
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Program Plan Recognition For Year 2000 Tools

A. van Deursen, S. Woods, A. Quilici

Software Engineering (SEN)

SEN-R9712 July 31, 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9712
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Program Plan Recognition
For Year 2000 Tools

Arie van Deursen
Dept. of Software Engineering

CWI, P.O. Box 94079

1090 GB Amsterdam, The Netherlands

http://www.cwi.nl/�arie/, arie@cwi.nl

Steve Woods
Dept. of Electrical Engineering

University of Hawaii at Manoa

Honolulu, HI 96822, USA

sgwoods@spectra.eng.hawaii.edu

Alex Quilici
Dept. of Electrical Engineering

University of Hawaii at Manoa

Honolulu, HI 96822, USA

alex@spectra.eng.hawaii.edu

ABSTRACT

There are many commercial tools that address various as-
pects of the Year 2000 problem. None of these tools, how-
ever, make any documented use of plan-based techniques
for automated concept recovery. This implies a general
perception that plan-based techniques is not useful for this
problem. This paper argues that this perception is incorrect
and these techniques are in fact mature enough to make a
significant contribution. In particular, we show representa-
tive code fragments illustrating “Year 2000” problems, dis-
cuss the problems inherent in recognizing the higher level
concepts these fragments implement using pattern-based
and rule-based techniques, demonstrate that they can be
represented in a programming plan framework, and present
some initial experimental evidence that suggests that cur-
rent algorithms can locate these plans in linear time. Fi-
nally, we discuss several ways to integrate plan-based tech-
niques with existing Year 2000 tools.

1991 Computing Reviews Classification System: D.2.2,
D.2.3, D.2.7., D.3.4, F.3.1, I.2.2.

Keywords and Phrases: Software maintenance, program
understanding, plan-based concept recovery, COBOL,
Y2K.

Note: To appear inProceedings of the 4th IEEE Working
Conference on Reverse Engineering, October, 1997

Note: Work carried out under project SEN-1.1,Software
Renovation.

1 Introduction

The Year 2000 problem (generally abbreviated Y2K) is
that many existing software systems that manipulate dates
will behave incorrectly at the turn of the millennium. Y2K
is one of the most severe problems the software industry

has ever faced [7, 16]. As a result, many tools have been
developed to address the Y2K problem [10, 24]. These
tools deal with system inventory, impact analysis, project
planning, code remediation, testing, and so on, using ex-
isting technology such as lexical pattern matching (grep-
like facilities), repositories, parsing, and attribute gram-
mars [1].

Surprisingly, however, none of these tools makes any
apparent use of the results of research in using plan-based
techniques for concept recovery [15, 18, 11, 8, 5, 2, 22].
A program plan describes common combinations of low-
level program actions that implement higher-level design
concepts (such as “traverse a list” or “read a file line by
line”). A plan-based approach recovers design concepts by
taking a library of program plans and automatically iden-
tifying the pieces of source code that actually implement
such plans. An obvious application of this approach to
Y2K is to construct a library consisting of typical correct
date-manipulating plans (such as incrementing or compar-
ing years, checking leap years, and so on). Furthermore, a
list of typical, often encountered errors can be represented
as plans in this library. Given such a library, many Y2K
infections could be located, classified, and potentially cor-
rected automatically.

In this paper, we study what plan-based techniques for
concept recovery have to offer Y2K tools. In particular,
we present examples of representative Y2K-related code
fragments, discuss existing Y2K technology and some no-
table shortcomings, describe available plan-based technol-
ogy and its relationship to existing Y2K tools, and discuss a
scalability experiment in recognizing Y2K program plans.

Our focus is on recognizingleap year computations.
Although incorrect leap year computations are just one
aspect of the millennium problem, the result we present
can easily be generalized to other Y2K-related computa-
tions, such as recognizing computations relying on date
windows. In addition, leap year problems can be substan-
tial. Many programs fail to recognize the year 2000 as a

1

leap year1, considering it as a century year without rec-
ognizing it as a year divisible by 400 as well [14, Chap-
ter 4]. An example of the cost that might be involved is
the $1,000,000 damage caused by the fact that the control
computers of a New Zealand aluminum smelter simultane-
ously went down as they could not deal with February 29th
1996 [17].

2 Current Y2K Tool Support

Various tools are available to support a Y2K conversion
[9, 4, 10]. Most of the existing Y2K tools are focused on
two areas:

� Locating Y2K related codeby identifying date-
manipulating elements in source code and then us-
ing slicing techniques to identify dependent code.2

This identification is done by examining variable dec-
larations (e.g., noting date-related identifiers such as
Year orDate and related data formats such as Cobol
pictures of the form MM-DD-YY) and expressions
and statements (e.g., noting expressions involving key
constants such as 4, 28, 29, 100, 365, 2000, and so
on).

