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Abstract: The growth-interaction (GI) process is used for the spatiotemporal modeling of measurements of
locations and radii at breast height made at three different time points of the individual trees in 10 Scots pine
(Pinus sylvestris) plots from the Swedish National Forest Inventory. The GI process places trees at random
locations in the study region and assigns sizes to the trees, which interact and grow with time. It has been used
to model plots in previous studies and to improve the fit we suggest some modifications: a different location
assignment strategy and a different open-growth (growth under negligible competition) function. We believe that
the calibration data contain trees that are too small to reflect the open growth properly, which primarily affects
the carrying capacity parameter. To better represent the open growth of Scots pines, we evaluate the open growth
from a separate set of data (size and age measurements of older and larger single Scots pines). A linear
relationship is found between the plot’s estimated site indices and the sizes, and this is exploited in the estimation
of the carrying capacity. We finally estimate the remaining GI process parameters and test the goodness of fit
on simulated predictions from the fitted model. FOR. SCI. 59(5):505–516.
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FOR A LONG TIME, STATISTICAL METHODS for
(marked) spatial point processes have been used
extensively to determine various characteristics of

forest stands (cf. Diggle 2003, Stoyan and Penttinen 2000,
Illian et al. 2008 for general surveys and Grabarnik and
Särkkä 2009 for a specific study). For instance, different
summary statistics, such as Ripley’s K function (Illian et al.
2008, p. 214), have been able to depict the inherent mech-
anisms that govern the way individual trees are located
spatially. In addition, the temporal development of the sizes
of individual trees has also been explicitly modeled (Shifley
and Brand 1984, Zeide 1993). Note, however, that when
considering different spatial features of a forest stand at a
fixed time, we are in fact, to some extent, also considering
the temporal development of each individual tree which has
been present up to the current time point. Put differently, we
always regard some aspect of the spatiotemporal develop-
ment of all the trees when we consider either just one single
tree or when we consider all the trees in the whole stand.
Hence, if one wants a deeper understanding of the inherent
growth process that governs the growth of individual trees
in a forest stand, it is reasonable to instead extend the study
to consider the full spatiotemporal development of the
stand, because the spatial domain and the temporal domain
clearly are intertwined (Gratzer et al. 2004).

Our main objective here is to describe the development
of young Scots pine stands in Sweden. The specific ap-
proach chosen here is to fit the so-called growth-interaction
(GI) process (Särkkä and Renshaw 2006, Cronie and Särkkä
2011) to a collection of data sets. More specifically, each
data set under consideration consists of measurements of

individual trees in a single Scots pine stand at a few differ-
ent time points. For each individual tree, we have recorded
its location as well as its radius at breast height (rbh) (1.3 m
aboveground) at all measurement times of the stand. It
should be pointed out that in the remaining parts of the
article, rbh is used to describe tree size rather than the more
common dbh (dbh � 2 rbh). This choice is made partly out
of mathematical convenience and partly because the GI
process (and in particular its spatial interaction structure)
has a more natural interpretation when the marks describe
radial growth.

The GI process is a spatiotemporal marked point process
in which new points (trees) arrive to the study region at
random times and receive random locations in the study
region. Once they arrive they also receive sizes (radii of
disks centered on their locations) and start growing and
competing until they finally die, either by competition or
naturally. Because we are modeling rbh, at a given time
point such a disk represents the breast height area [�(rbh)2]
occupied by the tree at that time.

A previous (initial) study similar to the current one was
conducted by Cronie and Särkkä (2011), in which the GI
process was used to model one Scots pine data set of the
same type as the data sets considered here. It was indicated
that the GI process is an appropriate model for such data.
However, simulated point patterns of the GI process, which
were generated based on the parameter estimates obtained
by fitting the GI process to the data, had nearest neighbor
distances that were smaller than what was observed in the
actual data. Furthermore, the estimated open growth, i.e.,
the growth of a tree when the competition with other trees
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is negligible, suggested that after approximately 40 years (in
open growth), a Scots pine had reached its theoretical max-
imal attainable size—its carrying capacity. Empirical obser-
vations on inventory plots revealed that Scots pine exceed a
biologically maximal size later in Sweden (Figure 2). In
addition, the observed size distributions in the data and in
the simulations were different. The suggested remedy was
to change the form of the open-growth function in the
model, which controls the growth of a tree in the absence of
competition in the model, to a more flexible one. In addi-
tion, a more realistic setting to assign the locations to the
new trees in the model may improve the fit of the model.
More specifically, instead of letting the location of a new
tree be uniformly distributed in the whole study region, as
was previously the case (Särkkä and Renshaw 2006, Cronie
and Särkkä 2011), in the present study, we let the location
of the tree be uniformly distributed on the part of the study
region which is not already occupied by the other trees
present at its arrival time. Note that this is a natural assump-
tion because trees do not grow inside each other.

As mentioned previously, the carrying capacity, denoted
by K, is one of the parameters in the GI process that governs
the rate of the so-called open growth of a tree in the model.
By looking closer at the carrying capacity estimates ob-
tained in Cronie and Särkkä (2011), we believe that the
actual carrying capacity was underestimated because the
forest stand considered was so young. Because biased car-
rying capacity estimates result in biased estimates of the
open-growth behavior, it is important to obtain fairly ade-
quate estimates of K if we wish to say something about the
individual growth ability of a tree (Shifley and Brand 1984).
Because the data sets we consider in this study also only
contain quite young trees, we base the estimation of the
carrying capacity on a completely separate set of data that
contains older trees—the open-growth data set. We point
out that the stands in both data sets grow in different regions
of Sweden, and it is most unlikely that they follow the exact
same underlying growth patterns. In particular, the site
fertility differs between stands, and we would like to ac-
count for such variation between the stands. The approach
suggested here is to let the carrying capacity be expressed
through the site productivity index SI, which is expressed as
expected dominant height at 100 years total age, and in
the current data sets it has been estimated according to
Hägglund and Lundmark (1977). The open-growth data set
contains measurements made from a large number of Scots
pine stands at one given time point, and each measurement
consists of three parts: the size (rbh) of the largest tree, the
age of the largest tree, and the stand’s SI value. We assume
that such a data set reflects the open-growth behavior fairly
well because by considering the largest tree in a stand we
most likely consider the tree in the stand that has been
subject to the least amount of competition. In Renshaw and
Comas (2009), a separate estimation of the carrying capac-
ity has already been considered for the GI process, and a
fixed value of 0.25 m rbh for the carrying capacity param-
eter was applied.

