
Monadic Functional Reactive Programming

Atze van der Ploeg
Centrum Wiskunde & Informatica

ploeg@cwi.nl

Abstract
Functional Reactive Programming (FRP) is a way to program reac-
tive systems in functional style, eliminating many of the problems
that arise from imperative techniques. In this paper, we present an
alternative FRP formulation that is based on the notion of a reac-
tive computation: a monadic computation which may require the
occurrence of external events to continue. A signal computation
is a reactive computation that may also emit values. In contrast to
signals in other FRP formulations, signal computations can end,
leading to a monadic interface for sequencing behavioral changes.
This interface has several advantages: routing is implicit, sequencing
behaviors is easier and more intuitive than the switching combina-
tors found in other FRP approaches, and dynamic lists require much
less boilerplate code. In other FRP approaches, either the entire
FRP expression is re-evaluated on each external stimulus, or impure
techniques are used to prevent redundant re-computations. We show
how Monadic FRP can be implemented straightforwardly in a purely
functional way while preventing redundant re-computations.

1. Introduction
Many computer programs are reactive: they engage in a dialogue
with their environment, responding to events as they arrive. Exam-
ples of such programs are computer games, control systems, servers,
and GUI applications. Imperative techniques to create reactive sys-
tems, such as the observer pattern, lead to plethora of problems:
inversion of control, non-modularity and side effects [15].

Functional Reactive Programming (FRP) [8] is a programming
paradigm to define reactive systems in functional style, eliminating
many of the problems of imperative techniques. FRP has been
successfully applied in many domains, such as robotics [9, 19, 20],
computer vision [21], gaming [4], web programming[12, 17] and
graphical user interfaces [3].

The primary abstraction in FRP is a signal [18]: a value that
changes over time. Traditionally, signals are modeled as mappings
from points in time to values. For example, the position of the mouse
can be modeled by a function that takes a number of seconds since
the program started and returns the coordinates of the pointer at
that time. Such signals can then be composed directly [8] or by
composing signal functions [3], functions from signal to signal.

In this paper, we present a novel approach to FRP called Monadic
Functional Reactive Programming that does not model signals
as mappings from points in time to values. Instead, Monadic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell Symposium ’13 Boston, Massachusetts
Copyright c© 2013 ACM [to be supplied]. . . $15.00

FRP is based on the notion of a reactive computation: a monadic
computation which may require the occurrence of external events
to continue. The Monadic FRP variant of a signal is a signal
computation: a reactive computation that may also emit values
during the computation.

This novel formulation has two differences with other FRP
approaches:

• In contrast to signals in other FRP formulations, signal compu-
tations can end. This leads to a simple, monadic interface for
sequencing behavioral changes.
• In other FRP approaches, either the entire FRP expression is

re-evaluated on each external stimulus, or impure techniques
are used to prevent redundant re-computations: re-computing
the current value of signal while the input it depends on has not
changed. Monadic FRP can be implemented straightforwardly
in a purely functional way while preventing such redundant
re-computations.

Our contributions are summarized as follows:

• A novel monadic FRP programmer interface. We demonstrate
this programming model by composing a drawing program from
simple components (Section 2).
• An comparison of the Monadic FRP programmer interface with

other FRP formulations (Section 3)
• The first purely functional FRP evaluation model which prevents

redundant re-computations, which we show in Section 4.
• The implementation of the composition functions from the

programmer interface on top of this evaluation model. This
is shown in Section 5.
• A comparison of the Monadic FRP evaluation model with other

FRP evaluation models (Section 6).

In Section 7 we conclude and discuss future work. A library based on
the ideas in this paper is available as hackage package drClickOn.

2. Programming with Monadic FRP
2.1 The drawing program
In this section, we demonstrate the Monadic FRP programming
interface by composing a simple drawing program from small parts.
The drawing program allows the user to draw boxes, change their
color and delete boxes. The lifetime of each box consists of three
phases:

1. Define: The user can define a box by holding down the left
mouse button. The left-upper point of the rectangle is the mouse
position when the user presses the left mouse button, the right-
lower point is the mouse position when the user releases the left
mouse button. While the user holds down the left mouse button,
the preliminary rectangle is shown like in Figure 1(a).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a) (b) (c)

Figure 1: Screenshots of the simple drawing program.

2. Choose color: The user can cycle through possible colors for
the box by pressing the middle mouse button, which changes the
color of the box as shown in Figure 1(b). During this phase the
box is animated so that is slowly wiggles from left to right to
indicate that the color is not fixed yet. This phase ends when the
user presses the right mouse button.

3. Wait for delete: The color and size of the box are now fixed. The
user can delete the box by right double-clicking on it.

As soon as Phase 1 of a box ends, a new box can be defined. In this
way there may be multiple boxes on screen, as shown in Figure 1(c).
We develop an expression for each phase of the box, the lifetime
of a box is then described by sequentially composing these phases.
Finally, a combination of sequential and parallel composition is used
to allow multiple boxes to be active at the same time. The entire
code for this example, including the interpreter, can be obtained at
http://github.com/cwi-swat/monadic-frp.

2.2 Reactive computations
The basic concept in Monadic FRP is a reactive computation: a
monadic computation of a single value, which may require the
occurrence of external events to continue. The type of a reactive
computation is Reactg a , where a is the type of the result of the
reactive computation. The drawing program is created by composing
the following basic reactive computations:

mouseDown :: Reactg (Set MouseBtn)
mouseUp :: Reactg (Set MouseBtn)
mouseMove :: Reactg Point
deltaTime :: Reactg Time
sleep :: Time → Reactg ()

type Point = (Double,Double) -- in pixels
data MouseBtn = MLeft | MMiddle | MRight
type Time = Double -- in seconds

Here mouseDown is a reactive computation that completes on the
next mouse press by the user, and then returns the mouse buttons
that are pressed. Typically this will be a single mouse button, but
it may be that the user presses multiple buttons simultaneously,
and hence the result is a set of buttons. Similarly, mouseUp
returns the mouse buttons that are released next. The reactive
computation mouseMove completes on the next move of the
mouse, and gives the new mouse position on screen. The reactive
computation deltaTime reports a change in time: the elapsed time
in seconds since the last update. How fast deltaTime completes
depends on the processing power available, as we will see later.
Finally, sleep is the reactive computation that completes after
waiting the given number of seconds. The subscript g in the type
of reactive computation Reactg indicates the set of events that
the reactive computation may deal with, and will be explained in
Section 4.

Our drawing program is an expression where the above basic
reactive computations are the leaves of the expression. The functions

that are used to form this expression by converting, transforming
and composing other expressions are shown in Figure 2. In the rest
of this section, we discuss these functions and show how they are
used to compose the drawing program from small components.

Reactive computations can be composed sequentially, yielding a
new reactive computation that acts as the first reactive computation
until it completes, then passes its result to a function which returns
a second reactive computation, and finally acts as this second
reactive computation until it completes. The function to compose
reactive computations sequentially is the bind (>>=) function from
the Monad type class. As an example, the following defines a
reactive computation that decides if the user has pressed the same
mouse button(s) in succession, using do notation:

sameClick :: Reactg Bool
sameClick = do pressed ← mouseDown

pressed2 ← mouseDown
return (pressed ≡ pressed2)

Here the function return , also from the Monad type class, converts
a value into a reactive computation which immediately completes
and returns the given value.

