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Abstract

The reformulation-linearization technique (RLT), introduced in [W.P. Adams, H.D. Sher-
ali, A tight linearization and an algorithm for zero-one quadratic programming problems,
Management Science, 32(10):1274{1290, 1986], provides a way to compute linear program-
ming bounds on the optimal values of NP-hard combinatorial optimization problems. In this
paper we show that, in the presence of suitable algebraic symmetry in the original problem
data, it is sometimes possible to compute level two RLT bounds with additional linear matrix
inequality constraints. As an illustration of our methodology, we compute the best-known
bounds for certain graph partitioning problems on strongly regular graphs.

Keywords: reformulation-linearization technique, Sherali-Adams hierarchy, quadratic assign-
ment problem, standard quadratic optimization, semide�nite programming.

AMS subject classi�cation: 90C22, 90C27

1 Introduction

The reformulation-linearization technique (RLT) was pioneered by Adams and Sherali in the
seminal papers [3, 4], and its subsequent development is contained in their monograph [39].

The main idea is the following: if there are two valid linear inequalities for a given set
S � Rn, for example if l1 � vT1 x and l2 � vT2 x for all x 2 S, then their product also yields the
valid inequality:

(vT1 x)(v
T

2 x)� l2v
T

1 x� l1v
T

2 x � �l1l2 8x 2 S:

Introducing new variables Xij corresponding to xixj , we can linearize the last inequality:X
i;j

v1iv2jXij �
X
i

(l2v1i + l1v2i)xi � �l1l2: (1)

An inequality of this type is known as a �rst-level RLT cut in the variables x and X. This
process may be repeated to obtain level two RLT cuts, etc. This type of method has become
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known as a lift-and-project strategy: the `lifting' refers to the addition of new variables, and the
`projection' to projecting the optimal values of the new variables to a feasible point in Rn of the
original problem; see Laurent [28] for a comparison of the RLT with related schemes.

In this paper we will study the RLT for two speci�c problems, namely the standard quadratic
program and the quadratic assignment problem (QAP). The �rst level RLT formulation of
the QAP was previously studied in [2] and [21]. Adams, Guignard, Hahn and Hightower [1]
considered the second level RLT formulation of the QAP. Numerical results presented in [1] show
that the second level RLT relaxation of the QAP often provides signi�cantly better bounds than
the �rst level RLT relaxation, but that it is computationally very expensive to solve. Recently,
the third level RLT relaxation of the QAP was also investigated in [19]. The numerical results
show that this relaxation empirically provides tight bounds for medium-sized instances (where
it is still possible to solve the third level relaxation).

In this paper, we show how one may solve the second level RLT relaxation with additional
semide�nite programming (SDP) constraints in the presence of suitable algebraic symmetry in
the problem data. As a result we are able to compute the best known bounds for certain graph
partitioning problems involving strongly regular graphs. (These graph partitioning problems
have QAP reformulations.) Our results are in the spirit of the recent papers [38, 29, 16, 26,
27] where improved semide�nite programming bounds were obtained for various combinatorial
problems by exploiting algebraic symmetry.

Scope and organization of this paper

We start by describing RLT relaxations of the standard quadratic optimization problem in
Section 2, and of the QAP in Section 3. In these sections we also present new results on how the
resulting RLT relaxations relate to known relaxations from the literature. This is followed by
background material on exploiting algebraic symmetry in the data of SDP problems in Section
4. We apply this methodology to the standard quadratic programming problem in Section 5,
and to the QAP in Section 6. Finally, we present numerical results to illustrate the complete
approach in Section 7. Throughout, the main (computational) focus is on the QAP, and our
treatment of the standard quadratic program serves as a relatively easy introduction to the more
complicated analysis of the QAP.

2 RLT cuts for the standard quadratic programming problem

We will use the notation from Sherali and Adams [39, x7.1]:"Y
i2J

xi

#
L

= XJ ;

where J is an index set with elements from f1; : : : ; ng where repetition of elements is allowed.
Thus, for example, [x21x2]L = Xf1;1;2g or X112, for short. In other words, [:]L is a \linearization
operator" that maps a monomial to a new variable. This operator may be extended to a
linear map from general polynomials to linear ones by simply replacing each monomial by its
linearization.

The standard quadratic program (stQP ) is de�ned as

min
x2�

xTQx
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where � = fx 2 Rn j Pi xi = 1; x � 0g is the standard simplex in Rn, and Q = QT 2 Rn�n is
given.

It is easy to verify (see e.g. [40] or x8.3 in [39]) that the �rst level RLT relaxation of (stQP )
takes the form

min
X=XT2Rn�n

fhQ;Xi j hJ;Xi = 1; X � 0g

where hQ;Xi = trace(QX), [xixj ]L = Xij (i; j = 1; : : : ; n), and J is the all-ones matrix. Since
X corresponds to the positive semide�nite matrix xxT, we may also add the constraint that X
should be symmetric positive semide�nite, denoted by X � 0, to obtain the stronger relaxation:

min
X2Dn

fhQ;Xi j hJ;Xi = 1g; (stQPSDP+RLT�1)

where Dn � Rn�n is the doubly nonnegative cone, i.e. the cone of n � n symmetric positive
semide�nite matrices that are also entrywise nonnegative.

The second level RLT relaxation involves the new matrix variables

Y (k) = (Y (k))T = [xkX]L (k = 1; : : : ; n):

Since Y
(k)
ij corresponds to xixjxk, one has the relations

Y
(k)
ij = Y

(i)
jk = Y

(j)
ik i; j; k = 1; : : : ; n:

In other words, Y
(k)
ij (i; j; k = 1; : : : ; n) may be viewed as a fully symmetric 3-tensor. The second

level RLT relaxation with SDP constraints becomes

min
Y (1);:::;Y (n)2Dn;X2Rn�n

(
hQ;Xi j hJ;Xi = 1;

nX
k=1

Y (k) = X; Y
(k)
ij fully symmetric

)
:

(stQPSDP+RLT�2)
Note that X 2 Dn is implied by Y (1); : : : ; Y (n) 2 Dn and

Pn
k=1 Y

(k) = X.
The (t� 1)-level RLT relaxation is

min

8<:
nX

i1;:::;it=1

Qi1i2Zi1:::it

������
nX

i1;:::;it=1

Zi1:::it = 1; Z � 0; Z is fully symmetric

9=; :

Since the variable Zi1:::it corresponds to the product xi1 : : : xit , the matrix (Zi1:::it)
n
ir;is=1

corresponds to the matrix

�Qt
j=1

j 6=r;s
xij

�
xxT , and we can require its positive semide�niteness.

In other words, any matrix obtained from the tensor Z by �xing (t � 2) coordinates has to be
positive semide�nite. Therefore it is natural to de�ne (stQPSDP+RLT�t) by adding these linear
matrix inequality constraints to the level t RLT relaxation of (stQP ).