This article is structured in the following way. A presen-
tation of the two data sets is given in the next section,

followed by a section in which the GI process is defined.
Thereafter, in the subsequent section, the estimation ap-
proach for the open growth is presented and the estimation
approach for the GI process is recalled, and then the esti-
mation results are presented. Finally, the goodness of fit of
predictions of the model is evaluated, followed by some
conclusions and discussion.

Data Sets

In this article, two sets of data are considered, the space-
time data set and the open-growth data set. Both are taken
from the Swedish National Forest Inventory (NFI). The NFI
is an annual sparse stratified sample plot inventory with
partial replacement (Ranneby et al. 1987).

Space-Time Data

The space-time data set, modeled by the GI process,
consists of permanent sample plots (radius 10 m), which
were established between 1983 and 1987 and remeasured
for the first time after 5 years, i.e., between 1988 and 1992.
About half of the sample was then remeasured a second
time between 1993 and 1997. However, from 1994 on the
reinventory interval was altered to 6 years. Registrations
consist of stand, site, and tree variables (Söderberg 1997).
For all trees on the plot with a dbh of at least 10 cm, tree
species, rbh/dbh, and position (with coordinates) were mea-
sured, whereas smaller trees were registered on a reduced
plot and mapped only for a few trees. Sample trees were
selected from calipered trees with probabilities given by
their basal area. In addition, on sample trees, height, crown
height, and cause of damage were also registered.

In the present study, 10 stands (plots) established in 1985
were used for the fitting of the GI process, with data from
1985, 1990, and 1996. Note that the years of measurements
are the same for all 10 plots, but the ages (sample times),
Tj,1 (1985), Tj,2 (1990), and Tj,3 (1996), j � 1, . . . , 10, of the
10 plots at the measurement times differ. In addition, a
subsample of these plots (5 plots) remeasured a fourth time,
Tj,4 (2005), was used to evaluate the model.

Each plot considered primarily consists of Scots pines (at
least 90%) and contains at least 10 trees. It should be noted
that the plots considered are quite young (Table 1) and
because only trees with a radius of at least (rbh) 0.05 m are

Table 1. Information about the data sets � j, j � 1, . . . , 10.

j SI Tj,1 Tj,2 Tj,3 nTj,1
nTj,2

nTj,3

1 13 23 28 34 15 21 29
2 14 22 27 33 13 26 43
3 16 45 50 56 12 15 17
4 17 30 35 41 2 15 23
5 21 29 34 40 27 45 50
6 19 32 37 43 24 36 48
7 18 25 30 36 34 39 40
8 20 23 28 34 40 51 52
9 14 45 50 56 11 14 16
10 15 45 50 56 9 15 15

SI, site index; Tj,k , k � 1, 2, 3, kth inventory time (stand age, years); nTj,k
,

number of trees that are alive at time Tj,k .
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considered, we restrict our study to the modeling of Scots
pines larger than 0.05 m rbh at early ages. Note that a plot
may contain trees that are not Scots pines, and we have
chosen to include the nonpine trees in the modeling because
they affect the spatial structure of the plot as well as its
temporal development. In Figure 1 an example of a data set
is shown. Here all tree radii have been scaled by a factor of
10 for increased visibility.

Regarding our notation, the circular spatial study region
of radius 10 m is denoted by W, and the three sample time
points at which the plot has been measured (ages in 1985,
1990, and 1996) are denoted by Tj,1, Tj,2, Tj,3. Furthermore,
the jth data set is denoted by � j � (� j(Tj,1), � j(Tj,2),
� j(Tj,3)), j � 1, . . . , 10, and at each time point Tj,k we have
that � j(Tj,k) � {(xi, mik)}, where xi and mik denote the ith
tree’s location and rbh, respectively. Denote by nTj,k

the
number of trees that are alive at time Tj,k. Besides the
information given in � j, a value of the site index SI is also
attached to each plot. Note that for some plots we have
measurements � j (Tj,4) from an additional time point Tj,4,
used to evaluate predictions of the fitted GI process. Some
plot characteristics are given in Table 1.

Open-Growth Data

Provided that two trees in a forest are close enough to
each other, they will compete for resources (e.g., light and
nutrients). However, if the distance between them is large
enough, their competition becomes negligible. This type of
growth, i.e., growth without competition/interaction, is of-
ten referred to as open growth, and it is often modeled by
means of growth functions (Seber and Wild 1989, p. 325,
Smith et al. 1992, Prévosto et al. 2000, Vospernik et al.
2010).

When we model the growth of trees, one major part is to
model the open-growth characteristics and to estimate the
theoretical maximal attainable size—the carrying capacity.
However, because the plots in the space-time data set con-
tain only fairly young trees, which have not reached their
full sizes, these plots do not reflect the potential open
growth of Scots pines.

Hence, we choose to gain information about the open-
growth relationships of Scots pines from a separate set of
data. This data set, which consists of 2,579 plots, is based on
data collected in the NFI during 2003–2007, and each plot
in the data set contains only Scots pines. The open-growth
data set has a wide distribution of tree and stand level
characteristics, i.e., SI and tree age (Figure 2); therefore, it
contains trees that have larger sizes and higher ages than the
trees in the space-time data set and thus better reflects the
open-growth scenario. Furthermore, we note that one of the
main components of the GI process is a growth function that
controls the open growth of the radii. Hence, in modeling of
the GI process it is essential that we are able to create a good
estimate of the open growth of the pine trees (Shifley and
Brand 1984, Vospernik et al. 2010).