Another example of sequential composition is the following
reactive computation, which completes when a given mouse button
is pressed:

clickOn :: MouseBtn → Reactg ()
clickOn b = do bs ← mouseDown

if b ‘member ‘ bs then return () else clickOn b

leftClick = clickOn MLeft
middleClick = clickOn MMiddle
rightClick = clickOn MRight

The basic function to compose reactive computations in parallel
is first , whose type is listed in Figure 2. This function gives the
reactive computation that runs both argument reactive computations
in parallel, and completes as soon as either one of the arguments
completes. The result is then the pair of the new states of both
reactive computations, one of which has completed (or both when
they complete simultaneously). We can use this, for example, to
create a reactive computation that given two reactive computations
decides if the first completes before the second:

before :: Reactg a → Reactg b → Reactg Bool
before a b = do (a ′, b′)← first a b

case (done a ′, done b′) of
(Just ,Nothing)→ return True

→ return False

Where done is a function that given the state of a reactive computa-
tion, returns the result of this reactive computation wrapped in Just
if the reactive computation is done, and Nothing otherwise.

Sequential and parallel composition can be combined to form
more complex expressions. For example, the following reactive
computation completes when the user has double-clicked the right
mouse button, where a double-click is defined as two clicks within
200 milliseconds:

doubler :: Reactg ()
doubler = do rightClick

r ← rightClick ‘before‘ sleep 0.2
if r then return () else doubler

2.3 Signal computations
The second concept in Monadic FRP is a signal computation, a re-
active computation that may also emit values. A signal computation
has type Sigg a b, with two type arguments: the type of the values

Parallel composition
first :: Reactg a → Reactg b → Reactg (Reactg a,Reactg b)
at :: Sigg a y → Reactg b → Reactg (Maybe a)
until :: Sigg a l → Reactg b → Sigg a (Sigg a l ,Reactg b)
<∧> :: Sigg (a → b) l → Sigg a r → Sigg b (Sigg (a → b) l ,Sigg a r)
indexBy :: Sigg a l → Sigg b r → Sigg a ()

Sequential composition
(>>=) :: Reactg b → (b → Reactg a) → Reactg a
(>>=) :: Sigg x b → (b → Sigg x a) → Sigg x a

Repetition
repeat :: Reactg a → Sigg a ()
spawn :: Sigg a x → Sigg (ISigg a x) ()

Transformation
map :: (a → b)→ Sigg a r → Sigg b r
scanl :: (a → b → a)→ a → Sigg b r → Sigg a r
find :: (a → Bool)→ Sigg a r → Reactg (Either a r)

Parallel element composition
dynList :: Sigg (ISigg a x) () → Sigg [a] ()

Conversion
return :: a → Reactg a
return :: a → Sigg x a
done :: Reactg a → Maybe a
cur :: Sigg a x → Maybe a
emit :: a → Sigg a ()
always :: a → Sigg a ()
waitFor :: Reactg a → Sigg x a

Figure 2: Composition, transformation and conversion functions for reactive and signal computations in Monadic FRP.

that it emits, a , and the type of the value that it returns, b. As the
name suggests, the analogue to a signal computation in other FRP
formulations is a signal. In contrast to a signal in other FRP formu-
lations, a signal computation can end, yielding its result. Another
way of looking at it is that a signal computation is a fragment of a
signal.

To understand the usage of signal computations, consider a
modal dialog in a GUI application: a pop-up window where the
user must type his name before the program continues. We can
model this pop-up window as a signal computation. The values that
this signal computation emits are the descriptions of the appearance
of the pop-up window. This description can be, for example, the
current size of the pop-window and the text in the text field. When
signal computation emits new descriptions, for example because the
user enters letters, these descriptions should be processed and the
resulting image should be drawn on screen. This signal computation
completes when the user has finished entering his name, after which
the pop-up disappears and then the signal computation returns the
name of the user.

A signal computation describes the lifetime of some object, such
as a pop-up window. We call the values that a signal computation
emits, such as the descriptions of the appearance of the pop-up
window, the form of the signal computation, i.e. what can be
observed from the outside. Each emission is an update to the form of
the object. The current form is the last emitted value, and if a signal
computation did not emit a value yet we say that it is uninitialized.
When a signal computation ends, the object that it describes ends,
and the result is the information to the rest of the program on how
to continue, for example the name of the user. In contrast, a reactive
computation cannot emit values, it just computes a value for use in
the rest of the program.

The two basic functions to create a signal computation are
waitFor and emit . The first, waitFor converts a reactive com-
putation into a signal computation, where the resulting signal com-
putation never emits a value (i.e. it has no form) and returns the
value of the reactive computation. The second, emit takes a value
and gives a signal computation that emits that value and then imme-
diately returns. Like reactive computations, signal computations can
be composed sequentially using >>=, in much the same way.

As an example, consider the signal computation that models the
color of the box during the Phase 2. It emits a color at the start and

after each middle mouse click, until the user presses the right mouse
button, after which it returns the number of colors it emitted. This
signal computation is defined as shown in Figure 3(a). In this figure
colors is an infinite list of colors (not shown).

Another way to create a signal computation is to repeat a reactive
computation. The function to do this is unsurprisingly named repeat ,
and gives the signal computation that indefinitely repeats the given
reactive computation, each time emitting the resulting value. This
signal computation never ends, and hence its result, (), will never
be reached. An example is the signal computation that emits the
current mouse positions:

mousePos :: Sigg Point ()
mousePos = repeat mouseMove

Like in other FRP approaches, signal computations can be
transformed by functions such as map, scanl and find that are
familiar from list programming. As an example, the following signal
computation emits the preliminary rectangles in Phase 1 of a box,
given the left-upper point of the rectangle.

curRect :: Point → Sigg Rect ()
curRect p1 = map (Rect p1) mousePos

data Rect = Rect { leftup :: Point , rightdown :: Point }

The list function scanl is similar to foldl , but it returns a list
of successive reduced values instead of a single value. The signal
transformation function scanl works analogously, it emits a new
reduced value each time the given signal emits. Using scanl , we
define a signal that on each update, emits the number of seconds
since it started:

elapsed :: Sigg Time ()
elapsed = scanl (+) 0 (repeat deltaTime)

Using elapsed , we implement animation by transforming each
point in time to the frame of the animation at that time. As an
example, the following signal emits the rectangle animation in
Phase 2:

wiggleRect :: Rect → Sigg Rect ()
wiggleRect (Rect lu rd) = map rectAtTime elapsed

where rectAtTime t = Rect (lu +. dx) (rd +. dx)
where dx = (sin (t ∗ 5) ∗ 15, 0)

Here, +. (not shown) is the vector addition operator for points.
The last list-like function that we use in our example, find , gives

a reactive computation that completes as soon as the given signal
computation emits a value on which the given predicate holds. As an
example, the following function completes as soon as the argument
signal computation emits a point inside a given rectangle:

posInside :: Rect → Sigg Point y → Reactg (Either Point y)
posInside r = find (‘inside‘r)

inside :: Point → Rect → Bool

Signal computations and reactive computations can be composed
in parallel by two functions: at and until . The first, at , takes a signal
computation and a reactive computation, and returns the current
form of the signal computation at the time the reactive computation
completes. For example, the mouse position at the next left mouse
click is defined as follows:

firstPoint :: Reactg (Maybe Point)
firstPoint = mousePos ‘at ‘ leftClick

The second, until , takes a signal computation and a reactive compu-
tation, and runs the signal computation until the reactive computa-
tion completes. Like first , the result of l ‘until ‘ a is the pair of the
new state of l and the new state of a . For example, the following
gives the preliminary rectangles in Phase 2 until the user releases
the left mouse button.

completeRect :: Point → Sigg Rect (Maybe Rect)
completeRect p1 = do (r ,)← curRect p1 ‘until ‘ leftUp

return (cur r)

Where leftUp (not shown) is defined analogously to leftDown . The
function cur gives the current form of a signal computation, i.e. the
last value it emitted.

