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Abstract—CSMA is the predominant distributed access proto-
col for wireless mesh networks. Originally designed for single-
hop settings, in multi-hop networks CSMA can exhibit severe
performance problems in terms of stability and end-to-end
throughput. To ensure a smoother flow of packets, we examine
a new scheme referred to as extra back-off (EB) flow control. In
this scheme a node remains silent for a certain extra back-off
time (imposed on top of the usual back-off time that is part of
CSMA) after it has transmitted a packet, so as to give both the
downstream and upstream neighbors the opportunity to transmit.
EB flow control entails only a small modification to CSMA,
preserving its distributed character, yet considerably improving
the network performance.

I. INTRODUCTION

Emerging wireless mesh networks will provide the main

artery of the Internet of Things, offering connectivity to mas-

sive numbers of nodes, such as environmental sensors, control

devices in vehicles, and radio tags in logistics and supply

chains [1], [14]. In contrast to today’s cellular architectures,

these mesh networks typically lack any centralized control

entity for allocating resources and explicitly coordinating

transmissions. Instead, these networks vitally rely on the

individual nodes to operate autonomously and to efficiently

share the medium in a distributed fashion. This requires the

nodes to schedule their individual transmissions and decide on

the use of shared resources based on knowledge that is locally

available or only involves limited exchange of information.

A popular mechanism for distributed medium access control

is provided by the so-called Carrier-Sense Multiple-Access

(CSMA) protocol, various incarnations of which are imple-

mented in IEEE 802.11 networks. In the CSMA protocol each

node attempts to access the medium after a certain back-off

time, but nodes that sense the medium busy will postpone their

attempt until the medium is sensed idle.

Although widely deployed in IEEE 802.11 networks, it is

common knowledge that CSMA can exhibit severe perfor-

mance problems in multi-hop scenarios [2], [5], [7]. Originally

devised for single-hop communications where all nodes mutu-

ally interfere, CSMA is not well-suited to settings where the

interference among nodes is asymmetric in nature, especially

when these nodes act as relays in transferring a flow of

packets along the end-to-end path between a source and

destination. In particular, nodes in the ‘middle’ of a network

tend to experience more interference than the nodes on the

‘edge’ of the network, and therefore are at a disadvantage

in competing for medium access. This issue, known as the

node-in-the-middle problem, can cause extreme unfairness and

starvation effects, manifesting itself in poor throughput, severe

congestion, buffer overflow, and packet loss.

In order to remedy the above-described performance issues

of CSMA and ensure a smoother flow of packets in multi-

hop settings, we examine a scheme referred to as extra back-

off (EB) flow control [8], [9]. In EB a node will remain

silent for a certain extra back-off time after it has transmitted

a packet, so as to give both the downstream and upstream

nodes the opportunity to transmit. Hence, we impose this extra

back-off on top of the usual back-off that is already part of

the CSMA protocol. Indeed, EB flow control only requires

local information, involves no message passing, and is fully

backward compatible with the IEEE 802.11 standard.

To examine the performance benefits of EB flow control,

we will use various Markov models, extending the baseline

model developed in [4] for the case of ordinary back-offs. We

focus on linear multi-hop topologies consisting of N nodes, in

which packets are transferred from the source node 1 to some

receiver, via relay nodes 2, . . . , N . In order to avoid collisions,

we further assume that CSMA prevents two neighboring nodes

from being active simultaneously.

The basic model for medium contention is similar to that

in [3], [6], [17], [18]. It is worth observing that these studies

assume saturated buffer conditions, where all nodes always

have packets pending for transmission. The throughput char-

acteristics in such scenarios provide useful first-order estimates

of the system performance. In reality however, buffer contents

fluctuate as packets are accumulated and flushed over time,

giving rise to queueing dynamics. In particular, the buffers

may empty from time to time, and nodes may refrain from

competition for the medium during these periods. It is further

worth drawing a distinction with the work in [10], [11], [13],

[16], which also addresses throughput utility optimization and

stability issues in CSMA networks. These studies however

focus on adaptation of the nominal back-off parameters rather

than incorporation of extra back-off periods, and do not

capture the queueing dynamics in as much detail.

In the present paper, we also assume the source node to be

saturated, but explicitly account for the queueing dynamics at

the other nodes, which is especially important since these act

as relays in transferring the flow of packets. Unfortunately,

the queueing dynamics severely complicate the mathematical

analysis. In particular, the models entail high-dimensional

stochastic processes with infinite state spaces, which generally
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do not admit closed-form expressions for the stationary distri-

bution or yield to standard numerical techniques or brute-force

simulation, even under Markovian assumptions. In fact, just

the existence of a stationary distribution (positive recurrence

of the Markov process) is usually difficult to establish. In

view of the complexity, we will consider a regime where the

ordinary back-off periods are asymptotically small, and focus

on relatively short path lengths. As it turns out, the results for

systems with as few as three nodes already provide remarkably

accurate estimates of the end-to-end throughputs for larger

path lengths.

We will demonstrate that EB flow control smoothes the

flow of packets and improves the end-to-end throughput and

fairness. In particular, we establish that EB flow control

primarily increases the throughput of node 2, and hardly

impacts the throughput of the other downstream nodes. As

it turns out, the connection between nodes 2 and 3 is indeed

the bottleneck link, and with EB flow control enabled, this link

receives a larger share of the medium, because the source node

is throttled. We will show that when the extra back-off time is

sufficiently large, the buffer content of node 2 stabilizes for a

certain type of EB flow control. In fact, it will be shown that

this form of EB flow control stabilizes the entire network when

the mean back-off duration exceeds some critical value. We

further find that this critical value only marginally depends

on the size of the system. For the 3-hop system we derive

exact expressions for the throughput and the critical value of

the mean back-off duration. For the 4-hop system we provide

numerical results and for systems with 5 or more hops we

present simulation experiments.

