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Parameter estimation for a Model of Gap Gene Circuits

with Time-Variable External Inputs in Drosophila ∗

M. Ashyraliyev

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

We study a model for spatio-temporal pattern formation of gap gene products in the

early development of Drosophila. In contrast to previous studies of gap gene circuits,

our model incorporates a number of proteins as time-variable external inputs, including

a protein Huckebein which is necessary for setting up the correct posterior domain

boundary and its shift in time for the gap gene hunchback. Unknown model parameters

are inferred by fitting the model outputs to the gap gene data and statistical analysis

is applied to investigate the quality of the parameter estimates.

Our results, while being consistent with previous findings, at the same time provide

a number of improvements. Firstly, it takes into account correct regulation of hunchback

at the posterior part of the embryo. Secondly, confidence interval analysis shows that

the regulatory topology of the gene network in our model which consists of parameters

representing the regulation between genes is more consistent with the experimental

evidences.

Our results also reveal that for data fitting the Weighted Least Squares sum is a

more suitable measure than the Ordinary Least Squares sum which has been used in

all previous studies. This is confirmed by a better fit of the boundaries of the gap gene

expression domains and an absence of patterning defects in the model outputs, as well

as by a correct prediction of mutant phenotypes.

1 Introduction

Gap genes constitute the first step in a regulatory cascade that leads to the determination of
body segment positions along the major (or anterior-posterior, A–P) body axis during early
Drosophila development [1]. They are involved in the regulation of pair-rule and segment-
polarity genes, the latter of which establish a segmental pre-pattern of gene expression by
the onset of gastrulation.

The gap gene system in the early Drosophila melanogaster is a well studied developmental
gene network (see [2] and references therein). Initially the system is set up by spatial
gradients of maternal proteins Bicoid (Bcd), Hunchback (Hb), and Caudal (Cad). Zygotic
gap genes, such as hunchback (hb), Krüppel (Kr), knirps (kni), and giant (gt), are regulated by
these maternal gradients, which establishes their expression in broad, overlapping regions

∗The material presented in this note is used for a joint paper with J. Jaeger (EMBL/CRG, Barcelona).
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of the embryo. These spatial domains of gap gene expression are stabilized and refined
by gap-gap cross-repression and regulation by zygotic terminal gap genes tailless (tll) and
huckebein (hkb).

The gap gene system has been studied extensively using a model of genetic regulatory
networks described by a system of reaction-diffusion equations [2]. Quantitative expression
data available for all relevant maternal coordinate and gap genes [3, 4] (except for hkb)
have been used to infer regulatory interactions between gap genes using different global and
local optimization strategies [2, 5, 6, 7, 8]. The gap gene system has been modeled by a
6-gene network, including hb, Kr, kni, gt, tll, and caudal (cad). The maternal protein Bcd
has been incorporated as an external input constant in time. Although the obtained results
have given significant insight into the underlying mechanism of the gap gene system, further
investigation is needed for some important issues.

Results for the 6-gene model revealed a major patterning defect for the expression of gap
gene hb. The posterior boundary of the posterior hb domain was not established correctly.
Moreover, anterior shift of this boundary as well as the shift of the domain peak found
in data was not reproduced by model outputs. This was explained by the absence of the
terminal gap gene hkb in the 6-gene model. Huckebein (Hkb) is the main repressor of hb in
that region of the embryo [9]. The missing hkb gene was also predicted to have an influence
on the regulatory topology inferred from data. The model wrongly predicted that hb is not
regulated by Tailless (Tll), while it is known that hb is activated by Tll [9]. This contradiction
was explained by the ambiguous role of Tll in the regulation of hb. On the one hand, in
the absence of the repressor Hkb, Tll has to take over its repressing function. On the other
hand, Tll is an activator of hb. This dual role yields a cancellation effect and the model
predicts that hb is not regulated by Tll.

Results of a parameter determinability analysis for the 6-gene model in [8] show that
the parameter estimates corresponding to the regulation of cad and tll by gap genes are
highly unreliable. The observed uncertainty was explained by the fact that the products of
maternal genes (such as cad) and terminal gap genes (such as tll) regulate gap genes, but not
vice versa. Despite the reasonable fit obtained for the expression of cad and tll in the 6-gene
model, the unrealistic assumption that their dynamics is prescribed by the regulation by
gap genes increases the level of uncertainty in the gap gene model. Due to the correlations
between parameters in the model, this influences the determinability of other, biologically
relevant, regulatory weights.

In this work we consider a reduced 4-gene model, including only gap genes hb, Kr, gt,
and kni. In contrast to the 6-gene model, we now incorporate cad and tll as time-variable
external inputs. Thereby, in our model the expression of cad and tll is obtained directly
from data rather than being computed as state variables. A second important change is
that data for gene hkb have become available [10]. Similar to tll, the terminal gap gene
hkb is not regulated by other gap genes and therefore, it is also included in the model as
time-variable external input. Finally, we incorporate the maternal gradient Bcd in our new
model as external input, similar to previous studies. However, the data suggest that the
protein Bcd varies with time rather than being constant. Therefore, contrary to the 6-gene
model, we allow Bcd to be time-variable input.

Thus, we replace the previously studied 6-gene network by a more realistic, reduced 4-
gene network with four external time-variable inputs. This significantly decreases the size
of the problem, both with regard to the number of equations in the model to be solved
and the number of unknown parameters to be estimated. We will infer the regulatory
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topology and we will investigate the parameter determinability for the reduced model. Most
importantly, we will show that despite the simplifications we made, the reduced model not
only gives comparable results as the 6-gene model but also overcomes the above mentioned
shortcomings. Note that the reduced gap gene network has also been recently investigated
in [11], but in that study Bcd has been kept constant in time and hkb has not been used in
the model.

Inference of the parameters is done by fitting model outputs to experimental data, i.e., by
minimizing a cost function which measures the difference between them. The choice of the
cost function is important for obtaining unbiased estimates and the computation of statistical
quantities for parameter estimates (such as confidence intervals and correlations coefficients).
It greatly depends on the nature of errors in the data. In all previous works [2, 5, 6, 7, 8, 11],
the Ordinary Least Squares (OLS) measure has been used for the optimization and the
statistical analysis. It is well known that OLS is suitable if the measurement errors are
independent of each other and normally distributed with a constant standard deviation.
However, the data for the gap genes suggest that the level of noise in the measurements
varies both in space and in time. In such case, the Maximum Likelihood Estimates (MLE)
can be obtained only if the Weighted Least Squares (WLS) sum is used as a distance measure
with the weights chosen to be inversely proportional to standard deviations [12]. Since the
standard deviations are available from [4], there is no additional computational work needed
when the WLS sum is minimized in comparison with the OLS case. In this work we will
obtain parameter estimates and study the parameter determinability using both the OLS
and the WLS measures, and we will provide a detailed comparison between both results.
We will demonstrate that for the problem under consideration, WLS gives indeed a more
suitable measure than OLS.