By composing firstPoint and completeRect sequentially, we
define the signal computation that emits the rectangles in Phase 1:

defineRect :: Sigg Rect Rect
defineRect = do Just p1 ← waitFor firstPoint

Just r ← completeRect p1
return r

The function to compose two signal computations in parallel is
<∧>, which takes a signal computation emitting functions and a
signal computation emitting values, and gives the signal computation
that emits the results obtained by feeding the values to the functions
over time. More precisely, the signal computation f <∧> x operates
as follows:

• Wait until both input signals have started emitting values.
• On each emission from either the function signal computation

or the value signal computation we apply the latest value to the
latest function and emit the resulting value.
• Repeat the previous step until either of the signals end.

The result of the signal computation is the new state of both given
signal computations, one of which has ended.

We can use this operator to compose animateRect and cycleColor
in parallel, to obtain a signal computation which describes Phase 2
of a box:

chooseBoxColor :: Rect → Sigg Box ()
chooseBoxColor r =

always Box <∧> wiggleRect r <∧> cycleColor >> return ()

data Box = Box Rect Color

The operator <∧> binds less strongly than function application.
The function always takes a value and gives a signal computation

that emits that value and then never emits again and never ends.
In this way, the current form of always x is always x . The signal
computation chooseBoxColor ends when the user presses the right
mouse button, as this causes cycleColor to end, which in turns ends
the compositions using <∧>.

The functions <∧> and always are inspired by the Applicative
functor type class [16]: the function <∧> corresponds to <∗> and
always corresponds to pure. The difference is that the type class
operates on the last argument of a type constructor, but here we want
<∧> to operate on the emitted arguments, i.e. the first type of the
type constructor Sigg . In this way Monads are used for sequential
composition, and an Applicative functor-like interface is used for
parallel composition.

Another interesting way to compose signal computations in par-
allel it to use one as a time index for the other. This means that we
sample the form of the first signal computation each time the sec-
ond signal computation emits. For instance, mousePos ‘indexBy ‘
repeat doubler is the signal that emits the mouse positions at the
times when the user right-double clicks. We can use this operator
to define a reactive computation that completes as soon as the user
double right clicks on a given rectangle:

drClickOn :: Rect → Reactg (Maybe Point)
drClickOn r =

posInside r (mousePos ‘indexBy ‘ repeat doubler)

We now have all the ingredients to define the behavior of a single
box, as we have defined each phase of the box, so we only have to
compose them sequentially:

box :: Sigg Box ()
box = do r ← map setColor defineRect

chooseBoxColor r
waitFor (drClickOn r)
return ()

where setColor r = Box r (head colors)

This signal computation describes the entire lifetime of a box, its
form is appearance of the box and the signal computation ends when
the user deletes the box.

2.4 Reactive lists
We now have the signal computation for a single box, but we
would like our drawing program to allow the user to draw multiple
boxes. Luckily, signal computations are just values, and hence
like reactive computations, they can be repeated. For this we
introduce the function spawn which takes a signal computation and
returns a signal computation that emits initialized signals: signal
computations which are initialized, i.e. the first form of the object it
describes is known. In this way, we can define a signal that emits
initialized signals of the boxes that the user creates as follows:

newBoxes :: Sigg (ISigg Box ()) ()
newBoxes = spawn box

This signal computation starts a box computation, and as soon
as it emits its first value, newBoxes emits the initialized signal
corresponding to that box. Afterwards, a new box computation is
started and the process repeats.

These initialized signals can then be composed parallel, so that
there are multiple boxes on the screen, and the user can interact with
all of them. For this we introduce the function dynList , which takes
a signal computation emitting initialized signals, and composes
these initialized signals in parallel. The result is a dynamic list: a list
that changes over time. The signal computation that describes this
dynamic list emits the lists of boxes, namely the current forms of
all boxes that are active at that time. When a new box is defined its
form is added to the list and when a box is deleted, i.e. its initialized

signal ends, it is removed from the list. In this way, we can define
the top-level expression of our drawing program simply as:

boxes :: Sigg [Box] ()
boxes = dynList newBoxes

2.5 Time-branching
Monadic FRP has time-branching semantics: we can observe the
values a signal computation emits when given some event occur-
rences, and afterwards we can still observe what values the signal
computation will emit when given other event occurrences. These
time-branching semantics are also known as shallow causality [13].
In other purely functional evaluation models, such as Arrowized
FRP [3], they are supported by “freezing” signal transformers.

We can use these time-branching semantics, for example, to
easily implement multiple tabs in our drawing program. The user
can then duplicate its current drawing into two tabs, modify the
drawing and switch back to the tab holding the original drawing,
which can then again be modified. Each of these tabs is described
by a signal computation, but only one observes the current event
occurrences. Duplication of a tab is then simply duplicating the
signal computation in the list of tabs, and switching between tabs
controls which tab observes the current event occurrences and is
rendered to the screen. The code for this tabbed drawing program is
not included in this paper for space reasons, but can be seen online.

3. Comparison with other FRP programmer
interfaces

In this section, we compare the Monadic FRP programmer interface
other programmer interfaces. As a representative example of other
FRP formulations, we compare mainly with Arrowized FRP [3],
more precisely the Yampa [10] framework, and discuss other FRP
formulations in passing. In Arrowized FRP, the basic concept is a
signal function: a mapping from input signal to output signal. Such
a signal function has type SF a b , where a is the type of the input
signal and b is the type of the output signal. Signal functions can
then be composed using the Arrow type-class [11]. We assume
basic familiarity with this type-class in the rest of this section. It
should be noted that the examples in this section are cherry-picked
to show the advantages of Monadic FRP and hence may give a
skewed impression.

In contrast to signal computations in Monadic FRP, signals in
Arrowized FRP cannot end. Another difference is that signals in
Arrowized FRP must emit a value for each input value. For this
reason, among others, Arrowized FRP has the concept of an event
source: a signal that emit values of the option type Event a . An
event source emits NoEvent when there is no event, and Event a ,
where a is the information associated with the event, when there is
an event.

Figure 3 shows the implementation of the cycleColor signal
(function) in both Monadic and Arrowized FRP. In the Arrowized
version, cycleColor is a signal function which takes a tuple de-
scribing mouse press events in the first element, and mouse release
events in the second. The result of the signal function is a tuple
containing the current color, and Event Int , which occurs when
the user is done choosing colors, and then contains the number of
different colors the user considered. Notice that when such an event
occurs, the signal does not stop as in the Monadic FRP formulation
of cycleColor , because signals cannot end.

3.1 Advantages of Monadic FRP
3.1.1 Implicit routing
The most obvious difference when considering the code in Figure 3
is the difference between do notation and arrow notation. To
compose signal function in arrow notation, the programmer needs to

route the output of component arrows and the input signal into the
input of other component arrows and the output signal. In other FRP
formulations, such as classic FRP [8], such wiring is also necessary,
but by composing functions instead of arrows. In Monadic FRP, this
routing is implicit, reducing boilerplate code and visual clutter.

3.1.2 Easier sequential composition
Because signals in Arrowized FRP cannot end, a different approach
is taken to describe signals which consist of multiple phases. For
this a variety of switching combinators is used, which allow us to
switch from one signal function to another when a certain event
occurs. The most basic switching combinator in Yampa is dSwitch ,
which has the following type:

dSwitch :: SF a (b,Event c)→ (c → SF a b)→ SF a b

The first argument to this combinator is a signal function transform-
ing a into a combination of something of type b and an event of type
c. The second argument is a continuation function: given a value of
type c it will produce a new signal function. The result of the switch
combinator is a signal function from a to b, which first behaves as
the first argument signal function, except that the Event c is not
visible from the outside. When this first argument signal function
generates an event of type c, then the continuation function is called.
Afterwards, the resulting signal function is switched to: the result of
the switch combinator will behave as this signal function.