The remainder of the paper is organized as follows. Sec-

tion II provides a detailed description of the model and the

back-off scheme. Section III presents the main results for

exponential back-off times. Section IV discusses extensions

to larger networks and larger blocking distances, as well as

some open problems.

II. MODEL DESCRIPTION

We consider multi-hop networks of N consecutive nodes on

a line. Node 1 (the source) is saturated, meaning that it always

has a packet ready to transmit. These packets need to be sent to

an external node (the destination), while being relayed through

nodes 2, . . . , N . A transmitting node always blocks its direct

neighbors from transmitting. In wireless networks interference

can occur when two nodes that are too close to each other

transmit at the same time. Nodes i and j can only transmit

simultaneously if | i − j | > 1.

Upon completion of a transmission, a node is forced into

back-off, during which it is not allowed to be active. When

a node completes a transmission and starts a back-off period,

several neighbors may become unblocked simultaneously. Any

race conditions that arise in such situations are resolved

uniformly at random.

Note that the present model differs from that in [5], [6],

[17], [18], in that nodes only enter back-off once after each

transmission, and do not re-enter the back-off mode when they

find themselves blocked at the end of a back-off period. Alter-

natively, the back-offs in the present model may be interpreted

as ‘extra’ back-offs, with the duration of the ‘regular’ back-

offs vanishing to zero.

We will consider two different back-off schemes:

Definition 1 (EB scheme (i)): All nodes have independent

back-off periods after the transmission of each packet.

EB scheme (i) will also be referred to as the basic EB scheme.

Definition 2 (EB scheme (ii)): All nodes have independent

back-off periods after the transmission of each packet, with the

additional rule that the back-off period of a node is terminated

when a new packet arrives to that node.

EB scheme (ii) will also be referred to as truncated EB

scheme. We assume that the nodes have large buffers (which

is usually the case). In fact, we assume infinite buffers, so that

the network is lossless. The assumption of infinite buffers (and

no losses) gives rise to a potential stability problem, because

the buffer content may grow without bound. A striking feature

of the back-off mechanism is that it can have a positive effect

on stability. In particular, the status of a node can change

from unstable to stable when the mean back-off time becomes

larger than a certain critical value. Here, we say that a node i
is unstable when its buffer content grows without bound and

for buffer size Xi it holds that P [Xi = 0] → 0 as time

progresses for any proper initial value, and we call a node

stable otherwise.

III. MAIN RESULTS

A. General results for both back-off schemes

Let us start with the simple observation that each node i
goes through a cyclic pattern, consisting of a transmission pe-

riod Ti, a back-off period, and a possible additional inactivity

period in which it is neither transmitting nor in back-off. We

distinguish between back-off times Bi and Vi, where Bi is the

‘intended’ length of a back-off period, while Vi is the actual

amount of time that node i spends in back-off between two

successive transmissions. For scheme (i) it obviously holds

that Vi = Bi, but this distinction is necessary for the truncated

extra back-off scheme (ii). Also, since node 1 is the first node

of the chain, its back-off cannot be truncated, so B1 = V1 for

both schemes. Let Wi be the remaining time that node i is

‘waiting’ between two successive transmissions.

Lemma 3: For both back-off schemes, the throughput of

node i may be expressed as

θi =
1

E [Ti] + E [Vi] + E [Wi]
. (1)

Proof: Denote Ci = Ti +Vi +Wi and let Ni(t) represent

the number of transmitted packets by node i after t units of

time, then

θi = lim
t→∞

1

t
Ni(t) =

1

E [Ci]
. (2)
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Here we assume the existence of the limits

E [Vi] = lim
n→∞

∑n

k=1 Vik

n
,

E [Wi] = lim
n→∞

∑n

k=1 Wik

n
,

θi = lim
n→∞

n
∑n

k=1 Cik

= lim
t→∞

Ni(t)

t
,

where Vik denotes the k-th back-off time of node i and

likewise for Wik and Cik.

In order for Lemma 3 to be useful, we need to determine

E [Vi] and E [Wi] which depend on the node and the specific

back-off scheme under consideration.

Proposition 4: For both EB schemes, with N ≥ 2, and B1

exponentially distributed,

E [W1] =
θ2

θ1
E [max{T2 − B1, 0}] . (3)

Proof: Let σ1 be the long-term fraction of time that

node 1 is inactive, but not in back-off. Then σ1 = θ1E [W1].
Recall that node 1 is saturated and always has packets to

transmit, so it can only be inactive when it is in back-off

or when node 2 is transmitting. Therefore, σ1 = θ2E [U2],
where U2 denotes the amount of inactive time of node 1

caused by an arbitrary transmission of node 2 (and not by

back-off of node 1 itself), i.e., the amount of time that node 1

is inactive but not in back-off during an arbitrary transmission

of node 2. Thus, E [W1] = θ2

θ1

E [U2]. The fact that node 1 is

saturated, also implies that a transmission of node 2 can only

start during a back-off period of node 1. The residual back-

off period at that moment is exponentially distributed due to

the memoryless property. Hence, it follows that U2 may be

represented as max{T2 − B1, 0}, yielding Equation (3).

The following corollary extends the results of Proposition 4.

Corollary 5: Under the assumptions of Proposition 4, with

E [B1] = η, and assuming additionally that T2 is exponentially

distributed with E [T2] = 1,

E [max{T2 − B1, 0}] =
1

1 + η
, (4)

so that, when also T1 has a distribution with unit mean, with

θi = θi(η),

θ1(η) =
1

1 + η + θ2(η)
θ1(η)

1
1+η

. (5)

The fact that θ1 ≥ θ2 then yields that either

θ1(η) = θ2(η) = τ(η) =
1

1 + η + 1
1+η

(6)

when node 2 is stable, or

θ1(η) > τ(η) > θ2(η). (7)

B. Throughput for EB scheme (i)

Proposition 6: For EB scheme (i), with N ≥ 3, under the

assumptions of Corollary 5, node 2 is unstable, i.e., θ1(η) >
τ(η) > θ2(η).