2.1 Related semide�nite programming relaxations

We may rewrite problem (stQPSDP+RLT�2) as the conic linear program

min
X2C

fhQ;Xi j hJ;Xi = 1g = max
t2R

ft j Q� tJ 2 C�g ; (2)
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where C is the following convex cone:

C :=

(
X 2 Rn�n j X =

nX
k=1

Y (k); Y (k) 2 Dn; Y
(k)
ij = Y

(i)
jk = Y

(j)
ik (1 � i; j; k � n)

)
; (3)

C� is its dual cone, and the equality in (2) is due to the conic duality theorem. In a similar
way, one may de�ne RLT relaxations of any order, by generalizing the de�nition of the cone
C. We will argue that these generalized cones coincide with a hierarchy of cones introduced by
Dong [14]. In Dong's notation, Mr

n denotes the set of tensors of order r and dimension n, and
Srn is the set of fully symmetric tensors. Furthermore, for r > 0; � 2 f1; : : : ; ngr and T 2Mr+2

n ,
T [�; :; :] denotes the ordinary matrix obtained by �xing the �rst r indices of T to �, and the set
of such matrices is Slice(T ). The operator Collapse(T ) is de�ned as the sum of the slices of the
tensor T , that is

Collapse(T )[i; j] =
X

�2f1;:::;ngr

T [�; i; j] =
X

P2Slice(T )

Pi;j :

Now one may de�ne the following cones:

T Dr
n = fX : 9Y 2 Sr+2

n ;Slice(Y ) � Dn; X = Collapse(Y)g; (4)

where Kn is the cone of doubly nonnegative n � n matrices, as before. Dong [14] proved that
the cones T Dr

n are dual to cones de�ned earlier by Pe~na et al. [35] (called Qr
n there). The cones

T Dr
n are precisely the generalization of the cone C in (3). In particular, the values Y

(i)
jk in (3)

correspond to a fully symmetric 3-tensor, and the Y (k) to slices of this tensor. This leads us to
the following theorem.

Theorem 1. The level t RLT bound with semide�nite constraints (stQPSDP+RLT�t) for the

standard quadratic program is given by

min
X2T Dt�1

n

fhQ;Xi j hJ;Xi = 1g = maxft j Q� tJ 2 Qt�1
n g (t = 1; 2; : : :); (5)

where the cones T Dt�1
n are de�ned in (4), and Qt�1

n are the corresponding dual cones (t =
1; 2; : : :).

Proof. The proof is by induction, and is omitted since it is straightforward.
We conclude this section with a brief comparison of the (stQPSDP+RLT�t) bound to other

bounds from the literature. These bounds are related to su�cient conditions for matrix coposi-
tivity due to Parrilo [34] (recall that a matrix M is copositive if xTMx � 0 for all nonnegative
vectors x).

To explain these bounds, note that

min
x2�

xTQx = maxft j xTQx � t; 8x 2 �g
= maxft j xT(Q� tJ)x � 0; 8x 2 �g
= maxft j Q� tJ is a copositive matrixg:
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Parrilo [34] introduced the following hierarchy of su�cient conditions for a matrix M to be
copositive, namely0@X

i;j

Mijx
2
ix

2
j

1A nX
i=1

x2i

!r

is a sum of squared polynomials;

for some integer r � 0.

The cone of matrices that satisfy this su�cient condition for a given r is denoted by K(r)
n .

Bomze and De Klerk [9] studied the following lower bounds for the standard quadratic opti-
mization problem:

p(r) := maxft j Q� tJ 2 K(r)
n g = min

X2K
�(r)
n

fhQ;Xi j hJ;Xi = 1g (r = 0; 1; : : :) (6)

Since it is known that Qr
n � K(r)

n (r = 0; 1; : : :) and equality (only) holds for r = 0; 1 [35], we
have the following result.

Theorem 2. The bound p(t�1) in (5) is at least as tight as the bound from (stQPSDP+RLT�t)

in (5) for t = 1; 2; : : :, and the two bounds (only) coincide for t = 1; 2.

3 RLT cuts for the quadratic assignment problem

Given two symmetric n � n matrices A and B, the quadratic assignment problem (QAP) is
de�ned as:

min
�2Sn

nX
i;j=1

AijB�(i);�(j) = min
P2�n

trace(APTBP ); (QAP)

where Sn is the symmetric group on f1; : : : ; ng, and �n is the set of n�n permutation matrices.
The QAP may be rewritten as

min
X
i;j;k;l

aikbjlxijxkl

s:t:
nX
i=1

xij = 1; j = 1; : : : ; n;

nX
j=1

xij = 1; i = 1; : : : ; n;

xij 2 f0; 1g; i; j = 1; : : : ; n:

(7)

Writing the integrality constraints as x2ij = xij (i; j = 1; : : : ; n), and introducing new variables
Xijkl = [xijxkl]L (i; j; k; l = 1; : : : ; n) as before, the �rst-level RLT relaxation of QAP is the
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following linear program:

min
X
i;j;k;l

aikbjlXijkl

s:t:
nX
i=1

xij = 1; j = 1; : : : ; n;

nX
j=1

xij = 1; i = 1; : : : ; n;

nX
i=1

Xijkl = xkl; j; k; l = 1; : : : ; n;

nX
j=1

Xijkl = xkl; i; k; l = 1; : : : ; n;

x � 0;

Xijij = xij ; i; j = 1; : : : ; n;

Xijkl = Xklij � 0; i; j; k; l = 1; : : : ; n:

(QAPRLT�1)

3.1 Related semide�nite programming relaxations

Povh and Rendl [36] studied a semide�nite programming (SDP) relaxation for the QAP problem
(the resulting lower bound coincides with an earlier bound studied in [44]). We will show
that this relaxation may be viewed as a �rst level RLT relaxation of the QAP with positive
semide�niteness constraints added.

In stating and analyzing this SDP relaxation, we will need several properties of the Kronecker
product. Recall that the Kronecker product A
B of matrices A = (aij) 2 Rm�n and B = (bij) 2
Rr�s is the mr � ns block matrix with block (i; j) given by aijB (i = 1; : : : ;m, j = 1; : : : ; n).
We will often use the properties that, for A;B;C;D 2 Rn�n, (A
B)(C 
D) = AC 
BD, and
trace(A
B) = trace(A) trace(B):

The Povh-Rendl [36] relaxation takes the form:

min hA
B; Y i
s:t: hIn 
 Eii; Y i = 1; hEii 
 In; Y i = 1; i = 1; : : : ; n;

hIn 
 (Jn � In) + (Jn � In)
 In; Y i = 0;

hJn 
 Jn; Y i = n2;

Y 2 Dn2 ;

(QAPSDP )

where In and Jn are the identity and all-ones matrices of order n respectively, and Eii is the
n� n diagonal matrix with 1 in position (i; i) and zeros elsewhere.

If we de�ne vec(�) as the operator that maps an n�n matrix to an n2-vector by stacking its
columns, then we may view the matrix variable Y as a relaxation of vec(X)vec(X)T for X 2 �n.
Consequently, we may view Y as having the following block structure:

Y :=

0B@Y
(11) : : : Y (1n)

...
. . .

...

Y (n1) : : : Y (nn)

1CA ; (8)
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where Y (ij) 2 Rn�n (1 � i; j � n). Thus Y
(jl)
ik = [xijxkl]L, and Y

(jl)
ik therefore corresponds to

the variable Xijkl in (QAPRLT�1).

Theorem 3 ([36]). A doubly nonnegative matrix Y is feasible for (QAPSDP ) if and only if Y
satis�es

(i) hIn 
 (Jn � In) + (Jn � In)
 In; Y i = 0;

(ii) trace(Y (ii)) = 1 8 i; Pn
i=1 diag(Y

(ii)) = e;

(iii) Y (ij)e = diag(Y (ii)) 8 i; j;
(iv)

Pn
i=1 Y

(ij) = e diag(Y (jj))T 8 j;
where e denotes the all-ones vector, and the diag(�) operator maps the diagonal entries of a

matrix to a vector in the obvious way.

We may use Theorem 3 to show that the Povh-Rendl relaxation (QAPSDP ) coincides with
the �rst-level RLT relaxation (QAPRLT�1) with positive semide�niteness constraints added.