The note is organized as follows. In Section 2 we describe the necessary materials and
methods that are used. In Section 3 we give the results of our simulations. We conclude
this note with a discussion in Section 4. In the Appendix we include all additional plots.

2 Materials and Methods

2.1 Gap Gene Circuits

Segment determination occurs during the blastoderm stage of Drosophila development, be-
tween 1.5 and 3 hours after egg laying [13]. During this stage, the embryo consists of a
syncytium: there are no cell membranes between the nuclei. These nuclei constitute the
basic objects of the model. They are arranged in a row along the A–P axis. Nuclei divide
rapidly and synchronously [14]. Periods between mitotic divisions are called cleavage cycles,
where cycle n occurs between mitoses n − 1 and n. The models considered here run from
early cycle 13 (t = 0.0 min) to the onset of gastrulation at the end of cycle 14A (t = 71.1
min). Mitosis occurs at the end of cycle 13, between t = 16.0 min and t = 21.1 min [14].

Gene circuit models describe the change in concentrations of each gap gene product in
each nucleus over time by the following system of ODEs

dga
i

dt
= RaΦ





Ng
∑

b=1

W b
agb

i +

Ne
∑

e=1

Ee
age

i + ha



 − λaga
i + Da

(

ga
i+1 − 2ga

i + ga
i−1

)

, (2.1)

where a and b refer to regulated gap genes and regulators, respectively, and e refers to
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external regulators. Here, a and b are integer indices representing hb, Kr, kni, and gt; e is
an integer representing the regulators Bcd, Cad, Tll, and Hkb. The independent variable
ga

i denotes the concentration of the product of gene a in nucleus i; the input variable ge
i

denotes the concentration of the external protein e in nucleus i. Ng = 4 is the number of
gap genes and Ne = 4 is the number of external proteins in the model. The function

Φ(x) =
1

2

(

x√
x2 + 1

+ 1

)

(2.2)

is a sigmoid regulation-expression function. The first term in the right hand side of (2.1)
models the protein synthesis, while the second and third terms correspond to protein decay
and protein diffusion, respectively.

During mitosis, protein synthesis is shut down. Nuclei divide instantaneously at the
end of mitosis and the protein concentrations from each mother nucleus are copied to its
daughter nuclei. The distance between nuclei is halved which is implemented in the model by
reducing the diffusion coefficients Da by the factor of 4. Gap gene circuits cover the region
from 35% to 92% of the A–P axis, which includes Nc = 30 and Nc = 58 nuclei at cycles 13
and 14A, respectively. Therefore, system (2.1) consists of 120 and 232 ODEs during cycles
13 and 14A, respectively. At the boundary points i = 1 and i = Nc we replace the diffusion
term in right hand side of (2.1) by Da(ga

i+1 − ga
i ) and Da(ga

i−1 − ga
i ), respectively. This way

we mimic the homogeneous Neumann (no flux) boundary conditions.
Gap genes Kr, kni, and gt are not expressed in the embryo before cycle 13. Therefore,

zero initial conditions are taken for these. The initial condition for hb is prescribed by the
maternal gradient of Hb shown in Figure 2.1. It is obtained by averaging the measurements
from 18 individual embryos at cycle 12 (t = −6.2) and then using linear interpolation
between this averaged pattern and hb data at cycle 13 (t = 10.55). Measurements for hb

from individual embryos at cycle 12 (data without background) and the averaged hb pattern
at cycle 13 are all available from [4].
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Figure 2.1: Quantitative gene expression for Hb, Bcd, and Cad at t = 0. Lines show the
relative protein concentration (RPC) plotted against the position on the A–P axis (the trunk
region of the embryo, from 35% to 92% A–P position is scaled to relative co-ordinates [0, 1]).

In system (2.1) there are m = 48 unknown parameters. These include the genetic
interconnection or regulatory weight matrices W and E of size Ng × Ng and Ng × Ne,
respectively. The matrix elements W b

a and Ee
a represent the regulation of gap gene a by gene

b and gene e, respectively. Regulatory parameters represent repression (if < 0), activation (if
> 0) or no interaction (if ≈ 0). The other parameters are promoter thresholds ha, promoter
strengths Ra, diffusion coefficients Da, and decay rates λa.
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Data The data set used for model fitting consists of N = 1976 measurements of protein
concentrations (available from [4]). Measurements were taken at one time point during cycle
13 (T0), and eight time points Ti (1 ≤ i ≤ 8) during cycle 14A (Figure 2.2). Measurements
for the concentrations of all gap gene products represented in the model at all time points
are available. Each data point represents concentration values which have been averaged
over the bin (volume) from the measurements taken in individual embryos [3]. The number
of embryos varies from 9 to 62 for different genes and different time points (with exception
for kni at T0 where only measurements from 4 embryos are available). Since from each
embryo a few values per bin are available, the number of individual measurements used in
the computation of the averaged value (sample mean) is much larger than the number of
embryos. Using the Central Limit Theorem (CLT) we may assume that the experimental
errors are approximately normally distributed [16]. Figure 2.3 shows the gap gene data at
all time points (solid lines) and the standard deviations of the experimental errors (shaded
areas).

T0 T1 T2 T3 T4 T5 T6 T7 T8
24.225 30.475 36.725 42.975 49.225 55.475 61.725 67.97510.5500.0

Cycle 13 Cycle 14AMitosis

Time (min)

Figure 2.2: Time axis and the points when measurements were taken: one in cycle 13 and
eight in cycle 14A; the duration of mitosis is also indicated.

To our knowledge, the presence of any hidden dependencies in the available dataset has
not been investigated in literature. Although the measurements from different embryos are
most likely to be uncorrelated (assuming that there was no systematic error in experiments),
it is not known whether the gene expression data in the same embryo are correlated. In this
work, we assume that the experimental errors are independent of each other.

External Inputs To solve (2.1), one needs the level of gene expression for external inputs
at all t ∈ [0, T ], where T = 71.1. Measurements for Bcd, Cad, and Tll at all time points
Ti (0 ≤ i ≤ 8) are available from [4] except for Bcd and Cad at T7 and T8. We obtain the
patterns for Cad at those missing time points by integrating measurements from individual
embryos (from [4]), 13 at T7 and 12 at T8. A similar procedure for Bcd however leads to
an artificially high level of gene expression for Bcd at T7 and T8 and therefore they are not
used here. Data for Hkb at all time points Ti are obtained from [10]. Figure 2.4 shows the
relative protein concentration of external genes at all time points.

Genes Tll and Hkb are not expressed before cycle 13 and therefore we use a zero level for
them at t = 0. Bcd and Cad at t = 0 have initial maternal gradients shown in Figure 2.1.
We obtain them in the same way as the initial data for hb, i.e., by averaging the data from
individual embryos at cycle 12 and then using linear interpolation between the patterns at
cycles 12 and 13.

