
Streamlining Policy Creation in Policy Frameworks

Mark Hills1

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract. Policy frameworks provide a technique for improving reuse in program
analysis: the same language frontend, and a core analysis semantics, can be shared
among multiple analysis policies for the same language, while analysis domains
(such as units of measurement) can be shared among frameworks for different
languages. One limitation of policy frameworks is that, in practice, adding a new
policy can still require a significant level of knowledge about the internals of the
semantics definition. This abstract describes work on extending policy frameworks
to solve this limitation, making policies reflective over their requirements and
generating the policy semantics from a higher-level policy description language.

Using executable language definitions, such as rewriting logic semantics [9] (RLS)
or K [11] definitions running in Maude [4], program analysis can be treated as a form
of non-standard program evaluation over appropriate domains of abstract values. An
example of this approach is the unit safety analysis developed first for BC [3] (a small
calculator language) and then for a small subset of C [10]. In this analysis, the abstract
values were units of measurement [1] (e.g., meters, seconds, lumens). The analysis
semantics modeled the operation of language constructs over these units, detecting errors
in cases where units were used incorrectly, e.g., when two different units were added.

However, in this work, rules specific to the analysis were tangled with analysis-
agnostic rules, making it challenging to reuse parts of the existing semantics in a
new analysis. Solving this problem was the goal of the C Policy Framework [5], or
CPF, an extensible analysis framework for C defined in Maude. The core of CPF
includes an analysis-generic frontend, allowing annotations to be added (in comments)
as function contracts or within function bodies, and an abstract C semantics. To define
a specific analysis policy, this core is extended with an analysis-specific definition of
abstract values, a specific annotation language, and equational definitions for a number
of hooks, representing points in the semantics that differ between analysis policies. Later
work extended this to the SILF language [7], which provides a simpler, more modular
environment for experimenting with analysis policies. This work also extended the
annotation mechanism to type-like annotations, a feature subsequently added to CPF.

Unfortunately, even though the frameworks for C and SILF were structured modu-
larly [8,2], they were sometimes not modular in practice, a point raised in conversations
with the author. To actually implement a new policy, the implementer requires a detailed
knowledge of both Maude and of the entire provided core semantics. This includes
knowing which hooks must be defined to provide the policy-specific semantics and
which modules provide base variants of functionality that can be directly reused or
extended. In this abstract we describe ongoing work on two features being added to
the SILF policy framework (and later to CPF) to help solve this problem: the reflective
extraction of extension point information, and a DSL for describing analysis policies.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://homepages.cwi.nl/~hills
http://www.cwi.nl


Reflective Extraction of Extension Point Information Each hook operation defined in the
core framework semantics is identified using a Maude metadata attribute. Additional
operations are defined equationally to identify modules that can be used directly or ex-
tended to provide specific features, e.g. a base annotation language. Using a combination
of standard rewriting and Maude’s reflective capabilities, the policy description language,
described below, can then “ask” a framework about defined extension points.

A Policy Description Language Using the extracted policy information, a policy descrip-
tion language is used to describe the three standard parts of an analysis policy. First, the
domain of policy values is defined algebraically, with pretty-printing rules defined to
display policy values appropriately in messages. Second, the analysis-specific behavior
for each hook is defined, making use of the policy values and of predefined reporting
operations for errors and warnings (potentially with source locations [6]). Third, the
annotation language used for the policy is defined by extending a provided base anno-
tation language with policy-specific annotations, e.g., @unit(E) to calculate the unit
of an expression in a units policy. These three items are then used to generate a parser
for the annotation language, used in conjunction with the language parser, and a Maude
specification of the value domain and the analysis semantics. This generation process
also creates many of the repetitive cases needed to properly handle the propagation of
error information from children to parents (ensuring errors in child expressions do not
trigger new, spurious errors in parents), something done manually now.

References
1. NIST Website, International System of Units (SI).

http://physics.nist.gov/cuu/Reference/unitconversions.html.
2. C. Braga and J. Meseguer. Modular Rewriting Semantics in Practice. In Proceedings of

WRLA’04, volume 117 of ENTCS, pages 393–416. Elsevier, 2005.
3. F. Chen, G. Roşu, and R. P. Venkatesan. Rule-Based Analysis of Dimensional Safety. In

Proceedings of RTA’03, volume 2706 of LNCS, pages 197–207. Springer, 2003.
4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott, editors.

All About Maude - A High-Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic, volume 4350 of LNCS. Springer, 2007.

5. M. Hills, F. Chen, and G. Roşu. A Rewriting Logic Approach to Static Checking of Units of
Measurement in C. In Proceedings of RULE’08. Elsevier, 2008. To Appear.

6. M. Hills, P. Klint, and J. Vinju. RLSRunner: Linking Rascal with K for Program Analysis. In
Proceedings of SLE’11, LNCS. Springer-Verlag, 2011. To Appear.

7. M. Hills and G. Roşu. A Rewriting Logic Semantics Approach To Modular Program Analysis.
In Proceedings of RTA’10, volume 6 of Leibniz International Proceedings in Informatics,
pages 151 – 160. Schloss Dagstuhl - Leibniz Center of Informatics, 2010.

8. J. Meseguer and C. Braga. Modular Rewriting Semantics of Programming Languages. In
Proceedings of AMAST’04, volume 3116 of LNCS, pages 364–378. Springer, 2004.

9. J. Meseguer and G. Rosu. The rewriting logic semantics project. Theoretical Computer
Science, 373(3):213–237, 2007.

10. G. Roşu and F. Chen. Certifying Measurement Unit Safety Policy. In Proceedings of ASE’03,
pages 304 – 309. IEEE, 2003.

11. G. Roşu and T. F. Şerbănuţă. An Overview of the K Semantic Framework. Journal of Logic
and Algebraic Programming, 79(6):397–434, 2010.


	Streamlining Policy Creation in Policy Frameworks

