, this number is not
increased in case 2. Hence, case 3 can only be applied a �nite number of
times.

� In case 2, the total sum of lengths of non-compliant segments in right-hand
sides of non-minimal rules strictly decreases. Hence, this case can only be
applied a �nite number of times.

Since the program \Minimize Right-Hand Sides" is terminating, it produces a simply
complete MTRS with a locus.

3.6 Strati�cation of Minimal Rules
Assume a simply complete MTRS M over � = (V ;F ; ar), together with a locus
L : F ! N. The following program strati�es M.

Procedure \Stratify" applied to (M; L;F ; ar).

If (M; L) is strati�ed, then output (M; L;F ; ar).

Else, apply one of the following cases.

Case 1: Suppose that there is a minimal rule in M of type M1, say

f(~x; g(~y); ~z) ! r

with L(f) 6= j~xj. Then select such a rule with j~xj as small as possible.
Add a fresh function symbol fd to F , of arity ar (f) and with locus j~xj.
Replace all left-hand sides of rewrite rules in R of the form f(~v; ~q) with
j~vj � j~xj by fd(~v; ~q). Furthermore, add a strati�ed minimal rule

3. Minimal Term Rewriting Systems 14

f(~w) ! fd(~w)

Case 2: Suppose that there is a minimal rule in M of type M2-5, say

f(~x) ! r

where the locus of f does not satisfy the strati�cation property (see Def-
inition 3.3). Then add a fresh function symbol fd, of arity ar(f) and
with the right locus, and replace this minimal rule by the following two
minimal rules:

f(~x) ! fd(~x)
fd(~x) ! r

Case 3: Suppose that there is a minimal rule in M of type M1-4, say

` ! h(~t)

where the locus of h does not satisfy the strati�cation property (see Def-
inition 3.3). Then add a fresh function symbol hd, of arity ar(h) and
with the right locus, and replace this minimal rule by the following two
minimal rules:

` ! hd(~t)
hd(~y) ! h(~y)

It is not hard to see that in all three cases the resulting MTRS is still simply
complete, and that L extended to the fresh function symbol fd or hd still
satis�es the two requirements of De�nition 3.2.

Apply the procedure \Stratify" to the resulting MTRS.

Intuition In case 1, left-hand sides f(~x; g(~y); z) with L(f) 6= j~xj are strati�ed by
introducing a fresh function symbol fd with locus j~xj, and replacing the occurrences
of f at the head of these left-hand sides by fd. In order to preserve the speci�city
ordering, occurrences of f at the head of left-hand sides of the form f(~v; ~q) with
j~vj > j~xj are also replaced by fd. Since the transformed left-hand sides only match
with terms of the form fd(~t), a strati�ed minimal rule f(~w)! fd(~w) is introduced
to replace occurrences of f in terms by fd.

Remark 3.6 Since M is simply complete, the function symbol f does not occur in any of its
normal forms. Therefore, the adaptation of M does not inuence the representations of its normal
forms. So there is no need to change occurrences of f inside left-hand sides into fd; a rewrite rule
with an occurrence of f inside its left-hand side is never applied, owing to the innermost rewriting
strategy.

In the cases 2 and 3, the non-strati�ed left- or right-hand side of a minimal rule is
strati�ed, respectively. Moreover, a strati�ed minimal rule is added, such that the
two new minimal rules together are able to simulate the rewrite steps of the original
minimal rule.

Termination The program above terminates for each allowed input. This can be
seen by considering the separate cases in the procedure.

� Let N be the number of minimal rules `! r in M of type M1 such that:

3. Minimal Term Rewriting Systems 15

- either `! r has a non-strati�ed left-hand side;

- or there is a minimal rule `0 ! r0 in M with a non-strati�ed left-hand
side and `! r � `0 ! r0.

In case 1, the number N strictly decreases. Moreover, this number is not
increased in the cases 2 and 3. Hence, case 1 can only be applied a �nite
number of times.

� In the cases 2 and 3, the number of minimal rules with a non-strati�ed left-
or right-hand side strictly decreases, respectively. Hence, these cases can only
be applied a �nite number of times.

Since the program \Stratify" is terminating, it produces a strati�ed simply complete
MTRS.

3.7 Example
We give a toy example of a transformation of a speci�c left-linear TRS into a strat-
i�ed simply complete MTRS. Assume the natural numbers, constructed from the
constant zero and the unary successor function succ. The following two left-linear
rewrite rules constitute a standard speci�cation of the binary addition function plus
on the natural numbers:

plus(zero; y) ! y

plus(succ(x); y) ! succ(plus(x; y))

In order to transform this left-linear TRS into a strati�ed simply complete MTRS,
�rst it is made simply complete by adding a most general rule for plus:

plus(x; y) ! plusc(x; y)

Next, the locus L is introduced: the function symbols zero, succ, plus and plusc all
have locus 0.
Note that the two original rewrite rules are not minimal. In order to obtain a

simply complete MTRS, the procedure \Minimize Left-Hand Sides" replaces the
�rst rule by two rules:

plus(zero; y) ! plus
zero

(y)
plus

zero
(y) ! y

which relate to rule (3.2) and (3.1), respectively, in this procedure. Even so, the
second rule is replaced by:

plus(succ(x); y) ! plus
succ

(x; y)
plus

succ
(x; y) ! succ(plus(x; y))

The fresh function symbols plus
zero

and plus
succ

both have locus 0. Note that the
resulting simply complete MTRS satis�es the strati�cation criteria from De�nition
3.3.