Proof: Let η > 0. To prove the saturation of node 2 we

will use contradiction. Assuming θ1(η) = θ2(η), Corollary 5

implies

θ1(η) = θ2(η) = τ(η) =
1

1 + η + 1
1+η

,

so that E [W2] = 1
1+η

. However, we can also calculate E [W2]
in a different way. We define r1 (r2) to be the expected

number of transmissions of node 1 in between two successive

transmissions of node 2, starting when node 2 is in back-off

(not in back-off). When node 1 starts a transmission during

a back-off time of node 2, we have again that the expected

waiting time contributed by the transmission of node 1 equals

E [Y1] = E [max{T1 − B2, 0}] =
1

1 + η
.

In case node 1 starts a transmission when node 2 is not in

back-off, it will contribute E [Y2] = E [T1] to the expected

waiting time. However, the waiting time of node 2 can also

be increased by node 3, for example when it is active while

node 1 is in back-off. We call this extra waiting time Y3. Since

r1 + r2 = θ1(η)/θ2(η) = 1 and r2 > 0, we now have

E [W2] = r1E [Y1] + r2E [Y2] + E [Y3]

≥ (1 − r2)
1

1 + η
+ r2 =

1

1 + η
+ r2

η

1 + η
>

1

1 + η
.

This leads to a contradiction, and thus we can conclude that

θ1(η) > τ(η) > θ2(η) according to Corollary 5.

For scheme (ii), the stability condition of node 2 is harder

to establish, which will be discussed in Section III-C.

Proposition 7 (throughput last node): For EB scheme (i),

with N ≥ 3, under the assumptions of Corollary 5, and

additionally assuming that TN−1 is exponentially distributed

with unit mean and BN is exponentially distributed with mean

η, node N is stable, i.e., θN−1(η) = θN (η).

Proof: First suppose that node N were unstable, so it

always has packets to transmit. By the same arguments as in

the proof of Proposition 4, it follows that

E [WN ] ≤ θN−1(η)

θN (η)

1

1 + η
.

Combining (1) with the fact that θ2(η) ≥ θN−1(η) ≥ θN (η)
and θ2(η) < τ(η) according to Proposition 6 yields

1 = θN (η)(E [TN ] + E [VN ] + E [WN ])

≤ θN (η)(1 + η +
θN−1(η)

θN (η)

1

1 + η
)

≤ θN−1(η)(1 + η) + θN−1(η)
1

1 + η

≤ θ2(η)(1 + η +
1

1 + η
) < 1,

which gives a contradiction.

We will give an exact analysis for the model with N = 3,

and Ti and Vi (for i = 1, 2, 3) both exponentially distributed,

with unit mean and mean η, respectively. Since we already
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know that nodes 1 and 2 are saturated, we only have to keep

track of the buffer content of node 3. In Appendix B we show

that this gives rise to a Markov process on a strip, also referred

to as a Quasi-Birth-Death (QBD) process. Determining the

steady-state distribution, and hence the throughput, requires

the solution of a non-linear matrix equation that can only

be obtained numerically. Hence, the throughput for back-off

scheme (i) can be evaluated only numerically (albeit up to an

arbitrary level of precision). Therefore, we shall introduce an

approximate model, which will lead to a closed-form solution

for the throughput, by imposing a minor modification to EB

scheme (i).

Definition 8 (Modified EB scheme (i)): All nodes have in-

dependent back-off periods after the transmission of each

packet, apart from the last node that has no back-off.

Note that for the present setting, with N = 3 and exponen-

tial Ti and Vi, Propositions 4 and 6 also hold for this modified

scheme. Even Proposition 7 continues to hold, but here we

need some further reasoning. Namely, every packet transmitted

by node 2 will immediately be forwarded by node 3, since

this node directly grabs the channel when node 2 goes into

back-off and therefore node 3 is stable. Since node 3 is the

last transmitting node and is stable in both cases, it does

not matter much whether or not it is forced into back-off

after a transmission. We will indeed see that this modification

has very little effect on the throughput. Hence, at first sight,

there seems to be little difference between the original and

the modified back-off scheme. The crucial difference though

is that the modified scheme allows for an exact closed-form

solution for the throughput.

Theorem 9: For N = 3 and modified EB scheme (i) with

Ti exponentially distributed with unit mean for i = 1, 2, 3, and

B1, B2 exponentially distributed with mean η,

E [W1] =
1

1 + η + 1
1+η

, E [W2] =
2

1 + η
, (8)

so that the throughput functions are given as

θ1(η) =
2 + 2η + η2

3 + 5η + 3η2 + η3
, (9)

θ2(η) = θ3(η) =
1 + 2η + η2

3 + 5η + 3η2 + η3
. (10)

Proof: To determine E [W2], we write it as E [W2] =
E [W21] + E [W23], where W23 represents the waiting time

caused by an ongoing transmission by node 3 and E [W21] the

leftover waiting time caused by a transmission of node 1, while

node 3 is silent. We find E [W23] = E [max{T3 − B2, 0}] =
1

1+η
. Let H0 be the time that node 2 finishes its transmission

and H1 the first moment after H0 in which node 2 has finished

its back-off time and node 3 has finished its transmission. Then

we have E [W21] = P [node 1 is transmitting at H1] E [T1] ,
with E [T1] = 1. Because node 1 is always in back-off at

the start of a transmission of node 2, we find

P
[

node 1 is in back-off at H+
0

]

= P [B1 > T2] =
η

1 + η
.