Now, the values of the external genes at any t ∈ [0, T8] can be linearly interpolated from
the data at t = 0, T0, T1, . . . T8. The expression of Bcd for t > T6 is linearly extrapolated
from the values at T5 and T6, while the expression of other external inputs for t > T8 is
linearly extrapolated from corresponding values at T7 and T8. If the extrapolated value is
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Figure 2.3: Quantitative gap gene expression data (solid lines) at the different time points.
The shaded areas give the range of one standard deviation of the experimental error. Axes
are as in Figure 2.1.

negative then we replace it with zero. Finally, we note that higher order interpolations give
rise to artifacts from experimental noise [11] and therefore they are not used here.

Parameter inference We denote each measurement by ga
i (Tj)data, specified by the time

Tj when the concentration of the gene product a in nucleus i is measured. The corresponding
model value obtained from (2.1) is denoted by ga

i (Tj)model. The estimation of unknown
parameters in (2.1) amounts to minimizing the cost function

CF =

Ng
∑

a=1

Nc
∑

i=1

Nt
∑

j=0

va
ij (ga

i (Tj)model − ga
i (Tj)data)

2
, (2.3)

where va
ij are positive weights, Ng = 4 is the number of gap genes, Nc is the number of

nuclei (30 and 58 during cycles 13 and 14A, respectively), and Nt = 8 is the number of time
classes. When all weights are equal to one, (2.3) is the OLS sum. Note that previously in
the studies of gap gene circuits, only OLS is used as cost function to minimize. The quality
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Figure 2.4: Quantitative data for external inputs at different time points. Note that Bcd at
T7 and T8 is not available. Axes are as in Figure 2.1.

of the fit of the model to the data is measured by the root mean square (RMS) given by

RMS =

√

√

√

√

1

N

Ng
∑

a=1

Nc
∑

i=1

Nt
∑

j=0

(ga
i (Tj)model − ga

i (Tj)data)
2
, (2.4)

where N = 1976 is the total number of all measurements. A solution is considered to be
‘good’ if RMS < 12.0 and if there are no visible pattern defects in the model response [2,
5, 6, 7].

We note that OLS is an appropriate measure under certain assumptions only. Namely,
all measurement errors have to be independent of each other and be from a normal distri-
bution with zero mean and constant standard deviation. The latter does not hold for our
dataset [4]. The shaded areas in Figure 2.3 show how the standard deviation varies per gene
and both in space and time. Note that the standard deviation (the level of noise) becomes
smaller at late time points. Also important is that the standard deviation at the domain
boundaries is relatively small and the level of noise in the non-expressing regions is almost
negligible indicating that the stripe locations at the end of cycle 14A are determined with
little variation [15].

When the weights va
ij in (2.3) are taken inversely proportional to the corresponding

standard deviations, the cost function becomes the WLS distance. We emphasize here that
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this is a theoretically more justified measure than the OLS measure due to the variation
in the experimental errors. Since the standard deviations are available in [4], minimization
of the WLS sum has no additional computational expenses compared to the corresponding
procedure for the OLS sum.

In this note we use both the OLS sum and the WLS sum as the cost function to minimize.
Our aim is to demonstrate that WLS is a more suitable measure than OLS not only in theory
but also in practice. Throughout this note we will use the notations OLS search and WLS

search meaning that the OLS and WLS sums, respectively, are minimized. Similarly, OLS

results and WLS results indicate the parameter estimates obtained by minimizing OLS and
WLS sums, respectively.

For practical reasons it is better to constrain the parameter space, especially for the global
search optimization methods. Similar to previous studies of the gap gene system [2, 5, 6, 7, 8],
we define the search space for the parameters by the linear constraints

10.0 ≤ Ra ≤ 30.0, 0.0 < Da ≤ 0.3, 5.0 ≤ ln(2)

λa

≤ 20.0, a = 1, . . . , Ng, (2.5)

and by the nonlinear constraints

Ng
∑

b=1

(

W b
a gb

max

)2
+

Ne
∑

e=1

(Ee
a ge

max)
2

+ (ha)2 ≤ 104, a = 1, . . . , Ng, (2.6)

where gb
max and ge

max are the maximum values in the data set for proteins b and e, respec-
tively. Note that in [2, 5, 6] the threshold parameters ha for genes Kr, Kni, gt, and hb are
fixed to negative values representing a constitutively repressed state for the corresponding
genes [2, 5]. In [8] it is shown that fixing promoter thresholds improves the parameter deter-
minability in comparison to the case when they are estimated along with other parameters.
Therefore, we take ha = −2.5, a = 1, . . . , Ng in all simulations, which leaves us with 44
unknown parameters in (2.1) to be estimated.

Mutation analysis The regulation of gene b on gene a is studied experimentally in the
following way, called mutation: gene b is knocked out in the embryo and from the change
in the expression of gene a the possible type of regulation is deduced. If the expression
of gene a decreases (increases), then it is assumed that b is activator (repressor). If the
mutation does not affect the expression of gene a then it means that b does not regulate
gene a. Experiments with double mutants (when two different genes are knocked out) are
also widely used. Similarly, mutation can also be done by over-expressing a certain gene
to study its effect on the expression of the other genes. Although the conclusions based on
mutant analysis can be ambiguous in some cases, such as indirect influence, still this method
is a commonly applied approach in genetics.

Once the regulatory weights in the gap gene model (2.1) are estimated based on wild
type data, mutation analysis can be easily conducted in silico [17]. Namely, b mutants can
be modelled simply by setting W b

a (or Eb
a) for all gap genes a to zero and leaving all other

parameter estimates unchanged. It is an important issue whether the model with parameter
estimates found using only wild type data can predict correct mutant phenotypes. Although
the quantitative mutant data is not available, qualitative behaviour for mutant phenotypes
of gap gene products in Drosophila is well studied. For instance, the posterior hb domain fails
to retract from the posterior pole of the embryo in hkb mutant embryos [9], indicating that
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Hkb represses hb. The posterior hb domain is absent in tll mutant embryos [9], indicating
that Tll activates hb.

2.2 Methods

We consider a model given by the system of ODEs of the general form:







dy

dt
= f(t,y, θ), 0 < t ≤ T,

y(t, θ) = y0, t = 0.

(2.7)

Here the m-dimensional vector θ contains all unknown parameters, y is an n-dimensional
state vector, and f is a given vector function, differentiable with respect to t, y and θ.