� Supporting Y2K code changesby identifying sus-
picious expressions and statements within the code
(e.g., year increments and comparisons involving date
elements) and making some automatic repairs (e.g.,
widening year fields to four digits).

Much of the process of locating Y2K code, and some
of its modification, is automated, although it may require
some assistance from the programmer (such as suggest-
ing program-specific candidate identifier names). How-
ever, the heuristic recognition of Y2K code leaves open
the possibility of both false positives (recognizing code as
potentially date-related when it is not) and false negatives
(failing to recognize code as date-related when it is). It’s
easy to avoid recognizing false negatives simply by consid-
ering everything to be date-related, but at a cost of having
more false positives. Therefore, the main challenge of Y2K
tools is to avoid false positives.

2.1 A Y2K Leap-Year Example

Figure 1 is an example Y2K fragment (taken from real-
world legacy COBOL code) that correctly uses a four-
digit date, rather than a two-digit date, but incorrectly

1Leap years are those years that are divisible by 4 but not by 100,
unless they are divisible by 400 (so 1996 and 2000 are leap years, 1900
and 2100 are not).

2As well as to identify dependencies on control input, data dictionar-
ies, screen definitions, and so on.

01 CONTRACT-INFO
...
05 CONTRACT-SM PIC 99.
05 CONTRACT-SD PIC 99.
05 CONTRACT-SY PIC 9999.

...
DIVIDE CONTRACT-SY BY 4 GIVING Q REMAINDER R-1
DIVIDE CONTRACT-SY BY 100 GIVING Q REMAINDER R-2
...
MOVE ’F’ TO LY
IF R-1 = 0 AND R-2 NOT = 0

MOVE ’T’ TO LY
END-IF
...
IF LY = ’T’

[leap year related code]
END-IF

Figure 1: Example of non-compliant Y2K code.

tests whether the variableCONTRACT-SYis a leap year.
This means that when processing dates after February 28th,
2000, errors may occur in computations involving the num-
ber of days (e.g., interest payments) or the day of the week
(e.g., determining weekend days for time locks).

Because the definition of a leap year is relatively com-
plex and many programmers did not have a correct defini-
tion available while programming, leap year computations
are often done incorrectly and cases are frequently missed
[14]. This is a big problem for Y2K tools, since it provides
further evidence that it is not sufficient to carefully replace
two-digit dates with four-digit dates.

The ideal Y2K tool should identify this chunk of code
as Y2K related (despite its using a four digit date), iden-
tify the pair of divisions and remainder tests as being an
incorrect check for whether we have a leap year, and au-
tomatically transform that portion of the code to correctly
test for leap years, as shown in Figure 2.3 However, this ex-
ample illustrates several problems with current approaches
to the Y2K problem.

2.2 Pattern-Based Techniques

One approach to locating Y2K-relevant code is to write
simple patterns, either lexically-based (dealing directly
with the source code entities), AST-based (dealing with the
internal nodes of the abstract syntax tree), or a combination
of the two (looking for names in a particular place in the
tree). This approach suffers from three problems.

First of all, it is difficult for pattern-based techniques
to accurately recognize Y2K instances, without admitting
many false positives. Straightforward lexical searches for
standard identifiers such asYEARwill fail to flag the frag-
ment of Figure 1. Extending them to try more complex

3This example shows a simple change that fixes the problem solely
through an insertion of new code.

2

01 CONTRACT-INFO
...
05 CONTRACT-SM PIC 99.
05 CONTRACT-SD PIC 99.
05 CONTRACT-SY PIC 9999.

...
DIVIDE CONTRACT-SY BY 4 GIVING Q REMAINDER R-1
DIVIDE CONTRACT-SY BY 100 GIVING Q REMAINDER R-2
DIVIDE CONTRACT-SY BY 400

GIVING Q-3 REMAINDER R-3
...
MOVE ’F’ TO LY
IF (R-1 = 0 AND R-2 NOT = 0) OR R-3 = 0

MOVE ’T’ TO LY
END-IF
...
IF LY = ’T’

[leap year related code]
END-IF

Figure 2: A fixed version of the Y2K code example.

lexical heuristics (such as assuming that variables ending
in Y are date-related) will succeed for our example—at the
cost of false positives (such as hypothesizing thatSALARY
is date-related). The obvious alternatives, such as examin-
ing the AST for expressions that involve dividing by 4 and
storing the remainder, will also suggestCONTRACT-SYas
a possible year, at the cost of other false positives (such as
hypothesizing that computing aQUARTERLY-PAYMENT
from anANNUAL-PAYMENTis doing a date-related com-
putation). Another seemingly good idea, checking for di-
vision by 100, is just as bad, as that is a common way to
handle percentages.