4. Abstract Rewriting Machine 16

4. Abstract Rewriting Machine
We de�ne the syntax and semantics for a simple abstract rewriting machine (ARM),
and show how to transform a strati�ed simply complete MTRS into an ARM pro-
gram. Each set of rules in the MTRS with the same function symbol at the head
of their left-hand sides, is transformed into a sequence of ARM instructions. For
brevity of presentation, this sequence is represented as a so-called executable stack.
The executable stacks are collected in a table to obtain an ARM program. This pro-
grammanipulates the elements of three separate stacks, called control, argument and
traversal stack, guided by the instructions on the executable stack.

4.1 Control, Argument and Traversal Stack
Given a non-empty set D, the collection Stack(D) of stacks over D is the smallest
�xpoint of:

- "D 2 Stack(D)

- D � Stack(D)

- if S1; S2 2 Stack(D), then S1 � S2 2 Stack(D)

Here, "D represents the empty stack. Table 0.1 presents an axiomatization for stacks;
in the remainder of this paper, stacks are considered modulo these axioms.

St1 (x � y) � z = x � (y � z)
St2 "D � x = x

St3 x � "D = x

Table 0.1: Axioms for Stacks

In running text, we take stacks to grow from right to left, i.e., the leftmost element
is the top and the rightmost element is the bottom.

Control Stack: Assume a signature � = (V ;F ; ar). A control stack C is a stack
over F [V [fbottomg, where bottom is a special element that is always placed at
the bottom of the control stack. This element is added for e�ciency reasons; it will
avoid having to check on possible emptiness of control stacks.
In order to rewrite a speci�c term t by means of an ARM program, the function

symbols and variables of this term are collected on a control stack control(t) in a
rightmost innermost fashion.

De�nition 4.1 The stacks ri-stack(t) for t 2 T(�) are de�ned inductively as fol-
lows:

- ri-stack(x) = x

- ri-stack(f(t1; :::; tk)) = ri-stack(tk) � ::: � ri-stack(t1) � f

The control stack control(t) is ri-stack(t) � bottom.

4. Abstract Rewriting Machine 17

Example 4.2 The term f(g(a; h(x)); b), which has the following parse tree,

S
S

�
�

S
S

�
�

f

g

a h

x

b

is transformed into the control stack b � x � h � a � g � f � bottom.

The reduction of a term t, with respect to some strati�ed simply complete MTRS,
will be performed by popping the function symbols and variables from the control
stack of t, one by one, and executing instructions related to these elements. Since
the parse tree of t was collected on its control stack in a rightmost innermost fashion,
this procedure will mimic the rightmost innermost rewriting strategy.

Argument and Traversal Stack: If a function symbol f is popped from the
control stack, then the function symbols and variables of its original arguments
t1; :::; tar(f) were previously collected from this control stack, and used to produce
their respective normal forms s1; :::; sar(f). These normal forms were subsequently
stored on two stacks overT(�), called the argument stackA and the traversal stack T .
The locus of f tells exactly how the normal forms are divided over these two stacks:
sL(f); :::; s1 are on top of the traversal stack, while sL(f)+1; :::; sar(f) are on top of the
argument stack. These terms are used to obtain the normal form of f(s1; :::; sar(f)),
by means of a number of ARM instructions (see Section 4.3). Subsequently, the
terms s1; :::; sar(f) are removed from the argument and the traversal stack, and the
normal form of f(s1; :::; sar(f)) is stored on the top of the argument stack.

Example 4.3 Figure 0.1 pictures a typical example of the interplay between control,
argument and traversal stack. The top elements of the three stacks are at the centre
of the �gure, while their respective bottom elements are at the edge of the �gure.
The function symbol f has been popped from C, and its arguments sL(f); :::; s1 and
sL(f)+1; :::; sar(f) are on top of T and A, respectively. Function symbol g is on the
top of C, with its arguments rL(g); :::; r1 and rL(g)+2; :::; rar(g) divided over T and
A, respectively. Note that the argument rL(g)+1 of g is yet missing; this will be the
normal form of f(s1; :::; sar(f)).

When a variable x is popped from the control stack, it is simply pushed onto the
argument stack. Namely, a single variable is always a normal form (according to
De�nition 2.4.1).
Finally, if the element bottom is popped from the control stack, then it is concluded

that there are no elements left on the control stack. In this situation, the traversal
stack will always be empty, and the argument stack will always contain exactly one
element, being the normal form of the original term (which was stored on the control
stack), with respect to rightmost innermost rewriting and speci�city ordering. Then
the procedure terminates, producing the term on the argument stack as output.

4. Abstract Rewriting Machine 18

�
�

�
�

�
�
���

��
��

��
��

���

�
�
�!!

!!
!!
! A

A
A PP

PP
PP

PP
PP

aaaaaaaaaaaaaaaaaaQ
Q

Q
Q

Q
Q

Q
Q

QQ

f

g

A

C
...

T

sL(f)+1 � � � s
ar(f) rL(g)+2 � � � r

ar(g)r1 � � � rL(g) s1 � � � sL(f)

Figure 0.1: Interplay between Control, Argument and Traversal Stack

4.2 Executable Stack and Program Table
Suppose that we want to reduce a term by a strati�ed simply complete MTRS. We
already saw that the term is transformed into a control stack. At the same time,
the MTRS is transformed into a program, being a table of ARM instructions, as
follows.

Executable Stack: Each minimal rule in a strati�ed simply complete MTRS
(M; L) is interpreted as a sequence of ARM instructions (see Section 4.4). For each
function symbol f , the sequences of machine instructions for minimal rules of the
form f(~s)! r inM are gathered on an executable stack E. These sequences are put
in order of priority, with respect to speci�city ordering, so as to ensure that machine
instructions that belong to a minimal rule with a high priority are executed �rst.
If a function symbol f is popped from the control stack, then this means that its

executable stack is executed. This execution continues until either an instruction on
the executable stack of f invokes the execution of another execution stack, or the
bottom of the executable stack is reached, in which case a next element is popped
from the control stack.