Each observation in the open-growth data set
{(yj, tj, SIj)} comes from a pure Scots pine plot, which has
been measured at one time point. Specifically, SIj denotes
the SI value of the jth plot, tj denotes the age (year) of the
largest tree present in the jth plot, and yj denotes the largest
tree’s rbh (meters). In addition, some initial filtering has to
be performed in the open-growth data to ensure that we are
considering trees that have been subject to as little compe-
tition as possible. Observations corresponding to the largest
1% and the smallest 1% of the ratios {yj /tj} were removed.
This is done because too large or too small values of yj /tj
imply that measurement errors are likely to be present.
Next, the remaining observations were grouped by age, so
that all trees that have the same age are in the same group.
Then, in each age group, observations corresponding to the
largest 2.5% and the smallest 2.5% of the ratios {yj /tj} were
removed. As a result we have n � 2,465 observations
{(tj, SIj, yj)}j�1

n , where 10 � SIj � 28 and 6 � tj � 293. It
should further be pointed out that there is some uncertainty
present in the SI values assigned to each plot/tree.

In Figure 2 it can be seen that the size development y
over time (age) t resembles the typical shape of a growth
curve model (Seber and Wild 1989, p. 325). It may further
be observed that there tends to be a linear relationship
between the maximal attainable size y and the site index SI.
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Figure 1. Swedish Scots pine plot recorded in 1985 (left), 1990 (center), and 1996 (right). The radii of the pines are scaled by a
factor of 10.
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The GI Process

Consider the scenario in which a plot is measured at the
time points 0 � T1 � . . . � Tn � T within a study region
W of size �(W). Recall that in the current study, W is given
by a circular region. As a model for its spatiotemporal
development we suggest the so-called growth-interaction
process (Särkkä and Renshaw 2006, Comas 2009, Renshaw
and Comas 2009, Cronie and Särkkä 2011).

In the GI process, the arrivals of new trees (points) to W
occur according to a Poisson process on [0, T] with rate
��(W), � � 0. At their arrival times B1 � . . . � BN, the N
trees that arrive during [0, T] are assigned the locations
(stock centers) X1, . . . , XN on W.

The size/radius (rbh) of the ith tree at time t � [0, T] is
denoted by Mi(t), and because we only observe the trees
once their radii have reached a certain size (recall that our
modeling data consists of trees of at least 0.05 m rbh), we let
Mi(t) � 0 for all t � Bi and assign the initial size Mi(Bi) �
M0 � 0 to the ith tree. As time evolves, the radii {Mi(t)}i�1

N

will grow and interact with each other. Given that the ith
tree has size Mi(t) at time t, its size change over the (infin-
itesimal) time interval (t, t � dt) is given by

Mi �t � dt� � Mi �t� � dMi �t� (1)

� Mi �t� � �f �Mi �t�; � � � �
j�1
j�i

N

h�Mi �t�, Mj �t�, Xi , Xj ; � ��dt,

where � is a parameter vector which controls the growth and
interaction pattern of the model and f (�) is the growth
function that governs the open growth of the ith tree. The
function h(�) is the spatial interaction function that handles
the spatial pairwise interaction/competition of the ith tree
with the other (neighboring) trees.

In accordance with Comas (2009) and Cronie and Särkkä
(2011), a tree can also experience a (size-dependent) natural
death: given Mi(t), the (infinitesimal) probability that the ith
tree suffers a natural death during the time interval (t, t �
dt) is given by 	/(1 � Mi(t)) � o(dt), where 	 � 0 and o(dt)
is some function such that limdt30 o(dt)/dt � 0 (equivalent
interpretation: at each time t the potential remaining lifetime

of the ith tree is Exp(	/(1 � Mi(t)))-distributed). Hereby a
tree becomes more viable as it grows in size.

In addition, the competition for resources may cause a
tree to die, and we say that the ith tree has suffered a
competitive death if Mi(t) � 0 at some time t � Bi. Note that
hereby the death time of the ith tree is given by the smallest
of the natural death time and the competitive death time, and
we let Mi(t) � 0 once the tree has died.

Returning to the locations of the trees, let the location Xi

of the ith tree be uniformly distributed on the part of W,
which is not occupied by other (the previous) trees at time
t � Bi, i.e., Xi � Uni(W{�j�1

i	1BXj
[Mj (Bi)]), where the

closed disk BXj
[Mj (t)], with centre Xj and radius Mj (t),

represents the (breast height) space which is occupied by the
jth tree at time t. Note that we hereby avoid pairs of points
that are too close to each other (trees do not grow inside
each other). Hence, this approach differs from the earlier
arrival strategy, for which the locations are uniformly dis-
tributed on the whole W (Särkkä and Renshaw 2006).

Many options are available for h(�) (Nord-Larsen 2006,
Särkkä and Renshaw 2006, Renshaw et al. 2009), and we
here follow, among others, Särkkä and Renshaw (2006) by
using the nonsymmetric (large trees influence small trees
more than small trees influence large trees) area interaction
function (Gerrard 1969)

h�Mi �t�, Mj �t�, Xi , Xj ; � �

� c
��BXi


rMi�t�� � BXj

rMj �t���

��BXi

rMi �t���

, (2)

where �(BXi
[rMi(t)]) denotes the size of the closed disk BXi

[rMi(t)] and the elements c 
 0 and r 
 1 of the parameter
vector � are referred to as the force of interaction and the
scale of interaction, respectively. BXi

[rMi(t)], representing
the region in which the tree competes for resources, is
referred to as the influence zone of the ith tree at time t
(Weiner and Damgaard 2006). Note that the ratio on the
right hand side of expression 2 is the proportion of the ith
influence zone that is covered by the jth influence zone at
time t. If the distance �Xi 	 Xj� between the ith tree and the
jth tree is larger than rMi(t) � rMj(t), their influence zones
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Figure 2. The open-growth data set: {(tj, SIj, yj)}j�1
n (left), {(tj, yj)}j�1

n (center), and {(SIj, yj)}j�1
n (right). For the largest tree of plot

j, yj, tj, and SIj denote the rbh (meters) of the tree, the age (years) of the tree, and the value of the site index SI of the jth plot,
respectively.
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do not overlap, whereby no interaction takes place between
them during (t, t � dt).