0.5 1.0 1.5 2.0 2.5 3.0

Η

0.2
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Figure 1: θ1(η) and θ2(η) = θ3(η) for back-off scheme (i)

(dots) and its modified modified counterpart (solid line).

Since this is also the equilibrium probability distribution of

node 1 being in back-off in case it could not be blocked by

node 2 (which is the case between H0 and H1), the system

retains the equilibrium distribution during this period, and thus

P [node 1 is transmitting at H1]

= P
[

node 1 is transmitting at H+
0

]

= 1 − P
[

node 1 is in back-off at H+
0

]

=
1

1 + η
, (11)

which yields E [W2] = 2
1+η

. Applying Lemma 3 and Equation

(5) yields E [W1].
An alternative, more constructive proof of Theorem 9 is

given in Appendix F.

Let us now compare the schemes numerically. In Figure 1

we see the throughput of nodes 1 and 2 for both scheme (i)

and the modified scheme (i). The results for scheme (i) are

calculated from the numerical solution to the QBD process,

and the results for the modified scheme (i) follow from The-

orem 9. The difference in throughput between both schemes

is negligible, and hence the modified scheme and its exact

solution provides extremely sharp approximations for scheme

(i). From Theorem 9 we see, among other things, that

θ1(η) − θ2(η) = O(η−3),

which indicates that the difference in throughput between

nodes 1 and 2 diminishes rapidly with η. This is confirmed in

Figure 1. Moreover, we can obtain from the expression for θ2

in Theorem 9 the following result:

Corollary 10: For N = 3, EB scheme (i), and Ti is

exponentially distributed with unit mean for i = 1, 2, 3, node

2 will be saturated (not stable) for all values of η and attains

the maximal throughput
√

2/4 for η =
√

2 − 1.

C. Throughput for EB scheme (ii)

Proposition 11: For EB scheme (ii), the last node is always

stable.

Proof: Whenever node N receives a packet, node N − 1
goes into back-off, giving node N the opportunity to directly

forward the packet, so that θN = θN−1. Therefore node N can
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only have 0 or 1 packet(s) in its buffer at an arbitrary moment

in time. After its transmission, node N goes into back-off,

but it does not have a packet to transmit anyway, and when it

does receive one, its back-off will always be terminated. The

system is thus insensitive to the back-off of node N .

For the throughput calculations of EB scheme (ii), we

will also focus on the case of N = 3, with both Ti and

Bi exponentially distributed with unit mean and mean η,

respectively, for i = 1, 2, 3. For all nodes except node 1, the

back-off period can be terminated before expiration.

We now find that EB scheme (ii) makes node 2 stable when

the mean back-off time η increases beyond a certain critical

value. This observation can be of great practical significance,

especially if a similar phenomenon turns out to hold when

applying EB scheme (ii) to more general mesh networks.

Theorem 12: For N = 3, EB scheme (ii), and Ti and

Bi exponentially distributed with unit mean and mean η,

respectively, for i = 1, 2, 3, node 2 is stable and hence

θ1(η) = θ2(η) = θ3(θ), if and only if η >
√

5 − 1, and

then

θi(η) = τ(η) =
1

1 + η + 1
1+η

, i = 1, 2, 3. (12)

We will now take different approaches for the systems in

which node 2 is saturated and in which node 2 is stable.

When node 2 is saturated, the throughput of all nodes can

be determined explicitly:

Theorem 13: For N = 3, EB scheme (ii), and Ti ex-

ponentially distributed with unit mean for i = 1, 2, 3, and

η ≤
√

5 − 1, the throughputs are given by

θ1(η) =
8 + 4η + η2

12 + 14η + 5η2 + η3
, (13)

θ2(η) = θ3(η) =
4 + 6η + 2η2

12 + 14η + 5η2 + η3
. (14)

Moreover, θ1(η) ≥ θ2(η) = θ3(η) with equality if and only if

η =
√

5 − 1.

Theorem 13 is proved in Appendix E. The proof relies on

the fact that the buffer contents can be modeled as a Markov

process on a finite state space that has a closed-form solution

for the stationary distribution. Observe that θ1(η) → 2/3
and θ2(η) → 1/3 as η ↓ 0. The maximum throughput

θ2 ≈ 0.37513 of node 2 is attained for η ≈ 0.93328.

If node 2 is stable we can model the system as a QBD

process, and numerical results up to an arbitrary level of

precision can be obtained. This is explained in Appendix A.

The resulting throughputs are plotted in Figure 2.

IV. DISCUSSION

Most results obtained so far were for the 3-hop network. We

shall now demonstrate that networks with four or more hops

behave quite similar, and that the insights obtained through

analytic results for the 3-hop network to a large extent carry

over to larger networks. The 4-hop network still allows for an

explicit analysis via the theory of QBD processes as explained

0.5 1.0 1.5 2.0 2.5 3.0

Η

0.3

0.4

0.5

0.6

Θ

Figure 2: θ1(η) and θ2(η) = θ3(η) for EB scheme (ii) with

N = 3.

0.5 1.0 1.5 2.0 2.5 3.0

Η

0.3

0.4

0.5

0.6

Θ

Figure 3: θ1(η) and θ2(η) = θ3(η) = θ4(η) for modified EB

scheme (i) with N = 4.

in Appendix F. The results for networks with 5 or more hops

were obtained by means of simulation.

A. Robustness of throughputs for scheme (i)

As shown in Appendix F, the 4-hop network with the

modified EB scheme (i) leads to the ordering of throughputs

θ1(η) > θ2(η) = θ3(η) = θ4(η); see Figure 3. We compare

these results to the 3-hop network for which we obtained

explicit results in Theorem 9. Numerical calculations show

that the maximum relative difference in throughput between

3 and 4 hops is less than one percent, showing the minor

effect of the addition of node 4. For N ≥ 5 simulations

have been performed for EB scheme (i), and the throughputs

match almost perfectly with N = 3 and N = 4. This

shows the robustness of EB scheme (i): the throughput is only

minimally affected by the number of nodes N , for all η > 0.