Let us assume that for fitting (2.7) there are N measurements available. Each measure-
ment, which we denote by ỹi, is specified by the time ti when the ci-th component of the
state vector y is measured. The corresponding model value obtained from (2.7) is denoted
by yci

(ti, θ). We denote the vector of weighted discrepancies between the theoretical values

and the measured values by Y(θ). Then the least squares estimate θ̂ of the parameters is
the value of θ that minimizes the sum of squares

S(θ) =
N

∑

i=1

w2
i (yci

(ti, θ) − ỹi)
2 = YT (θ)Y(θ), (2.8)

where wi are positive weights. If the measurement errors in ỹi are independent of each other,
normally distributed with standard deviations σi, and the weights wi are proportional to
1/σi, then θ̂ is a maximum likelihood estimate [12].

Parameter Estimation

In general, model (2.7)—being nonlinear in θ—leads to a least squares problem (2.8) that
has several minima, first because the problem has more than one solution, and second
because the fitness function (2.8) can have several stationary points that do not correspond
to the lowest value of the cost function (so-called local minima). Local search methods, like
Levenberg-Marquardt (LM) [18], easily get trapped in one of the local minima rather than
finding the global minimum. To explore the whole search space one needs global search

methods, like Evolution Strategy (ES) or Simulated Annealing (SA). Unfortunately, these
methods converge very slowly once near a minimum. In contrast, gradient-based methods
are efficient optimizers [19] for nonlinear least-squares problems once a sufficiently good
initial guess for the parameter values is available. Therefore, for large scale problems, such
as a gap gene system, it is efficient to use a global search method followed by a local gradient-
based technique. In this way, the chance of missing the global minimum is reduced and the
determination of the minima is precise and fast.

In this paper we use the LM method for local optimization. For the initial parameter val-
ues we use the parameter estimates obtained by Johannes Jaeger (EMBL/CRG, Barcelona)
with SA global search.

9



Levenberg-Marquardt Method In general, any gradient-based optimization procedure
seeks a correction δθ for the parameter vector, such that S(θ + δθ) ≤ S(θ) holds. The LM
method [18] determines the correction as the solution of the equations

(

JT (θ)J(θ) + λIm

)

δθ = −JT (θ)Y(θ), (2.9)

where λ ≥ 0 is a control parameter (see below), Im is the identity matrix of size m and the

Jacobian J(θ) = ∂Y(θ)
∂θ

is the so-called ‘sensitivity’ matrix of size N × m. The entry Ji,j in
J(θ) shows how sensitive the model response is at the i-th data point for a change in the
j-th parameter. The entries of J can be found by solving the system of variational equations











∂

∂t

∂y

∂θi

=
∂f

∂θi

+
∂f

∂y

∂y

∂θi

, 0 < t ≤ T,

∂y

∂θi

(t, θ) = 0, t = 0,
(2.10)

where i = 1, 2, . . . , m, coupled to (2.7).
The LM method can be seen as the combination of two gradient-based approaches:

Gauss-Newton and steepest descent [19]. If λ = 0 in (2.9), it coincides with the Gauss-
Newton method. However, when the matrix JT (θ)J(θ) is (almost) singular, to solve (2.9), λ
has to be positive and for large λ the LM method approaches the steepest descent method.
During the optimization λ is adapted such that the algorithm strives to exploit the fast
convergence of the Gauss-Newton method whenever this is possible [18, 20].

In order to solve (2.9), the singular value decomposition (SVD) [21] of the matrix J(θ)
can be used, i.e.

J(θ) = U(θ) Σ(θ) V T (θ), (2.11)

where U(θ) is an orthogonal matrix of size N × m, such that UT (θ)U(θ) = Im, V (θ) is an
orthogonal matrix of size m × m, such that V T (θ)V (θ) = V (θ)V T (θ) = Im, and Σ(θ) is a
diagonal matrix of size m × m which contains all singular values in non-increasing order.
Then the correction δθ can be found as

δθ = −V (θ)
(

Σ2(θ) + λIm

)

−1
Σ(θ) UT (θ) Y(θ). (2.12)

Numerical integration of (2.7) and (2.10) requires a fast and reliable ODE solver. Search-
ing in the parameter space may lead to some values of θ such that the systems of ODEs
become stiff. It is well known that for stiff ODE systems explicit schemes can give rise to
numerical instability or, alternatively, extremely small time steps. Therefore, an implicit
scheme is the best choice for time integration for stability reasons. In our simulations we
use implicit multistep Backward Differentiation Formulas (BDF) [26]. For numerical and
implementational aspects of this method we refer the reader to [26] and [8] and references
therein.

Statistical Analysis of Parameter Estimates

Once the parameter vector θ̂ minimizing (2.8) is found, it is important to know how reliable
the obtained estimate is. This is the subject of a posteriori identifiability analysis [22, 23, 24].

The ellipsoidal region around θ̂ in which the ‘true’ parameter vector θ∗ lies with a certain
probability 1 − α is defined by

(θ∗ − θ̂)T
(

JT (θ̂)J(θ̂)
)

(θ∗ − θ̂) ≤ m

N − m
S(θ̂)Fα(m, N − m), (2.13)
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where Fα(m, N −m) is the upper α part of Fisher’s distribution with m and N −m degrees
of freedom. To remind the reader, here m and N are the number of parameters and mea-
surements, respectively. From (2.13) one can derive dependent and independent confidence

intervals for parameter estimates θ̂i (i = 1, 2, . . . , m). These are, respectively,















θi : |θi − θ̂i| ≤
rσ

√

(

V (θ̂)Σ2(θ̂)V T (θ̂)
)

ii















(2.14)

and
{

θi : |θi − θ̂i| ≤ rσ

√

(

V (θ̂)Σ−2(θ̂)V T (θ̂)
)

ii

}

. (2.15)

Here V (θ̂) and Σ(θ̂) are obtained from (2.11), r2
σ = m

N−m
S(θ̂)Fα(m, N − m).

Clearly, small confidence intervals for θ̂i indicate that it is well-determined. However, in
some cases considering only individual confidence intervals can be misleading. For instance,
in the presence of strong correlations between parameters, the dependent confidence intervals
underestimate the confidence region while the independent confidence intervals overestimate
it. For this reason, in addition to confidence intervals, it is essential to compute correlations
between parameters. The correlation coefficient between θ̂i and θ̂j is given by

ρij =
Bij

√

BiiBjj

. (2.16)

where B(θ̂) = V (θ̂)Σ−2(θ̂)V T (θ̂). For detailed explanations of these statistical quantities
and their derivations we refer the reader to [8] and references therein.

3 Results

We estimated all 44 unknown parameters of the gap gene circuit model (2.1), such that the
state variables fit the given data (Figure 2.3), subject to the constraints (2.5)-(2.6). We
applied statistical analysis for the final parameter sets to assess the quality of the parameter
estimates. Both OLS and WLS were used as a cost function in the data fitting procedure
and the statistical analysis. We present here both results and give a detailed comparison
between them.

