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Signal transduction by prokaryotes almost exclusively relies on two-component systems for sensing and
responding to (extracellular) signals. Here, we use stochastic models of two-component systems to
better understand the impact of stochasticity on the fidelity and robustness of signal transmission, the
outcome of autoregulatory gene expression and the influence of cell growth and division. We report
that two-component systems are remarkably robust against copy number fluctuations of the signalling
proteins they are composed of, which enhances signal transmission fidelity. Furthermore, we find that
due to stochasticity these systems can get locked in an active state for extended time periods when
(initially high) signal levels drop to zero. This behaviour can contribute to a bet-hedging adaptation
strategy, aiding survival in fluctuating environments. Additionally, autoregulatory gene expression can cause
two-component systems to become bistable at realistic parameter values. As a result, two sub-populations
of cells can co-exist—active and inactive cells, which contributes to fitness in unpredictable environments.

Received 29th April 2014, Bistability proved robust with respect to cell growth and division, and is tunable by the growth rate.

Accepted 13th June 2014 In conclusion, our results indicate how single cells can cope with the inevitable stochasticity occurring
in the activity of their two-component systems. They are robust to disadvantageous fluctuations that

scramble signal transduction and they exploit beneficial stochasticity that generates fitness-enhancing

DOI: 10.1039/c4mb00264d

Published on 13 June 2014. Downloaded by VRIJE UNIVERSITEIT on 24/11/2014 15:52:42.

www.rsc.org/molecularbiosystems

1 Introduction

The prevalence and diversity of two-component signalling systems
across the prokaryotic domain is remarkable given their structural
simplicity. They are composed of only two proteins: a histidine
kinase ‘sensor’ protein (S), which is typically a membrane
protein, and a cytosolic response regulator protein (R) that
acts as a transcription factor. Protein-complex formation,
(de-)phosphorylation, and phosphotransfer are the only types

“ Department of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
b Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines & Systems,
VU University, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
E-mail: f;j.bruggeman@vu.nl
¢ Life Sciences, Centrum voor Wiskunde en Informatica (CWI), Science Park 123,
1098 XG Amsterdam, The Netherlands
4 BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
¢ Kluyver Centre for Genomics of Industrial Fermentation/NCSB, P.O. Box 5057,
2600 GA Delft, The Netherlands
t Electronic supplementary information (ESI) available: Further modelling
details, mathematical derivations and data have been provided together with
modelling files and scripts used to produce the plots in the main article. See DOI:
10.1039/c4mb00264d

2338 | Mol. BioSyst., 2014, 10, 2338-2346

heterogeneity across an isogenic population of cells.

of reactions that take place. Despite this, two-component
systems are capable of sensing and responding to a wide range
of environmental changes. They play a role in chemotaxis,’
osmoregulation,” adaptation to Mg”*-limiting environments?
and the induction of sporulation in Bacillus subtilis, among
others. This broad scope is partly due to the modularity of the
system, which allows the basic mechanism to be extended with
auxiliary components, but is likely also due to the intrinsic
flexibility of the basic system. These aspects make two-component
systems of major interest for synthetic biology. The simplicity of
this molecular sensing circuit and the apparent lack of any
internal regulatory interactions raise the question how this simple
system copes with the inherent stochasticity of the reactions
between its signalling components as well as the stochasticity
introduced during cell growth and division. This is the
question we address here, using stochastic simulations of
two-component systems.

Two-component systems have been studied with mathe-
matical models in previous studies. Ortega et al> analysed
the consequences of the bifunctionality of the histidine kinase—
which acts as both an autokinase and a phosphatase—for signal
sensitivity, and found that bifunctionality reduces sensitivity.
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Shinar et al.® and Batchelor & Goulian” discovered that the
output of two-component systems, the concentration of phos-
phorylated response regulator proteins, is robust with respect
to the total concentration of their signalling components.
Batchelor & Goulian” provided experimental evidence for this
surprising behaviour. Hoyle et al.® and Igoshin et al.® analysed
the bistability of two-component signalling transduction systems
when coupled to autoregulatory gene expression. Hoyle et al.®
further demonstrated this behaviour experimentally, using a
synthetic two-component system.