As mentioned previously, the open/individual growth
function f (Mi(t); �) in expression (1) controls the growth of
a tree in the absence of competing neighboring trees. In the
case of no interaction, i.e., when h(�) � 0, expression (1)
turns into the equation dM(t)/dt � f (M(t); �), M(0) � M0,
which has M(t) as its solution (for simplicity, we here write
M(t) for Mi(t)). In the literature, many applications of dif-
ferent growth functions can be found (Seber and Wild 1989,
p. 325, Zeide 1993). In the present study, we apply the
so-called Richards growth function (RGF) (Seber and Wild
1989, p. 332, Lei and Zhang 2004, Renshaw et al. 2009),

M�t� � K�1 � ��M0/K�� � 1�e	�t�1/�, (3)

where � � 1, K � 0, and � � 0 (all are elements of the
parameter vector �). Note that this strictly increasing func-
tions is a flexible growth function and through it other
growth functions may be derived (Seber and Wild 1989, p.
332, Lei and Zhang 2004), thus largely motivating its use
here. For instance, by setting � � 	1 in (3), we obtain the
so-called logistic growth function, which has previously
been evaluated in the context of the GI process (Särkkä and
Renshaw 2006, Renshaw et al. 2009, Cronie and Särkkä
2011). In the RGF, the parameter K is the carrying capacity
(theoretical upper bound), whereas � and � control the
growth rate/speed of M(t).

Besides the RGF, there are many good functions for
modeling open growth of trees, and one example of such a
model is the so-called Weibull growth function (Seber and
Wild 1989, p. 337). In Cronie et al. (2011), one can find the
open growth analysis performed in this article with the RGF
as well as with the Weibull growth function and the logistic
growth function; the performance of the Weibull model is
almost identical to that of the RGF and it is slightly worse
for the logistic model.

Estimation
Estimation of the Open Growth

Recall the open-growth data set {(tj, SIj, yj)}j�1
n , n �

2,465, from the open-growth data section and also the

observed linear relationship between the maximal attainable
size and the site index SI (Figure 2). We argue that because
the carrying capacity K tells us how large a tree is allowed
to become, it seems sensible to let K be reflected by the
fertility, i.e., the site index SI. This linear relationship be-
comes even more clear in Figure 3, when the observations
are divided into groups based on their SI values, for three
quantiles q�(SI), � � 0.95, 0.975, 0.99, of the yj values in
each SI group.

The tree size increases with time and therefore, when �
is large, q�(SI) will only be concerned with the older trees
in the SI group (Figure 2). Furthermore, the group with SI
value 28 only contains four measurements and the largest
rbh is 0.3155, which explains why q�(28) becomes quite
extreme (Table 2). When ignoring q�(28) and fitting linear
regression models, we obtain q0.95(SI) � 0.1353 �
0.0033 SI, q0.975(SI) � 0.1365 � 0.0040 SI, and q0.99(SI) �
0.1305 � 0.0051 SI. All three linear trends (intercept and
slope) are significant at the 0.05 significance level, and qq
plots together with Lillie tests (H0: data are Gaussian; H1:
data are non-Gaussian) suggest that the residuals are nor-
mally distributed (Lillie test P values: P0.95 � 0.2082, P0.975

� 0.0987, and P0.99 � 0.5). Thus, it is concluded that there
is some linear relationship between SI and K.

The usual approach to fitting a growth curve model to
size measurements made over time is to fit the (nonlinear)
regression model Yj � M(tj; �) � j to the time-size mea-
surements (tj, Yj), j � 1, . . . , n, where M(tj; �) is a growth
function and the j’s are i.i.d. random variables with mean
0 and variance �2. By accepting the linear relationship K �
a0 � a1 SI for the upper bound of the rbh, we suggest the
following regression model

Yj � M�tj; K, �, �� � j � M�tj ; a0 � a1SIj , �, �� � j ,

(4)

where M(t; �) is given by the RGF.
Before the growth curve model (4) is fitted to the open-

growth data, the three first SI groups as well as the last two
SI groups are merged because there is some uncertainty
present in the SI values and some of the SI groups are too
small. The new SI values assigned to the new groups are
obtained in the following way. We take a weighted mean of
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Figure 3. Fitted linear regressions with respect to the pairs (SI, q�(SI)). Left, � � 0.95; center, � � 0.975; and right, � � 0.99.
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the SI values of the included (old) SI groups, and the
weights are determined by the number of observations in
each of the SI groups included. More specifically, by merg-
ing the SI groups 10, 11, and 12, the new group SI10–12

results, which has SI value (6 � 10 � 12 � 11 � 21 � 12)/(6
� 12 � 21) � 11.3846 (Table 2). Furthermore, by merging
the SI groups 27 and 28, we obtain the new group SI27–28

which has SI value (90 � 27 � 4 � 28)/(90 � 4) � 27.0426.
Note that the number of observations in the groups SI10–12

and SI27–28 are 39 and 94, respectively. Considering these
new SI groups, the results after fitting the regression model
4 to the open-growth data set can be found in Table 3.

The corresponding (normal) qq plot of the residuals is
given in Figure 4 and indicates that the residuals are not
normally distributed. In addition, the variance increases
with the size of ŷj or, equivalently, the variance grows with
increasing tj (since M(t; �) is an increasing function). Possi-
bly a more accurate model is to consider a multiplicative
error, i.e., Yj � M(tj; a0 � a1 SIj, �, �)j. However, because
we are mainly concerned with the estimation of K, the
specification of the error term is of less importance to us.
Note that we obtain K̂�SI10–12 � 0.13730 and K̂�S27–28 �
0.22412, which both are much lower than the observed
maximum radii.

Estimation of the Carrying Capacity

To further explore the estimation of K, we now compare
the estimates K̂ � â0 � â1 SI in Table 3 with the three linear
regressions K̂ � q�(SI) � b0 � b1 SI, � � 0.95, 0.975, 0.99,
which are based on the � quantiles of each (new) SI group.
The results obtained can be found in Table 4 and just as

before the linear relationship is significant in each case,
and the residuals can be assumed to be normally distributed
(Lillie test P values: P0.95 � 0.5, P0.975 � 0.0587, and P0.99

� 0.3147).
We thus conclude that, for all SI values, the maximal

attainable size of a tree suggested by K̂ � q�(SI) � b̂0 �
b̂1 SI is larger than the maximal attainable size suggested by
the (growth function) estimate of K in Table 3. For SI10–12

the largest yj values reach approximately 0.2 and for SI27–28

they reach approximately 0.3 (Table 2); therefore, it seems
more reasonable to use, e.g., � � 0.975 when we employ
q�(SI) � b̂0 � b̂1 SI to estimate K. Note that we do not use
� � 0.99 because extreme values in the data may contain
measurement errors. This choice of � corresponds, more or
less, to the fixed estimate K̂ � 0.25 used in Renshaw et al.
(2009), which was motivated by the study conducted in
Pukkala et al. (1994). In Table 5, we find the estimates
obtained after plugging K̂ � q0.975(SI) � 0.12920 �
0.00441 SI into the RGF and, subsequently, estimated the
remaining parameters, as explained in the open-growth es-
timation section.