In fact, accurately identifying this code as date-related
involves looking at interrelationships between code frag-
ments. In particular, at a minimum it requires noting that
the same value is being divided by 4 and 100 and the
remainders computed in the division are later compared
against zero.

Secondly, it is difficult for pattern-based tools to accu-
rately determine the specific code at the heart of a Y2K
problem. Thus, even if the above heuristics could be re-
fined slightly to identify this example, it’s still necessary
to identify the source of the problem to the user. While
it’s possible to provide the user with the entire data slice
related to this code as potentially problematic, that is es-
sentially a false positive for most of the code in that slice.
Alternatively, simply tagging the divisions as suspicious is
also insufficient, as the set of suspicious code should in-
clude the relatedIF that tests the remainders. In fixing the
code, however, it’s necessary to do one of two things: ei-
ther ensure thatR-1 andR-2 have appropriate values after
the leap-year computation or modify the test in the subse-
quentIF .

Finally, it is difficult for pattern-based tools to verify

01 DATE.
02 DAY PIC 99.
02 MONTH PIC 99.
02 YEAR PIC 9999.
02 CCYY REDEFINES YEAR

03 CC PIC 99.
03 YY PIC 99.

01 LEAP PIC X.
...
MOVE ’F’ TO LEAP.
DIVIDE YEAR BY 4 GIVING Q REMAINDER R-1.
IF R-1 = 0

IF YY = 0
DIVIDE YEAR BY 400 GIVING Q REMAINDER R-2
IF R-2 = 0

MOVE ’T’ TO LEAP.
END-IF.

ELSE
MOVE ’T’ TO LEAP.

END-IF
END-IF
...
IF LEAP = ’T’ THEN

[Leap year-related code]
END-IF

Figure 3: Another Leap Year Example

that a particular piece of code is Y2K compliant. Obvi-
ously, not all Y2K-related code is in error. Figure 3 is
a correct leap year computation that the programmer has
conveniently written using nice clear names, so that it is
easy to flag as being date-related. However, simply pro-
viding the user with this slice of code and suggesting that
it might be problematic is not particularly useful. The tools
should be able to distinguish correct from incorrect code.

2.3 Rule-Based Techniques

One alternative to a pattern-based approach is a rule-based
approach. Rule-based techniques examine collections of
program components and their relationships. The assump-
tion is that problematic code fragments can be described by
rules operating on the abstract syntax tree and efficiently
recognized by a deductive rule-based inference engine. In
particular, the assumption is that we can effectively write
specific rules to identify known correct and incorrect date
examples. As an example of the potential application to
Y2K, Figure 4 is a rule for recognizing the fragment of
Figure 1.

At first sight, the rule-based approach seems to address
many of the problems with the simpler, pattern-based ap-
proach. The rule antecedents take care of verifying that
particular program entities exist and that certain relation-
ships hold between them (e.g., that there is a division by
4, that there’s an equality test on the result of that divi-
sion, and so on). The rule consequences are responsi-
ble for notifying us about which particular correct or in-

3

IF
Numeric-Variable(?V)
Exists(Division(?V, 4, ?Q, ?R1), ?Div-1)
Exists(Equality-Test(?R1, 0), ?Test-1)
Data-Dependency(?Test-1, ?Div-1, ?R1)
Exists(Division(?V, 100, ?Q, ?R2), ?Div-2)
Exists(Inequality-Test(?R2, 0), ?Test-2)
Data-Dependency(?Test-2, ?Div-2, ?R2)
Same-Data(?Div-1, ?Div-2, ?V)

THEN
Is-Year(?V)
Recognized(Invalid-Leap-Year-1)

Figure 4: A rule to recognize a particular invalid leap year
computation.

correct date-manipulation was detected, what variables in
that code were date-related, and possibly what transforma-
tion can be used to correct the code if an erroneous date-
manipulation is detected.

Unfortunately there is one important problem with the
use of general rules in combination with a deductive rule-
based inference engine:scalability. In general, rule-based
systems suffer scalability problems when they have large
fact bases and many complex, interacting rules. In a Y2K
setting, the programs to be inspected will be large, result-
ing in a large database of program facts (describing the pro-
gram’s components, control flow, and data flow). More-
over, there will be many rules covering the many funda-
mentally different ways to implement various Y2K-related
computations. Last but not least, the rules will be com-
plex, because each rule has potentially many antecedents
describing the pieces of a Y2K-related computation and
the relationships between those pieces.