The existing theoretical studies all use different models of
two-component systems, regarding the precise reactions and
kinetic parameter values that they consider. Here, we present a
model of two-component signal transduction that is intermediate
in size, considers bifunctionality and captures all the essential
reactions: autophosphorylation, complex formation, phospho-
transfer, and dephosphorylation. With this model, we revisit
the phenomena of robustness and autoregulation-induced bista-
bility, using stochastic simulations. We study both these system
properties in more detail from the perspective of the impact of
stochastic fluctuations on the beneficial properties of the signal-
ling circuit. We also report a new behaviour of two-component
systems that arises only in stochastic simulations and study the
signalling system when embedded in a growing and dividing cell.
This paper hopes to offer a model to the field that is of manage-
able complexity, yet sufficiently realistic and generic to be of
practical use. By benchmarking these models against the estab-
lished system behaviour of two-component systems, we hope to
show that this model is flexible and realistic enough to be useful
in other applications, such as in the design of new two-
component systems in synthetic biology.

The model we propose captures the basic design of two-
component systems and differs in several ways from previous
models. Upon binding a signalling ligand (L), the sensor S
changes conformation and autophosphorylates, yielding the
phosphorylate species SP. Next, SP forms a complex with R, after
which phosphotransfer can take place to yield RP and S. Typi-
cally, RP acts as a transcription factor inducing a gene expression
response.* As aforementioned, in our model the sensor is
bifunctional: when S is neither phosphorylated nor bound to L
it can also dephosphorylate RP. Most sensor proteins have this
property, including EnvZ from the EnvZ/OmpR model system
responsible for osmoregulation in Escherichia coli (E. coli).”
This captures the basic model without gene regulation (Fig. 1).
Positive autoregulation, in which RP enhances transcription of
the genes encoding R and S, is also not uncommon,; the arche-
typal model system being the PhoP-PhoQ system first identified
in Salmonella enterica.® We therefore also extend the basic model
with autoregulatory gene expression and study the appearance of
bistability which may result. Finally, we place the autoregulatory
model in a cell that grows exponentially in a steady-state manner
to investigate whether bistability is impacted by cell division and
the required synthesis of signalling components accompanying
cell volume growth.

We find that the basic, generic two-component model that
we propose (1) protects itself spontaneously against hazardous
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Fig. 1 Network reaction model. The quadrilateral arrowheads indicate the
‘forward’ directions of the (numbered) reactions, while the triangular
arrowheads indicate the reverse directions. Pictorially represented network
nodes are treated as individual species in the in silico model, other
reactants are considered to have fixed concentrations in the cell. Rate
constants corresponding to each reaction are provided in Table S1.¥

fluctuations that scramble signal transduction and (2) manages
to profit from fluctuations that generate beneficial heterogeneity
in the cell population, which is advantageous for organisms living
in unpredictable, dynamic environments.

2 Results

2.1 A model of the two-component signalling system

The topology of the signalling network we consider in this work
is shown in Fig. 1. This model contains the core reactions
known to occur in basic two-component systems.* When the
L concentration is high, high levels of RP are expected to be
produced and the system is in the ‘active-state’. Conversely,
when the signal is weak (or absent) the amount of RP is low; we
will refer to this situation as the ‘off-state’. The main simplifica-
tion made was to consider the sensors and response regulators
as monomers, though in reality they are often dimers.'® Shinar
et al.® have already shown that the robustness of two-component
systems with respect to the total sensor and regulator concen-
tration is preserved in monomer and dimer models.

In our simulations we describe all reactions in terms of
mass-action kinetics. For stochastic simulations, we used the
Gillespie direct method in StochPy,'" a Python-based stochastic
simulation platform. For the incorporation of cell division we
use an extension of StochPy described in the ESI{ (Fig. S2). We
will later also consider ‘total’ R and S numbers, Ry and Sr,
which refer to the total number of R and S molecules in the cell,
irrespective of phosphorylation or complex formation. The
ligand concentration was considered fixed—equivalent to assuming
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a large extracellular reservoir of the signalling molecule.
Also, the intracellular concentrations of ATP and inorganic
phosphate are considered fixed and therefore not explicitly
modelled. Our estimated rate constants are provided in Table S1
of the ESL} In making the estimations, we ensured that the
parameters were physically relevant by considering critical factors,
such as the diffusion limit which restricts the rates of second-order
reactions, as well as matching published experimental results with
the model, as described in Section 2.2.