In our example in Figure 3(b), the signal function cycleColor is
intended be switched out when a right mouse event occurs. However,
this event does not carry the color count (of type Int) that should be
included in the event. For this reason, we have to set the associated
data of the mouse press event to the color count, by means of the
fmap (const i). In Monadic FRP, no such explicit transformation
of the associated data of events is not necessary.

All Yampa switching combinators come in two flavors:

• immediate, in which case the input at the time of switching is
immediately fed into the signal function being switched on to
and the output is the result of this new signal function.
• delayed, in which case the output at the time of switching is

determined by the original signal function, and the new signal
function is used on the next iteration.

In our example, the “d” prefix in dSwitch indicates a delayed switch-
ing combinator. If we use the immediate switching combinator
switch instead, then the program will go into an infinite loop, since
the new signal function is again an application cc, which will then
immediately switch again, since the input signal currently indicates
that the middle mouse button is down1. In Monadic FRP, signals
can either end or emit a value, but not both at the same time. Hence,
the distinction between immediate and delayed switching have no
meaning in Monadic FRP, and the associated difficulties disappear.

Another benefit of Monadic FRP is that signal computations
decide themselves that they end, whereas with switching combi-
nators this is decided by the context. Hence, in Arrowized FRP, if
a programmer intends a signal function to be switched out after a
certain event occurs, the programmer must still provide the signal
function after this event. In Monadic FRP this is not necessary: the
programmer can force the context to “switch”.

For these reasons, we argue that the sequential composition
mechanism in Monadic FRP, namely >>=, is more intuitive and
easier to use than the switching combinators found in Arrowized
FRP and other FRP formulations.

1 This is how we understand delayed and immediate switching, but the
current version of Yampa also goes into an infinite loop when dSwitch is
used, requiring an invocation of notYet to work. We suspect this is a bug.

cycleColor :: Sigg Color Int

cycleColor = cc colors 1 where
cc (h : t) i =
do emit h

r ← waitFor (middleClick ‘before‘ rightClick)
if r then cc t (i + 1) else return i

cycleColor :: SF (Event MouseBtn,Event MouseBtn)
(Color ,Event Int)

cycleColor = cc colors 1 where
dSwitch

(proc (md ,mu)→ do
mc ← middleClick −< md
rc ← rightClick −< md
returnA−< ((h, fmap (const i) rc),mc))

(λ → cc t (i + 1))

(a) Monadic FRP. (b) Arrowized FRP.

Figure 3: Side-by-side comparison of cycleColor in Monadic and Arrowized FRP.

3.1.3 A simpler way of creating dynamic lists
In Yampa, creating dynamic lists is more complicated and requires
the following parallel switching combinator:

dpSwitchList :: [SF a b]→ SF (a, [b]) (Event c)
→ ([SF a b]→ c → SF a [b])→ SF a [b]

This switching combinator requires three arguments:

• The initial list of signal functions.
• A signal function that transforms the input and the current list

of values to a switching event.
• A continuation function that given the current list of signal

functions and the value associated with switching event gives
the new signal function.

The code for the dynamic list of boxes in Arrowized FRP is shown
in Figure 4. In this code, we assume that the signal function for
a single box produces the current form of the box and an event
indicating that the box has ended. The difficulty in creating the
dynamic list then lies in wiring the switching events of all boxes
and the switching event for creating a new box together, and then
picking the resulting switching event apart again in the continuation
function. In Monadic FRP, such wiring is not necessary, the dynamic
list of boxes is simply declared as dynList (spawn box). We are
unaware of dynamic lists in other FRP formulations.

3.2 Disadvantages of Monadic FRP
While Monadic FRP has several advantages over other FRP for-
mulations, it also has some disadvantages. In particular, to share
the computation of a signal which occurs more than once in an ex-
pression, we have to resort to manual invocation of a memoization
function. This is not necessary in several other FRP formulations,
including Arrowized FRP. A related disadvantage is that it is more
difficult to declare mutually dependent signals, such as two sliders
in a temperature conversion application, than in other FRP formula-
tions. We discuss how to declare such mutually dependend signals
in Monadic FRP in Section 4.6. In Arrowized FRP, such mutu-
ally dependent signals can simply be declared by recursive arrow
notation.

4. Evaluating Monadic FRP expressions
In this section, we show how reactive and signal computations are
evaluated in a simple, straightforward manner.

4.1 Event requests and occurrences
Central to Monadic FRP evaluation is the notion of an event: a
stimulus from the environment. Reactive computations request the
observation of such events, an interpreter then observes such events

type BoxSF = SF GUIIn (Box ,Event ())

boxes :: SF GUIIn [Box]
boxes = boxes ′ [] >>> arr (map fst) where

boxes ′ i =
pSwitchList i
(proc (s, l)→ do

new ← newBox −< s
del ← arr toEv −< l
notYet <<< arr choose −< (new , del))

(λe l → boxes ′ (mutateList e l))

choose (a, b) = merge (fmap Left a) (fmap Right b)
toEv l = let l ′ = map (isNoEvent ◦ snd) l

in if and l ′ then NoEvent else Event l ′

mutate :: [BoxSF]→ Either (BoxSF) [Bool]→ [BoxSF]
mutate l (Left b) = b : l
mutate l (Right l ′) = map fst (filter snd (zip l l ′))

box :: BoxSF
newBox :: SF GUIIn (Event BoxSF)

Figure 4: Code for the dynamic list in the drawing program in
Arrowized FRP.

and passes the event occurrence back. We model event requests and
occurrences with the following data type:

data Event a = Request | Occurred a

Where the argument to the constructor Occurred is the associated
data of the occurred event. For simplicity, event requests and
occurrences are defined using the same data type in our approach.

To make things more concrete, the following events are used in
the program drawing example2.

data GUIEv = MouseDown (Event {MouseBtn})
| MouseUp (Event {MouseBtn})
| MouseMove (Event Point)
| DeltaTime (Event Time)
| TryWait Time (Event Time)
deriving (Eq ,Show ,Ord)

When a reactive computation, for example, wants to know the
next mouse button that is pressed, it passes the event request
MouseDown Request to the interpreter of the reactive expression.
This interpreter, from now on called the reactive interpreter, then
waits for the next mouse press and returns the event occurrence, for

2 In this paper we use {a} to denote Set a

example MouseDown (Occurred {MLeft ,MMiddle }), which
indicates that the user pressed the left and middle mouse buttons
simultaneously.