3.1 OLS results

3.1.1 Selection of OLS gene circuits

The search with the OLS cost function leads to 740 parameter sets. About 80% of them
have good-scoring RMS values, i.e., RMS < 12.0, which is below the level of experimental
errors. However, a closer look at the model outputs for good-scoring sets reveals that most
of them have a common patterning defect. Figure 3.1 shows the patterns obtained with
one of those parameter sets (with RMS = 9.21) for the expression of gap gene Kr at time
points T3 and T8 (green lines) compared to data (red lines). The model outputs have an
artificial Kr hump in the region where no expression is detected for this gene in the data.
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This hump arises at the beginning of cycle 14A and remains there until the end of cycle 14A.
It is noteworthy that the gap gene network topology, i.e., the signs of regulatory weights
in (2.1), in the parameter sets possessing such a patterning defect is in contradiction with
known theoretical evidence. In other words, despite the overall reasonable fit to the data,
model (2.1) predicts wrong regulations between genes. For instance, in the parameter set
for which the patterns in Figure 3.1 are shown, hb is repressed by Tll and activated by Hkb,
while it is known that Tll activates hb and Hkb represses it. We have found that the inferred
network topology in good-scoring parameter sets producing an artificial Kr hump has some
other artifacts as well (not shown here). Therefore, we exclude those parameter sets.
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Figure 3.1: Comparison between data (red lines) and patterns obtained with a low-scoring
parameter set yielded from the OLS search (green lines) for the expression of gap gene Kr
at two different time points. Axes are as in Figure 2.1.

Although many good-scoring parameter sets obtained from the OLS search have the
artificial Kr hump, there are still 39 parameter sets left which do not have that patterning
defect. Their RMS values vary between 8.71 and 10.11. None of these parameter sets show
any significant patterning defects (see Figure 4.1 in the Appendix). As we shall see, their
network topology is in agreement with theoretical evidence. We consider only these 39
parameter sets in our analysis.

In conclusion, our selection of OLS parameter sets has been based on two criteria. Firstly,
only parameter sets with low RMS values are taken into account. Secondly, only those
sets which do not have the artificial Kr hump are manually selected. Importantly, both
conditions are necessary and one does not imply the other. Many of the obtained low-
scoring parameter sets give overall a reasonable fit but do possess the patterning defect for
Kr. This underlines the main drawback of using the OLS measure. Extensive amounts of
runs and additionally exhaustive manual work of inspection of patterns were needed in order
to obtain the parameter sets which correctly describe the gap gene system.

3.1.2 Analysis of OLS gene circuits

Posterior hb domain Model outputs for the selected OLS parameter sets reveal the
correct set up of the posterior boundary of the posterior hb domain by the end of cycle 14A
(see Figure 4.1). Figure 3.2a shows the pattern generated with one of those parameter sets
compared to the result obtained with the 6-gene gap system from [8]. Clearly, the result for
the 4-gene model has a significantly improved fit of the posterior hb boundary. As we will
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see, this is solely due to the inclusion of Hkb in the 4-gene model which is a main repressor
of hb in that region.

Gap gene domains are established during cycle 13 and the beginning of cycle 14A. After-
wards, there is an anterior shift in the position of these domains. This shift mechanism has
been investigated and well understood by using the 6-gene model [5]. It has been noticed
that the domain shifts are based only on regulatory interactions between genes and diffusion
plays no role in it. The model for the 6-gene network was able to reproduce most of the
domain shifts observed in the data. However, for the posterior hb domain the shift of its
peak and posterior boundary was not present in model outputs [5].
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Figure 3.2: a) Comparison between data (red line), the pattern obtained by the parameter
set for the 6-gene gap system from [8] (blue line), and the pattern obtained by one of the
selected OLS parameter sets for our 4-gene network (green line) for the expression of gap
gene hb at T8. Axes are as in Figure 2.1. b) Anterior shift of the peak of the posterior hb

domain during cycle 14A. Plot shows the A-P position of the peak in the model outputs
for one of the selected OLS parameter sets (green line) compared to the corresponding shift
observed in the data (+).

The model outputs with the selected OLS parameter sets for the 4-gene model show the
shift in the peak of the posterior hb domain. We illustrate it in Figure 3.2b for one of the
parameter sets, where the position of the peak on the A–P axis is plotted against time.
Despite the slight difference with the corresponding shift in the data, the overall shift in the
model output is visible.

Additionally, our results reveal the shift of the posterior boundary of the posterior hb do-
main. Similar to the approach in [5], we performed a graphical analysis of the hb regulation
over time (cycle 14A) at three different nuclei which lie in the shift zone. Panels a-c of Fig-
ure 3.3 show a switch from protein synthesis (positive dghb

i /dt) to decay (negative dghb
i /dt)

of hb at the end of cycle 14A. As we can see, diffusion plays no role in it. In fact, diffusion
counteracts the boundary shift with an influx of protein into the region where hb decays.
Note that a lack of smoothness in the protein synthesis term is a consequence of using linear
interpolations for time-variable external inputs in the model. Panels d-f of Figure 3.3 re-
veal that the shift is solely driven by the temporal behaviour of the regulatory input for hb

production (solid black lines). By plotting the individual contributions (coloured areas) we
can analyse in detail the regulatory mechanism which underlines the shift. The areas below
and above the black line represent the regulatory input from activators (Tll, Cad, Hb, and
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Gt) and repressors (Kni and Hkb) of hb, respectively. Since the regulatory inputs from Kr
and Bcd are negligible, they are not plotted here. As we can see, the activating contribution
is mainly from Tll and less from Cad and autoactivation of hb. Note that insignificant acti-
vation by Gt is an artefact of the model. The repressing input from Kni is relatively small
because of the low expression of kni in that region of the embryo. So, the shift is based on
the regulatory input from Hkb, the main repressor of hb. This repression increases both in
space (posteriorly) and in time.

In conclusions, our model predicts that hb in the posterior part of the embryo is mainly
activated by Tll. However, this activation is suppressed by increasing repression of hb by
Hkb yielding eventually the shift of the boundary domain. Contrary to the shifts of other
boundaries of gap gene domains, this shift happens at late stages of cycle 14A.
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Figure 3.3: Graphical analysis of the shift of the posterior boundary of the posterior hb

domain in the model outputs for one of the selected OLS parameter sets. Dynamic behaviour
is illustrated at thee different nuclei within the shift zone over time (cycle 14A). Plots a-c
show the rate of change in concentration of hb (dghb

i /dt), as well as individual contributions
to it from diffusion and synthesis/decay terms in the right hand side of (2.1). Plots d-f
show the temporal behaviour of the regulatory input for hb production (solid black lines),

i.e., uhb
i =

∑Ng

b=1 W b
hbg

b
i +

∑Ne

e=1 Ee
hbg

e
i + hhb. Upper and lower dashed lines indicate 90%

and 10% of the maximum rate of protein synthesis, respectively. The sigmoid function (2.2)
at those values is equal to 0.9 and 0.1, respectively. Coloured areas represent individual
contributions to uhb

i from repressors (above black lines) and activators (below black lines)
of hb. The height of each coloured area is given by |W b

hb|gb
i or |Ee

hb|ge
i .