A formalization of executable code falls beyond the scope of this article. However,
the two key operations { `what is the next instruction' and `what is the remainder
of the code after the next instruction' { are very similar to the two common stack
operations top and pop, respectively. Hence we ask the reader to indulge us in our
simpli�cation of modelling executable code as stacks.

Program Table: Each strati�ed simply complete MTRS (M; L) is transformed
into a program table, denoted by program(M). This table is obtained by collecting
the separate executable stacks for all function symbols f , where each such stack is
provided with the address f . (To be more precise, the address is a number related
to f .)

4.3 ARM Instructions
The manipulation of elements on the control, argument and traversal stack is per-
formed by means of a limited number of ARM instructions. We proceed to present
these instructions, together with their intuitive meaning. A formal semantics for

4. Abstract Rewriting Machine 19

ARM is presented in Section 4.5, in Table 0.2. In the following de�nitions, f and g

range over F , and k over N.

- match(f; g): If the top element of the argument stack is of the form f(t1; :::; tk),
then replace this term by its arguments t1; :::; tk, and proceed the execution
with respect to the function symbol g. Otherwise, ignore this instruction.

- copya(k): Copy the kth term of the argument stack on the top of the argument
stack.

- copyt(k): Copy the kth term of the traversal stack on the top of the argument
stack.

- push(f): Push f onto the control stack.

- adrop(k): Delete the top k terms from the argument stack.

- tdrop(k): Delete the top k terms from the traversal stack.

- skip(k): Transfer the top k terms from the argument to the traversal stack.

- retract(k): Transfer the top k terms from the traversal to the argument stack.

- build(f; k): Replace the terms t1; :::; tar(f) on top of the argument stack by
f(t1; :::; tar(f)). The argument k always equals ar(f).

- goto(f): Proceed the execution with respect to the function symbol f .

- recycle: Proceed the execution with respect to the top element on the control
stack.

The arity of the function symbol f is provided to the build instruction as an explicit
second argument to support e�cient implementation: if the arity is at hand it need
not be looked up in a table.

4.4 Transformation of MTRS into ARM Code
The minimal rewrite rules of a strati�ed simply complete MTRS (M; L) are trans-
formed into sequences of ARM instructions as follows.

M1 f(~x; g(~y); ~z) ! h(~x; ~y; ~z) match(g; h)
M2 f(~x; ~y; ~z) ! h(~x; g(~y); ~z) push(h) � goto(g)
M3 f(~x; ~y) ! h(~x; xk; ~y) copyt(j~xj � k + 1) � goto(h)

f(~x; ~y) ! h(~x; yk; ~y) copya(k) � goto(h)
M4 f(~x; ~y; ~z) ! h(~x; ~z) j~yj 6= 0 adrop(j~yj) � goto(h)

f(~x) ! h(~x) L(f) � L(h) skip(L(h)� L(f)) � goto(h)
f(~x) ! h(~x) L(f) > L(h) retract(L(f)� L(h)) � goto(h)

M5 f(~x; y) ! y tdrop(j~xj) � recycle

This transformation of minimal rules into sequences of ARM instructions makes
clear why loci of function symbols, and the auxiliary traversal stack, enhance the
e�ciency of our compilation technique. For minimal rules of type M1,2,3,5, and

4. Abstract Rewriting Machine 20

M4 with j~yj 6= 0, we have L(f) = L(h) = j~xj, because (M; L) is strati�ed (see
De�nition 3.3). So if the executable stack of function symbol f or h is executed,
then the �rst j~xj arguments of f or h are on top of the traversal stack, while its
remaining arguments are on top of the argument stack. This information is used in
the transformation of minimal rules to ARM instructions as follows.

� For minimal rules of type M1, instructionmatch(g; h) tests whether the (j~xj+
1)th argument of the left-hand side, which is on the top of the argument stack,
has outermost function symbol g. If so, then this term is replaced by its
arguments, and the execution proceeds with respect to function symbol h.

� For minimal rules of type M2, instruction push(h) pushes function symbol
h onto the control stack, after which instruction goto(g) can proceed (inner-
most) rewriting with respect to function symbol g immediately, because the
j~yj arguments of g are on top of the argument stack, which agrees with the
fact that the locus of g is 0 (by De�nition 3.2.2).

� For minimal rules of type M3, an instruction copyt or copya copies the kth
or (j~xj + k)th argument of the left-hand side, which is on the traversal stack
or the argument stack, respectively, on the top of the argument stack. Then
instruction goto(h) proceeds the execution with respect to function symbol h.

� For minimal rules of type M4 with j~yj 6= 0, instruction adrop(j~yj) deletes the
j~yj arguments of the left-hand side that are on top of the argument stack, after
which goto(h) proceeds the execution with respect to h.

� For minimal rules of type M4 with j~yj = 0, the loci of the function symbols f
and h at the head of the left- and right-hand side may di�er. If L(f) � L(h),
then skip(L(h)�L(f)) transfers the top L(h)�L(f) terms from the argument
to the traversal stack, and otherwise, retract(L(f)� L(h)) transfers the top
L(f) � L(h) terms from the traversal to the argument stack. Next, goto(h)
proceeds the execution with respect to h.

� For minimal rules of type M5, instruction tdrop(j~xj) removes the �rst j~xj
arguments of the left-hand side, which are on top of the traversal stack. Next,
recycle proceeds the execution at the top of the control stack.