Hence, although the mathematical model becomes intractable

for N ≥ 5, the behavior is almost identical to the case N = 3.

B. Critical values in scheme (ii)

One of our main findings is that the 3-hop model with EB

scheme (ii) can be completely stabilized when η increases

beyond the critical value
√

5−1. The question now is whether

this EB scheme can also stabilize N -hop models with N ≥ 4.
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Figure 4: θ1(η), θ2(η) and θ3(η) = θ4(η) for N = 4 and EB

scheme (ii) for 0 ≤ η ≤ 3.
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Figure 5: θ1(η), θ2(η) and θ3(η) = θ4(η) for N = 4 and EB

scheme (ii) for 0.9 ≤ η ≤ 1.35

The case N = 4 leads to rather remarkable results, as can be

seen in Figures 4 and 5.

First note that node 1 is always saturated and node 4
is always stable. It turns out that there are four possible

scenarios: (1) node 2 is saturated and node 3 is stable,

(2) nodes 2 and 3 are both saturated, (3) node 2 is stable

(so that θ1(η) = θ2(η) = τ(η)) and node 3 is saturated, and

(4) nodes 2 and 3 are both stable. All these scenarios occur

as η increases from 0 to infinity. Let ηi→j denote the value of

η at which we switch from scenario (i) to scenario (j), and

hence 0 < η1→2 < η2→3 < η3→4. The (numerical) values for

these switching points are η1→2 = 1, η2→3 ≈ 1.24415, and

η3→4 ≈ 1.25763. Hence, η3→4 is the critical value beyond

which the whole system is stable. The main difference between

N = 3 and N = 4 is thus the surprising phenomenon that

node 3 is saturated for η1→2 < η < η3→4.

For larger networks with 5 ≤ N ≤ 10 extensive simulations

have led to estimates of the critical values ηc (after which the

whole network is stable) in Table I. Note that also for N ≥ 5
stability implies that the throughput of all nodes equals τ(η).
From θ1(η) = θ2(η) it follows that both θ1(η) and θ2(η)
are equal to τ(η). All other nodes are stable and hence their

throughput equals τ(η) as well.

The critical values seem to settle around η ≈ 1.28, which

again suggests that nodes 5, 6, ... have only little influence

N 3 4 5 6 7 8 9 10

ηc

√

5 − 1 1.26 1.28 1.28 1.28 1.28 1.28 1.28

Table I: Critical values ηc for systems with EB scheme (ii)

and N = 3, ..., 10.

on the mechanics of the various EB schemes. We note that

τ(1.28) ≈ 0.3678, which still exceeds the maximum through-

put of modified EB scheme (i) for N = 3, as found in

Corollary 10. This leads us to believe that also for larger

networks EB scheme (ii) can achieve stability while still

maintaining a higher throughput than EB scheme (i).
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APPENDIX

A. Introduction to QBD processes

Quasi-Birth-Death (QBD) processes are Markov processes

on the two-dimensional lattice, whose transitions are skipfree

to the left and to the right, with no restrictions upward

or downward. The invariant distributions of QBD processes,

under appropriate conditions, are well known to have a matrix-

geometric form. More precisely, the stationary probability

vector has a geometric solution in terms of a so-called rate

matrix R. We present in this section a short introduction to

QBD processes and then model EB scheme (i) as a QBD

process in Section B, and the EB scheme (ii) in Section C.

Consider a continuous-time Markov process {X(t), t ∈
R+} on the two-dimensional state space {(i, j) : i ∈ Z+, j ∈
{1, . . . ,M}}, which is partitioned as

⋃

∞

i=0 l(i), where

l(i) = {(i, 1), (i, 2), . . . , (i, M)}

and Z+, R+ denote the nonnegative integer and real numbers.

In state (i, j) the first coordinate i is called the level whereas

j denotes the phase, with the set l(i) referred to as level i.
Each level has a finite number of states, M .

This Markov process is called a QBD process when its one-

step transitions from each state are restricted to states in the

same level or in the two adjacent levels, and a homogeneous

QBD process when these transition rates are additionally level-

independent for levels l(i) with i > 0.

Let π denote the stationary probability vector of this ho-

mogeneous QBD process. We construct π by concatenating

subvectors πi, i ∈ Z+, where πi has M components corre-

sponding to the states of l(i). This shows that vector π is of

infinite size. We will assume throughout that the QBD process

is irreducible and ergodic. Hence, we assume the stationary

probability vector exists and therefore is uniquely determined

as the solution of

π0B + π1A2 = 0, (15)

πi−1A0 + πiA1 + πi+1A2 = 0, i ≥ 1. (16)
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where matrices A0,A2 are nonnegative and matrices A1,B
have nonnegative off-diagonal elements and strictly negative

diagonals. Matrix A0 represents the transition rates from a

level i − 1 to i, while A1 represents transitions within the

same level and A2 shows transitions from level i to level

i − 1. Matrix B serves as the rates within level l(0). In our

study the matrices all have dimension M × M .

The infinite sized generator Q of the Markov process now

takes the block tridiagonal form

Q =











B A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .











, (17)

and thus (15), (16), and the fact that the sum of all stationary

probabilities must equal 1 reduce to

πQ = 0, πeT = 1, (18)

where e denotes a row vector of appropriate dimension

containing all ones. The matrix-geometric solution of the

stationary probability vector π partitioned into πi, i ≥ 0, is

given by the following theorem (see [15]).