The reactive interpreter can wait for multiple events, and hence
we pass a set of event requests to it. As soon as at least one of these
events occurred, the reactive interpreter responds by returning the
occurred event(s). This response is a set of event occurrences, since
multiple events may occur simultaneously. Since event requests and
occurrences are modeled by the same datatype, we use the following
type aliases to make the distinction clear:

type EvReqs e = {e} -- event requests
type EvOccs e = {e} -- event occurrences

4.2 Reactive computations
Using this basic terminology introduced above, a state of a reactive
computation is defined as follows:

data React e a
= Done a
| Await (EvReqs e) (EvOccs e → React e a)

If a reactive computation is done, it is in state Done and carries the
resulting value of the computation of type a . Otherwise, it awaits at
least one event occurrence from its set of event requests. As soon as
one of these events occur, or multiple events occur simultaneously,
the event occurrences can be passed to the continuation function.
This continuation function processes the event occurrences and
returns the new state of the reactive computation. The type e is the
type of the events that the reactive computation may request and
process. In our drawing program in Section 2, the type of events is
GUIEv , hence the type Reactg that is used throughout Section 2 is
defined as follows:

type Reactg = React GUIEv

The basic reactive computations mouseDown , mouseUp,
mouseMove , deltaTime and tryWait are then defined as follows:

mouseDown = req (MouseDown Request)>>= get
where get (MouseDown (Occurred s)) = return s
...

tryWait t = req (TryWait t Request)>>= get
where get (TryWait (Occurred t)) = return t

req :: e → React e e
req a = Await (singleton a) (Done ◦ head ◦ elems)

Here, req is a function that given an event request gives the reactive
computation that returns the next event occurrence that satisfies
this request. The function elems converts a set to a list. Notice
that the continuation function of a reactive computation is called
with the set of event occurrences which it awaits. If there are no
event occurrences which the reactive computation awaits, then the
continuation function will not be called. Since mouseDown awaits
only MouseDown events, we can be sure that the pattern match
MouseDown (Occured s) cannot fail. The same reasoning holds
for the patterns in the other basic reactive computations.

4.3 Evaluating reactive computations
In essence, our evaluation model is a purely functional way to use
blocking-IO multiplexing: the program is organized as a main loop
that first decides which events should be listened for, then waits
for at least one of these events to occur, and finally processes the
event(s) that occurred. Waiting for several events in parallel can be
done by means of for example the Unix select or Linux epoll
method3, which take a set of file-descriptors and waits for one of

3 For more information see man select or man epoll.

them to become ready for reading or writing. Another example is
the waitEvent method of the Simple Directmedia Layer4, which
waits for a user input event, such as a mouse-click or keystroke. The
main loop in our approach is the reactive interpreter which interprets
the top-level reactive or signal computation.

The interpreter for reactive computations is defined as follows:

interpret :: Monad m ⇒ (EvReqs e → m (EvOccs e))
→ React e a → m a

interpret p (Done a) = return a
interpret p (Await r c) = p r >>= interpret p ◦ c

Here p is a function that takes a set of event requests and waits
for any of these events to occur in the monad m , which is for
example the IO monad. The drawing program described in Section
2 can be run in an interpreter which uses the waitEvent method
of the Simple Directmedia Layer to define the function p. After an
interesting event occurred, p returns the set of event occurrences,
which is then fed back into the reactive computation. This process
continues until the reactive computation completes and returns a
value.

The reactive computation that is interpreted consists solely of the
sequential and parallel composition of basic reactive computations,
other composition operators are defined in terms of these two
composition operators. As an example, consider the following
reactive expression:

first (first mouseMove mouseUp)
(mouseDown >> deltaTime)

Figure 5(a) shows the tree of this expression and which event
requests are propagated upwards to the reactive interpreter. When
composing reactive computations sequentially, using >>=, the event
requests of the composed expression are just the event requests of
the first argument. Hence, the event requests of mouseDown >>
deltaTime are just {MouseDown }. When composing reactive
computations in parallel, using first , the event requests of the
composed expression are the union of the event requests of both
arguments. In this way the reactive interpreter knows exactly which
events to wait for.

The reactive interpreter then waits for events from such a set
of event requests. When one event occurred, or multiple events
occurred simultaneously, the set of event occurrences is passed
to the continuation function of the reactive computation. If the
reactive computation is a sequential composition, then the event
occurrences are simply passed to the first argument. When the
reactive computation is a parallel composition, the set of event
occurrences is passed to the argument(s) that await any of these
events.

Figure 5(b) shows how an event occurrence, stating that the left
mouse button was pressed, is propagated downwards. Notice that
the entire left leg of the tree is not updated in this process, since it
did not await this particular event. In this way, the evaluation avoids
unnecessary re-computations, by updating only those components
that await the occurred events.

After processing the event occurrence, the reactive computation
proceeds as the reactive computation:

first (first mouseMove mouseUp) deltaTime

Hence, the reactive expression is dynamic: each sub-expression
may change after each update. This new expression, leads to
different event requests than the original expression, namely the
set {MouseMove,MouseUp,DeltaTime}. In this way the events
in which the reactive computation is interested in can also change
over time.

4 http://libsdl.org

first

first

mouseMove

{MouseMove}

mouseUp

{MouseUp}

{MouseMove,MouseUp}

>>

mouseDown

{MouseDown}

deltaTime

{MouseDown}

Reactive Interpreter

{MouseMove,MouseUp,MouseDown}

(a) How event requests are propagated upwards.

first

first

mouseMove mouseUp

>>

mouseDown deltaTime

Reactive Interpreter

{MouseDown (Observed {MLeft})}

(b) How an event occurance is propagated downwards.

Figure 5: The tree of the expression first (first mouseMove mouseUp) (mouseDown >> deltaTime).

4.4 Time semantics
In our set of GUI events, there are two events that deal with time:
DeltaTime and TryWait . The first, DeltaTime, asks to observe
any change in time and returns the change in time since the previous
update of the reactive interpreter. The second, TryWait , works
similarly, but takes an argument that indicates the time it wants to
wait. The result of such a TryWait request is also the change in
time since the last update of the reactive interpreter. The difference
between the two lies in how they are handled: DeltaTime tells
the reactive interpreter to respond as quickly as possible, whereas
TryWait tells the reactive interpreter to try and wait the given time
before responding. Hence, when only TryWait requests are given
to the reactive interpreter, then the reactive interpreter just waits for
the time to pass, without wasting CPU cycles polling for time.

An event request TryWait asks the reactive interpreter to wait
for the given time, but there may be another event request that can
be answered earlier. In that case, the interpreter cannot wait the
given time and must respond. Hence, the time it takes for the event
TryWait to occur might be less than the requested amount of time.

As an example usage of TryWait , consider the sleep reactive
computation, which completes after the given number of seconds:

sleep t = do t ′ ← tryWait t
if t ′ ≡ t then return () else sleep (t − t ′)

Notice that testing for equality here is safe, because the result
of TryWait request may be less than the requested time, but
not more. Hence, we can be sure that sleep 1.1 never completes
earlier or simultaneously to sleep 1. In other purely functional
implementations of FRP, such exact timing is not available: testing
for equality on time is unsafe, since the precision of timing depends
on how often the signal is sampled.

This exact timing is achieved by handling the event requests in
the reactive interpreter as follows:

• Compute the maximum time to wait, which is the minimum of
the times given to TryWait event requests. It is infinity if there
are no TryWait requests.
• See if the maximum time to wait, t , is smaller than the time

since the last update, t ′. If so, we construct only TryWait
and DeltaTime occurrences with t as their associated data and
return them, the other steps will not be executed on this iteration.
The next update will have time difference t ′ − t plus the new
time difference. In this way, the result of a TryWait request
will never be more than the requested time.

• Otherwise, wait for an event from the set of event requests, using
the maximum time to wait as a timeout duration. Blocking I/O
multiplexing functions such as select and SDL’s waitEvent
usually allow such a timeout duration. If there is a DeltaTime
request, then 0 is passed as the time duration, and the events
that are currently available will be returned, i.e. the blocking I/O
multiplexing function will not block.
• Construct and return the set of event occurrences, including the

occurrences of TryWait and DeltaTime, which get the time
since the last update of the reactive interpreter.

Thanks to these semantics, the drawing program will simply
wait for the next mouse click or mouse move when there are no
animated boxes currently on screen. If one of the boxes is animated
(in Phase 2), then the reactive interpreter updates the animation as
quickly as possible so that the animation is as smooth as possible.
In this way, the animation is conceptually continuous: we describe
it as if the animation is continuous, abstracting from how often the
animation is actually sampled.