2.2 Robustness of signal transmission against fluctuations in
signalling protein abundance

In order to validate our model, the first step we took was to
compare its output with existing experimental data. The best
validated experimental results pertain to steady-state activation
levels of the system, typically measured indirectly by placing a
reporter gene under transcriptional control of a RP-responsive
promoter.” Such data indicate that steady-state concentrations
of RP increase linearly in proportion to concentrations of the
extracellular signalling molecule L.” Furthermore, there is also
data available which suggest that the steady-state concentra-
tions of RP are substantially robust to changes in the total
number of R and S molecules in the cell."® This allows the cell
to maintain a consistent response despite fluctuations in
molecule numbers due to stochasticity in protein production,
degradation and cell division events. Robustness is, however,
limited because the number of RP molecules cannot exceed Ry,
so RP concentrations always saturate under high stimulus.

To test whether our model displayed the same (qualitative)
characteristics, we performed a mathematical analysis{ based
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on the approach reported by Shinar & Alon® as well as determi-
nistic and stochastic simulations. The results of the mathe-
matical analysis indicate that the steady-state RP concentration
of the model is indeed expected to increase linearly with L,
independent of Ry and Sy, until saturation.t The parameter
requirements for this behaviour are:t (1) the binding of the
sensor to the ligand should occur on a fast enough time scale
such that this reaction always operates close to thermodynamic
equilibrium and (2) the spontaneous dephosphorylation rates
of RP and SP should be negligible when compared to the
catalysed reactions in the model. For additional discussion
we refer to Shinar & Alon.°

In the numerical simulations, the network shown in Fig. 1
was considered at fixed levels of Ry and Sy, defined by the
initial conditions. The results of these simulations are shown in
Fig. 2. The deterministic steady-state RP concentrations indeed
increase linearly with L for relatively low levels of stimulation,
independently of Ry (and S, though these data are not shown).
As expected, the response also saturates (RP = Ry) when the
signal strength is sufficiently high. Furthermore, the mean
steady-state concentration of RP in the stochastic simulations
also follows the same trend. Hence, we conclude that fluctuations
in Ry and Sr—which may arise from stochasticity during tran-
scription, translation or cell division—do not scramble the output
of the signalling network. This acts as a built-in mechanism to
ensure high signal transmission fidelity in two-component
systems despite inevitable fluctuations in their components.
We emphasise that this behaviour is only dependent on the two
parameter requirements (mentioned above) and that experi-
mental evidence for his behaviour exists.”
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Fig. 2 Steady-state RP dependence on the signal level, L. Deterministic and stochastic simulation results for three different Ry values (100, 200, 300) are
coloured orange, green and purple respectively. Deterministic results are given by dashed lines, while time-averaged means of stochastic simulations
(calculated over 1000 seconds after the steady-state levels were reached) are plotted with markers. Standard deviations of the stochastic simulations are
also shown as error bars; where they are not visible, they are smaller than the marker size. The mathematical predictions are also shown as thin back lines.
Note that since the concentration of L is considered fixed, the units are arbitrary and hence the gradient of the linear portion of the plot is also arbitrary.

In this study, saturation is reached when L = Ry.
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2.3 Stochasticity-induced active-state locking upon sudden
removal of the signal

Next, we studied the response time of the system—the time that
the system requires to attain a steady-state RP concentration.
In order for our model to be physiologically relevant, we must
consider that organisms have to respond within a timescale
significantly shorter than their generation time."> We therefore
expected this response time to be on the order of about one
minute. This is also what one would expect if the reaction rates
are considered in their diffusion limit (not shown). To address
the response time, we performed stochastic simulations of
the signalling network (Fig. 1) and subjected the system to a
stepwise-varying signal strength, ranging from negligible to
saturating L concentrations (Fig. 3). Indeed, the deterministic
simulation shows that the response time ranges from approxi-
mately 20 to 60 seconds. The stochastic simulation agrees with
this timescale when the signal is increasing. However, when the
signal is reduced from a saturating level, some stochastic
trajectories show surprising behaviour. Namely, the RP concen-
tration has a tendency to stay ‘locked’ in the active-state for a
prolonged time period—sometimes over ten minutes—after the
signal has been reduced. We call this interesting phenomenon
‘stochasticity-induced active-state locking’.