For each function symbol f , an executable stack is constructed as follows:

1. If there is a minimal rule for f in M, then there is exactly one such rule of
type M2-5 for f inM (due to simple completeness). In this case, the sequence
of machine instructions that belongs to this most general rule is stored at the
bottom of the executable stack for f . Next, thematch(g; h) instructions that
belong to the minimal rules of type M1 for f in M (there is never more than
one such rule for each g) are stored on top of the executable stack for f , in
arbitrary order.

2. If there is no minimal rule for f in M, then its executable stack consists of
the two instructions

4. Abstract Rewriting Machine 21

build(f; ar(f)) � recycle

The intuition behind this construction is as follows. The match(g; h) instruc-
tions on top of the executable stack for f test whether minimal rules of the form
f(~x; g(~y); ~z) ! h(~x; ~y; ~z) can be applied. If these instructions all fail, then the in-
structions at the bottom of the executable stack for f make sure that the most
general rule for f is applied. In the case that there are no minimal rules for f , the
locus of f is 0 (by De�nition 3.2.1), so that its arguments t1; :::; tar(f) are on top of
the argument stack. Moreover, in this case f(t1; :::; tar(f)) is a normal form. Then
the instruction build(f; ar(f)) on the executable stack for f replaces the terms
t1; :::; tar(f) on top of the argument stack by f(t1; :::; tar(f)), after which recycle

proceeds the execution at the top of the control stack.

Remark 4.4 For e�ciency reasons, large sequences of match instructions should be implemented
table driven rather than iterative. That is, the match(g; h) instructions on top of an executable
stack should be implemented as a hash table (see e.g. [12, Chapter 12]), where g is an address
for the executable stack of h. A hash table is a data type that is suitable in situations where the
collection of used addresses is sparse in comparison with the collection of possible addresses.

Finally, the strati�ed simply complete MTRS (M; L) is turned into a program ta-
ble program(M) of executable stacks as follows. For each function symbol f , its
executable stack is paired with the address f , and these pairs are all gathered in a
table. Redundant instructions of the form adrop(0) and tdrop(0) and skip(0) and
retract(0) are eliminated, to gain e�ciency. Moreover, if after this elimination the
executable stack of a function symbol f consists of the single instruction goto(h),
then all occurrences of f in goto instructions and at the right-hand side of match

instructions in other executable stacks are replaced by h. The resulting table is
denoted by program(M).

Remark 4.5 At the bottom of each executable stack there is always either an instruction goto

or an instruction recycle. Moreover, at the bottom of the control stack there is always a bottom

element. This observation ensures that it is unnecessary to check whether or not an executable or
control stack is empty. Furthermore, in the case that a copya, adrop, skip or build instruction is
executed, it is guaranteed that the argument stack always contains a su�cient number of elements,
and in the case that a copyt, tdrop or retract instruction is executed, it is guaranteed that the
traversal stack always contains a su�cient number of elements. These observations are important
for e�ciency reasons; repeated checks on the emptiness of stacks are expensive.

4.5 Semantics of ARM
The intuitive meaning of ARM instructions, when popped from the executable stack,
was presented in Section 4.3. This semantics is made precise in Table 0.2. The states
of ARM are represented by 5-tuples hP;C;E;A;T i, where P is a program table, and
C, E, A and T are a control, executable, argument and traversal stack, respectively.
The state transition rules that are presented in Table 0.2 use an auxiliary function
get(f; P), which produces the executable stack with address f in table P .
The reduction of a term t by means of a strati�ed simply complete MTRS M is

simulated by the expression

< program(M); control(t); recycle; "A; "T >

4. Abstract Rewriting Machine 22

< P;C;match(f; g) �E; f(t1; :::; tk) �A; T > ! < P;C; get(g; P); t1 � ::: � tk �A; T >

< P;C;match(f; g) �E; t �A; T > ! < P;C;E; t �A; T >

if t 6= f(t1; :::; tk)

< P;C; copya(k) �E; t1 � ::: � tk �A; T > ! < P;C;E; tk � t1 � ::: � tk �A; T >

< P;C; copyt(k) �E;A; t1 � ::: � tk � T > ! < P;C;E; tk �A; t1 � ::: � tk � T >

< P;C;push(f) �E;A; T > ! < P; f � C;E;A;T >

< P;C; adrop(k) �E; t1 � ::: � tk �A; T > ! < P;C;E;A;T >

< P;C; tdrop(k) �E;A; t1 � ::: � tk � T > ! < P;C;E;A;T >

< P;C; skip(k) �E; t1 � ::: � tk �A; T > ! < P;C;E;A; tk � ::: � t1 � T >

< P;C; retract(k) �E;A; t1 � ::: � tk � T > ! < P;C;E; tk � ::: � t1 �A; T >

< P;C;build(f; ar(f)) �E; t1 � ::: � tar(f) �A; T > ! < P;C;E; f(t1; :::; tar(f)) �A; T >