Network topology A classification of all estimates of the regulatory weights for all 39 pa-
rameter sets into ‘activating’, ‘repressing’ or ‘no interaction’ categories is shown in Figure 3.4.
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The topology is mainly in agreement with the previous findings for the 6-gene model [8].
However, some ambiguities in the network are removed with these results. Namely, the
repressive regulations of Hb on Kr and gt, Gt on kni, and Kni on Kr are present in all
parameter sets, while previous results for the 6-gene case showed no regulation for these
weights in many solutions. Importantly, the activation of hb by Tll is correctly predicted
by our model in almost all sets. Note that previously it was found that there exists no
regulation for this weight. Repression of gt by Tll is present in almost all parameter sets,
while previously many circuits were found with no regulation for this weight. Another re-
markable difference is that autoactivation of gt is much weaker than in the 6-gene case. To
be more precise, its autoregulation is not required in most of the parameter sets. Finally,
we note that the colours in Figure 3.4 do not change if we choose the threshold 0.01 instead
of 0.005 for the classification of regulations, except in two regulatory weights. Specifically,
the activation of hb by Cad and Tll changes to no regulation category, meaning that these
activations in the network topology predicted by the model are weak (almost negligible).

hb Kr gt kni Bcd Cad Tll Hkb

hb 0/0/39 2/37/0 0/1/38 39/0/0 0/0/39 0/2/37 1/0/38 37/2/0
Kr 39/0/0 0/1/38 39/0/0 39/0/0 0/0/39 0/0/39 39/0/0 39/0/0
gt 39/0/0 39/0/0 0/35/4 0/0/39 0/0/39 0/0/39 38/1/0 2/2/35
kni 39/0/0 3/36/0 39/0/0 0/1/38 1/0/38 0/0/39 37/0/2 26/9/4

Figure 3.4: Gap gene network topology based on 39 selected OLS parameter sets. Each
entry in the table corresponds to regulation of a gap gene given on a row by a gene given
in a column. Triplets show the number of parameter sets in which a regulatory weight falls
into one of the following categories: repression (values ≤ −0.005)/ no interaction (values
between −0.005 and 0.005)/ activation (values ≥ 0.005). Colours: activation (green), no
interaction (light-blue), repression (pink).

Confidence intervals The network topology shown in Figure 3.4 is based solely on the
values of estimated parameters. To assess the quality of the parameter estimates, we com-
puted dependent and independent confidence intervals for each parameter set using (2.14)
and (2.15), respectively (see Figure 4.3 in the Appendix). We checked if the corresponding
confidence intervals for regulatory weights fall entirely into the ‘repression’, ‘no interaction’,
or ‘activation’ categories. Results in Figure 3.4 do not change when only dependent con-
fidence intervals are taken into account. However, when including independent confidence
intervals, one can no longer make similar qualitative conclusions about some entries in the
regulatory weight matrix. For example, Figure 3.5 shows the confidence intervals for regu-
latory weights W gt

Kr (a), EBcd
hb (b), and ETll

kni (c). The independent confidence intervals for

W gt
Kr lie in the negative part of the plane for almost all parameter estimates and therefore,

repression predicted for this weight in Figure 3.4 is confirmed by statistical analysis. The
independent confidence intervals for EBcd

hb slightly extend into the negative part of the plane.
Therefore, one can make a qualitative conclusion for this weight: the model predicts that
Bcd does not repress hb. Note that this is a weaker conclusion than predicting activation for
this weight from Figure 3.4. In contrast, we cannot draw any qualitative conclusions about
ETll

kni. Thus, statistical analysis does not confirm the repression of kni by Tll inferred from
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Figure 3.4.
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Figure 3.5: Dependent (green lines) and independent (red lines) confidence intervals for
regulatory weights W gt

Kr (a), EBcd
hb (b), and ETll

kni (c). Confidence intervals are plotted along
the vertical axis for the 39 selected OLS parameter sets.

Based on the independent confidence intervals, Table 3.1 summarizes the qualitative
conclusions for the regulatory weights in the gap gene model. These conclusions are weaker
than those drawn from classifying the parameter values only. Only for 17 regulatory weights
out of 32, the confidence intervals confirm the type of the regulation deduced from the
network topology in Figure 3.4. For other 4 weights the conclusions in Figure 3.4 are
confirmed weakly. Regulations for the remaining 11 weights cannot be qualitatively verified
by the confidence interval analysis. However, the conclusions in Table 3.1 show qualitative
improvement for a number of regulations in comparison with the corresponding results for the
6-gene gap model [8], where only for 9 regulatory weights the confidence intervals confirmed
and for other 5 weights confirmed weakly the type of the regulation deduced from the
corresponding network topology.

hb Kr gt kni Bcd Cad T ll Hkb
hb + − = × × + = + + = ×
Kr − + − − + + × ×
gt − × × × + + − ×
kni − − = − + + + × ×

Table 3.1: Gap gene network topology based on independent confidence intervals of 39 se-
lected OLS parameter sets. Each entry in the table corresponds to regulation of a gap gene
indicated on a row by a gene indicated on a column. ’+’ (’−’) indicates activation (repres-
sion) when the confidence intervals for the corresponding regulatory weight fall entirely into
the positive (negative) part of the plane for a majority of parameter sets. Similarly, ’+ =’
(’− =’) indicates no repression (no activation) when the confidence intervals for the corre-
sponding regulatory weight fall into the positive (negative) part of the plane and slightly
extend to negative (positive) part within ’no regulation’ threshold range, i.e., ≥ −0.005
(≤ 0.005). If the confidence intervals significantly extend to both sides of the plane, then
no conclusion can be made (denoted by ’×’).

Note that for all gap genes, promoter strengths R, diffusion coefficients D, and decay
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rates λ have extremely large independent confidence intervals (not shown here) meaning
that all these parameters are not determinable.

tll/hkb mutants The terminal gap genes tll and hkb, being expressed in the posterior
region of the embryo, are responsible for setting up the posterior boundaries of the gap gene
domains. In tll mutants the expression of Kr is normal, the kni domain expands posteriorly,
the posterior gt domain does not retract from the posterior pole, and the posterior hb domain
is absent (see [2] and references therein). In hkb mutants the posterior hb domain fails to
retract from the posterior pole [9]. We shall investigate here if the gap gene model is capable
of reproducing such behaviour in tll/hkb mutants.