Theorem 14: Consider a continuous-time QBD process

with generator Q in the form of (17). Suppose that the

QBD process is irreducible and ergodic. Then its stationary

distribution π is given by

πi = π0R
i, i ∈ N, (19)

where R is the minimal nonnegative solution of the nonlinear

matrix equation

A0 + RA1 + R2A2 = 0 (20)

with spectral radius sp(R) < 1. Furthermore, the stationary

probability vector π0 exists and is uniquely determined by

solving the boundary condition

π0B + π1A2 = π0(B + RA2) = 0 (21)

and the normalization condition
∞
∑

i=0

πie = π0(I − R)−1eT = 1, (22)

where I denotes the identity matrix with dimension M × M .

From Theorem 14 we know that the stationary distribution

is determined once R is obtained. Several iterative algorithms

exist for numerically solving (20); an overview of such algo-

rithms is provided in [12].

The QBD process driven by Q is ergodic if and only if it

satisfies the mean drift condition (see [15])

ωA0e
T < ωA2e

T , (23)

where ω is the equilibrium distribution of the generator A0 +
A1 + A2 and e the unit vector. When (23) is satisfied, the

stationary distribution of the QBD process exists.

B. EB scheme (i) as a QBD process

The meaning of level and phase in this specific model must

first be defined. We shall work under the assumption that

node 2 is saturated. Since node 1 is saturated as well, the

only buffer content that we need to keep track of is that of

node 3. That is why the level l(x3) represents the state of the

system with x3 packets at node 3. The phases that form the

level will now be described by all states with x3 packets at

node 3.

We denote each state by S1S2S3, where Si denotes the state

of node i. Since nodes 1 and 2 are saturated, they can only

be transmitting (Si = T), in back-off (B), or blocked by a

neighbor (while not in back-off) (X). Node 3 can be in one of

these states, or be empty (E). The phase is described as

l(0) = {XTE, XTB, BTE,BTB,BBB,BBE,

TBB, EEE, TBE, TXB, TXE} (24)

and (for x3 ≥ 1)

l(x3) = {XTX, XTB,BTX, BTB, BBB, BBT,

TBB, BXT,TBT, TXB, TXT}. (25)

Let (X)i,j denote the element (i, j) of a matrix X. Let β =
1/η. The matrices A0, A1, A2 and B are then specified by

(A0)i,j =

{

1 if (i, j) ∈ {(1, 9), (2, 7), (3, 6), (4, 5)},
0 otherwise.

(26)

(A2)i,j =

{

1 if (i, j) ∈ {(6, 5), (8, 4), (9, 7), (11, 10)},
0 otherwise.

(27)

A1 =





































∆ 0 0 0 0 0 0 0 0 0 0
β ∆ 0 0 0 0 0 0 0 0 0
β 0 ∆ 0 0 0 0 0 0 0 0
0 β β ∆ 0 0 0 0 0 0 0
0 0 0 β ∆ β β 0 0 0 0
0 0 0 0 0 ∆ 0 β β 0 0
0 0 0 0 1 0 ∆ 0 β β 0
0 0 0 0 0 0 0 ∆ 0 0 β
0 0 0 0 0 1 0 0 ∆ 0 β
0 0 0 1 0 0 0 0 0 ∆ β
0 0 0 0 0 0 0 1 0 0 ∆





































,

(28)

and B = A1 +C, with (C)6,3 = β, (C)6,8 = −β, (C)8,11 =
−β + 1, and (C)11,3 = 1, and all other entries 0. Here ∆ is

shorthand notation for the element that makes all elements in

the corresponding row in the matrix Q in (17) add up to zero

(note that ∆ is row-dependent and is different in A1 and B).

C. EB scheme (ii) as a QBD process

In the case of truncated back-offs, the exponential back-off

times are terminated by the arrival of a new packet. This results

in the back-off of node 3 becoming completely irrelevant.

Again node 3 can only have 0 or 1 packet(s), since it will

start transmitting right after node 2 finishes a transmission.

After its transmission, node 3 will go into back-off, and will
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become active again only after node 2 has transmitted a new

packet. It will always become active immediately, regardless

of whether it was in back-off or not. Hence, whenever it is in

back-off, it does not have a packet to transmit anyway.

We model the system as a QBD process, where the level

l(x2) denotes all states for which the buffer content of node 2

equals x2. The phase description is now given by

l(0) = {BEE,BBE, TBE, EEE, BBT, TEE,

TBT,BET, TET},
l(x2) = {BTE, BBE,TBE, XTE,BBT,TXE,

TBT,BXT, TXT}, x2 ≥ 1,

where the transition matrices can be shown to satisfy

(A0)i,j =

{

1 if (i, j) ∈ {(3, 2), (6, 1), (7, 5), (9, 8)},
0 otherwise.

(29)

(A2)i,j =

{

1 if (i, j) ∈ {(1, 5), (4, 7)},
0 otherwise.

(30)

A1 =





























∆ 0 0 β 0 0 0 0 0
β ∆ β 0 0 0 0 0 0
0 0 ∆ 0 0 β 0 0 0
0 0 0 ∆ 0 0 0 0 0
0 1 0 0 ∆ 0 β β 0
0 0 0 0 0 ∆ 0 0 0
0 0 1 0 0 0 ∆ 0 β
1 0 0 0 0 0 0 ∆ β
0 0 0 0 0 1 0 0 ∆





























, (31)

and B = A1 + C, with (C)1,4 = −β, (C)1,6 = β, and

(C)4,1 = 1.

D. Proof of Theorem 12

Theorem 12 will be proved using the mean drift condition

(23) with the transition matrices as in (29)-(31). Standard

matrix calculations show that

ω = C−1
{

2β + 4β2, 1,
2β + 5β2 + 4β3

2 + 3β + β2
, 2β2 + 4β3, 2β,

2β2 + 11β3 + 14β4 + 4β5

2 + 3β + β2
,
4β2 + 4β3

2 + β
, 4β2,

6β3 + 4β4

2 + β

}

, (32)

where C = 1 + 5β + 14β2 + 12β3. Using η = 1/β yields

ωA0e
T =

8 + 4η + η2

12 + 14η + 5η2 + η3
, (33)

ωA2e
T =

4 + 6η + 2η2

12 + 14η + 5η2 + η3
. (34)

We can conclude that this system is stable if and only if

8 + 4η + η2

12 + 14η + 5η2 + η3
<

4 + 6η + 2η2

12 + 14η + 5η2 + η3
.