< P;C; goto(f); A; T > ! < P;C; get(f; P); A; T >

< P; f �C; recycle; A; T > ! < P;C; get(f; P); A; T >

< P; x �C; recycle; A; T > ! < P;C; recycle; x �A; T >

< P; bottom; recycle; t; "T > ! t

Table 0.2: Semantics of ARM

4. Abstract Rewriting Machine 23

where the recycle instruction starts up the reduction process by popping the top
element from the control stack. When the state transition rules for ARM in Table
0.2 reduce this expression to a term s, then this is the normal form of t with respect
to M, using rightmost innermost rewriting with speci�city ordering.
Finally, we give an overview of the complete transformation, from left-linear TRS

to ARM code. Suppose that we want to reduce a term t with respect to a left-linear
TRS R. First we transformR into a strati�ed simply complete MTRS M, which is
then transformed into a table program(M) of ARM instructions. Furthermore, we
construct the control stack of t, that is obtained by collecting the function symbols
and variables of t in a rightmost innermost fashion. The executable stack consists of
the instruction recycle, while the argument and the traversal stack are both empty.
The resulting ARM expression, which combines these elements, is executed according
to the semantics of ARM in Table 0.2. Execution proceeds until the execution stack
consists of a recycle instruction, and the control stack contains only the bottom
element. In that case the traversal stack will be empty, and the argument stack
will contain exactly one term, being the normal form of t with respect to M, where
function symbols in this normal form may carry auxiliary superscripts c, which were
introduced in \Add Most General Rules". A �nal execution step produces this
normal form.

4.6 Example
In Section 3.7, the standard speci�cation for addition on natural numbers was trans-
formed into the following strati�ed simply complete MTRS:

plus(zero; y) ! plus
zero

(y)
plus

zero
(y) ! y

plus(succ(x); y) ! plus
succ

(x; y)
plus

succ
(x; y) ! succ(plus(x; y))

plus(x; y) ! plusc(x; y)

whereby all function symbols involved have locus 0. The transformation described
in Section 4.4 turns this MTRS into the following ARM program:

zero : build(zero; 0) � recycle
succ : build(succ; 1) � recycle
plus : match(zero; plus

zero
) �match(succ; plus

succ
) � goto(plusc)

plus
zero

: recycle

plus
succ

: push(succ) � goto(plus)
plusc : build(plusc; 2) � recycle

In the sequences for plus and plus
zero

, the redundant instructions skip(0) and
tdrop(0) have been omitted, respectively.
As an example, we show how this program derives 1+0 = 1, or, in other words, how

it reduces plus(succ(zero); zero) to its normal form succ(zero), by means of the state
transition rules for ARM in Table 0.2. Let P denote the program table above, and
note that the control stack of plus(succ(zero); zero) is zero � zero � succ � plus � bottom.
The execution proceeds as follows, whereby in each of its �fteen steps adaptations
of stacks have been underlined:

4. Abstract Rewriting Machine 24

hP; zero � zero � succ � plus � bottom; recycle; "A; "T i
! hP; zero � succ � plus � bottom;build(zero; 0) � recycle; "A; "T i

! hP; zero � succ � plus � bottom; recycle; zero; "T i
! hP; succ � plus � bottom;build(zero; 0) � recycle; zero; "T i

! hP; succ � plus � bottom; recycle; zero � zero; "T i
! hP;plus � bottom;build(succ; 1) � recycle; zero � zero; "T i

! hP;plus � bottom; recycle; succ(zero) � zero; "T i

! hP; bottom;match(zero;plus
zero

) �match(succ;plus
succ

) � goto(plusc); succ(zero) � zero; "T i

! hP; bottom;match(succ;plus
succ

) � goto(plusc); succ(zero) � zero; "T i
! hP; bottom;push(succ) � goto(plus); zero � zero; "T i

! hP; succ � bottom;goto(plus); zero � zero; "T i
! hP; succ � bottom;match(zero;plus

zero
) �match(succ;plus

succ
) � goto(plusc); zero � zero; "T i

! hP; succ � bottom; recycle; zero; "T i
! hP; bottom;build(succ; 1) � recycle; zero; "T i

! hP; bottom; recycle; succ(zero); "T i

! succ(zero)

If the twomatch instructions for plus are implemented as a hash table (see Remark
4.4), then this reduction takes one step less, because in that case step eight becomes
redundant.
In this example, the traversal stack is never used, simply because the function

symbols in the MTRS all have locus 0. This would change if in Section 3.7 we had
started from the following speci�cation for addition:

plus(x; zero) ! x

plus(x; succ(y)) ! succ(plus(x; y))

because in that case the resulting MTRS would incorporate function symbols with
locus 1. Then the reduction of the term plus(zero; succ(zero)) to its normal form
succ(zero) by means of the resulting ARM programwould take eight extra steps, due
to the swapping of terms between argument and traversal stack. This distinction
is caused by our choice of speci�city ordering, which enforces that arguments are
considered from left to right.

4.7 Heap
A heap is an abstract data type suitable for storing graphs representing terms (and
for recyclingmemory that is no longer referenced). A graph is stored as a collection of
structures with addresses (called `pointers' in implementor's jargon), and all system
components other than the heap represent a term by a single pointer into the heap.
Heaps are implemented such that given a pointer, the related term can be found in
O(1) time. The actual implementation of ARM uses a heap, see [25, Chapter 3],
to speed up copying of arguments, and swapping of terms between argument and
traversal stack. In this paper we did not go into the role of the heap, because it is
not vital for the ideas behind the ARM methodology, and it is somewhat obscuring
when trying to get these ideas across to the reader.
For e�ciency reasons it is important to access the heap as little as possible: \faster

implementations use less heap" [20, page 649]. We note that of the ARM instruc-
tions, only build requires write access to heap storage, and only match requires
read access to such storage, while the other instructions only access stack storage.
In order to avoid waste of memory space, terms in the heap with no pointers to

5. Related Work 25

them are to be reclaimed by means of a so-called garbage collector. See e.g. [11] and
[40, Chapter 17] for overviews of garbage collection techniques.