We obtain the model outputs for tll mutants by setting ETll
a = 0 for all gap genes

and leaving all other parameter estimates unchanged. Figure 3.6 shows the model outputs
for tll mutants (first row) for the expression of gap genes at time point T8 compared to
wild type data. As we can see, OLS parameter sets mainly fail to produce correct mutant
phenotypes. Most of the parameter sets have over-expression of the posterior hb domain
which contradicts the experimental evidence. In most of the cases the posterior gt domain is
expanded and only a few model outputs have the correct behaviour when the domain does
not retract from the posterior pole. The expression of kni has not changed in some sets and
an additional domain appears in others, failing to predict the expansion of the posterior
boundary. The only consistent result can be stated for Kr which has a normal expression in
all model outputs.
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Figure 3.6: Comparison between data (red lines) and model outputs (green lines) with tll

mutants (first row) and hkb mutants (second row) produced by 39 selected OLS parameter
sets for the expression of gap genes at T8. Axes are as in Figure 2.1.

Similarly, model outputs for hkb mutants are obtained by setting EHkb
a = 0 for all gap

genes. Figure 3.6 (second row) shows the expression of gap genes at time point T8 in hkb

mutants. The posterior hb domain almost disappears in some circuits in contradiction to
the experimental evidence. Additional expression domains appear for the gap genes gt and
kni, while the expression of Kr has not altered.
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In conclusion, OLS parameter sets fail to predict the correct behaviour when terminal
genes tll and hkb are knocked out. Model outputs show both ambiguity and inconsistency,
the only exception is the gap gene Kr.

3.2 WLS results

The LM search with the WLS cost function has been performed using as initial points the
39 selected OLS parameter estimates and also the 90 OLS sets with lowest RMS values pos-
sessing an artificial Kr hump. Additionally, we performed 80 runs starting with parameter
estimates obtained from global WLS search (SA). From the obtained results we selected 117
parameter sets with WLS values varying uniformly between 1.08 × 103 and 1.13 × 103. For
the comparison with the OLS results, we note that these WLS parameter sets have RMS
values uniformly varying between 10.41 and 10.67. It suggests that the WLS search leads
to less over-fitting compared to OLS search. None of these low-scoring parameter sets show
any visible patterning defects (see Figure 4.2 in the Appendix), while the sets with larger
WLS values do. As it is difficult to make a distinction between these 117 parameter sets
based on WLS values and expression patterns only, we take all of them into consideration.
We emphasize that with a significantly less number of WLS runs (209) compared to the OLS
case (740) we have obtained three times more WLS parameter estimates than OLS ones. It
is also important that the selection of WLS sets is only based on cost function values and
the manual inspection of model outputs for patterning defects, as in the OLS case, is not
required.

The most important difference between the model outputs generated by the OLS and
WLS parameter sets is that the latter do not have a patterning defect for gap gene Kr
(hump). This can be expected because the standard deviations in that region of the embryo
are small and subsequently the corresponding weights in WLS are relatively large which
prevents the rising of the Kr hump. We note that the model outputs generated by WLS
parameter sets have one slight problem which does not show up in the OLS case. Model
outputs for gap gene Kr at T1 have a slight cavity next to the anterior boundary. However,
this declination does not exceed the experimental error range and therefore is not considered
to be significant.

Patterns for WLS parameter sets (Figure 4.2) at cycle 13 and late time points of cycle
14A show a better fit than the corresponding OLS patterns (Figure 4.1). Especially, the
improvement can be seen at the boundaries of gap gene domains at the end of cycle 14A.
This can be explained by a relatively small standard deviation of the experimental error at
the domain boundaries at late time points (Figure 2.3).

Additionally, WLS model outputs have less variation than those produced by OLS pa-
rameter sets. Thereby, WLS model outputs are more consistent with each other while OLS
model outputs reveal discrepancies.

Posterior hb domain Similar to OLS results, the posterior boundary of the posterior hb
domain is set correctly (see Figure 4.2) and the anterior shift in the peak of the posterior hb
domain can be detected in the model outputs (not shown here). The shift of the posterior
boundary of the posterior hb domain is illustrated in Figure 3.7 by graphical analysis of the hb

regulation over time (cycle 14A) at three different nuclei which lie in the shift zone. Similar
to the OLS case (Figure 3.3), there is a switch from protein synthesis (positive dghb

i /dt)
to decay (negative dghb

i /dt) of hb at the end of cycle 14A and the shift is solely based on
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the regulatory mechanism rather than being driven by diffusion. Panels d-f of Figure 3.7
show that two major contributions to the regulatory input of hb are from the activator Tll
and the repressor Hkb. Contrary to the OLS case, these inputs are more stronger than the
inputs from other regulators. So, in WLS results hb in the posterior region of the embryo is
superiorly regulated by terminal genes Tll and Hkb.
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Figure 3.7: Graphical analysis of the shift of the posterior boundary of the posterior hb

domain in the model outputs for one of the selected WLS parameter sets. Axes, lines, and
coloured areas are as in Figure 3.3.

Network topology Classification of all parameter estimates for regulatory weights for
117 selected WLS parameter sets into ‘activating’, ‘repressing’ or ‘no interaction’ categories
is given in Figure 3.8. There are only two differences in this topology in comparison with
the OLS results in Figure 3.4. Hkb represses gt and activates kni, while in the OLS case it is
the other way around. For other regulatory weights all conclusions agree. At the same time,
numbers in Figure 3.8 indicate that WLS parameters estimates are more consistent than
those obtained by OLS search. For instance, although activation is concluded for regulatory
weights ETll

hb and EBcd
kni in Figure 3.4, still in each case there is one circuit showing repression.

Those ambiguities are completely cleared in Figure 3.8 (the only exception is EHkb
kni ).

Confidence intervals To assess the quality of the parameter estimates, we computed de-
pendent and independent confidence intervals for each parameter set using (2.14) and (2.15),
respectively (see Figure 4.4 in the Appendix). We checked if the corresponding confidence
intervals for the regulatory weights fall entirely into the ‘repression’, ‘no interaction’, or ‘ac-
tivation’ categories. Similar to the OLS case, dependent confidence intervals are small and
cannot be trusted. Based on the independent confidence intervals, Table 3.2 summarizes the
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hb Kr gt kni Bcd Cad Tll Hkb

hb 0/0/117 0/117/0 0/0/117 117/0/0 0/0/117 0/0/117 0/0/117 117/0/0
Kr 117/0/0 0/0/117 117/0/0 117/0/0 0/0/117 0/0/117 117/0/0 117/0/0
gt 117/0/0 117/0/0 0/117/0 0/0/117 0/0/117 0/0/117 117/0/0 117/0/0
kni 117/0/0 0/117/0 117/0/0 0/0/117 0/0/117 0/0/117 117/0/0 2/0/115

Figure 3.8: Gap gene network topology based on 117 selected WLS parameter sets. Numbers
and colours are as in Figure 3.4.

qualitative conclusions for the regulatory weights in the gap gene model. The qualitative
conclusions in Table 3.2 show no significant difference from the corresponding OLS results
given in Table 3.1. For 17 regulatory weights the confidence intervals confirm and for an-
other 3 weights they confirm weakly the type of the regulation deduced from the network
topology in Figure 3.8.

hb Kr gt kni Bcd Cad T ll Hkb
hb + × + = × × + = + ×
Kr × + − − + + × ×
gt − − × + + + − ×
kni − − = − + × + × ×

Table 3.2: Gap gene network topology based on independent confidence intervals of 117
selected WLS parameter sets. Notations are as in Table 3.1.