There are two approaches to dealing with scalability
problems in rule-based systems. One approach is to mod-
ify the rules with additional information about how they
are used (exactly when each should be applied, the order
to use to process antecedents, and so on). The drawback to
this approach is that placing this control information into
rules makes them complex, hard-to-maintain, and difficult
to debug. The other is to try to provide a special-purpose
engine that is targeted toward efficiently processing a par-
ticular class of rules. This approach is more attractive, but
can require considerable effort in finding an appropriate
engine.

We have taken the latter option, using plan-based tech-
niques to overcome these scalability problems. These tech-
niques can be thought of as combining a special class of
rules (the plans) with with a dedicated engine optimized
for recognizing applications of rules from this class. Re-
cent experiments have provided some initial evidence that
these plan-based techniques do, in fact, scale [13].

Annotated AST

Plan Recognizer

Plan Library

Correct
Y2K Plans

Incorrect
Y2K Plans

Plan Instances

Recognized

Program
Source

Parser

AST

Canonicalizer

Canonicalized AST

Flow Generator

Date Analyzer

Flow-Annotated AST

Figure 5: A straightforward architecture for recognizing
Y2K program plans.

3 Plan-Based Concept Recovery for
Y2K

Figure 5 shows an adaptation of a standard plan-based ar-
chitecture to address the Y2K problem. The source pro-
gram is fed into a parser for building an abstract syntax tree
(AST), which is then passed to a canonicalization tool that
handles tasks such as regularizing expressions in the AST
(e.g., modifying comparisons to use only a subset of the re-
lational operators) and to static analysis tools that produce
control-flow and data-dependency graphs.

In addition, the source is fed into a Static Date Analyzer
(SDA). The SDA contains “datedness” inference technol-
ogy currently available in Y2K tools [4, 1]. Its tasks are to
find initial date seeds based on lexical pattern matching on
variable names, PIC clauses, and so on, and to propagate
these date seeds according to the data flow. Effectively,
the SDA phase associates date types with variables. These
date types can be used in the plan library, and to reduce the
search space when looking for these plans. Typically, the
SDA phases only marks variables as date related or not; it
does not yet decide about correct/incorrect constructs.

The plan recognizer is a special purpose engine that is

4

given a library of Y2K plans and that tries to locate in-
stances of them in the canonicalized AST [8, 2, 18]. Par-
ticular plan recognition engines differ in the details, but
they all describe plans in terms of syntactic, data, and con-
trol flow dependencies, and view plan recognition as an
explicit process of matching this description.

3.1 Our Approach To Plan Recognition

Our particular approach to plan recognition represents
plans as a combination of combination of components and
constraints (in the spirit of the Concept Recognizer [8] and
DECODE [2]) and treats recognizing a program plan as a
constraint satisfaction problem [23, 12, 20, 21].

In particular, plan components are variables, the
types of components and some constraints on compo-
nent attribute values are node constraints, and the inter-
component constraints are arc constraints. We then use a
modified version of a standard forward-checking with dy-
namic rearrangement constraint satisfaction engine to lo-
cate instances of plans in the code [13].4 The engine op-
erates breadth first, checking all possible applications of a
given rule before moving on, and using properties of the
constraints and the information available in the AST and
flow-graph to direct the actual rule-matching process.

3.2 An Example Plan

Figure 6 is an example plan in the component-and-
constraint representation. This plan is suitable for recog-
nizing a Y2K code fragment similar in function to the one
in Figure 1.

The components are syntax tree entities or sub-plans.
This example specifies six components: two remainder
computations, an IF statement, an equality test, an inequal-
ity test, and a logical AND. Any program containing these
six components matches the plan, provided it also meets
the plan’s constraints.

These constraints can be restrictions on particular at-
tributes of the components. For example, theyear vari-
able must be numeric, and the divisors must be constants
with values 4 and 100. Alternatively, the constraints can tie
the components together. For example, theSharedDep
constraint specifies that the same value is divided in the
two divisions. Similarly, the data dependencies connect
the results of the divisions to the tests and the test results
to the AND that combines them.