Estimation of the GI Process Parameters

Having estimated K separately by K̂ � q0.975(SI) �
0.12920 � 0.00441 SI, we now turn to the space-time data
and the estimation of the remaining parameters, i.e., �* �
(�, �, c, r), 	, and �. The estimation approach used previ-
ously to fit the GI process to space-time data was first
introduced in Särkkä and Renshaw (2006), and in Cronie
and Särkkä (2011) it was adjusted to accommodate the
size-dependent natural deaths. It consists of two separate
parts: the arrival and death rates � and 	 are estimated using
a maximum likelihood (ML) estimation procedure, whereas
the growth and interaction parameters � are estimated (sep-
arately) through a least-squares scheme. In the case of �, we
here follow the approach suggested in Cronie and Särkkä
(2011), with the exception that we use the estimate K̂ �
q0.975(SI) for the carrying capacity and estimate �* by
means of the least-squares approach.

In order to obtain the estimates �̂* � (�̂, �̂, ĉ, r̂) for a
given data set � j, we minimize the sum of squared differ-
ences

S��*� � �
k

�
i

�m̃ik��*, K̂� � mik�
2

between the predicted (model-based) sizes m̃ik(�*, K̂) and
the observed sizes mik.

The first sum is taken over sample time points, and the
second sum is taken over all trees that are alive at a specific
sample time point. In finding �̂*, we have to rely on some
numerical minimization routine to minimize the sum of
squares S(�*), and we here choose to use the same Markov
chain Monte Carlo type of method as was used in Cronie
and Särkkä (2011) (more details are given in Cronie 2010).
In addition, because there are no observations available
outside the study region W, some approach to impede the
consequences of the so-called edge effects is needed (Illian
et al. 2008, p. 180). Three spatiotemporal edge correction
methods presented in the context of the GI process were

Table 2. Information about each SI group.

SI n max yj

10 6 0.1725
11 12 0.1775
12 21 0.1980
13 45 0.1790
14 92 0.2345
15 123 0.2300
16 154 0.2375
17 210 0.2190
18 207 0.2385
19 254 0.2350
20 232 0.2270
21 246 0.2415
22 216 0.2550
23 157 0.2865
24 156 0.3330
25 153 0.2725
26 87 0.2525
27 90 0.2970
28 4 0.3155

n, number of observations in the group; max yj , size of the largest tree in
the group.

Table 3. Results after fitting of the regression model 4 to the
open-growth data set.

â0 â1 M̂0 �̂ �̂

0.07418 0.00554 6.5 � 0	253(0) 0.01752 1.29434
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suggested in Cronie and Särkkä (2011), and here we use the
so-called simple edge correction method when estimating
�*.

The estimation approach used in the present study to
estimate � and 	 was developed in Cronie and Yu (2010),
and it is a full ML estimation scheme based on the discretely
sampled immigration-death process (Renshaw 1994, Cronie
and Yu 2010). Using this approach is equivalent to letting
the natural death probability be given by 	 � o(dt), hence
not taking the size-dependent natural deaths into consider-
ation. Furthermore, when this approach compares the
increase/decrease of the number of trees between two con-
secutive time points, it does not account for the competitive
deaths that have taken place. However, although it does not
fully match the current model formulation, it generally
performs better than the approximate ML approach of Cro-
nie (2010) (used in Cronie and Särkkä 2011), for which the
correct natural death probabilities are assumed and compet-
itive deaths are not ignored. It manages better to take into
account all the unobserved arrival/death scenarios in which
trees arrive and die during the same time interval
(Tj,k	1, Tj,k), k � 1, . . . , n, without being observed.

Estimation Results

Concerning the starting values used in the edge-corrected
estimation procedure, the edge-corrected estimates obtained
for the Scots pine data set in Cronie and Särkkä (2011) are

used as starting values for the interaction parameters c and
r, i.e., ĉ � 3.5 and r̂ � 4. Moreover, because Cronie and
Särkkä (2011) used the logistic growth function as an open-
growth function, for the RGF part f (� ; �) we choose as
starting values �̂ � 	1 and �̂ � 0.1 (the latter being close
to the value obtained in Cronie and Särkkä [2011]). Fur-
thermore, the estimate K̂ � q0.975(SI) � 0.12920 �
0.00441 SI and the (known) initial size M0 � 0.05 are kept
fixed throughout the whole estimation. Regarding the spe-
cifics of the edge correction, for each data set we use three
simulated surroundings in each iteration and then average
over the estimates of the last four iterations to obtain the
final estimates (see Cronie and Särkkä [2011] for details).
The region on which the surrounding trees are simulated is
given by a square region of side length 25 m.

In Table 6, the edge-corrected parameter estimates for all
the data sets are presented. The parameter estimates for the
10 data sets are quite similar, except for plot 1, as was
expected because the plots are quite similar. In the case of
the open-growth parameters, we see that SI does not vary
much between the plots and thus the estimates K̂(SI) �
0.12920 � 0.00441 SI  0.2 also do not vary much. The
estimates of the open-growth rates � and � on average
behave a bit differently here where there is competition
present, compared with the case of the open-growth data set.
In the cases in which � is estimated to be approximately 	1,

Figure 4. The residuals obtained in the estimation (Table 3) of the regression model 4:
(normal) qq plot of the residuals (left) and plot of the predicted values versus the
residuals (right).

Table 4. Linear relationship between the � quantiles q�(SI),
� � 0.95, 0.975, 0.99, and SI.