The parameter conditions for stochasticity-induced active-
state locking only concern a small subset of all the parameters,
as was also the case for the robustness. The cause of stochasticity-
induced active-state locking is that the number of (unbound,
unphosphorylated) S molecules can drop to zero when the
system is subjected to saturating signal strengths. As the
S molecules are the dominant means of dephosphorylation of RP,
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Fig. 3 The response of the system to time-varying signal strengths, where
copy numbers of R and S are fixed at 100. The concentration of L, shown in
black, was increased stepwise at 200 second intervals from 1 to 100 a.u.,
then subsequently decreased. The deterministic prediction for the output
RP concentration is shown in red, and 10 stochastic simulations are shown
in blue. The deterministic response time ranges from 20-60 seconds, but
for the stochastic simulations active-state locking is seen to occur after
L reaches 100 a.u., when saturation occurs.
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their absence prevents the number of RP molecules from
declining. In our model this is achieved in the simplest way
as only the free sensor state, S, can dephosphorylate RP.
The autodephosphorylation rates are slow, and although the
phosphorylation reactions are reversible, the forward rates are
overwhelmingly favoured. Thus, the new lower equilibrium
value of RP at the reduced level of L can only be reached once
unbound, unphosphorylated S molecules are recovered by
unbinding/dephosphorylation reactions. Since these reactions
occur stochastically and at a low rate, the observed waiting time
can be remarkably long; in our simulations, we have observed
locking for up to ten minutes. As long as those reactions are
reversible and occur at a low enough rate the time that it takes
before S molecules reappear can be quite variable amongst
individual cells.

We emphasize that this result is not reproducible in deter-
ministic simulations. The reason is that, deterministically, the
concentration of S is a continuous variable that would take a
small but non-zero value under saturating conditions and
reactions which increase S (and decrease RP) concentrations
start to occur immediately (albeit at a low rate) upon decreasing
the signal strength.

In order to further investigate this locking behaviour, we
studied a single stepwise drop in signal strength, from a
saturating level to a negligible level (Fig. 4A). As we now
expected, the stochastic trajectories tended to lock in the active
state for up to ten minutes, but over time an increasing number
of trajectories managed to escape the locked state. The histo-
grams taken at the different time points (Fig. 4B) show that
trajectories that remain locked have completely saturated RP
populations, and also illustrate the transiently bimodal distri-
bution just after the signal drops. If each stochastic trajectory is
interpreted as an individual cell in an isogenic population, this
locking phenomenon should thus create a similarly transient
bimodal distribution, which should be experimentally observ-
able. A quantification of the variability of the response time
can be obtained by numerically determining the distribution of
the time that it takes for cells to reach a threshold % of
unphosphorylated R molecules. This resembles a hitting time
and is defined in the analysis of the stochastic time series.
As long as cells do not communicate via cell-to-cell signalling,
stochasticity-induced active state locking can transiently diver-
sify populations of cells which can be advantageous in unpre-
dictable environments.

2.4 Autoregulatory gene expression leads to bistability of
signalling activity

At this point, we extended the stochastic model with auto-
regulatory gene expression. The two-component system then
up-regulates the transcription of the genes encoding its own
sensor and response regulator, as illustrated in Fig. 5. We based
our transcription model on the structure of the PhoP-PhoQ
system, best studied in Salmonella enterica.® The coding
sequence for S follows that of R in the same operon, and they
are under the transcriptional control of two promoters; one
constitutive, and the other activated by a RP dimer.

Mol. BioSyst., 2014, 10, 2338-2346 | 2341
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Fig. 4 Active-state locking for 500 stochastic simulations. (A) Time traces of the output RP numbers from 500 stochastic simulations. Histograms were
prepared for time points indicated by colour-coded dashed lines. (B) Histograms for RP numbers at the different time-points, illustrating the evolution of

the transient bimodal population.
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Fig. 5 Genetic diagram illustrating autoregulation of transcription as
used in this model. R and S genes are coded on the same operon, and
transcribed onto a single MRNA strand, which is subsequently translated to
produce the protein. Times taken for transcription and translation is
indicated in seconds, and modelled by gamma distributions in the stochastic
simulations. Protein folding times are assumed to be negligible relative to
the translation time.