4The algorithm underlying this engine improves upon earlier work by
carefully exploiting particular similarities in the graph structures of source
programs and program plans.

plan Incorrect-Leap-Year-1(In: ?year, Out: ?out)
isa Incorrect-Leap-Year-Plan

recognize
Incorrect-Leap-Year-1(Year: ?year, Status: ?out)

components
Divide1:

REMAIN(Src1: ?year, Src2: ?divby1, Rem: ?rem1)
Divide2:

REMAIN(Src1: ?year, Src2: ?divby2, Rem: ?rem2)
IfCond:

IF(Cond: ?test3,
Then: ?stmt-then, Else: ?stmt-else)

EqTest1:
EQ(Src1: ?rem1, Src2: ?zero, Dest: ?t1)

EqTest2:
NOT-EQ(Src1: ?rem2, Src2: ?zero, Dest: ?t2)

EqTest3:
AND(Src1: ?test1, Src2: ?test2, Dest: ?out)

constraints
Numeric-Field(?year)
Constant-Value(?divby1, 4)
Constant-Value(?divby2, 100)
Constant-Value(?zero, 0)
SharedDep(Divide1, Divide2, ?year)
DataDep(Divide1, EqTest1, ?rem1)
DataDep(Divide2, EqTest2, ?rem2)
DataDep(EqTest1, EqTest3, ?t1)
DataDep(EqTest2, EqTest3, ?t2)
DataDep(EqTest3, IfCond, ?out)

Figure 6: A plan that recognizes our earlier leap year com-
putation.

3.3 The Y2K Plan Library

The full Y2K plan library must have plans that cover the
typical computations involving dates.5

It can be organized according to the following traits:

� The overall scheme for representing years (e.g., a
four-digit year, a two-digit (sliding) window, or a two-
digit encryption/encoding).

� The type of date representation used (e.g., YYDDD,
YYYYMMDD, DDMMYYYY, and so on).

� The overall purpose of the plan (e.g., leap year detec-
tion, day-of-the-week determination, field-format de-
termination, date-ordering, duration computation, and
so on).

The library will not be able to containall correct or
incorrect plans. However, the library can contain plans
that capturetypicalcorrect and incorrect fragments and can
grow over time as more programs are examined.

5See [6, p.1-2] for a list of Y2K exposures that can be used as a starting
point for finding such typical computations.

5

4 Applying Plan-Based Techniques
to Y2K

There are two key issues in applying plan-based techniques
to Y2K: the feasibility of capturing many existing leap year
computations in plans, and the scalability of the algorithm
for locating plan instances. In this section, we use leap
year examples to illustrate how these two issues can be ad-
dressed.

4.1 Using Plans to Capture Leap Year Com-
putations

Ideally, a small set of plans is all that is necessary to cap-
ture a significant fraction of actual leap year computations
in code. We have examined a large set of COBOL code
(several hundred thousand lines) to determine whether this
may indeed by the case. We have found 15 different correct
and incorrect leap year computations in this set of code,
and these appear to be recognizable using 5-10 plans, de-
pending on what assumptions are made about the overall
architecture of the plan recognition system.

The number of plans needed and the completeness of
the resulting plans depends on the recognition technol-
ogy used. Simply using an AST annotated with flow-
representation allows us to ignore differences in variation
in the order of divisions and tests [19]. In addition, simple
expression simplification and reordering techniques (e.g.,
always using less than for comparisons rather than greater
than, treating nested IFs as ANDs, simplifying negated
conditions by switching the IF and ELSE branches, and so
on), allow us to ignore many other variations. And finally,
restructuring techniques such as GOTO elimination and ex-
pansion of non-recursive procedures allow us to have plans
that deal with relatively simple control flow.

In general, the more powerful the canonicalization com-
ponent, the fewer plans we need to recognize higher-level
variations. With leap years, for example, one important
issue is that there are several different ways a value can
be divided by 100 within COBOL without using an ex-
plicit division. Figure 3 (our earlier example of a correct
leap computation) takes advantage of the implicit division
that results from using REDEFINE clauses. It redefines the
date as a century field and a year field, and it then checks
whether the two-digitYY sub-field equals zero instead of
testing whether the remainder of dividing the four-digit
field YEARby 100 is zero.

Implicit divisions, however, can be handled by postpro-
cessing the AST before the plan recognition phase begins.
In particular, whenever there is an assignment to a rede-
fined field, it’s necessary to insert appropriate divisions or
remainders for the pieces of that field. Assuming that has

COMPUTE Q = YEAR / 4.
COMPUTE R = YEAR - (Q * 4).

(a) Computing a remainder using integer division

05 TMP PIC V9(02).
...
COMPUTE TMP = YY / 4.

(b) Computing a remainder using a variable that can store only
two digits behind the decimal point.

Figure 7: Several different ways to compute COBOL re-
mainders.

been done, our example plan will recognize the above leap
year computation as well, without change.

We can reduce the number of plans needed to recognize
high-level concepts, such as leap-years, by providing sup-
porting plans for recognizing low-level details. For exam-
ple, using a “DIVIDE GIVING” construct is only one way
to compute a remainder. Figure 7 shows two alternatives.
However, both of these can be recognized by simple plans,
allowing our original plan to recognize computations with
the same high-level structure.