4.5 Evaluating signal computations
Evaluation of a signal computation is very much the same as
evaluation of a reactive computation, since signal computations
are defined in terms of reactive computations as follows:

newtype Sig e a b = Sig (React e (ISig e a b))
data ISig e a b = a :| (Sig e a b)

| End b

Here the type Sig is the type of a signal computation and ISig is the
type of an initialized signal, i.e. a signal computation of which the
first form is known or which has already ended. Signal computations
and initialized signals are defined mutually recursively, a signal
computation is a reactive computation of the initialized signal, and
the tail of an initialized signal is again a signal computation. The
argument e is the type of events that can be handled inside the signal
computation, a is the type of the values that it emits and b is the
type of its result. The signal computation and initialized signals in
Section 2 are specialized to GUIEv , i.e.:

type Sigg = Sig GUIEv
type ISigg = ISig GUIEv

The interpreter for signal computations uses the interpreter
for reactive computations to evaluate a signal computation to its
corresponding initialized signal. Additionally, the values that are

emitted by the signal computation are processed. For example, the
interpreter of our example in Section 2 draws each emitted list of
boxes on screen. The signal computation interpreter is defined as
follows:

interpretSig :: Monad m ⇒ (EvReqs e → m (EvOccs e))
→ (a → m ())→ Sig e a b → m b

interpretSig p d (Sig s) = interpret p s >>= interpretSig

interpretISig p d (h :| t) = d h >> interpretS p d t
interpretISig (End a) = return a

Here the new argument d is the function which processes each new
emission of the signal computation.

4.6 Sharing computation results
A disadvantage of Monadic FRP is that if a reactive or signal
computation occurs multiple times in an expression, then standard
evaluation techniques may lead to a source of inefficiency. The
simplest example of this is:

first x x

When an event occurs that x is interested in, then the evaluation of
x to its new state will be performed twice. To solve this problem
we introduce a memoization function, as is also done in other FRP
approaches [6]:

memo :: Ord e ⇒ React e a → React e a

In this way, we can rewrite our example to eliminate the potential
problem:

let x ′ = memo x in first x ′ x ′

We also introduce a memoization function for signal computa-
tions, that applies memoization on the reactive computation of the
initialized signal and on the signal computation that is the tail of
that initialized list (if any).

memoSig :: Ord e ⇒ Sig e a b → Sig e a b

A related disadvantage of Monadic FRP problem is that it is hard
to describe mutually dependent signals, or signals that depend on
themselves. The way to do this in Monadic FRP is to use a stacked
interpreter: since the interpreter of a signal computation runs in any
monad this can also be a signal computation itself. This can then be
used to feed the emissions of a signal computation back into that
signal computation.

5. Implementing Monadic FRP composition
functions

In this section, we show how a selection of the composition functions
from Figure 2 are implemented. In this way, this section shows
the semantics of the programming model explained in Section
2 by building on the basic evaluation mechanism explained in
Section 4. The definition of the composition operators is mostly
straightforward: the entire Monadic FRP library consists of just 137
lines of code, excluding blank lines (not including the drawing
program which consists of 108 lines of code and the interface
to SDL which consists of 109 lines of code). The structure of
this section reflects the structure of Section 2, we first show the
implementation of sequential and parallel composition of reactive
computations. Afterwards, we show how these can be used to
implement composition functions for signal computations, and
finally we show how dynamic lists are implemented.

5.1 Basic composition operators
The basic composition operators in Monadic FRP are the sequential
and parallel composition of reactive computations, all other com-

position and transformation operators are defined using these two
basic composition operators.

5.1.1 Sequential composition of reactive computations
Sequential composition of reactive computations is defined as an
instance of the Monad type class:

instance Monad (React e) where
return = Done
(Await e c)>>= f = Await e (λx → c x >>= f)
(Done v) >>= f = f v

If the first reactive computation awaits some event, then its next state
is again sequentially composed with f . This process repeats until
the first reactive computation completes, after which the function f
will be called with the result of the reactive computation, and the
new reactive computation will be executed.

5.1.2 Parallel composition of reactive computations
Recall that parallel composition of reactive computations is achieved
using first , which runs two reactive computations in parallel until
either completes, and then gives the new state of both reactive
computations. Its definition is as follows:

first l r = case (l , r) of
(Await el ,Await er)→

let e = el ‘union‘ er
c b = first (update l b) (update r b)

in Await e c
→ Done (l , r)

If both reactive computations await some event, then first waits for
the union of their event requests, as shown in Figure 5(a). Then, on
an event occurrence, first updates both reactive computations to
their next state and calls first again, which then checks again if both
reactive computations await some event. If this is not the case, then
at least one of the reactive computations must have completed, and
the state of both reactive computations is returned.

As shown in Figure 5(b), only those reactive computations that
await an event that occurred should be updated. This is done by the
function update that is used in the above definition of first . This
function returns the new state of a reactive computation given a set
of event occurrences. If the reactive computation awaits some of the
events that occurred, then update obtains the new state of a reactive
computation by calling its continuation function. Otherwise, the new
state is simply the old state. The definition of update is as follows:

update :: Ord e ⇒ React e a → EvOccs e → React e a
update (Await r c) oc | oc′ 6≡ empty = c oc′

where oc′ = oc ‘filterOccs‘ r
update r = r

Here, filterOccs(not shown) filters the event occurrences that the
reactive computation awaits from the set of event occurrences. If
the resulting set of event occurrences is empty, then the reactive
computation did not await in any of the events that occurred.

5.2 Building signal computation composition functions using
basic operators

Since signal computations are defined in terms of reactive computa-
tions, the composition functions dealing with signal computations
are implemented by combining the sequential and parallel compo-
sition of reactive computations in various ways. Figure 6 shows
the definition of a selection of these signal computation composi-
tion functions and Figure 7 shows the definition of the conversion
functions.

Signal computations and initialized signals are mutually recur-
sively defined data types, so functions dealing with signal computa-

Sequential composition

instance Monad (Sig e a) where
return = emitAll ◦ End
(Sig l)>>= f = Sig (l >>= ib)
where ib (h :| t) = return (h :| (t >>= f))

ib (End a) = let Sig x = f a in x

instance Monad (ISig e a) where
return = End
(End a)>>= f = f a
(h :| t) >>= f = h :| (t >>= emitAll ◦ f)

Repetition

repeat :: React e a → Sig e a ()
repeat x = xs where xs = Sig (liftM (:| xs) x)
spawn :: Sig e a r → Sig e (ISig e a r) ()
spawn (Sig l) = repeat l

Transformation

map :: (a → b)→ Sig e a r → Sig e b r
map f (Sig l) = Sig (liftM (imap f) l)
imap f (h :| t) = f h :|map f t
imap f (End a) = End a

scanl :: (a → b → a)→ a → Sig e b r → Sig e a r
scanl f i l = emitAll (iscanl f i l)
iscanl f i (Sig l) = i :| (waitFor l >>= lsl)

where lsl (h :| t) = scanl f (f i h) t
lsl (End a) = return a

Parallel composition

until :: Ord e ⇒ Sig e a r → React e b →
Sig e a (Sig e a r , React e b)

until (Sig l) a = waitFor (first l a)>>= un where
un (Done l , a) = do (l , a)← emitAll (l ‘iuntil ‘ a)

return (emitAll l , a)
un (l , a) = return (Sig l , a)

iuntil (End l) a = End (End l , a)
iuntil (h :| Sig t) a = h :| Sig (liftM cont (first t a))

where cont (Done l , a) = l ‘iuntil ‘ a
cont (t ,Done a) = End (h :| Sig t ,Done a)