Theorem 4. If Y is feasible for (QAPSDP ), then Xijkl = Y
(jl)
ik and xij = Y

(jj)
ii (1 � i; j; k; l � n)

is feasible for (QAPRLT�1) with the same objective value. Conversely, if a feasible solution Xijkl

of (QAPRLT�1) corresponds to a positive de�nite matrix Y of the form (8) where Y
(jl)
ik := Xijkl

(1 � i; j; k; l � n), then the matrix Y is feasible for (QAPSDP ) with the same objective value.

Proof. By Theorem 3, for every feasible solution Y of (QAPSDP ) one has:

Y (jl)e = diag(Y (ll)) =)
X
i

Y
(jl)
ik = Y

(ll)
kk 8 j; k; l;

X
j

Y (jl) = e diag(Y (ll))T =)
X
j

Y
(jl)
ik = Y

(ll)
kk 8 i; k; l:

Recalling that Y
(jl)
ik corresponds to Xijkl in (QAPRLT�1), it is now straightforward to verify

that Xijkl = Y
(jl)
ik and xij = Y

(jj)
ii satisfy all the constraints of (QAPRLT�1), and that the two

objective values are the same. The converse proof is similar and therefore omitted.

For the second-level RLT reformulation we introduce the new variable Z
[ij](lq)
(kp) = [xijxklxpq]L.

Thus we obtain the second level RLT relaxation:

min hA
B; Y i
s:t: hIn 
 Eii; Y i = 1; hEii 
 In; Y i = 1 i = 1; : : : ; n;

hIn 
 (Jn � In) + (Jn � In)
 In; Y i = 0;

hJn 
 Jn; Y i = n2;X
i

Z [ij] = Y j = 1; : : : ; n;X
j

Z [ij] = Y i = 1; : : : ; n;

Z [ij] 2 Dn2 i; j = 1; : : : ; n;

Z
[ij](lq)
(kp) = Z

[kl](jq)
(ip) = Z

[pq](jl)
(ik) i; j; k; l; p; q = 1; : : : ; n:

(QAPSDP+RLT�2)
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As before, note that Y 2 Dn2 is implied by Z [ij] 2 Dn2 and
P

j Z
[ij] = Y .

Since the level 2 RLT bound is stronger that the level 1 bound, we have the following corollary
of Theorem 4.

Corollary 5. The bound from (QAPSDP+RLT�2) is at least as tight as the Povh-Rendl bound

(QAPSDP ).

4 Background on symmetry reduction

In what follows we will show how the RLT relaxations may be reduced in size if the data of
the underlying optimization problem exhibits suitable algebraic symmetry. We will review some
basic concepts �rst.

Let Sn denote the symmetric group on f1; : : : ; ng. We consider a �xed permutation group
G � Sn. With each permutation � 2 G, we associate an n � n permutation matrix P� 2 �n,
de�ned by

(P�)ij =

�
1 if �(j) = i
0 else

(i; j = 1; : : : ; n)

Thus �(j) = i if and only if P�ej = ei if ei denotes the ith standard unit vector in R
n. Moreover,

for any X 2 Rn�n one has�
PT� XP�

�
ij
= X�(i);�(j) (i; j = 1; : : : ; n):

We call fP� j � 2 Gg the permutation matrix representation of G.
The centralizer ring (or commutant) of G is the set

AG := fX 2 Cn�n j PT� XP� = X 8� 2 Gg:
In words, AG is the set of matrices that are invariant under the row and column permutations
in G. The centralizer ring AG is a matrix *-algebra, i.e. a linear subspace of Cn�n that is also
closed under matrix multiplication and under taking the complex conjugate transpose.

A centralizer ring AG � Cn�n has a basis of 0-1 matrices, say A1; : : : ; Ad 2 f0; 1gn�n, where
d = dim(AG). In addition, one may assume that

Pd
i=1Ai = J , and that AG contains the identity.

The basis A1; : : : ; Ad corresponds to the orbits of pairs (2-orbits) of indices under the action of
G, and forms a so-called a coherent con�guration; see [11] for the formal de�nition of, and more
information on, coherent con�gurations. In particular, the basis A1; : : : ; Ad is given by the set
of 0-1 matrices with support

f(�(i); �(j)) j � 2 Gg
for some i; j 2 f1; : : : ; ng.

The orthogonal projection of a matrix X 2 Cn�n onto AG is given by

PAG
(X) =

dX
i=1

hAi; Xi
kAik2 Ai

=
1

jGj
X
�2G

PT� XP�;

where kAik2 = hAi; Aii = trace(A2
i ) = hAi; Ji, i.e. the norm in question is the Frobenius norm.
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The projection operator is known as the Reynolds operator of G and the projection is also
called the barycenter of the orbit.

For an integer k, the stabilizer subgroup G[k] � G is de�ned as the group

G[k] = f� 2 G j �(k) = kg ;

and we will denote the centralizer ring of G[k] by AG[k].
If A and A0 are two matrix *-algebras, then a linear map � : A 7! A0 is called an algebra

*-isomorphism if it is one-to-one,

�(XY ) = �(X)�(Y ) 8X;Y 2 A

and
�(X�) = (�(X))� 8X 2 A:

Each matrix *-algebra that contains the identity is isomorphic to a direct sum of full matrix
algebras, in the following sense.

Theorem 6 (Wedderburn, cf. [43]). Let A � Cn�n be a matrix *-algebra that contains the

identity. Then there exists an algebra *-isomorphism � such that

�(A) = �iC
ni�ni

for some integers ni that satisfy
P

i n
2
i = dim(A).

The image of A under the isomorphism � is called the Wedderburn (or canonical) decomposi-
tion of A, or the (canonical) block-diagonalization of A. An accessible proof of the Wedderburn
decomposition theorem is given in [15, Chapter 2]. Moreover, this proof is constructive, and
shows how to obtain �.

The following result relates matrix *-isomorphisms to symmetry reduction for SDP.

Theorem 7 (see e.g. Theorem 4 in [24]). Assume that A and A0 are two matrix *-algebras and

� : A 7! A0 a matrix *-isomorphism. Moreover assume that symmetric matricesM0; : : : ;Mk 2 A
and a vector y 2 Rk are given. One now has

M0 +
kX
i=1

yiMi � 0() �(M0) +
kX
i=1

yi�(Mi) � 0;

where `� 0' means 'hermitian positive semide�nite'.

In practice, this means that we may often replace the matricesMi by block diagonal matrices
�(Mi) with block sizes much smaller than the size of Mi. This block-diagonal structure may in
turn be exploited by interior point solvers.

The following example illustrates the de�nitions above, and will be used later on.

Example 8. Consider the complete k-partite graph Km;:::;m with n = mk, and let G = Aut(Km;:::;m).
The centralizer ring of G[1] is a 12-dimensional subspace of Cn�n and has the following basis.

(The matrices A6; : : : ; A12 all have the same block structure, and subscripts that indicate size

are therefore only indicated in full for A1 to A6.)
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A1 =

�
1 0T

n�1

0n�1 0n�1�n�1

�
; A2 =

�
0 1T

m�1 0T(k�1)m

0n�1 0n�1�m�1 0n�1�(k�1)m

�
= AT3 ;

A4 =

�
0 0T

m�1 1T(k�1)m

0n�1 0n�1�m�1 0n�1�(k�1)m

�
= AT5 ;

A6 =

0BBBBBBB@

0 0T
m�1 0T

m
� � � � � � 0T

m

0m�1 Im�1 0m�1�m 0m�1�m : : : 0m�1�m

0m 0m�m�1 0m�m 0m�m : : : 0m�m
... 0m�m�1 0m�m 0m�m : : : 0m�m
...

...
...

...
. . .

...