A factor that increases the number of plans is the need
to detect incorrect date computations, such as locating leap
year computations where the code does not correspond to
the correct definition of a leap year. However, it appears
that there are only a few categories of these incorrect com-
putations, and these involve either forgetting one or more
divisions (e.g., failing to divide by 400) or explicitly test-
ing for specific years (e.g., explicitly checking whether the
year is 92 or 96). The first category can be addressed by
having different plans for different combinations of divi-
sions, although these are similiar in structure to our exam-
ple plan. The second category can be addressed by a single,
general plan which an explicit comparison as a component,
and which requires through constraints that the compari-
son involve a year and a numeric value. The “year” con-
straint assumes that certain variables have been pre-labeled
as years, either by a human or by the SDA component.

The other factor that increases the number of plans is the
sheer volume of relatively specialized uses of dates. Fig-
ure 8 shows one example, with a computation that deter-
mines whether the current year and the next year are both
leap years.

4.2 A Scalability Experiment

The other important factor in the application of plan-based
techniques to Y2K technology is the speed of the plan
recognition engine. We performed an experiment in rec-
ognizing the leap year plan shown in Figure 9. This plan is
a more complicated version of Figure 6, using two nested

6

MOVE ’F’ TO LEAP-THIS-YEAR
MOVE ’F’ TO LEAP-LAST-YEAR
DIVIDE YEAR BY 4 GIVING Q REMAINDER R.
IF R EQUAL 0

MOVE ’T’ TO LEAP-THIS-YEAR
ELSE

IF R EQUAL 1
MOVE ’T’ TO LEAP-LAST-YEAR

END-IF
END-IF

Figure 8: A computation that determines whether the cur-
rent or previous year is a leap year.

plan Incorrect-Leap-Year-2(In: ?year, Out: ?out)
isa Incorrect-Leap-Year-Plan

recognize
Incorrect-Leap-Year-2(Year: ?year, Status: ?out)

components
Divide1:

REMAIN(Src1: ?year, Src2: ?divby1, Result: ?rem1)
EqTest1:

EQUAL(Src1: ?rem1, Src2: ?zero, Dest: ?t1)
IfCond1:

IF(Cond: ?test1,
Then: ?stmt-then, Else: ?stmt-else)

EqTest2:
EQUAL(Src1: ?year, Src2: ?zero, Dest: ?t2)

IfCond2:
IF(Cond: ?test2,

Then: ?stmt-then, Else: ?stmt-else)
Divide2:

REMAIN(Src1: ?year, Src2: ?divby2, Result: ?rem2)
EqTest3:

EQUAL(Src1: ?rem2, Src2: ?zero, Dest: ?out)
constraints

Numeric-Field(?year)
Constant-Value(?zero, 0)
Constant-Value(?divby1, 4)
Constant-Value(?divby2, 400)
DataDep(Divide1, EqTest1, ?rem1)
DataDep(EqTest1, IfCond1, ?t1)
Control-Flow(IfCond1, TRUE, IfCond2)
DataDep(EqTest2, IfCond2, ?t2)
Control-Flow(IfCond2, TRUE, Divide2)
SharedDep(Divide2, IfCond2, ?year)
Control-Flow(IfCond2, TRUE, Divide2)

Figure 9: A second incorrect leap year plan.

if statements instead of the AND clause.
Our current experimental testbed is tied to C language

programs, precluding COBOL experiments at this stage. In
our experiment, we first translated this plan into a lower-
level representation tied to our AST representation for C
programs. The result is a plan with 21 components and 28
constraints. We then constructed C programs of varying
sizes, from 100 to 10,000 lines, containing one instance
of this plan within each 100 lines of code. We didn’t just
use random C programs because we wanted to be able to
have some control over how many instances were present

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Number of Program Components

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

N
u

m
b

e
r

o
f
C

o
n

s
tr

a
in

t
C

h
e

c
k
s

 Sample-Variance-18-37 Plan
 Average-Array-8-14 Plan
 Y2K-Leap-Year2-21-28 Plan

Figure 10: The results of our search for our Y2K Leap Year
plan.

in programs of different sizes. Finally, we used constraints
checked as our measure of effort.

Figure 10 shows the results, along with comparisons to
other plans we have searched for in programs of similar
sizes. It takes linear effort (of about 1.7 evaluated con-
straints per line of code) to recognize instances of this plan.
It took approximately 30 seconds to locate and find all in-
stances of this plan in the 10,000 line program, using an
unoptimized Lisp implementation of our plan recognition
algorithm running on a Sun workstation.