(<∧>) :: Ord e ⇒ Sig e (a → b) l → Sig e a r →
Sig e b (Sig e (a → b) l , Sig e a r)

l <∧> r = do (l , r)← waitFor (bothStart l r)
emitAll (imap (uncurry (bla)) (pairs l r))

bothStart :: Ord e ⇒ Sig e a l → Sig e b r →
React e (ISig e a l , ISig e b r)

bothStart l (Sig r) = do (Sig l , r)← res (l ‘until ‘ r)
(Sig r , l)← res (Sig r ‘until ‘ l)
return (done ′ l , done ′ r)

pairs :: Ord e ⇒ ISig e a l → ISig e b r →
ISig e (a, b) (ISig e a l , ISig e b r)

pairs (End a) b = End (End a, b)
pairs a (End b) = End (a,End b)
pairs (hl :| Sig tl) (hr :| Sig tr) = (hl , hr) :| tail

where tail = Sig (liftM cont (first tl tr))
cont (tl , tr) = pairs (lup hl tl) (lup hr tr)
lup (Done l) = l ; lup h t = h :| Sig t

Figure 6: Implementation of sequential composition, repetition,
transformation and parallel composition functions.

emitAll = Sig ◦Done ; emit a = emitAll (a :| return ())
always a = emit a >> hold ;waitFor a = Sig (liftM End a)
hold = waitFor never where never = Await empty ⊥
res (Sig l) = l >>= ires
ires (:| t) = res t ; ires (End a) = Done a

done (Done a) = Just a; done = Nothing
cur (Sig (Done (h :|))) = Just h; cur = Nothing
done ′ = fromJust ◦ done

Figure 7: Implementation of conversion functions.

tions often alternate between processing a signal computation and
processing an initialized signal. In the code this can be seen, for
example, in the function map, which obtains the initialized signal
and then calls imap, which is like map, but on initialized signals.
The function imap processes the initialized signal, and calls map
again to process the tail, which is a signal computation. The same
pattern arises in the sequential composition of signal computations,
and in the functions scanl , until and res .

The signal computation l ‘until ‘ a , splits the signal computation
l in two: l ‘until ‘ a is the part of the signal computation before a
completes, and the result of l ‘until ‘ a is the signal computation
after a completed. If the signal computation l was initialized before
a occurred, i.e. it had already emitted its first value, then the
signal computation after a should not be an uninitialized signal
computation. For instance, the result of mousePos ‘until ‘leftClick ,
the mouse position after the left click, should not be uninitialized,
but should start with the emission of the last mouse position before
the left click. Hence, the result of until differs depending on if the
signal computation was initialized before the reactive completes. If
this is this case, then iuntil ensures that the signal computation after
the reactive computation completes starts with the last emission
before the reactive computing completed.

To implement the parallel composition operator <∧> we intro-
duce another function, pairs , which takes two initialized signals
as arguments and gives the initialized signal that emits the pairs
of both arguments. The head of pairs l r is the pair of the head
of l and the head of r . On each new emission of l or r , pair l r
emits the pair of the current form of l and the current form of r . To
achieve this, we first wait for the reactive computation of the tail
of one of the initialized signals to complete and then update both
initialized signals. This is done using the function lup: if the tail
has not emitted a value yet, the initialized signal is the head of the
old initialized signal followed by the new state of the computation
of the tail. If the tail already emitted a value, the initialized signal
is simply that tail. The function <∧> is then implemented by first
waiting for both signal computation to start emitting values, and
then applying the second element to the first element of each pair.

5.3 Dynamic lists
The signal functions from the previous section can be used to define
dynList , which takes a signal computation emitting initialized
signals, and composes them in parallel. For this, we first define
a dynamic variant of cons (:), that takes an initialized signal that
has as form type something of type a (the head), and an initialized
signal that emits something of type [a] (the tail) and returns the
result of “consing” the head to the lists from the tail over time:

cons :: Ord e ⇒ ISig e a l → ISig e [a] r
→ ISig e [a] ()

cons h t = do (h, t)← imap (uncurry (:)) (pairs h t)
imap (:[]) h

t
return ()

The initialized signal pairs h t gives the pairs of the head and tail
over time. Hence, if we transform these pairs so that the head is
prepended to the tail, we get the list over time. After step pairs h t ,
either the head or the tail has ended. We then emit the residual
values of the head and the tail, one of which is empty. In this way,
if we are given two an initialized signals a and b of the same
type and an initialized signal emitting lists of that type, c, then
a ‘cons‘ (b ‘cons‘ c) will emit lists of the current states of a ,b and
c. If an an initialized signal ends, it has no current form and it will
not be included in the list. For example, if b ends before a and c,
then we will continue as a ‘cons‘ c.

To define dynList , we start with the empty dynamic list, i.e. the
initialized signal list that always has as current form the empty list.
We then run this initialized signal until the argument of dynList
emits a new initialized signal. Then, we cons this new initialized
signal to the current dynamic list to obtain the new dynamic list.
Afterwards, we run this dynamic list until the argument emits
another initialized signal and the process repeats.

dynList x = emitAll (idynList x)

idynList :: Ord e ⇒ Sig e (ISig e a l) r → ISig e [a] ()

idynList l = rl ([] :| hold) l >> return () where
rl t (Sig es) = do (t , es)← t ‘iuntil ‘ es

case es of
Done (e :| es)→ rl (cons e t) es

→ t

6. Comparison with other FRP evaluation
schemes

To implement reactive systems, one needs a basic mechanism to deal
with events that occur over time. We identify four such mechanisms:

• Busy waiting
• Blocking I/O multiplexing
• Concurrency
• Callback networks

For each of these basic mechanisms there exists one or multiple
corresponding FRP evaluation mechanisms. Our approach is the
only one which uses blocking I/O multiplexing. In the following
subsections we will discuss FRP evaluation schemes for each of
these other basic mechanisms.

6.1 Busy waiting
The original FRP formulation [8] and Arrowized FRP[3] use a sim-
ple implementation which models signals as functions, which given
an amount of time and input values return the pair of their current
emission and their continuation function. Since in this approach
signals do not communicate which events they are interested in, the
entire signal expression must be evaluated on each update, including
the parts for which the input did not change. The reactive interpreter
does not know which events to wait for and is hence in a busy wait-
ing loop, constantly calling the signal continuation function with
the new time and possibly interesting event occurrences. Since this
continuation-based implementation of signals is purely functional,
it allow time-branching signals.

6.2 Concurrency
A second basic mechanism is to use concurrency in the form of
multiple parallel threads or processes. Elliot [7] gives a push-based
FRP evaluation scheme based on the following observation: if we
know the order in which the events arrive in advance, then we could

+

nrClicks

clicks

filter isEven

Figure 8: A simple signal dependency network.

just use blocking I/O to implement FRP. He then introduces the
concept of unambiguous choice: given two ways to compute the
same value using blocking I/O, we can start both computations in
parallel, see which one completes first, kill the other and use the
result. This approach does not allow time-branching signals like in
Monadic FRP, because the intermediate states of signals are simply
not accessible as values.

6.3 Callback networks
The typical way to implement FRP using callbacks networks is to
organize the system in a directed acyclic graph, where the nodes are
signals and there is an edge between two signals if one depends on
the other. Signals can then notify other signals if they update their
value (i.e. emit). Variants of this basic model are used in many FRP
systems, such as Scala.React [15], FrTime for Racket [1], Frappe
for Java [2], Elm [5] and Microsoft’s Reactive Extensions (Rx)5.