0m 0m�m�1 0m�m 0m�m : : : 0m�m

1CCCCCCCA
;

A7 =

0BBBBBBBB@

0 0T � � � � � � � � � 0T

0 J � I 0 0 : : : 0
... 0 0 0 : : : 0
... 0 0 0 : : : 0
...

...
...

...
. . .

...

0 0 0 0 : : : 0

1CCCCCCCCA
; A8 =

0BBBBBBBB@

0 0T � � � � � � � � � 0T

0 0 J J : : : J

... 0 0 0 : : : 0

... 0 0 0 : : : 0

...
...

...
...

. . .
...

0 0 0 0 : : : 0

1CCCCCCCCA
= AT9 ;

A10 =

0BBBBBBBB@

0 0T � � � � � � � � � 0T

0 0 0 0 : : : 0
... 0 I 0 : : : 0
... 0 0 I : : : 0
...

...
...

...
. . .

...

0 0 0 0 : : : I

1CCCCCCCCA
;

A11 =

0BBBBBBBB@

0 0T � � � � � � � � � 0T

0 0 0 0 : : : 0
... 0 J � I 0 : : : 0
... 0 0 J � I : : : 0
...

...
...

...
. . .

...

0 0 0 0 : : : J � I

1CCCCCCCCA
; A12 =

0BBBBBBBB@

0 0T � � � � � � � � � 0T

0 0 0 0 : : : 0
... 0 0 J : : : J

... 0 J 0 : : : J

...
...

...
...

. . .
...

0 0 J J : : : 0

1CCCCCCCCA
:

The centralizer ring AG is isomorphic to C � C � C � C3�3, and the associated algebra

�-isomorphism � satis�es:

�(A1) =

0@0
0

0
0 0 0
0 0 0
0 0 1

1A ; �(A2) =
p
m� 1

0@0
0

0
0 0 0
0 0 0
1 0 0

1A = �(A3)
T;

�(A4) =
p
(k � 1)m

0@0
0

0
0 0 0
0 0 0
0 �1 0

1A = �(A5)
T; �(A6) =

0@1
0

0
1 0 0
0 0 0
0 0 0

1A ;

�(A7) =

0@�1
0

0
m� 2 0 0

0 0 0
0 0 0

1A ; �(A8) =
p
(k � 1)m(m� 1)

0@0
0

0
0 �1 0
0 0 0
0 0 0

1A = �(A9)
T;
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�(A10) =

0@0
1

1
0 0 0
0 1 0
0 0 0

1A ; �(A11) =

0@0
�1

m� 1
0 0 0
0 m� 1 0
0 0 0

1A ;

�(A12) = m

0@0
0

�1
0 0 0
0 k � 2 0
0 0 0

1A :

Finally, the following lemma will be crucial for the symmetry reduction in the following
section. We supply a proof, since we could not �nd this result in the required form in the
literature.

Lemma 9. Assume that the permutation group G � Sn acts transitively on f1; : : : ; ng, and

that its centralizer ring AG has a 0-1 basis A1; : : : ; Ad. Assume, moreover, that the centralizer

ring of the stabilizer subgroup G[1] has a 0-1 basis A0
1; : : : ; A

0
d0. Finally, let �k 2 G be such that

�k(k) = 1 (k = 1; : : : ; n). Then, for any t 2 f1; : : : ; d0g, there exists an f(t) 2 f1; : : : ; dg such

that
nX

k=1

PT�kA
0
tP�k =

nhA0
t; Ji

hAf(t); Ji
Af(t):

Moreover, f(t) 2 f1; : : : ; dg is the unique value such that

support(A0
t) � support(Af(t)): (9)

Proof. If we de�ne the following subgroups of G,
Gi = f� 2 G j �(i) = 1g (i = 1; : : : ; n);

then we have that �i 2 Gi (i = 1; : : : ; n). Moreover, G1 = G[1], Gi = G[1] � �i (i = 1; : : : ; n), and

G =
n[
i=1

Gi; Gi \ Gj = ; if i 6= j: (10)

Fix t 2 f1; : : : ; d0g, and consider the projection of A0
t onto AG :

PAG
(A0

t) =
1

jGj
X
�2G

PT� A
0
tP�

=
1

jGj
nX
i=1

X
�2Gi

PT� A
0
tP� (by (10))

=
1

jGj
nX
i=1

X
�2G1

(P�P�i)
TA0

tP�P�i (since Gi = G1 � �i)

=
1

jGj
nX
i=1

PT�i

0@ X
�2G[1]

PT� A
0
tP�

1AP�i (since G1 = G[1])

=
jG[1]j
jGj

nX
i=1

PT�iA
0
tP�i (since A0

t 2 AG[1])

=
1

n

nX
i=1

PT�iA
0
tP�i (since jGj = njG[1]j):

11



On the other hand, since fA1=kA1k; : : : ; Ad=kAdkg is an orthonormal basis of AG , one has

PAG
(A0

t) =
dX
i=1

hA0
t; Aii

kAik2 Ai

=
hA0

t; Ji
hAf(t); Ji

Af(t);

if f(t) 2 f1; : : : ; dg is the unique value such that (9) holds. This completes the proof.

5 Symmetry reduction of (stQPSDP+RLT�2)

We may eliminate the matrix variable X =
P

k Y
(k) from the second level RLT relaxation of

(stQP) with SDP constraints to obtain:

min
Y (1);:::;Y (n)2Dn

(
nX

k=1

hQ;Y (k)i j
nX

k=1

hJ; Y (k)i = 1; Y
(k)
ij fully symmetric

)
: (stQPSDP+RLT�2)

Let G be the automorphism group of the matrix Q, i.e.

G = Aut(Q) � �� 2 Sn j Qij = Q�(i);�(j) 8i; j 2 f1; : : : ; ng
	
: (11)

Lemma 10. Assume that Y (k) (k = 1; : : : ; n) are optimal for (stQPSDP+RLT�2). Then

�Y (k) =
1

jGj
X
�2G

PT� Y
(�(k))P� (k = 1; : : : ; n)

are also optimal.

Proof. Assume that Y (k) and �Y (k) (k = 1; : : : ; n) are as in the statement of the lemma.
It is trivial to verify that

Pn
k=1hJ; �Y (k)i = 1, and that the matrices �Y (k) (k = 1; : : : ; n) are

doubly nonnegative, by construction.

To show the complete symmetry of �Y
(k)
ij , consider, for �xed i; j; k 2 f1; : : : ; ng,

�Y
(k)
ij =

1

jGj
X
�2G

Y
(�(k))
�(i);�(j)

=
1

jGj
X
�2G

Y
(�(i))
�(j);�(k)

� �Y
(i)
jk ;

etc, where the second equality follows from the complete symmetry Y
(k)
ij = Y

(i)
jk = Y

(j)
ik .
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Finally, since PT� QP� = Q for all � 2 G, one has
nX

k=1

hQ;Y (k)i =
1

jGj
X
�2G

nX
k=1

hPT� QP�; Y (k)i

=
nX

k=1

*
Q;

1

jGj
X
�2G

P�Y
(k)PT�

+

�
nX

k=1

hQ; �Y (k)i:

This completes the proof.
The next useful observation is that an optimal Y (k) may be assumed to belong to the cen-

tralizer ring of the stabilizer subgroup G[k].
Lemma 11. There exists an optimal solution of (stQPSDP+RLT�2) that satis�es

Y (k) 2 AG[k] (k = 1; : : : ; n):

Proof. By the last lemma, we may assume that an optimal solution satis�es

Y (k) =
1

jGj
X
�2G

PT� Y
(�(k))P� (k = 1; : : : ; n):

Now �x i; j; k 2 f1; : : : ; ng, and � 2 G[k]. One now has

Y
(k)
�(i);�(j) = Y

(�(k))
�(i);�(j) =

1

jGj
X
�2G

Y
(�(�(k)))
�(�(i));�(�(j)):

Setting � = � � �, this yields

Y
(k)
�(i);�(j) =

1

jGj
X
�2G

Y
(�(k))
�(i);�(j) � Y

(k)
ij :

Thus Y (k) 2 AG[k], as required.