� b̂0 b̂1 q�(SI10–12) q�(SI27–28)

0.95 0.12761 0.00367 0.16944 0.22698
0.975 0.12920 0.00441 0.17936 0.24835
0.99 0.13248 0.00517 0.19138 0.27240

Table 5. Estimates obtained after using the estimate K̂ �
q0.975(SI) � 0.12920 � 0.00441SI and fitting the RGF to the
open-growth data set.

M̂0 �̂ �̂

1.8 � 10	12 0.00821 1.80736

Table 6. Edge corrected estimates of the growth and inter-
action parameters together with their means and standard
deviation (SD).

j K̂ �̂ �̂ ĉ r̂ SI

1 0.18653 0.03450 0.07144 7.38389 4.25188 13
2 0.19094 0.05483 	0.47340 3.24789 3.74719 14
3 0.19976 0.08825 	0.83724 4.53837 5.92735 16
4 0.20417 0.02873 	0.46213 4.88429 5.14329 17
5 0.22181 0.08086 	0.86521 5.56370 4.57572 21
6 0.21299 0.07421 	0.83360 3.57790 2.98364 19
7 0.20858 0.05826 	0.59818 4.53696 2.57067 18
8 0.21740 0.04112 	0.35130 3.66954 4.86772 20
9 0.19094 0.06175 	0.88204 3.12824 5.35041 14
10 0.19535 0.02824 	0.75410 2.80455 3.44803 15
Mean 0.05508 	0.59858 4.33353 4.28659
SD 0.02165 0.30408 1.38185 1.08610
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we have indications that the open-growth function behaves
almost like the logistic growth function. Furthermore, when
�̂  0 (as in the case of plot 1), we obtain an estimated open
growth which, in the competitive settings of these plots,
behaves approximately like the so-called Gompertz model
(Lei and Zhang 2004). Note also that � is estimated much
larger than the open-growth data estimate �̂ � 0.00821 in
Table 5. However, this result was expected because the
inclusion of competition (which inhibits the open growth)
forces the open-growth rate to be higher. In addition, all
estimates of � were considerably smaller than the estimate
�̂ � 1.80736 in Table 5, also suggesting that � is decreased
to compensate for the competition.

The estimated scale of interaction is r̂  4.3, which
means that the range of the competition of a tree is esti-
mated to be approximately 4.3 times the radius of the tree.
As a result, a newly arrived tree competes for resources
within a distance of approximately r̂M0 � 4.3 � 0.05 �
0.215 m from its stem center, whereby its influence zone
has size 0.145 m2. Similarly, for a tree at maximum size, the
estimated competition distance would be approximately
r̂K̂(SI)  4.3 � 0.2 � 0.86 m and its influence zone would
have size 2.323 m2. For the force of interaction, the strength
of the competition between a tree and its neighbor (within
competing distance), i.e., the amount by which we inhibit
the open growth during (t, t � dt), is given by ĉ  4.3 times
the proportion of the tree’s influence zone, which is over-
lapped by its neighbor’s influence zone. We point out that
the interaction parameters c and r (and their estimates)
strongly depend on each other (Cronie and Särkkä 2011),
and there is also a dependence between the open growth
parameters � and � (and their estimates) because they both
control the open-growth rate. Now, if we were to fix, say, �
and � in the estimation, as a result the estimates of c and r
would be changed/adjusted to fit the growth of the observed
trees (at least to some extent). Hence, there is dependence
between all parameters �, �, c, r.

Note further that the numerical algorithm used to mini-
mize the sum of squares S(�*) stepwise samples random
values for �* as proposed estimates and then determines
whether the new proposal results in a smaller S(�*) than the
previous minimizing �* does. The stopping criterion used in
this stepwise procedure stops the algorithm once a threshold
number of consecutive proposals without any minimization
of S(�*) is reached. Hence, more precise estimates would
possibly be obtained if this threshold were larger. However,
using a larger threshold would be more time-consuming
because more calculations of S(�*) would be needed.

We now turn to the estimates of the arrival and death
rates � and 	. They can be found in Table 7. Note that they
are based on the counts nTj,1

, nTj,2
, and nTj,3

in Table 1.
Assuming that the natural death probabilities are given

by 	 � o(dt) (immigration-death process arrivals and nat-
ural deaths) and that no trees are present at time 0, the
number of trees at time Tj, k would be Poisson distributed
with parameter �̂�(W)(1 	 e		̂Tj, k)/	̂, where �(W) �
102�  314 (Cronie and Yu 2010).

In the case of, e.g., plot 9 (Table 7), this translates to the
estimated expected number of live trees at T9, 4 � 65 being
19.4979 and, equivalently, the estimated SD of the number

of trees alive at T9, 4 being �19.4979 � 4.4157. Further
characteristics of �j (Tj, 4), for the data sets which have a
fourth inventory time, can be found in Table 8. Furthermore,
to have some idea of how the data sets behave on average
with respect to the number of live trees, we may use the
means in Table 7 to obtain estimates of the expectation and
standard deviation (SD) of the number of trees alive at, say,
Tj,4 � 65, and we obtain the values 31.9976 and 5.6567,
respectively.

Because the GI process that we are fitting uses size-
dependent natural deaths, these estimates of the behavior of
the number of trees alive are not totally correct (although
they are almost correct in many cases). However, by com-
paring the number of live trees nTj, 4

at the fourth time point
Tj,4 with these estimates, we gain some insight to whether
the estimates �̂ and 	̂ are too far off. For instance, in the
case of plot 9 we have that nT9, 4

� 23, so from the simple
(approximate) prediction of 19.4979, it seems fairly accept-
able. We further point out that when considering really large
times Tj,4

, the expected number of trees alive at Tj,4 will be
approximately �̂�(W)/	̂ (Cronie and Yu 2010). One may
exploit this fact in future studies to improve the estimates �̂
and 	̂. This follows because if there is information available
about the (approximate) maximum amount of trees that
occupy a study region W in old Scots pine stands, we can
use this maximum number (divided by the size �(W)) to
estimate the ratio �/	, and this estimate may then in turn be
used as a condition/restriction when estimating � and 	.

It is likely that the estimates reported in Table 7 are quite
biased because the estimation was based only on the three
observations nTj,1

, nTj,2
, and nTj,3

. Furthermore, it was seen in
Cronie and Särkkä (2011), in the evaluation of the size-
dependent estimators of Cronie (2010), that 	 became heav-
ily biased, and this further strengthens the belief that the
estimates in Table 7 are biased.