Remark 4.6 In principle, the problem of pattern matching with respect to non-linear left-hand
sides, which was discussed in the introduction, can be tackled by using so-called hash-consing [43] in
the heap. Basically, hash-consing means that a term in the heap that consists of a function symbol f
and addresses a1; :::; aar(f), gets as pointer hf; a1; :::; aar (f)i. With this addressing technique, checks
on syntactic equality can be performed in O(1). However, serious drawbacks of hash-consing are
that the construction of addresses is expensive, and that it combines badly with garbage collection.

5. Related Work
5.1 Innovations
In this section we discuss some advantages of the proposed compilation technique.
Unlike most functional languages, we do not need to distinguish `de�ned' func-

tion symbols (which occur at the head of the left-hand side of some rewrite rule)
from `constructors' (which occur in some normal form). Namely, owing to the trans-
formation into a simply complete TRS in Section 3.3, this distinction is obtained
automatically.
The technique of pattern matching using tree automata stems from [22]. The idea

to express pattern matching of TRSs in the language of TRSs itself was inspired by
Pettersson [39]. The notion of an MTRS, and the procedures in Sections 3.4 and
3.5, to transform a TRS into an MTRS, however, are entirely new.
Since we use an innermost rewriting strategy, pattern matching with respect to a

term only involves the syntactic structure of subterms that are in normal form. We
exploited this phenomenon, namely, only reducts in normal form are built on the
heap, by the build instruction, while outermost function symbols of other reducts
are pushed onto the control stack for future reference, by the push instruction,
see Section 4.4. As was mentioned in Section 4.7, economical use of the heap is
important for e�ciency reasons. In contrast, pattern matching with respect to
outermost rewriting uses the full syntactic structure of a term, so the outermost
strategy would require that all reducts are built on the heap.
Speci�city ordering is also important for the e�ciency of pattern matching. Firstly,

it enables to share several matchings in the minimal rule (3.2) in Section 3.4. Sec-
ondly, speci�city ordering causes thatmatch instructions are executed in sequence,
which makes it worth wile to combine such sequences in hash tables, see Remark
4.4.
Several abstract machines from the literature contain some form of control stack,

and most of them contain some form of argument stack. However, the traversal
stack, and the notion of a locus, are new. These two related concepts are essential
for the e�ciency of pattern matching on the level of ARM. Namely, consider a
minimal rule of type M1:

f(~x; g(~y); ~z) ! h(~x; ~y; ~z)

This rule is expressed in ARM as amatch(g; h) instruction (see Section 4.4), which
splices the arguments ~y in between the arguments ~x and ~z. If all arguments had
been stored on the argument stack, this splice operation would have taken O(j~x; ~yj).
However, using the locus function we are able to ensure that the �rst j~xj arguments
are on top of the traversal stack, while the remaining j~zj + 1 arguments are on

5. Related Work 26

top of the argument stack. Therefore, in practice this splice operation takes only
O(j~yj). While the function symbol g will always stem from the original signature, in
most cases the function symbol f will have been introduced during the minimization
process. This means that in general j~xj will be considerably larger than j~yj. Hence,
the traversal stack and the locus have a positive impact on the time complexity of
the match instructions.

5.2 Abstract Machines
An early abstract machine for the implementation of a functional language is Landin's
SECD machine [33], which he utilizes for the eager (i.e., innermost) evaluation of
higher-order function application. Two implementations that are related to Landin's
approach are by means of the functional abstract machine [10] and the categorical
abstract machine [13], respectively. In contrast, the abstract rewriting machine in
this paper involves the eager evaluation of �rst-order terms.
Several abstract machines have been used for lazy evaluation of higher-order func-

tion application, notably: the S-K reduction machine [45], the G-machine [24], the
three instruction machine [51], and the spineless tagless G-machine [41]. Basically,
a lazy rewriting strategy postpones (innermost) rewriting of certain so-called non-
strict arguments, in order to improve termination properties. Although ARM was
designed purely for innermost rewriting, laziness can be incorporated by means of a
source-to-source transformation, given one extra ARM instruction to capture graph
rewriting, see [28] and [25, Chapter 6]. A similar observation was made for the
categorical abstract machine [13, Section 4].
Fradet and Le M�etayer [17] present a compilation technique of higher-order func-

tion application into an abstract machine that leaves the reduction graphs intact.
Namely, the states of the machine are the reducts themselves. They state that
\performance considerations are not the main topic", and show that their approach
leads to simple correctness proofs. Hamel and Goguen [19] give a formal correctness
proof for their eager implementation of a higher-order algebraic speci�cation lan-
guage, using the tiny rewrite instruction machine. Their approach is more geared
towards provability than towards e�ciency, because environments are built explic-
itly on the heap, instead of on the cheaper stack. Klaeren and Indermark [30] give
a formal correctness proof for their eager implementation of an algebraic speci�ca-
tion language with recursive functions, using the abstract stack machine. Further
correctness proofs for abstract machines are presented in [35, 13].