Finally, if G is transitive, we may assume that the matrices Y (k) (k = 1; : : : ; n) are not
independent, but may all be written in terms of Y (1), as the next lemma shows.

Lemma 12. If G acts transitively on f1; : : : ; ng, then there exists an optimal solution of

(stQPSDP+RLT�2) that satis�es

Y (k) = PT�kY
(1)P�k ;

for any �k 2 G such that �k(k) = 1 (k = 1; : : : ; n).

Proof. By Lemma 10, we may assume that optimal Y (k) (k = 1; : : : ; n) satisfy

Y (k) =
1

jGj
X
�2G

PT� Y
(�(k))P� (k = 1; : : : ; n):
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Fix �k 2 G such that �k(k) = 1 (k = 1; : : : ; n). One now has

PT�kY
(1)P�k =

1

jGj
X
�2G

PT�kP
T

� Y
�(1)P�P�k

=
1

jGj
X
�2G

(P�P�k)
TY �(1)P�P�k :

Denoting �k = � � �k so that �k(k) = �(1), this becomes

PT�kY
(1)P�k =

1

jGj
X
�k2G

PT�kY
(�k(k))P�k � Y (k);

as required.
We may now simplify problem (stQPSDP+RLT�2) by using the results of the last three

lemmas. To this end, let A1; : : : ; Ad denote a 0-1 basis of AG[1] given by the 2-orbits of G[1].
By the results of this section, we may assume that an optimal solution takes the form

Y (1) =
dX
i=1

yiAi; Y (k) = PT�kY
(1)P�k =

dX
i=1

yiP
T

�k
AiP�k (k = 2; : : : ; n);

for some nonnegative scalar variables y1; : : : ; yd, if G is transitive. Thus,

nX
k=1

hJ; Y (k)i = hJ; Y (1)i+
nX

k=2

hJ; PT�kY (1)P�ki

= nhJ; Y (1)i;

so that the constraint
Pn

k=1hJ; Y (k)i = 1 becomes hJ; Y (1)i = 1=n.

The complete symmetry conditions Y
(k)
ij = Y

(i)
jk = Y

(j)
ik imply that some of the yi variables

are equal. To make this precise, note that:

Y
(k)
ij =

dX
u=1

yu(Au)�k(i);�k(j);

Y
(j)
ik =

dX
v=1

yv(Av)�j(i);�j(k);

Y
(i)
jk =

dX
t=1

yt(At)�i(j);�i(k):

If we �x (i; j; k) 2 f1; : : : ; ng3, then there are unique (u; v; t) 2 f1; : : : ; dg3 such that

1 = (Au)�k(i);�k(j) = (Av)�j(i);�j(k) = (At)�i(j);�i(k);

and it must hold that yu = yv = yt.

14



De�nition 13. We will write u � v if there exists a triple (i; j; k) such that 1 = (Au)�k(i);�k(j) =
(Av)�j(i);�j(k).

Thus the total symmetry condition becomes yu = yv if u � v.
In summary, we may write problem (stQPSDP+RLT�2) in the following form.

Theorem 14. Consider problem (stQPSDP+RLT�2) and assume that G = Aut(Q) is transitive.
Let A1; : : : ; Ad denote the 0-1 basis of AG[1]. Then the optimal value is given by:

min
y�0

(
n

dX
i=1

yihAi; Qi
�����

dX
i=1

yihAi; Ji = 1

n
; yu = yv if u � v,

dX
i=1

yiAi � 0

)
;

where the `�'-relation is from De�nition 13.

It is important to remember that the linear matrix inequality
Pd

i=1 yiAi � 0 may be replaced

by
Pd

i=1 yi�(Ai) � 0 for any algebra �-isomorphism � with domain AG[1].

6 Symmetry reduction of (QAPSDP+RLT�2)

We now consider the symmetry reduction of (QAPSDP+RLT�2) for the QAP

min
P2�n

trace(APTBP )

in the case when the n� n symmetric matrices A and B have large automorphism groups.
First of all, we may eliminate the matrix variable Y from (QAPSDP+RLT�2), by using

Y = 1=n
P

i;j Z
[ij], to obtain the formulation:

min
1

n

nX
i;j=1

D
A
B;Z [ij]

E
s:t:

nX
i;j=1

D
In 
 Ekk; Z

[ij]
E
= n;

nX
i;j=1

D
Ekk 
 In; Z

[ij]
E
= n; k = 1; : : : ; n;

nX
i;j=1

D
In 
 (Jn � In) + (Jn � In)
 In; Z

[ij]
E
= 0;

nX
i;j=1

D
Jn 
 Jn; Z

[ij]
E
= n3;

nX
k=1

Z [kj] =
nX

k=1

Z [ik]; i; j = 1; : : : ; n;

Z [ij] 2 Dn2 ; i; j = 1; : : : ; n;

Z
[ij](lq)
(kp) = Z

[kl](jq)
(ip) = Z

[pq](jl)
(ik) ; i; j; k; l; p; q = 1; : : : ; n:

(QAPSDP+RLT�2)

To describe the symmetry, we de�ne GA := Aut(A), GB := Aut(B) and GAB := Aut(A
B)
as in (11).

The following results are analogous to the results for the symmetry reduction of the standard
quadratic program. Where possible, we therefore omit the proofs.
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Lemma 15. Let Z [ij] (i; j = 1; : : : ; n) be an optimal solution of (QAPSDP+RLT�2), and let

�A 2 GA and �B 2 GB. Then
eZ [ij] = (P�A 
 P�B )

TZ [�A(i);�B(j)](P�A 
 P�B ) (i; j = 1; : : : ; n)

is also optimal.

Proof. One has

hIn 
 Ekk; eZ [ij]i = hIn 
 P�BEkkP
T

�B
; Z [�A(i);�B(j)]i = hIn 
 E

��1
B (k);��1

B (k); Z
[�A(i);�B(j)]i;

so that

nX
i;j=1

D
In 
 Ekk; eZ [ij]

E
=

nX
i;j=1

D
In 
 E

��1
B (k);��1

B (k); Z
[�A(i);�B(j)]

E
=

nX
i;j=1

D
In 
 E

��1
B (k);��1

B (k); Z
[i;j]
E
= n:

In the same way, one may show that

nX
i;j=1

D
Ekk 
 In; eZ [ij]

E
= n:

The matrices I; J � I are invariant under all row and column permutations, so that the
constraints

nX
i;j=1

hIn 
 (Jn � In) + (Jn � In)
 In; Z
[ij]i = 0;

nX
i;j=1

hJn 
 Jn; Z
[ij]i = n3

are satis�ed by Z [ij] = eZ [ij].
The matrices eZ [ij] (i; j = 1; : : : ; n) are doubly nonnegative, by construction. Moreover, for

�xed j 2 f1; : : : ; ng,
nX
i=1

eZ [ij] =
nX
i=1

(P�A 
 P�B )
TZ [�A(i);�B(j)](P�A 
 P�B )

= (P�A 
 P�B )
T

 
nX

k=1

Z [k;�B(j)]

!
(P�A 
 P�B ): (12)

Similarly, for �xed i 2 f1; : : : ; ng,
nX

j=1

eZ [ij] =
nX

j=1

(P�A 
 P�B )
TZ [�A(i);�B(j)](P�A 
 P�B )

= (P�A 
 P�B )
T

 
nX

k=1

Z [�A(i);k]

!
(P�A 
 P�B ): (13)
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Since
P

k Z
[i;k] =

P
k Z

[k;j] for all i; j, the expressions in (12) and (13) are equal. Consequently,

the constraint
Pn

k=1
eZ [kj] =

Pn
k=1

eZ [ik] is satis�ed for all i; j.