Table 7. Estimates of � and � for each plot.

j �̂ 	̂

1 0.00633 0.07304
2 0.19439 2.34876
3 0.00134 0.01038
4 0.11781 2.46738
5 0.40926 2.85716
6 0.49576 4.32636
7 0.00335 0.01580
8 0.41909 2.58157
9 0.00136 0.01161
10 0.13438 2.81448
Mean 0.17831 1.75065
SD 0.19458 1.57865

Table 8. Observed and expected number of live trees, as well
as stand ages, for the plots with a fourth inventory occasion.

j 2 6 8 9 10

Tj,4 42 52 43 65 65
nTj,4

52 54 36 23 16
�̂�(W)(1 	 e		̂Tj, k)/	̂ 26 36 51 19.5 15
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Goodness-of-Fit of the Model

Having fitted the GI process to the data, we now want to
test the goodness-of-fit of the model. For this purpose
measurements at a later time point Tj,4 � Tj,3 were used as
reference.

To study, among other things, the spatial structure, 999
predictions of the jth data set at its fourth sample time Tj,4

were generated by starting the simulation of the GI process
with the estimated parameters in the marked point pattern
at time Tj,3, � j (Tj,3), and from here running independent
simulations up to the subsequent sample time point Tj,4. The
observed and the simulated data at time Tj,4 were then
compared by looking at empirical distributional properties
of some summary statistics (by means of, e.g., Monte Carlo
tests; Hope 1968).

The L function (a variance-stabilized version of Ripley’s
K function) and the mark-correlation function (mcf), k(r) (a
mean mark size scaled measure of the dependence between
the mark [radius] sizes of points at a given distance r from
each other) were chosen as summary statistics to describe
the spatial behavior of locations and sizes (Illian et al. 2008,
p. 214). In both cases, the observed summary statistics were
compared with envelopes based on the predicted summary
statistics (Grabarnik et al. 2011).

Stand variables typically used in forestry have also been
evaluated. The first statistic considered is the total basal
area per hectare TBA � 104�imi4

2 �/�(W). The other three
statistics are the basal area weighted mean diameter
WMD � �i(2mi4)(mi4

2 �)/�imi4
2 �, the mean diameter m� , and

the number of trees alive at Tj,4, nTj,4
. In Table 8, the

observed and the expected number of live trees can be found
for those plots that have a fourth inventory occasion. We see
clearly that our predictions (expectations) tend to under-
estimate the number of live trees.

The results for plot 9 are as follows. The estimates of
Tables 6 and 7 were used to generate the predictions, and
the L function and mcf plots together with the prediction-
based envelopes can be found in Figure 5.

Both in the case of the L function and the mcf, we see
from Figure 5 that the curves estimated from the data clearly
are inside the envelopes, and we hereby conclude, based on
the spatial structure, that the point pattern and its marks can
be generated by the estimated GI process. Note, however,
that, in general, most data trees at time T9, 3 and T9, 4 are the
same, but some new trees appear and some existing ones
may die between the two time points. Moreover, it has been
observed that the estimates of � and 	 affect the spatial
structure to a large extent.

In the case of the remaining summary statistics, the
comparison of the data and the predictions can be made in
the following way. Given one of the summary statistics, S,
let Ŝ denote the estimate of S based on the data and let
Ŝ1, . . . , Ŝ999 denote the summary statistic estimated from
the 999 predictions. To assess whether to accept the fit of
the model (with respect to S), we order the 1,000 estimated
summary statistics Ŝ, Ŝ1, . . . , Ŝ999 according to their in-
creasing sizes and check whether the rank (position) of Ŝ is
either very small or very large. Note that the rank can be
used to formally test the fit (test statistic S) by means of
Monte Carlo tests (Hope 1968, Illian et al. 2008, p. 455). In
the case of L(r) and k(r) tests can be constructed, based on
whether the estimated curves fall outside the envelopes at
any distance r (maximum-minimum simultaneous/global
envelopes).

In Figure 6 mark histograms for the data and one of the
predictions are presented. Both have the same number of
live trees.

The prediction suggests that the radii can become larger
than the radii in the data (the largest tree in the prediction
has radius 0.141 m and in the data it is 0.127 m). Further-
more, the radius distribution of the data has a larger pro-
portion of smaller trees than the predictions. It seems that
the estimated model either has an open growth that is too
strong or the competition is too weak. Moreover, this might
also suggest that �̂ should be increased to increase the
number of small trees.
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Figure 5. Left. L function, L(r), for pine data set 9 at the last sample time T4 � T9, 4 � 65,
together with simulated envelopes. Right. Mark correlation function, k(r), for pine data set
9 at the sample time T4, together with simulated envelopes. The predictions (realizations)
that are used to generate the envelopes are created by starting 999 simulations of the GI
process in the initial state �9 (T3) and, based on the parameters in Tables 6 and 7, running
the simulations up to the subsequent sample time point T4.
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To see how each tree behaves individually, we would
like to measure the deviations between the actual radii and
the predicted radii, for each single data tree. For a given tree
i alive at T9, 3, denote by mi4

(1), . . . , mi4
(999) its predicted sizes

at time T9, 4, and consider the corresponding residuals. Fig-
ure 7 shows the estimated mean residuals for each of the
nT3

� 16 trees that are alive at T9, 3.
It can be seen that almost all predictions are larger than

zero, which confirms the overestimation of the growth. Note
that because the trees in �9 (T3) are already well established
at T3, their predicted growth during the time interval (T3, T4)
will become almost deterministic. This follows because the
newcomers in (T3, T4) are small and by the form of the

spatial interaction function in expression 2, small trees do
not affect larger trees much. Note also that if 	̂ is too high,
most of the predictions of a given radius mi4 will have
mi4

(j) � 0 because these predicted trees will have experienced
natural deaths. During the prediction simulation, when a
data tree dies, it will leave room for simulated newcomers to
grow more rapidly than they would have done otherwise
(because they are in a place with little interaction); there-
fore, the radius distribution depends on 	̂.