Since the system is only well-defined for η > 0, we have

8+4η +η2 < 4+6η +2η2, with the only valid interval being

η >
√

5 − 1. This means that node 2 is saturated if and only

if 0 < η ≤
√

5 − 1.

E. Proof of Theorem 13

In case 0 < η ≤
√

5− 1, node 2 is saturated, and the QBD

process process describing the system with EB scheme (ii)

can be replaced by a more tractable Markov process. Since

node 3 can have only 0 or 1 packet(s) and nodes 1 and 2 are

saturated, the state space is finite, and given by

S = {BTE, BBE, TBE, XTE, BBT, TXE,TBT,BXT, TXT}.

The transition matrix for this Markov process is given by

A0 + A1 + A2, with the matrices as in (29)-(31). We have

already calculated the equilibrium distribution to determine

the mean drift condition of the QBD process in the proof of

Theorem 12. The stationary distribution is equal to ω as was

found in (32). Adding the stationary probabilities of the states

in which Si = T yields (13) and (14).

F. Alternate proof of Theorem 9

We will first derive the expression for E [W2] in (8). Since

node 3 never goes into back-off, its throughput can be written

as

θ3 =
1

E [T3] + E [V3] + E [W3]

=
1

E [T3] + E [S] + E [T2]
=

1

2 + E [S]
, (35)

where S represents the time node 3 is empty and not blocked

by node 2. Note that V3 + W3 = S + T2, since after a

transmission node 3 first has to wait until node 2 starts another

transmission and then has to wait during this transmission

time. When node 3 finishes its transmission, it can find the

system in four different states: (1) node 1 is in back-off, node 2

is in back-off, (2) node 1 is not in back-off, node 2 is in back-

off, (3) node 1 is in back-off, node 2 is not in back-off, (4)

node 1 is not in back-off, node 2 is not in back-off.

For every possible state i, we have a different Si. Simple

calculations give

E [S1] = 1
2η + 1

2E [S2] , E [S2] = 1 + η
1+η

E [S1] ,

and hence E [S1] = η + 1
2+η

and E [S2] = η + 2
2+η

.

Furthermore, E [S3] = 0 and E [S4] = 1. Let Pi denote the

probability that, when node 3 finishes its transmission, the

system is in state i. We note that conditioned on the moment

that node 3 comes out of its transmission, the event of node 1

being in back-off and the event of node 2 being in back-off

are independent. This is because node 1 does not influence

the length of the back-off time of node 2, which started at the

moment node 3 started its transmission.

This makes it sufficient to find P1 + P2 and P2 + P4

separately. The fact that P1 + P2 is equal to

P [Node 3 finds node 2 in back-off after its transmission]

= P [T3 < V2] =
η

1 + η
(36)
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implies that P3 + P4 = 1
1+η

. To find P2 + P4 we condition

on the moment that node 2 finished its last transmission.

With probability q node 1 was not in back-off, and with

probability 1 − q it was. We also condition on the number

of transmissions node 1 has started during the transmission of

node 1. Now P2 + P4 = equals

P [Node 3 finds node 1 active after its transmission]

=qP [T3 < T1]

∞
∑

n=0

P [T3 > T1 + V1]
n

+ (1 − q)P [V1 < T3 < V1 + T1]

∞
∑

n=0

P [T3 > V1 + T1]
n

=q
1

2

∞
∑

n=0

(

1

2

1

1 + η

)n

+ (1 − q)
1

2

1

1 + η

∞
∑

n=0

(

1

2

1

1 + η

)n

=q
1

2

2 + 2η

1 + 2η
+ (1 − q)

1

2 + 2η
· 2 + 2η

1 + 2η
=

1 + qη

1 + 2η
.

The probability q is easy to determine, since it is the proba-

bility that node 1 is blocked by node 2 when node 2 finishes

a transmission. We note that E [W1] equals

P [Node 1 has to wait for node 2 after a back-off time] · E [T2]

=
θ2

θ1
qE [T2] .

Since E [T2] = 1, we have E [W1] = θ2

θ1

q. Using (3) it follows

that q = θ1

θ2

E [W1] = 1
1+η

, so that P2 + P4 = 1
1+η

and P1 +
P3 = η

1+η
. Thus we conclude that

P1 = (P1 + P2)(P1 + P3) =
η2

(1 + η)2
, (37)

P2 = P3 =
η

(1 + η)2
; P4 =

1

(1 + η)2
. (38)

From this we find

E [S] =P1E [S1] + P2E [S2] + P3E [S3] + P4E [S4]

=
1

(1 + η)2

(

η2

(

η +
1

2 + η

)

+ η

(

η +
2

2 + η

)

+ 1

)

=
1

(1 + η)2

(

1 +
2η + η2

2 + η
+ η2 + η3

)

=
1 + η2

1 + η
.

Using (7), it follows that

E [W2] = E [S] + 1 − η =
1 + η2

1 + η
+

1 − η2

1 + η
=

2

1 + η
.

Using (1) and (8), (10) directly follows. From this and (5),

we find (9) to hold and (8) follows.