The tensor eZ is also fully symmetric, since

eZ [ij](lq)
kp = Z

[�A(i);�B(j)](�B(l);�B(q))
�A(k);�A(p)

= Z
[�A(k);�B(l)](�B(j);�B(q))
�A(i);�A(p)

= eZ [kl](jq)
ip ;

etc. Finally, the objective value at eZ [ij] is

1

n

nX
i;j=1

D
A
B; eZ [ij]

E
=

1

n

nX
i;j=1

D
PT�AAP�A 
 PT�BBP�B ; Z

[�A(i);�B(j)]
E
=

1

n

nX
i;j=1

D
A
B;Z [ij]

E
:

This completes the proof.

Corollary 16. If Z [ij] (i; j = 1; : : : ; n) denotes an optimal solution of (QAPSDP+RLT�2), then

Z
�[ij](lq)
kp =

1

jGABj
X

�A2GA

X
�B2GB

Z
[�A(i);�B(j)](�B(l);�B(q))
�A(k);�A(p)

is also optimal.

Proof. The feasible set is convex, so every convex combination of feasible solutions is also a
feasible solution. Moreover, the objective values at Z [ij] and Z�[ij] (i; j = 1; : : : ; n) coincide, by
the proof of the last lemma.

The next result is similar to Lemma 11, and its proof is therefore omitted.

Lemma 17. Problem (QAPSDP+RLT�2) has an optimal solution that satis�es Z [ij] 2 AGAB [i;j],

where GAB[i; j] � Sn2 is the group with permutation matrix representation

fP�A 
 P�B j �A 2 GA[i]; �B 2 GB[j]g :

The next lemma is similar to Lemma 12, and shows that | under suitable symmetry as-
sumptions | we may write all the Z [ij] in terms of Z [11]. Once again, we omit the proof, since
it is similar to that of Lemma 12.

Lemma 18. Assume that GA and GB act transitively on f1; : : : ; ng. Let �Ak 2 GA and �Bk 2 GB
map k to 1 (k = 1; : : : ; n). Then there exists an optimal solution of (QAPSDP+RLT�2) that

satis�es

Z [ij] = (P�Ai

 P�Bj

)TZ [11](P�Ai

 P�Bj

) (i; j = 1; : : : ; n):

In what follows we let fA1; : : : ; AdAg and fB1; : : : ; BdBg denote the 0-1 bases of the centralizer
rings of GA and GB respectively. Moreover, we let fA0

1; : : : ; A
0
d0A
g denote the 0-1 basis of the

centralizer ring of GA[1], and de�ne fB0
1; : : : ; B

0
d0B
g similarly. By the last lemma, we may now

write the Z [ij] in terms of these bases as follows:

Z [11] =

d0AX
p=1

d0BX
q=1

zpqA
0
p 
B0

q;
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and, consequently,

Z [ij] =

d0AX
p=1

d0BX
q=1

zpq(P�Ai

 P�Bj

)TA0
p 
B0

q(P�Ai

 P�Bj

)

=

d0AX
p=1

d0BX
q=1

zpq

�
PT
�Ai
A0
pP�Ai

�


�
PT
�Bj
B0
qP�Bj

�
: (14)

Next, we consider the total symmetry conditions for the Z [ij]. Recalling that Z
[ij](�)
(��) =

[xijx�x��]L, the total symmetry conditions are

Z
[ij](�)
�� = Z

[�](�j)
�i = Z

[��](j)
i� (15)

together with Z [ij] =
�
Z [ij]

�T
, where all indices range from 1 to n.

Clearly, the total symmetry conditions will translate to certain variables zpq being equal. In

particular, for every index set (i; j; �; �; ; �) there is exactly one pair (p; q) such that Z
[ij](�)
�� =

zpq. To be more precise, we require some notation analogous to that of De�nition 13.

De�nition 19. We de�ne two relations �1A and �2A that partition f1; : : : ; d0Ag as follows

p �1A ~p() 9(i; �; �) :
�
PT
�Ai
A0
pP�Ai

�
��

= 1 and
�
PT�A�

A0
~pP�A�

�
�i
= 1;

p �2A ~p() 9(i; �; �) :
�
PT
�Ai
A0
pP�Ai

�
��

= 1 and
�
PT
�A
�
A0

~pP�A
�

�
i�
= 1;

where 1 � p; ~p � d0A, and 1 � i; �; � � n.
Similarly, we de�ne two relations �1B and �2B that partition f1; : : : ; d0Bg as follows

q �1B ~q () 9(j; ; �) :
�
PT
�Bj
B0
qP�Bj

�
�

= 1 and
�
PT�B

B0
~qP�B

�
�j
= 1;

q �2B ~q () 9(j; ; �) :
�
PT
�Bj
B0
qP�Bj

�
�

= 1 and
�
PT
�B
�
B0

~qP�B
�

�
j

= 1;

where 1 � q; ~q � d0A, and 1 � j; �;  � n.

We now state the �nal form of the total symmetry conditions. The proof is an easy conse-
quence of (14) and (15).

Lemma 20. Using the notation in De�nition 19, the total symmetry conditions (15) become:

zpq = z~p~q () (p �1A ~p and q �1B ~q) or (p �2A ~p and q �2B ~q) : (16)

The �nal step in the symmetry reduction of problem (QAPSDP+RLT�2) is to rewrite the
constraints:

nX
k=1

Z [kj] =
nX

k=1

Z [ik] (i; j = 1; : : : ; n): (17)
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Using (14), the left-hand-side may be written as

nX
k=1

Z [kj] =

d0AX
p=1

d0BX
q=1

zpq

 
nX

k=1

PT
�A
k
A0
pP�A

k

!


�
PT
�Bj
B0
qP�Bj

�
: (18)

By Lemma 9,
nX

k=1

PT
�A
k
A0
pP�A

k
=

nhA0
p; Ji

hAfA(p); Ji
AfA(p)

where fA(p) 2 f1; : : : ; dAg is the unique value such that support(A0
p) � support(AfA(p)). More-

over, we have Bs =
P

q2IB(s)
B0
q for some index set IB(s) � f1; : : : ; d0Bg. In particular, if we

de�ne fB analogously to fA, then IB(s) = fq j fB(q) = sg.
Using these relations, equation (18) becomes

nX
k=1

Z [kj] =

d0AX
p=1

d0BX
q=1

zpq

�
nhA0

p; Ji
hAfA(p); Ji

AfA(p)

�


�
PT
�Bj
B0
qP�Bj

�
:

In a similar way, one may show that

nX
k=1

Z [ik] =

d0AX
p=1

d0BX
q=1

zpq

�
PT
�Ai
A0
pP�Ai

�


�

nhB0
q; Ji

hBfB(q); Ji
BfB(q)

�
:

Equating coe�cients of Ar 
 Bs (1 � r � dA; 1 � s � dB) in the last two expressions, we �nd
that (17) will hold if and only if

X
�p:fA(�p)=r

hA0
�p; Ji

hAr; Jiz�pq =
X

�q:fB(�q)=s

hB0
�q; Ji

hBs; Jizp�q 8 p 2 IA(r); q 2 IB(s) (1 � r � dA; 1 � s � dB):

We end this section by stating the �nal reformulation of the relaxation (QAPSDP+RLT�2)
as a theorem.