As an example of such a network consider the following simple
(Monadic) FRP expression:

let nrClicks = memo (scanl (+) 0 clicks)
in always (+) <∧> nrClicks <∧> filter isEven nrClicks

The dependency network of this expression is shown in Figure 8. As
an example reduction, suppose that the current value of nrClicks
is 3 and the value of filter isEven nrClicks is 2. Suppose then
that the user presses a button, which will cause the signal clicks to
update. This signal then calls nrClicks , which depends on it. The
signal nrClicks then updates its value to 4 and calls the signals that
depend on it. If it calls filter isEven first, then that also updates
its value to 4 and calls +, which will then update its value to 8.
However, if nrClicks calls + before filter isEven , then + will use
a stale value of filter isEven , namely 2, and incorrectly update its
value to 6.

An incorrect update due to the order of calls in the signal network,
such as the update of + to 6, is called a glitch. Most FRP systems
based on callback networks use a glitch prevention system. The
exception is Rx, which does not prevent glitches (according to
[15]). The most common way to prevent glitches, is not to let
signals call each other directly but instead place their calls in a
priority queue [1, 15]. This priority queue schedules updates of
nodes according to the topological ordering of the directed acyclic
graph, which ensures that no glitches will occur.

A complication is then that the topology of the signal network
may change dynamically and hence the system needs to maintain a
topological ordering of the evolving directed acyclic graph. Another
complication is that to prevent needless computations, we would like
to prevent scheduling updates to signals that no other signal depends
on. A non-solution is to use weak references for dependence links
and then rely on the garbage collector to collect the dead signals.
It may be a while before dead signals are collected, and during
this time needless computations are possible. Hence there needs to
be some form of instant garbage collection, for example reference

5 https://rx.codeplex.com/

counting. For more information on possible solutions for these
complications see for example [1, 15] or [2].

The difference between Monadic FRP and a glitch-free callback
network based FRP system is that in Monadic FRP the events come
in at the root of the expression and evaluation proceeds top-down,
whereas in glitch-free callback network based FRP events arrive at
the leaves and evaluation proceeds bottom-up. In Monadic FRP there
is no way to create a glitch, as the expression itself is the ordering
on signals. Since Monadic FRP traverses the signal network in top-
down fashion, signals that no other signal depends on will never be
computed, and are collected by ordinary garbage collection.

Another difference is that callback-based FRP systems use the
signal network as mutable data, whereas in Monadic FRP the signal
network is immutable, i.e. the next network is a new signal network,
not a modification of the old network. This is the reason that time-
branching operations are possible in purely functional evaluation
models such as that of Monadic FRP and Arrowized FRP, and are
impossible in callback-based systems.

7. Conclusion and Future work
In this paper we introduced Monadic Functional Reactive Program-
ming, an alternative programming model and evaluation mechanism
for FRP. The basic notion in Monadic FRP is a reactive compu-
tation, a monadic a monadic computation which may require the
occurrence of external events to continue. A signal computation is a
reactive computation that may also emit values. In contrast to signals
in other FRP formulations, signal computations can end. This leads
to a monadic interface for sequencing behavioral changes, which
is arguably more intuitive and flexible than the switching combina-
tors found in other FRP approaches. This also allows us to define
dynamic lists, lists that change over time, more easily than in other
FRP approaches. In contrast to other FRP approaches, Monadic FRP
can be implemented straightforwardly in a purely functional way
while preventing redundant re-computations.

This gives rise to several directions for further research:

• Arrowized FRP does not require manual invocations of memo-
ization functions like Monadic FRP and makes it much easier
to define mutually dependent signals. We are currently inves-
tigating whether it is possible to combine Monadic FRP and
Arrowized FRP into a single framework that has the best of both
worlds.
• How can Monadic FRP be formulated in a dependently typed

setting, allowing us to statically rule out more meaningless and
incorrect programs in the style of Sculthorpe and Nilsson [22]?
• How can Monadic FRP be integrated with a declarative graphics

library, such as our previous work [14]?

References
[1] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a

call-by-value language. In Proc. of the ’06 European Symposium on
Programming, pages 294–308, 2006.

[2] A. Courtney. Frappé: Functional reactive programming in Java. In Proc.
of the ’01 International Symposium of Pratical Aspects of Declarative
Languages, PADL ’01, March 2001.

[3] A. Courtney and C. Elliott. Genuinely functional user interfaces. In
Proc. of the ’01 Haskell Workshop, September 2001.

[4] A. Courtney, H. Nilsson, and J. Peterson. The Yampa arcade. In Proc.
of the ’03 Haskell Workshop, pages 7–18, Aug. 2003.

[5] E. Czaplicki and S. Chong. Asynchronous functional reactive program-
ming for GUIs. In Proc. of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, New York, NY,
USA, June 2013. ACM Press.

[6] C. Elliott. Functional implementations of continuous modeled anima-
tion. In Proc. of the 10th International Symposium on Principles of
Declarative Programming, pages 284–299, 1998.

[7] C. Elliott. Push-pull functional reactive programming. In Proc. of the
’09 Haskell Symposium, 2009.

[8] C. Elliott and P. Hudak. Functional reactive animation. In Proc. of
the 1997 International Conference on Functional Programming, ICFP
’1997, pages 163–173, June 1997.

[9] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots,
and functional reactive programming. In Summer School on Advanced
Functional Programming 2002, Oxford University, volume 2638 of
Lecture Notes in Computer Science, pages 159–187. Springer-Verlag,
2003.

[10] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots,
and functional reactive programming. In Summer School on Advanced
Functional Programming 2002, Oxford University, volume 2638 of
Lecture Notes in Computer Science, pages 159–187. Springer-Verlag,
2003.

[11] J. Hughes. Generalising monads to arrows. Sci. Comput. Program., 37
(1-3):67–111, May 2000.

[12] A. S. A. Jeffrey. Dependently typed web client applications: FRP
in Agda in HTML5. In Practical Aspects of Declarative Languages,
PADL ’13, 2013.

[13] A. S. A. Jeffrey. Causality for free!: Parametricity implies causality
for functional reactive programs. In Programming Languages meets
Program Verification, PLPV ’13, 2013.

[14] P. Klint and A. van der Ploeg. A library for declarative resolution-
independent 2d graphics. In Proc. of the ’13 International Symposium
on Practical Aspects of Declarative Languages, PADL ’13, 2013.

[15] I. Maier and M. Odersky. Deprecating the Observer Pattern with
Scala.react. Technical report, LAMP, 2012.

[16] C. Mcbride and R. Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(1):1–13, Jan. 2008.

[17] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: a programming language
for Ajax applications. In Proc. of the ’09 Conference on Object oriented
programming systems languages and applications, OOPSLA ’09, pages
1–20, 2009.

[18] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive program-
ming, continued. In Proc. of the ’02 Haskell Workshop, pages 51–64,
Oct. 2002.

[19] J. Peterson, G. Hager, and P. Hudak. A language for declarative
robotic programming. In Proc. of the 1999 International Conference
on Robotics and Automation, 1999.

[20] J. Peterson, P. Hudak, and C. Elliott. Lambda in Motion: Controlling
robots with Haskell. In Proc. of the 1th International Workshop on
Practical Aspects of‘ Declarative Languages, PADL 1999, January
1999.

[21] J. Peterson, P. Hudak, A. Reid, and G. Hager. FVision: A declarative
language for visual tracking. In Proc. of the ’01 International Workshop
on Practical Aspects of Declarative Languages, PADL ’01, pages 304–
321, Jan. 2001.

[22] N. Sculthorpe and H. Nilsson. Safe functional reactive programming
through dependent types. In Proc. of the ’09 International conference
on Functional programming, ICFP ’09, pages 23–34, 2009.