Furthermore, we see that the two trees i � 4 and i � 15
tend to always stick out, suggesting a rejection of the fit. A
possible explanation for this is that these trees have small
sizes and are neighbors of large trees, and because there are
indications that the estimated growth is strong, it is likely
that these predicted trees are killed by their predicted large
neighbors.

In Table 9, we have summarized the values and the ranks
of the observed summary statistics, as well as the estimated
means and SDs of the predicted summary statistics.

For the total basal area TBA we cannot reject the hy-
pothesis that the process that has generated the TBA of the
forest at time T4 and the process that has generated the TBA
of the predictions (the GI process) are the same. Further-
more, as was expected, because of the radius distributions
and the overprediction of the radii, the fit of the model
cannot be accepted with respect to any of WMD or m� . By
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Figure 6. Radius histograms of the data (left) and a prediction (right). The prediction has the same number of live trees
as the data.

Figure 7. Mean residuals (m) for the predictions for each
tree.

Table 9. Observed summary statistics together with their
ranks and the mean and SD of the predicted summary statis-
tics.

Observed Rank Mean SD

TBA 13.63825 143 15.11195 1.43486
WMD 0.16978 1 0.20670 0.00596
m� 0.14939 1 0.18392 0.00727
nT4

23 993 16.89690 2.15259
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comparing the expected number of live trees and the ob-
served number of live trees shown in Table 8, it can be seen
that they do not deviate too much from each other. How-
ever, this result indicates that the number of live trees
suggested by the model is lower than its observed counter-
part. Hence, either � is underestimated or 	 is overesti-
mated, and this can be redeemed by including more sample
(inventory) times in the estimation of � and 	.

Conclusions

In this article, by using the open-growth data set, a linear
relationship was found between the site productivity index
and the large tree sizes, which provides a good approach for
estimating the carrying capacity. It was shown that the
performance of the Richards open growth model captures
the open growth behavior for Scots pines well.

Evaluation of our growth-interaction process for spatio-
temporal modeling of forest stands based on the space-time
data was conducted. The preliminary results indicated that,
based on the spatial structure, the point patterns and marks
can be generated by the estimated GI process, according to
the L function and the mark-correlation function tests. The
forest stand characteristics were also evaluated. The pre-
dicted total basal area per hectare performed reasonably
well but not the mean diameter or the basal area weighted
mean diameter. Both of them were overestimated compared
with the observed values. The estimated influence zone for
an individual tree, approximately 4.3 times the tree radius,
seems too small. In studies of the hampering effect of
retained trees at clear felling on the development of the
surrounding new regeneration, Elfving and Jakobsson
(2006) reported that the volume of the new regeneration
was affected up to a distance of 7 m. Further studies with
extended and more heterogeneous data material are neces-
sary to describe the competition among the trees within the
stand. Marked point pattern analyses combined with indi-
cators of spatial autocorrelations (Shi and Zhang 2003)
might provide useful information to mimic the competition
effect in the model. The number of stems in the plots for
which we have made predictions was underestimated, ex-
cept for one plot. For unknown reasons the observed mor-
tality (death rate) between the third and the fourth inventory
times was unusually high on that plot.

Discussion

Because the estimates of the GI model parameters de-
pend on the expected tree population size at a given time
point, a starting point in our continuing work will be to
further investigate the arrival and death process. Hereby, it
is also required that we have more frequently sampled data.
We have chosen to model the tree population with a rbh 
5
cm because we have complete spatial information for these
trees. Note that today’s forestry focuses on low death rate
scenarios and rather regular spatial arrangements of estab-
lished seedlings, which differs from naturally regenerated
forests. Additional information about potential arrivals (i.e.,
trees �5 cm rbh) at a given time point would probably
improve the model evaluation and development. The trees

in the space-time data set in the present study are all rather
young at the first inventory time with a large amount of new
arrivals exceeding the threshold diameter (5 cm rbh). To
better describe and capture the development of pine stands
during the whole life cycle, the data must be supplemented
with older stands.

We have already mentioned a possible bias in the esti-
mates of � and 	, which is a consequence of the few (three)
sample times in the data, and because these estimates influ-
ence how the 999 simulations used in the goodness-of-fit
testing are generated, a comment related to possible robust-
ness issues is in place. Considering the conditional SD of
the number of trees present at T9, 4, given nT9, 3

, which is
provided by (Cronie and Yu 2010)

���, 	� � ��1 � e		�T9,4	T9,3���nT9,3e
		�T9,4	T9,3� �

�

	�
� ��1 � e	9	��16e	9	 �

�

	�,

it is clear that the radius distributions and thereby the mean
marks of the simulations are influenced by the estimate �̂ �
�(�̂, 	̂). Moreover, the L function and mcf estimates used in
computing the envelopes in Figure 5 depend on the spatial
structure of the 999 simulations used. Because the number
of trees present in a simulation influences its spatial struc-
ture (recall the comment about the influence of �̂ and 	̂ on
the spatial structures), there is a chance that �̂ has an
influence on the shape of the envelopes and thereby on
conclusions drawn about the fit of the model. To give an
idea of how strong these influences may be, we observe that
�̂ � 1.20066 when the estimates (�̂, 	̂) � (0.00136,
0.01161) are used. By increasing �̂ to even 100�̂ � 0.136
(compensation for possible underestimation), we obtain
�̂ � 1.61002 (34% increase); therefore, the prediction of
n̂T9, 4

is fairly robust with regard to an increase in �̂. If we
instead decrease 	̂ to 	̂/2 � 0.005805 (compensation for
possible overestimation), however, we obtain �̂ � 0.88596
(0.26% decrease) whereby we see that �̂ and thus the
estimated population size are more sensitive (less robust) to
changes in 	̂ (when both changes are carried out simulta-
neously, we obtain �̂ � 1.40199). In terms of the envelopes,
an increase in �̂ should produce wider envelopes, whereas a
decrease in 	̂ would create more narrow envelopes. Hence,
a bias in (�̂, 	̂) (which is most likely present) will have an
effect on the goodness-of-fit tests used. However, although
the uncertainty in the conclusions drawn about the fit of the
model would be decreased significantly if more temporal
instances were available in the data, the possible bias in
(�̂, 	̂) may not play a decisive role in the assessment of the
fit of the model.
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