5.3 Functional Languages
Backus [4] propagated the use of functional programming languages, and since then,
several of such languages have been implemented. The eager �rst-order equational
programming language Epic [48, 49] has been implemented by means of the ARM
technology. Other �rst-order languages with an eager implementation are ASF+SDF
[15] and Sisal [9]. Both languages are not compiled via an abstract machine.
There is a long tradition of eager higher-order functional languages, which dates

back to the implementation of McCarthy's Lisp [36], and Landin's proposal ISWIM
[34]. Lisp was succeeded by Scheme [42], and ISWIM was an inspiration for ML
[18], which in turn was succeeded by Standard ML [38]. Other eager higher-order
languages include Caml [50], which was implemented using the categorical abstract

References 27

machine, and Trafola [2], which was implemented by means of an abstract machine
called Trama. More recently, several lazy higher-order functional languages have
been implemented, notably: Miranda [46] using the S-K reduction machine, Lazy
ML [3] by means of the G-machine, and Haskell [23].
Hartel, Feeley et al. [20] compare the e�ciency of several functional programming

languages, including a prototype of Epic. The comparison of interpreted and non-
interpreted languages, which are compiled into an abstract or a concrete machine,
respectively, leads to the conclusion that \interpretive systems yield the worst per-
formance" [20, page 649]. This is not surprising, because interpreted systems have
to perform one more compilation step to reach the level of the concrete machine.
Furthermore, it is easier to import `smart' programming tricks and extra features
for non-interpreted languages. However, compilation into a concrete machine does
lead to programs that are more di�cult to maintain and document, which hampers
their development in the long run.
As for the comparison of lazy and eager evaluation, it is concluded that \non-strict

compilers do not achieve [...] the performance of eager implementations", and that
\interpreters for strict languages (Caml Light, Epic) do seem on the whole to be
faster than interpreters for non-strict languages (NHC, Gofer, RUFLI, Miranda)"
[20, page 649]. With respect to higher-order languages, it is remarked that \higher-
order functions are generally expensive to implement" [20, page 636]. In spite of
these observations, the achievements of for instance the lazy higher-order language
Haskell, implemented on a concrete machine, are impressive. There seems to be room
for a well-structured implementation of an eager �rst-order language, which, owing
to the diminished overhead, should be able to perform even better than current lazy
and/or higher-order languages.
References
1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Techniques and

Tools. Addison-Wesley, 1986.

2. M. Alt, C. Fecht, C. Ferdinand, and R. Wilhelm. TrafoLa-H subsystem. In B.
Ho�mann and B. Krieg-Br�uckner, eds., Program Development by Speci�cation
and Transformation: the PROSPECTRA Methodology, Language Family, and
System, LNCS 680, pp. 539{576. Springer, 1993.

3. L. Augustsson and T. Johnsson. The Chalmers Lazy-ML compiler. The Com-
puter Journal, 32(2):127{141, 1989.

4. J. Backus. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Communications of the ACM,
21(8):613{641, 1978.

5. J.C.M. Baeten, J.A. Bergstra, J.W. Klop, and W.P. Weijland. Term-rewriting
systems with rule priorities. Theoretical Computer Science, 67(2/3):283{301,
1989.

6. J.A Bergstra and M.G.J. van den Brand. A proposal for the �ASF family of
speci�cation languages: subequational programming with innermost reduction.
In preparation.

7. J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Speci�cation. ACM

References 28

Frontier Series, ACM Press in cooperation with Addison-Wesley, 1989.

8. J.A. Bergstra and J.W. Klop. Conditional rewrite rules: conuence and termi-
nation. Journal of Computer and System Sciences, 32(3):323{362, 1986.

9. D.C. Cann. The optimizing SISAL compiler: version 12.0. Manual UCRL-MA-
110080, Lawrence Livermore National Laboratory, 1992. Available via ftp as
sisal.llnl.gov/pub/sisal/OSC-manual.ps.

10. L. Cardelli. Compiling a functional language. In Proceedings ACM Symposium
on Lisp and Functional Programming, pp. 208{226. ACM, 1984.

11. J. Cohen. Garbage collection of linked data structures. ACM Computing Sur-
veys, 13(3):341{367, 1981.

12. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

13. G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine.
Science of Computer Programming, 8(2):173{202, 1987.

14. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed.,
Handbook of Theoretical Computer Science, Volume B, pp. 243{320. Elsevier,
1990.

15. A. van Deursen, J. Heering, and P. Klint, eds. Language Prototyping: An Alge-
braic Speci�cation Approach. AMAST Series in Computing 5, World Scienti�c,
1996.

16. W.J. Fokkink and J.C. van de Pol. Simulation as a correct transformation of
rewrite systems. In I. Pr��vara and P. Ru�zi�cka, eds., Proceedings 22nd Sympo-
sium on Mathematical Foundations of Computer Science (MFCS'97), Bratislava,
LNCS 1295, pp. 249{258, 1997.

17. P. Fradet and D. Le M�etayer. Compilation of functional languages by program
transformation. ACM Transactions on Programming Languages and Systems,
13(1):21{51, 1991.

18. M.J.C. Gordon, R. Milner, L. Morris, M.C. Newey, and C.P. Wadworth. A
metalanguage for interactive proof in LCF. In Proceedings 5th Symposium on
Principles of Programming Languages (POPL'78), Tucson, pp. 119{130, 1978.

19. L.H. Hamel and J.A. Goguen. Towards a provably correct compiler for OBJ3.
In M.V. Hermenegildo and J. Penjam, eds., Proceedings 6th Symposium on
Programming Language Implementation and Logic Programming (PLILP'94),
Madrid, LNCS 844, pp. 132{146. Springer, 1994.

20. P.H. Hartel, M. Feeley, M. Alt, L. Augustsson, P. Baumann, M. Beemster, E.
Chailloux, C.H. Flood, W. Grieskamp, J.H.G. van Groningen, K. Hammond, B.
Hausman, M.Y. Ivory, R.E. Jones, J.F.Th. Kamperman, P. Lee, X. Leroy, R.D.
Lins, S. Loosemore, N. Rjemo, M. Serrano, J.-P. Talpin, J. Thackray, S. Thomas,
H.R. Walters, P. Weis, and P. Wentworth. Benchmarking implementations of
functional languages with \pseudoknot", a oat-intensive benchmark. Journal
of Functional Programming, 6(4):621{655, 1996.