G. EB Scheme (i)

For the modification of scheme (i), in which the last node is

not equipped with the back-off mechanism, we can conduct a

QBD analysis for the case of N = 4. We have seen that taking

node 1 saturated results in node 2 becoming saturated as well

(Theorem 6). Since node 4 cannot have more than 1 packet,

the only node of which the buffer size needs to be tracked is

2 4 6 8 10

Η

1´10-4

5´10-4

0.001

0.005

0.010

0.050

0.100

f HΗ L

Figure 6: f(η) = ω(η) (A2 − A0) e
T being positive implies

stability of node 3.

node 3. With x3 denoting the the buffer size of node 3, we

find the following 21 states that are required to describe the

network as a Markov process:

l(x3) = {TXTE, TXBT, TXBE,TXXT,TBTE, TBBT,

TBBE, TBXT, XTXT, XTXE, XTBT,XTBE,

BTXT, BTXE, BTBT,BTBE, BBTE, BBBT,

BBBE, BBXT, BXTE}, for x3 > 0, (39)

l(0) = {TXEE, TXBT,TXBE, TXET, TBEE, TBBT,

TBBE, TBET,XTET, XTEE, XTBT, XTBE,

BTET, BTEE, BTBT, BTBE, BBEE, BBBT,

BBBE, BBET, EEEE}. (40)

The matrices A0,A1,A2, and B are constructed in the same

way as for N = 3, but we refrain from presenting them here.

The large number of states makes it infeasible for algebraic

computer programs to invert these matrices, since they include

variables. This makes it also impossible to give an explicit

formula for the mean drift condition (23). However, we can

check the mean drift condition numerically. Figure 6 shows

f(η) = ω(η) (A2 − A0) e
T , which is decreasing but positive

for 0 < η ≤ 10, and we expect the mean drift condition to be

satisfied for all values of η.

H. EB scheme (ii)

For the EB scheme (ii) it is not as evident which nodes

are saturated and which are stable. We know that node 1 is

saturated and that node 4 can have at most 1 packet. This

leaves four possible scenarios: (1) node 2 is saturated and

node 3 is stable, (2) nodes 2 and 3 are both saturated, (3)

node 2 is stable (so that θ1(η) = θ2(η) = τ(η)) and node 3

is saturated, and (4) nodes 2 and 3 are both stable. It will

turn out that all these scenarios occur as η increases from 0
to infinity. Let ηi→j denote the value of η at which we switch

from scenario (i) to scenario (j), and it will turn out that

0 < η1→2 < η2→3 < η3→4.

The levels of states are the same as in (39). If the level

represents x3, then for x3 = 0 we have again (40). If the level

represents x2 (the buffer size of node 2), then the zero-level
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Figure 7: f2(η) = ω(η)
(

A2
2 − A2

0

)

eT is positive from

η2→3 ≈ 1.24415 onwards.

is given as follows:

l(0) = {TETE, TEBT,TEBE, TEXT, TBTE,TBBT,

TBBE, TBXT,EEEE,EEEE,EEEE,EEEE,

BEXT, EEEE, BEBT, BEBE,BBTE, BBBT,

BBBE, BBXT, BETE}. (41)

Since the theory of QBD processes only allows for one infinite

dimension (level), we will evaluate the mean drift condition

for both scenarios (2) and (3). These scenarios require different

matrices Ai
0,A

i
1,A

i
2,B

i, i = 2, 3, but the sum of the three

matrices A = Ai
0 +Ai

1 +Ai
2 must be independent of i. Again

because of the infeasibility of algebraically inverting 21 × 21
parameterized matrices, we will calculate this numerically. We

define fi(η) = ω(η)
(

Ai
2 − Ai

0

)

eT , for i = 2, 3.

We assume continuity in throughput functions and see by

looking at the case of η ↓ 0 that the process starts with node 2

becoming saturated, since when η ↓ 0 it does not matter

whether back-off times are truncated or not and therefore the

starting values are the same as for scheme (i). That is why we

may assume that in the interval (0, η1→2] node 2 is saturated

and node 3 is not and thus we have scenario (1). We consider

f2(η) to see in what interval node 3 remains stable in case

node 2 is taken saturated, and it turns out η1→2 = 1. So for

0 < η ≤ 1 we have scenario (1), and the process switches to

scenario (2) at η1→2 = 1. This part of the graph can be seen

in Figures 4 and 5.

For scenario (2) the Markov process can be embedded on

a finite state space (with 21 states). In this case, with both

nodes 2 and 3 saturated, ω(η) is the equilibrium distribution

and we have θi(η) = ω(η)Ai
0 for i = 2, 3. Because of continu-

ity this part of the graph lasts as long as both θ1(η) > θ2(η)
and θ2(η) > θ3(η). The smallest η > η1→2 for which one

of these inequalities is violated is η2→3. Numerically solving

gives η2→3 ≈ 1.24415 with θ1(η2→3) = θ2(η2→3), which

indicates (rate) stability at that point. Whenever this equality

holds, both throughput functions have to equal τ(η). Since

θ2(η2→3) > θ3(η2→3) still holds, we arrive in scenario (3)

and thus look at f2(η) for η > η2→3, as depicted in Figure 7.

This figure shows that from η2→3 onwards node 2 will remain

stable, as f2(η) > 0 for η > η2→3, conditioned on saturation

of node 3. Whenever θ2(η) > θ3(η) this saturation is evident.

However, in this scenario the throughput of node 3 dominates

the throughput of node 2 from η3→4 ≈ 1.25763 onwards. This

implies stability of all nodes from η3→4 onwards and thus

we arrive in scenario (4), where θ1(η) = θ2(η) = θ3(η) =
θ4(η) = τ(η). Other possible scenarios for η > η3→4 can

be discarded after evaluating the QBD processes (scenario (2)

and (3)), or the finite state Markov process (scenario (1)), from

which we will see that the trivial requirement

θ1(η) ≥ θ2(η) ≥ θ3(η) ≥ θ4(η) (42)

is violated. As it turns out, this reasoning can also be used

to verify the situation for η < η3→4, since for the first three

scenarios other possibilities will also violate either the mean

drift condition or (42).
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