To investigate the steady-state behaviour of the autoregulatory
system, we began with a simple (deterministic) mathematical
model consisting of the single equation:

d[Rq] [RPJ’
= ko + kpr———
di P TPk 4 [RPP

— kaee[Rr] 1)

where k1, kj; and kg are the basal production rate constant,
the maximal activated production rate constant and the degra-
dation rate constant of R proteins, respectively. Furthermore,
kp> precedes a Hill function that describes the saturation of the
promoter with RP. The Ky is the microscopic dissociation
constant and the Hill coefficient has been taken equal to 2 to

2342 | Mol. BioSyst., 2014, 10, 2338-2346

account for RP dimerisation. We have therefore approximated
the kinetics of RP dimers binding on a single operator site as
the binding of RP monomers on a pair of operator sites with
infinite cooperativity. To further simplify our calculations, we
considered saturating signal strengths, such that [Ry] = [RP].
Setting the right-hand side of the equation to zero—i.e. inves-
tigating the steady-state concentrations—thus gives a cubic
equation for [RP] (or, equivalently, [Ry]) which can in principle
have one, two or three solutions. When three solutions are
exhibited, two are stable, while if only one or two solutions exist
only one state is stable (Fig. 6A and B). Depending on the
parameter values, therefore, the system may exhibit bistability.
We found that, for physically reasonable parameter values (ESIT),
both bistable and non-bistable states were possible. When the
system is bistable, the system may settle in either an active-state
or an off-state under high stimulus, depending on the initial
conditions. We note that the conditions for bistability derive
from the parameters in eqn (1); in fact the parameter ratios
kpalkp1 and kqeg/kp: and the Kyq. When the R molecules have a long
life time, then kqcq is sensitive to the cellular growth rate other-
wise not. So, bistability depends on a relation between gene
expression, protein stability and growth rate parameters. Also the
separating border between two attractive regions (grey dashed
line in Fig. 6) is set by those parameters.

The largest simplification in the above equation is the
presence of the Hill function, which estimates the average
proportion of time that the system spends activated without
considering the individual dimerisation and binding-unbinding

This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Bistability in the full autoregulatory model. (A) RP production and
degradation rates, given by the positive and negative terms in egn (1)
respectively. Where production and degradation rates intersect, a steady-
state RP level is reached. (B) The total rate of change in [RP] (eqgn (1)), for
saturating signal strengths and parameters permitting bistability. The first
and last fixed points are stable, while the central one is unstable, separating
the basins of attraction for the two stable states. (C) 20 stochastic
simulations with an initial condition RP = 70 (close to the unstable point)
illustrate the bistability in the system, as trajectories may tend towards
either the upper or the lower steady state when they are stochastically
pushed into either basin of attraction. (D) Histogram of RP levels after
16.66 hours for 3000 stochastic simulations, revealing a bimodal popula-
tion. The first bin had a count of 2046, but the total height was cut in the
figure for clarity.

reaction rates. For our stochastic simulations, we considered all
the individual reaction steps in order to create a more realistic
model (see ESIt), by adding these reactions to the signalling
network depicted in Fig. 1. Also, we accounted for (stochastic)
delay times in transcription and translation using average
transcription/translation rates from E. coli and gene lengths
taken from the autoregulatory PhoP-PhoQ two-component

This journal is © The Royal Society of Chemistry 2014
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system in E. coli (see ESIt). Using parameters that we found
to cause bistability in the reduced mathematical model given in
eqn (1), we reproduced the phenomenon in the stochastic
model (Fig. 7A and B). Occasionally, stochasticity caused bistable
switching, in which a simulation initially settled in one stable
activation state spontaneously switches to the other. The overall
effect on a large number of such cells is a bimodal population, as
shown in Fig. 6D, where a proportion of cells remain in an ‘off’
state despite high signal strengths. This could be advantageous
as an evolutionary bet-hedging strategy for signalling systems
responding to toxic stimuli, which we will consider further in the
Discussion. The parameter requirement for bistable switching is
that cells should be able to pass the border separating the two
attractive regions within a single generation time (grey dashed
line in Fig. 6).