4.3 Modifying Y2K Tools

Assuming our performance results hold up, we can sig-
nificantly improve Y2K environments by using plan-based
techniques to recognize design concepts.

In particular, the recognition of correct plans helps us
eliminate areas of date-related slices from further user con-
sideration, and also allows us to highlight the areas of those
slices that were not recognized as part of a plan. This nar-
rows down the part of the program that must be examined
by the user. Along the same lines, recognizing incorrect
plans helps us point out areas that must be fixed, while in-
dicating precisely what the problem with that code is.

The reverse is true as well. Hooking the plan recog-
nition engine into current Y2K environments offers the
chance to heuristically improve its performance. If, for ex-
ample, we know that a particular variable is a year (perhaps
because its name isYEAR), we can reduce the amount of
effort necessary to recognize date-related plans. In partic-
ular, with the plan Incorrect-Leap-Year-2 we can reduce

7

the sets of candidates for the EqTest1 and EqTest3 compo-
nents (theEQUALtests on the remainders) by eliminating
anyEQUALinvolving YEAR. That’s because those tests in-
volve variables that are known not to be years. Similarly, if
we know that a variable is not a year (perhaps because the
user has determined that for us), we can further reduce the
candidate sets for components. In Incorrect-Leap-Year-2,
for example, we can reduce the relevantREMAINs to only
those whose numerand is a year, eliminating the rest.

These are only several of the more obvious ways that an
effective plan engine can fits into the overall Y2K architec-
ture. There are undoubtably others.

5 Future Work

Now that we have some initial empirical evidence of the
scalability of our approach to locating Y2K-related plans,
we are planning on connecting our recognition engine up
to the output of a COBOL parser and flow-analyzer and
determining its performance on recognizing a number of
instances of Y2K code fragments discussed in [3] in a col-
lection of real-world COBOL programs. These code frag-
ments include a number of different examples of leap year
and windowing-related Y2K code fragments. The result of
this experiment will go a long way toward validating the
apparent linear performance of our plan recognizer.

Along the same lines, we are also planning to perform
experiments that measure the performance improvements
possible within our recognizer when we have determined in
advance (through heuristic means) that a particular variable
is actually a particular type of date-related value.

Assuming that our recognizer’s performance is vali-
dated, we are planning on exploring how the plans we rec-
ognize can be hooked to slices to display only the relevant
part of the slice that requires changes, as well as to transfor-
mations to automatically repair Y2K code fragments when
they have been recognized.

Last but not least, applying reconnition technology to
Y2K will be an excellent opportunity to experiment with
building up a plan library. While experimenting, we will
be able to evaluate the library’s completeness, its effective-
ness in detecting real-world Y2K problems, and the effort
necessary in maintaining the plan library.

6 Conclusions

This paper argues that plan-based concept recovery can
play an important role as a key component of real-world
tools addressing Y2K issues.

In particular, we have discussed several problems with
the pattern-based and rule-based approaches to locating

potentially problematic Y2K code fragments, and we have
demonstrated that our plan-based approach addresses these
drawbacks. In addition, we have shown how to represent
leap-year plans and provided experimental evidence that
they can be recognized in time that is linear with the size
of the program. Finally, we have indicated several ways
plan-based concept recovery and Y2K environments fit to-
gether.

A Y2K tool encompassing the plan-based techniques as
outlined in this paper would have several advantages.

� It would significantly increases the level of automa-
tion for the Y2K analysis phase. The successful
recognition of date-related design concepts has the
potential to greatly reduce the number of false posi-
tives that must be examined and discarded by hand.

� It would allow for the automatic location and modifi-
cation of negative cases, even when a four-digit date
is used. Incorrect Y2K plans can be augmented with
accurate transformation rules for automatic repair.

� It would allow for the thevalidationof the Y2K pro-
cess byexplicit inspectionof the list of examples.
Many tools hide their technology out of fear of com-
petition. Large users may be unwilling to hand over
mission critical software to a tool whose validity can-
not be assessed. Plans provide an explicit list of cases
covered that help users assess tool quality and appli-
cability.

� It would support analyzing code that is already Y2K
compliant. In particular, it would supportregression
analysis: Verifying that software that was made Y2K
compliant in an early stage but had to undergo regular
maintenance afterwards is still Y2K compliant.

Plan-based techniques can do a lot to help address the
Y2K problem. They should not be ignored due to an incor-
rect perception that they don’t scale.

Acknowledgements

Arie van Deursen was sponsored in part by bank ABN
Amro, software house DPFinance, and the Dutch Ministry
of Economical Affairs via the Senter Project #ITU95017
“SOS Resolver”. Steve Woods was sponsored in part
by the Natural Sciences Engineering Research Council of
Canada (NSERC). Alex Quilici is sponsored in part by an
NSF Research Initiation Award.