Theorem 21. Consider the QAP problem minP2�n traceAP
TBP and assume that Aut(A) and

Aut(B) act transitively on f1; : : : ; ng. Let fA1; : : : ; AdAg and fB1; : : : ; BdBg denote the 0-1

bases of the centralizer rings of GA := Aut(A) and GB := Aut(B) respectively. Moreover, let

fA0
1; : : : ; A

0
d0A
g denote the 0-1 basis of the centralizer ring of GA[1], and de�ne fB0

1; : : : ; B
0
d0B
g

similarly.

Assume that �Ak 2 GA are given such that �Ak (k) = 1 (k = 1; : : : ; n), and de�ne �Bk 2 GB in

the same way.

Then the optimal value of problem (QAPSDP+RLT�2) is given by

minn

d0AX
r=1

d0BX
s=1

zrshA;A0
rihB;B0

si
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subject to

d0AX
r=1

d0BX
s=1

zrs trace(A
0
r)(B

0
s)ii =

1

n
(i = 1; : : : ; n);

d0AX
r=1

d0BX
s=1

zrs trace(B
0
s)(A

0
r)ii =

1

n
(i = 1; : : : ; n);

d0AX
r=1

d0BX
s=1

zrs
�
trace(A0

r)hJ � I;B0
si+ trace(B0

s)hJ � I;A0
ri
�
= 0;

d0AX
r=1

d0BX
s=1

zrshJ;A0
rihJ;B0

si = n;

X
�p:fA(�p)=r

hA0
�p; Ji

hAr; Jiz�pq =
X

�q:fB(�q)=s

hB0
�q; Ji

hBs; Jizp�q 8 p 2 IA(r); q 2 IB(s) (1 � r � dA; 1 � s � dB);

d0AX
p=1

d0BX
q=1

zpqA
0
p 
B0

q � 0;

zpq = z~p~q if (p �1A ~p and q �1B ~q) or (p �2A ~p and q �2B ~q) ;

z � 0;

where

� the relations '�1A' etc. are de�ned in De�nition 19,

� fA and fB correspond to f in Lemma 9 for the groups Aut(A) and Aut(B) respectively,

� for r 2 f1 : : : ; dAg and s 2 f1; : : : ; dBg, IA(r) = fp j fA(p) = rg, and IB(s) = fq j fB(q) =
sg.

If we have algebra �-isomorphisms �A and �B de�ned on AGA[1] and AGB [1] respectively, then

we may replace the linear matrix inequality
Pd0A

p=1

Pd0B
q=1 zpqA

0
p
B0

q � 0 in the above formulation

by
Pd0A

p=1

Pd0B
q=1 zpq�A(A

0
p) 
 �B(B

0
q) � 0. As before, this may lead to smaller, block diagonal

matrices in practice.

7 Numerical examples

In this section we will show how the symmetry reduction works for some speci�c (stQP) and
(QAP) problems.

We will �rst consider maximum stable set problems on symmetric graphs formulated as
(stQP) problems, followed by QAP formulations of certain graph partition problems on sym-
metric graphs.
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7.1 Results for (stQP)

An important application of (stQP) is the maximum stable set problem in combinatorial opti-
mization. Recall that a stable set of a graph G = (V;E) is a subset of V 0 � V such that no two
vertices in V 0 are adjacent. The stability number �(G) of G is the cardinality of a maximum
stable set in G. By the Motzkin-Straus theorem [32], one has

1

�(G)
= min

x2�
xT(A+ I)x (19)

where A is the adjacency matrix of G.
The so-called #0(G) upper bound on �(G) is de�ned as

�(G) � #0(G) := maxfhJ;Xi j hA+ I;Xi = 1; X 2 DjV jg;

where DjV j is the doubly nonnegative cone in RjV j�jV j as before. The #0(G) bound corresponds
to our (stQPSDP+RLT�1) bound when applied to problem (19) in the following sense.

Theorem 22 (see Lemma 5.2 in [23]). Let G = (V;E) be a graph with adjacency matrix A,
and let val(G) denote the optimal value of (stQPSDP+RLT�1) with Q = A + I. Then one has

1
val(G) = #0(G).

A similar results holds for the (stQPSDP+RLT�2) bound, since it coincides with the bound
p(1), de�ned in (6), if Q = A + I. The reciprocal of this bound was �rst studied by De Klerk
and Pasechnik [23], and was called #(1) there. To be precise:

�(G) � #(1)(G) := maxfhJ;Xi j hA+ I;Xi = 1; X 2 K�(1)
jV j g; (20)

where the cone K�(1)
jV j is de�ned in Section 2.1.

Theorem 23. Let G = (V;E) be a graph with adjacency matrix A, and let val(G) denote the

optimal value of (stQPSDP+RLT�2) with Q = A+ I. Then one has 1
val(G) = #(1)(G), where #(1)

is de�ned in (20).

Proof. The proof is an immediate consequence of Theorem 2.

The Hamming graph

Consider now the special case where G is the Hamming graph Hn;d de�ned as follows: the vertex
set is f0; 1gn (viewed as binary words of length n), and two vertices are adjacent if their Hamming
distance is less than d. The stability number of Hn;d is mostly denoted by A(n; d), and is of
fundamental importance in coding theory. Possibly the most famous upper bound on A(n; d)
is the linear programming bound of Delsarte [12], which coincides with #0(Hn;d), as was shown
by Schrijver [37]. By Theorem 22, the reciprocal of the (stQPSDP+RLT�1) bound therefore
also coincides with the Delsarte bound. Consequently, the reciprocal of the (stQPSDP+RLT�2)
bound (i.e. the #(1)(Hn;d) bound) is at least as strong as the Delsarte bound (and sometimes
stronger; cf Table 1).

Stronger semide�nite programming bounds were introduced by Schrijver [38], and this has
led to further improvements in [29] and [16].
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The algebraic symmetry of the Hamming graph Hn;d is well-understood. For our purposes
it is important to note that AAut(Hn;d) is the Bose-Mesner algebra of the Hamming scheme, and
AAut(Hn;d)[1] is the Terwilliger algebra of the Hamming scheme. Thus one has dim(AAut(Hn;d)) =

n + 1, and dim(AAut(Hn;d)[1]) =
�
n+3
3

�
, and bases for these algebras are known in closed form;

see e.g. Chapter 3 in [15]. Moreover, the Wedderburn decompositions of both algebras are also
known in closed form; see [38] and [15] for details.

We were therefore able to compute the bound (stQPSDP+RLT�2) for problem (19) for the
graph Hn;d, and the reciprocal of the bound (= #(1)(Hn;d)) is shown in Table 1 for some values
of (n; d). Our purpose was to show the di�erence between the bounds obtained by level 1 RLT
cuts (the Delsarte bound) and level 2 RLT cuts (the #(1)(Hn;d) bound). Note that a few values of
#(1)(Hn;d) were already reported in the paper [17], namely (n; d) 2 f(17; 4); (17; 6); (17; 8)g, but
no details were given there on the symmetry reduction. Our goal here is therefore to compare
the bounds for more (and larger) values of (n; d), and also to give details on the symmetry
reduction via Theorem 14.

Computation was done on a Dell Precision T7500 workstation with 32GB of RAM memory,
using the semide�nite programming solver SDPA-GMP [33].