2.5 Growth-rate dependent stochastic bistable switching
between inactive and active signalling states

Two notable features of the bistable system prompted us to
investigate the influence of cell growth and division on the
stochastic behaviour of the autoregulatory circuit. Firstly, the
timescale over which the system settles into a steady-state—on
the order of tens of minutes as shown in Fig. 6C—can easily
exceed the generation time of a typical prokaryotic organism.
For example, E. coli can have a generation time of under
20 minutes when growing on glucose in rich media. During
this time, the cell doubles in size and cell growth is thus often
the dominant source of protein concentration ‘degradation’,
particularly when the protein is not targeted for enzymatic
degradation.’® Cell division also has the dramatic effect of
(approximately) halving the protein copy numbers nearly
instantaneously. The division of molecules between daughter
cells can be well-modelled by a volume-dependent binomial
distribution.™ With bistability-switching timescales exceeding
generation times, it is therefore important to check how
bistability is influenced by cell growth and division of the host
cell. Secondly, via the mathematical analysis, we found that
the presence of bistability was especially sensitive to changes in
the protein degradation rate kqe, (data not shown). Since the
protein degradation rate can equivalently be interpreted as a
protein dilution rate, we hypothesised that if cell growth is
taken as the only source of protein degradation we would find
that the bistability of the system becomes growth-rate depen-
dent. This would then constitute a parameter requirement for
the occurrence of growth-rate induced bistability.

In implementing growth and division processes in StochPy,
(exponential) growth rates were assumed to be fixed but the
generation time, daughter cell volume and division of cellular
species between daughter cells were modelled stochastically
(ESIT). We found that a generation time of about 45 minutes—
typical for bacteria such as E. coli and Bacillus subtilis under
laboratory conditions—could indeed lead to bistable steady-
state RP concentrations (Fig. 7C and D). The activation state
is also occasionally seen to switch spontaneously due to sto-
chasticity. This indicates that the phenomenon of bistability is
also robust to growth and division processes, providing further
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Fig. 7 10 stochastic simulations with two different initial conditions, demonstrating bistability in the system without (A and B) and with cell division
(C and D). Switching between the two stable states is occasionally enabled by stochasticity. (A) Initial RP population is low, so the steady-state output is
biased towards the ‘off-state’. (B) Initial RP population is high, so the steady-state output is biased towards the active-state. (C) Initial RP population is low,
so the steady state output is biased towards the ‘off-state’. (D) Initial RP population is high, so the steady-state output is biased towards the active-state.

support for the possibility of either finding or creating such a
system in nature.

We also found that this bistability is growth-rate dependent.
An upper bound to bistability-permitting growth rates is deter-
mined by cell division events—the cell growth rate must be
slow enough to allow the protein population to at least double
during the generation time. Otherwise, the protein population
in mother cells decreases with each generation that passes, so
the active-state can never be maintained. This upper limit on the
growth rate can be adjusted by varying the protein production
rates, k,; and kp,. There was also a lower bound on growth-rate
which arose from the original mathematical model, because the
degradation rate must exceed a critical value in order for the
‘off-state’ to be maintained. For our parameters, cell generation
times of between 45 and 110 minutes permitted bistability.

2344 | Mol. BioSyst., 2014, 10, 2338-2346

3 Discussion

In this work, we studied with stochastic simulations a model of
two-component signalling that has a generic, realistic network
structure and is of manageable complexity. We studied how
this system copes with its inherent stochasticity, deriving from
its reactions as well as the growth processes of the cell, and how
induction of bistability by auto-regulatory gene expression is
affected by cell growth. We found that two-component systems
are robust with respect to disadvantageous stochasticity while
they can also exploit stochasticity to cause diversification of the
cell population.

We discovered a new behaviour of two-component systems
that we termed ‘active-state locking’. Active-state locking tran-
siently creates a bimodal population after a sudden drop in

This journal is © The Royal Society of Chemistry 2014
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signal strength. This behaviour can contribute to bet-hedging
strategies where a subpopulation of cells remains active and
‘anticipates’ a return of the signal. One can imagine that this is
advantageous when the ligand signals toxicity. The locked
fraction of the population remains in the ‘safe-mode’ after
the signal decreases and is hence well-prepared if the toxicity
level rises again. The remainder of the population loses the
anti-toxic response rapidly after the signal is removed, enabling
them to free more resources for other metabolic processes.
In this way, the population as a whole is better prepared for
survival in fluctuating and/or heterogeneous environments.

To our knowledge, the stochasticity-induced active-state
locking phenomenon has not yet been reported by either
theoretical or experimental research groups. The lack of experi-
mental evidence may initially raise doubts about the biological
applicability of our findings. However, there are numerous
factors that should be considered. Firstly, the bimodal popula-
tion is only transient—unless an active search is made for this
phenomenon, the probability of observation is low. Secondly,
the phenomenon also relies on a saturating signal strength that
causes all R molecules to be phosphorylated and all S molecules
to be either ligand-bound or phosphorylated. This requires a
high signal strength, and is also facilitated if Ry and Sy are
relatively low. This may not be feasible in all two-component
systems, but suggests a direction for future research.