21. J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax de�nition

References 29

formalism SDF { reference manual. ACM SIGPLAN Notices, 24(11):43{75,
1989.

22. C.M. Ho�mann and M.J. O'Donnell. Pattern matching in trees. Journal of the
ACM, 29(1):68{95, 1982.

23. P. Hudak, S.L. Peyton Jones, and P.L. Wadler, editors. Report on the program-
ming language Haskell { a non-strict purely functional language, version 1.2.
ACM SIGPLAN Notices, 27(5):R1{R164, 1992.

24. T. Johnsson. E�cient compilation of lazy evaluation. In Proceedings ACM
Symposium on Compiler Construction, Montreal, ACM SIGPLAN Notices,
19(6):58{69, 1984.

25. J.F.Th. Kamperman. Compilation of Term Rewriting Systems. PhD thesis,
University of Amsterdam, 1996. Available at http://www.cwi.nl/�jasper.

26. J.F.Th. Kamperman and H.R. Walters. ARM { abstract rewriting machinery.
In Proceedings Computer Science in the Netherlands (CSN'93), pp. 193{204.
Stichting Mathematisch Centrum, 1993.

27. J.F.Th. Kamperman and H.R. Walters. Minimal term rewriting systems. In
M. Haveraaen, O. Owe, and O.-J. Dahl, eds., Proceedings 11th Workshop on
Speci�cation of Abstract Data Types, Oslo, LNCS 1130, pp. 274{290. Springer,
1995.

28. J.F.Th. Kamperman and H.R. Walters. Lazy rewriting on eager machinery.
In J. Hsiang, ed., 6th Conference on Rewriting Techniques and Applications
(RTA'95), Kaiserslautern, LNCS 914, pp. 147{162. Springer, 1995.

29. J.F.Th. Kamperman and H.R. Walters. Simulating TRSs by minimal TRSs: a
simple, e�cient, and correct compilation technique. Technical Report CS-R9605,
CWI, 1996. Available at http://www.cwi.nl/epic.

30. H. Klaeren and K. Indermark. E�cient implementation of an algebraic speci�ca-
tion language. In M. Wirsing and J.A. Bergstra, eds., Proceedings Workshop on
Algebraic Methods: Theory, Tools and Applications, Passau, LNCS 394, pp. 69{
90. Springer, 1987.

31. P. Klint. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering Methodology, 2(2):176{201, 1993.

32. J.W. Klop. Term rewriting systems. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, eds., Handbook of Logic in Computer Science, Volume I, Background:
Computational Structures, pp. 1{116. Oxford University Press, 1992.

33. P.J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308{320, 1964.

34. P.J. Landin. The next 700 programming languages. Communications of the
ACM, 9(3):157{166, 1966.

35. D. Lester. The G-machine as a representation of stack semantics. In G. Kahn,
ed., Proceedings 3rd Conference on Functional Programming Languages and
Computer Architecture, Portland, LNCS 274, pp. 46{59. Springer, 1987.

36. J. McCarthy. Recursive functions of symbolic expressions and their computation

References 30

by machine: part I. Communications of the ACM, 3(4):184{195, 1960.

37. J. McCarthy. Towards a mathematical science of computation. In Proceedings
Information Processing '62, pp. 21{28. North-Holland, 1963.

38. R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press,
1990.

39. M. Pettersson. A term pattern-match compiler inspired by �nite automata the-
ory. In U. Kastens and P. Pfahler, eds., Proceedings 4th Workshop on Compiler
Construction (CC'92), Paderborn, LNCS 641, pp. 258{270. Springer, 1992.

40. S.L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

41. S.L. Peyton Jones and J. Salkild. The spineless tagless G-machine. In D.B. Mac-
Queen, ed., Proceedings 4th Conference on Functional Programming Languages
and Computer Architecture, pp. 184{201. Addison-Wesley, 1989.

42. J.A. Rees and W. Clinger, editors. Revised3 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 21(12):37{79, 1986.

43. M. Sassa and E. Goto. A hashing method for fast set operations. Information
Processing Letters, 5(2):31{34, 1976.

44. S.R. Thatte. On the correspondence between two classes of reduction systems.
Information Processing Letters, 20(2):83{85, 1985.

45. D.A. Turner. A new implementation technique for applicative languages. Soft-
ware { Practice and Experience, 9(1):31{49, 1979.

46. D.A. Turner. Miranda: a non-strict functional language with polymorphic
types. In J.-P. Jouannaud, ed., Proceedings 2nd Conference on Functional Pro-
gramming Languages and Computer Architecture, Nancy, LNCS 201, pp. 1{16.
Springer, 1985.

47. H.R. Walters. On Equal Terms, Implementing Algebraic Speci�cations. PhD
thesis, University of Amsterdam, 1991. Available at http://www.cwi.nl/epic.

48. H.R. Walters and J.F.Th. Kamperman. EPIC: an equational language { abstract
machine and supporting tools. In H. Ganzinger, ed., Proceedings 7th Conference
on Rewriting Techniques and Applications (RTA'96), New Jersey, LNCS 1103,
pp. 424{427. Springer, 1996.

49. H.R. Walters and J.F.Th. Kamperman. EPIC 1.0 (unconditional), an equational
programming language. Technical Report CS-R9604, CWI, Amsterdam, 1996.
Available at http://www.cwi.nl/epic.

50. P. Weis and X. Leroy. Le Langage Caml. Inter�Editions, 1993.

51. S.C. Wray and J. Fairbairn. Non-strict languages { programming and imple-
mentation. The Computer Journal, 32(2):142{151, 1989.