We thank the anonymous reviewers of WCRE97 for
their helpful comments.

8

References

[1] S. A. Bohner and R.S. Arnold.Software Change Im-
pact Analysis. IEEE Computer Society Press, 1996.

[2] D. Chin and A. Quilici. DECODE: A cooperative
program understanding environment.Software Main-
tenance: Research and Practice, 8:3–33, 1996.

[3] A. van Deursen, P. Klint, and A. Sellink. Validating
year 2000 compliance. Technical report, CWI – Cen-
trum voor Wiskunde en Informatica, Department of
Software Technology, 1997. To appear. Also Chap-
ter 2 of Program Analysis for System Renovation –
Resolver Release I.

[4] J. Hart and A. Pizzarello. A scaleable, auto-
mated process for year 2000 system correction. In
Proceedings of the 18th International Conference
on Software Engineering ICSE-18, pages 475–484.
IEEE, 1996. URL: http://www.peritus.
com/1c1d.htm .

[5] J. Hartman. Workshop technical introduction. In
Workshop Notes, AAAI Workshop on AI and Auto-
mated Program Understanding, 10th National Con-
ference on Artificial Intelligence, 1992. URL:http:
//www.cis.ohio-state.edu/˜hartman/ .

[6] IBM. The year 2000 and 2-digit dates; a guide for
planning and implementation, 1996. URL:http:
//www.software.ibm.com/year2000/ .

[7] C. Jones. The global economic impact of the year
2000 software problem. URL:http://www.spr.
com/library/y2k00.htm , 1997. Software Pro-
ductivity Research, Inc.

[8] W. Kozaczynski, J. Ning, and A. Engberts. Program
concept recognition and transformation.IEEE Trans-
actions on Software Engineering, 18(12):1065–1075,
1992.

[9] L. Markosian, P. Newcomb, R. Brand, S. Burson,
and T. Kitzmiller. Using an enabling technology to
reengineer legacy systems.Communications of the
ACM, 37(5):58–70, 1994. Special issue on reverse
engineering.

[10] Ph. H. Newcomb and M. Scott. Requirements for
advanced year 2000 maintenance tools.IEEE Com-
puter, 30(3):52–57, 1997.

[11] A. Quilici. A memory-based approach to recognizing
programming plans.Communications of the ACM,
37(5):84–93, 1994.

[12] A. Quilici and S. Woods. Toward a constraint-
satisfaction framework for program understanding.
Journal of Automated Software Engineering, 4(3),
1997.

[13] A. Quilici, S. Woods, and Y. Zhang. Some new ex-
periements in program plan recognition. InProc. 4th
IEEE Working Conference on Reverse Engineering.
IEEE Computer Society, 1997. To appear.

[14] B. Ragland.The Year 2000 Problem Solver: A Five
Step Disaster Prevention Plan. McGraw-Hill, 1997.

[15] C. Rich and R. Waters.The Programmer’s Appren-
tice. Frontier Series. ACM Press, Addison-Wesley,
1990.

[16] D. Smith, H. Müller, and S. Tilley. The year 2000
problem: Issues and implications. Technical Re-
port CMU-SEI-97-TR-002, Software Engineering In-
stitute, 1997.

[17] J. Towler. Leap-year software bug gives “million-
dollar glitch”. The Risks Digest, 18(74), 1996.
URL: http://catless.ncl.ac.uk/Risks/
18.74.html#subj5 .

[18] L. M. Wills. Automated program recognition: A fea-
sibility demonstration.Artificial Intelligence, 45(1–
2):113–171, September 1990.

[19] L. M. Wills. Automated Program Recognition by
Graph Parsing. PhD thesis, MIT, 1992.

[20] S. Woods.A Method of Program Understanding us-
ing Constraint Satisfaction for Software Reverse En-
gineering. PhD thesis, University of Waterloo, 1996.

[21] S. Woods, A. Quilici, and Q. Yang.Constraint-based
Design Recovery for Software Reengineering: The-
ory and Experiments. Kluwer Academic Publishers,
1997. To appear.

[22] S. Woods and Q. Yang. The program understand-
ing problem: Analysis and a heuristic approach. In
Proceedings of the 18th International Conference on
Software Engineerig, ICSE-18, pages 6–15. IEEE
Computer Society, 1996.

[23] S. Woods and Q. Yang. Program understanding as
constraint satisfaction: Representation and reasoning
techniques.Journal of Automated Software Engineer-
ing, 1997. To appear.

[24] N. Zvegintzov. A resource guide to year 2000 tools.
IEEE Computer, 30(3):58–63, 1997.

9