Several two-component systems are also known to be auto-
regulatory. Our results and those of Igoshin et al® and of
Kierzek et al." indicate that this property can lead to bistability.
Bistability persists even when cell growth and division effects
are (stochastically) accounted for. We found that the bistability
exhibits a growth-rate dependence and is sensitively dependent
on protein production and degradation parameters. The growth-
rate dependence has a particularly interesting interpretation for
the case of toxicity sensing. In this case, the growth-rate depen-
dency may be interpreted as a ‘back-up mechanism’ to judge
whether or not the cell should respond to a detected high-toxicity
environment. If the growth-rate is sufficiently fast, indicating
that the cell’s metabolism is still functioning soundly (and little
toxin is likely present), then the system remains in the off-state
and the high detected level of toxicity is treated as a false alarm.
For example, a morphologically similar molecule could have
been mistaken for the toxin. Alternatively, if the growth-rate is
sufficiently slow, indicating that the organism has been badly
affected, then the system switches to the active-state, where a
large amount of RP molecules is produced and the cell can
respond to the toxic threat. For intermediate growth-rates
bistability exists, leading to a bimodal population in which a
proportion of the cells are activated while the rest are off—another
example of a bet-hedging evolutionary strategy that helps the
species survive in fluctuating environments.

Experimental evidence for bistability in the autoregulatory
PhoB-PhoR system was obtained by Zhou et al.,'® where flow
cytometry data showed bimodal distributions qualitatively
similar to Fig. 6D. Moreover, Kierzek et al. reproduced these
distributions by using a model accounting for stochasticity in
transcription, translation and degradation in growing cells."?
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We have incorporated several additional sources of stochasticity
in our more detailed signalling network model, and showed that
the bistability can still be maintained. The additional stochasticity
arose not just from the inclusion of more stochastic reactions, but
also from more detailed modelling of cell growth, division and
gene expression.

We considered stochasticity of the cellular generation time,
daughter cell volumes, volume-dependent binomial division of
cell contents, and gamma-distributed transcription/translation
delay times to account for the polymerisation of each nucleotide/
amino acid at an exponentially-distributed rate. Growth depen-
dence of bistability was also investigated in a simple synthetic
system by Tan et al.," but is yet to be found in a natural two-
component system. The advantages of such a system could also
lend itself very well to applications in synthetic biology, where
persistence in a fluctuating or heterogeneous environment may
often be required.

An important feature of our findings is that their qualitative
features are quite robust with respect to the reaction rate
parameters used in our model. Robustness of the steady-state
signal transmission relies on just two assumptions: (1) S and
L binding reactions are relatively fast and (2) autodephosphoryl-
ation reaction rates for RP and SP are relatively low. Active-state
locking and bistability only require the signalling system to
saturate at high signal strengths (i.e. all R molecules are phos-
phorylated, and all S molecules are ligand-bound and/or phos-
phorylated when L is high). Bistability further requires an
autoregulatory gene network in combination with more stringent
restrictions on the protein production and degradation rates. It is,
however, well established that these rates vary widely in nature for
different signalling systems, depend heavily on bacterial growth
conditions and are easily variable in synthetic systems.'”'® We
expect that our results are robust to uncertainties in precise
parameter values in the signalling network, which are often
difficult to quantify and control. Furthermore, our findings are
likely broadly applicable to two-component signal transduction
systems in general, both natural and synthetic.

4 Conclusions

The rich and varied dynamics that we report in this study
highlights the remarkable versatility of a biological sensing
system that consists of only two components. This suggests a
possible explanation for why two-component systems are so
widespread among prokaryotes and why a single species may
rely on tens of such signalling systems: these systems are
reliable, versatile and small enough to be rapidly evolvable.
Furthermore, it also bodes well for the future of synthetic
biology and minimal cell research, which hope to achieve
advanced functionality using minimally complex building blocks.
Finally, our work demonstrates the importance of conducting
stochastic simulations of molecular circuit models, as they can
uncover startling new dynamics with biological significance—such
as active-state locking—which may not be evident from determi-
nistic simulations.
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