The column A(n; d) in Table 1 contains the best known upper and lower bounds on A(n; d) as
taken from the table maintained by Andries Brouwer at http://www.win.tue.nl/~aeb/codes/
binary-1.html for n � 28. This table is an update of the table published in [8]; see also [6].
For n > 28 the bounds were taken from [31, Appendix A].

n d A(n; d) 1/(stQPSDP�RLT2) CPU time (sec) 1/(stQPSDP�RLT1)

= #(1)(Hn;d) = Delsarte bound

9 4 20 21 1.05 25
13 4 256 278 6.9 292
13 6 32 33 7.37 40
17 8 36 42 39.93 50
22 6 4096{6941 7672 243.69 7,723
22 10 64{84 92 314.65 95
23 10 80{150 151 375.96 151
25 10 192{466 525 865.65 551
26 10 384{836 983 1214.5 1040
25 12 52{55 63 1004.66 75
26 12 64{96 105 1259.57 113
27 12 128{169 170 1251.75 170
28 12 178{288 288 1622.36 288
30 8 216 { 114,398 114,398 3027.44 114,816
30 12 512 { 1,076 1,076 3706.00 1,131
30 14 64 { 117 117 3892.09 129

Table 1: Upper bounds on A(n; d) via RLT level 1 and level 2 cuts. All upper bounds have been
rounded down to the nearest integer.

Note that the #(1)(Hn;d) bound is stronger than the Delsarte bound [12] for all instances in
the table where the Delsarte bound is not tight, but not as strong as the best known bound for
n � 27. For the values (n; d) 2 f(28; 12); (30; 8); (30; 12); (30; 14)g, #(1)(Hn;d) coincides with the
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strongest known bound. (The origins of the strongest bounds for these cases are given in [6].)
Unfortunately, we were not able to �nd values of (n; d) where #(1)(Hn;d) improves on the best
known upper bound on A(n; d).

7.2 Results for QAP

In this section we will present results for maximum and minimum k-section problems on graphs,
formulated as QAP's.

Recall that the maximum (resp. minimum) k-section problem, for a graph G = (V;E) on
n = jV j vertices and with adjacency matrix A, is to partition the vertices V into k sets of equal
cardinality m := n=k, such that the number of edges between partitions is a maximum (resp.
minimum).

The QAP reformulation of these problems works as follows: consider the adjacency matrix,
say B, of Km;:::;m (with any �xed labeling of the vertices), e.g.

B := (Jk � Ik)
 Jm: (21)

If P is a permutation matrix that de�nes a re-labeling of the vertices, then the adjacency matrix
after re-labeling is P TBP .

The QAP reformulation of max k-section is therefore given by:

1

2
max
P2�jV j

trace(APTBP ); (22)

and min k-section is obtained by replacing `max' by `min'.
An SDP bound for min/max k-section by Karisch and Rendl [22] is known to coincide with

the (QAPSDP+RLT�1) bound considered here, as was shown in [13]; see also [41, Theorem 13].
Our goal here is to improve on this bound by computing the stronger (QAPSDP+RLT�2) bound.

We will consider min/max k-section problem on strongly regular graphs. Recall that the
adjacency matrix A of a strongly regular graph has exactly two distinct eigenvalues associated
with eigenvectors orthogonal to the all-ones vector. These eigenvalues are called the restricted

eigenvalues, and are usually denoted by r > 0 and s < 0. A strongly regular graph is completely
characterized by the values (n = jV j; �; r; s), where � is the valency of the graph.

For strongly regular graphs, the Karisch and Rendl [22] bound has a closed form expression,
as shown in [25]. Since the closed form expression was only derived for the maximum k-section
bound in [25], we state the expression here for the minimum k-section bound as well. The proof
is similar to that of [25, Theorem 7], and is therefore omitted.

Theorem 24 (cf. Theorem 7 in [25]). Let G = (V;E) be a strongly regular graph with parameters

(n = jV j; �; r; s) where r and s are the restricted eigenvalues, and � is the valency. Let an integer

k > 0 be given such that m = n=k is integer. The Karisch-Rendl bound on the minimum k-
section of G is now given by

jEj
�
1�min

�
n� �� 1� (s+ 1)(m� 1)

�s(n� �� 1)� (s+ 1)�
; (m� 1)=�

��
: (23)

Similarly, the Karisch-Rendl bound on the maximum k-section of G is given by

1

2
(n�m)(�� s): (24)
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Maximum k-section problems in strongly regular graphs are of interest, since they are related
to so-called Ho�man colorings and spreads of these graphs; see [18] for details and de�nitions.

We �rst present results for the Higman-Sims graph [20], where

(n = jV j; �; r; s) = (100; 22; 2;�8):
The max k-section problem on this graph was studied in [25], and the best known upper

bound of max 4-section was obtained there. In particular, it is known that the Higman-Sims
graph has a 4-section into four components of �ve 5-cycles each. Thus there is a 4-section of
weight 1000, but this is not known to be a maximum; for more information on this graph, see the
discussion on the web page maintained by Andries Brouwer: http://www.win.tue.nl/~aeb/

graphs/Higman-Sims.html

In Tables 2 and 3 we compare di�erent bounds on various max k-section and min k-section
problems on the Higman-Sims graph respectively.

We computed the bound (QAPSDP+RLT�2) for the max/min k-section of the Higman-Sims
graph for several values of k. In order to do so, we used the symmetry of the Higman-Sims
graph described in [25]. Moreover, we used the symmetry of B as described in Example 8.

Computation was done on a PC with 8GB RAM memory and an Intel(R) Core(TM)2 Quad
CPU Q9550 processor, using the semide�nite programming solver SeDuMi [42] under Matlab 7
together with the Matlab package YALMIP [30].

k (QAPSDP+RLT�2) CPU time (s) Karisch-Rendl Bound Lower bound
bound (24) from [25]

2 750 0.1758 750 750 750
4 1048 0.2253 1100 1098 1006
5 1100 0.2161 1100 1100 1068

Table 2: Di�erent bounds on the max k-section of the Higman-Sims graph.

The lower bounds in Table 2, and the upper bounds in Table 3 were obtained by using a
iterative local search QAP heuristic.

k (QAPSDP+RLT�2) CPU time (s) Karisch-Rendl bound (23) Upper bound

2 500 0.1623 500 500
4 750 0.2016 750 756
5 800 0.9491 800 800
10 900 0.1951 900 900
20 975 0.2746 950 980
25 1000 0.281 960 1000

Table 3: Di�erent bounds on the min k-section of the Higman-Sims graph.

The (QAPSDP+RLT�2) bound gave improvements for max 4-section, min 20-section, and
min 25-section. Note that the upper and lower bounds for min 25-section coincide, proving
optimality.

Moreover, it is worth noting that the computational time required was less than a second
for each instance. (The computational time for the Karisch-Rendl bound is negligible, due
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to its closed form expression in (23).) This shows that it is indeed possible to compute the
(QAPSDP+RLT�2) bound when the QAP problem has suitable symmetry.

Similar results are shown in Table 4, for min/max 11-section on another strongly regular
graph, namely the Cameron graph [10] with parameters (n = jV j; �; r; s) = (231; 30; 9;�3); see
also http://www.win.tue.nl/~aeb/graphs/Cameron.html for more details on this graph. The
column `Heuristic' gives the best heuristic solutions that were obtained with the iterative local
search heuristic (i.e. the heuristic solution provides a lower bound for the maximization problem
and an upper bound for minimization). For the min-11-section problem, the (QAPSDP+RLT�2)

min/max k (QAPSDP+RLT�2) CPU time (s) Karisch-Rendl bound (23) Heuristic

min 11 2349 1.7018 2205 2458
max 11 3465 0.8365 3465 3440

Table 4: Di�erent bounds on the min/max 11-section of the Cameron graph.

bound is strictly better than the Karisch-Rendl bound (23). Once again, the computational time
required to compute the (QAPSDP+RLT�2) bound is of the order of a second after symmetry
reduction.
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