In contrast to the OLS case, the confidence interval analysis for WLS solutions suggests
that the number of unknown parameters can be reduced in the model. The dependent confi-
dence intervals for all diffusion parameters in the WLS results have a non-empty intersection.
This means that for practical reasons they can be fixed to any value in those intersections
without giving a difference in the WLS sums. Since the main interest of the gap gene model
lies in the inference of the regulatory network topology, the exact value of the diffusion
parameters is not important. Correlation analysis shows that the diffusion coefficients are
not strongly correlated to other parameters. Therefore, removing them from the parameter
space will not change significantly the determinability of the remaining parameters but it
will reduce the size of the problem.

tll/hkb mutants The model outputs for tll mutants are shown in Figure 3.9 (first row).
The expression of posterior hb decreases compared to wild type data. Although it is not
completely in agreement with experimental evidence (there is no posterior hb domain in
such embryos), there is still an improvement in comparison with OLS results (Figure 3.6)
where over-expression of hb is detected. Similar to OLS results, Kr has a normal expression
which is in agreement with experiments. Expression of gt and kni at the posterior part of
the embryo appears somewhat abnormal as in OLS outputs but they do not produce the
behaviour observed in the experiments.

The model outputs for hkb mutants are shown in Figure 3.9 (second row). Contrary to
the corresponding OLS results (Figure 3.6), they are more consistent with each other. The
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posterior hb domain in all cases fails to retract from the posterior pole of the embryo which
is in agreement with the experimental evidence [9]. This confirms again that Hkb is the
main repressor of hb at the posterior part of the embryo. The expression of gap genes Kr, gt,
and kni is not affected in hkb mutants. It suggests that Hkb does not regulate these genes
exposing an unreliability of corresponding regulations in network topology in Figure 3.8.
Thereby, we can conclude that in the WLS search the 3 regulatory weights corresponding
to the regulation of gap genes Kr, gt, and kni by Hkb can be eliminated from the parameter
search by setting up EHkb

Kr = EHkb
gt = EHkb

kni = 0. This is also confirmed by the statistical
analysis, as their dependent confidence intervals include zero (see Figure 4.4).
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Figure 3.9: Comparison between data (red lines) and model outputs (green lines) with tll

mutants (first row) and hkb mutants (second row) produced by 117 selected WLS parameter
sets for the expression of gap genes at T8. Axes are as in Figure 2.1.

3.2.1 WLS results with fixed parameters

We have found that for the WLS search it is possible to reduce the size of the parameter
space by fixing all diffusion parameters and the regulatory weights corresponding to the
regulation of gap genes Kr, gt, and kni by Hkb. For the diffusion coefficients we computed the
averaged values based on the previously found estimates, Dhb = 0.237, DKr = Dkni = 0.3,
and Dgt = 0.115. Note that these averaged values belong to the non-empty intersections
of the dependent confidence intervals. So, it leaves us with 37 parameters in the model
to be re-estimated. We used LM search with 60 initial parameter sets arbitrarily chosen
from previously found 117 WLS parameter sets. Additionally, we performed 20 runs with
initial parameter values obtained from global WLS search (SA) with those parameters fixed.
From re-estimated parameter sets we select 66 circuits which have low WLS values (about
1.08 × 103). None of them reveals any visible patterning defects (not shown here). The
network topology in Figure 3.8 remains unchanged with the new estimates except for the
regulations of Kr, gt, and kni by Hkb which are set to zero. Table 3.3 presents the qualitative
conclusions for the regulatory weights in the gap gene model based on the independent
confidence intervals (Figure 4.5 in the Appendix). These results show an improvement in
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comparison with Table 3.2. For 20 regulatory weights the confidence intervals confirm and
for another 5 weights they confirm weakly the type of the regulation in the network topology
and only 4 regulations still remain unclear.

hb Kr gt kni Bcd Cad T ll Hkb
hb + × + − × + = + − =
Kr − = + − − + + × 0
gt − − × + + + − 0
kni − − = − + + = + − 0

Table 3.3: Gap gene network topology based on independent confidence intervals of re-
estimated 66 WLS parameter sets. Notations are as in Table 3.1.

tll mutants The model outputs for tll mutants are shown in Figure 3.10. As we can
see, there is a significant improvement in comparison with the OLS results (Figure 3.6) and
preceding WLS results (Figure 3.9). Now, WLS circuits predict correct mutant phenotypes
for all gap genes. Namely, the posterior hb domain is absent, the expression of Kr is normal,
there is expansion of the posterior boundary of the kni domain, and the posterior gt domain
does not retract from the posterior pole.
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Figure 3.10: Comparison between data (red lines) and model outputs with tll mutants (green
lines) produced by re-estimated WLS parameter sets for the expression of gap genes at T8.
Axes are as in Figure 2.1.

Correlations The qualitative conclusions from Table 3.3 are not completely consistent
with the network topology obtained by only considering the value of the parameter esti-
mates. The sizes of the independent confidence intervals (see Figure 4.5) give an indication
about the determinability of the corresponding regulatory weights. Note the big difference
between the size of the independent confidence intervals for the different regulatory weights
indicating a different degree of determinability. The lack of determinability is due to the
presence of correlations between parameter estimates indicated by the large difference be-
tween dependent and independent confidence intervals. Individual confidence intervals are
not informative for understanding the reason of poor determinability of parameters when
their estimates are correlated. Using (2.16), we find the correlation matrix for each pa-
rameter set. To detect the most significant correlations between parameters present in all
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correlation matrices, we calculated an averaged matrix—which we call the mean correlation
matrix—whose entries are the mean values of the corresponding correlation coefficients in
the individual correlation matrices. The obtained mean correlation matrix has a block diag-
onal structure such that each block corresponds to a given gene and contains the correlation
coefficients between parameters for the same gene (not shown here). This is mainly due to
the nature of function (2.2) used in (2.1). The positive and negative inputs in its argument
can compensate or complement each other. We identify the most significant parameter cor-
relations which can be interpreted in biological terms with the emphasis on those for which
the qualitative conclusions in Table 3.3 are weak or cannot be made at all:

• Activations of hb by Bcd and Cad are correlated;

• Activation of hb by Bcd is also correlated to its repression by Kni;

• Repression of hb by Hkb is correlated to activation by Tll;

• Repression of Kr by Hb is correlated to its activation by Bcd;

• Activation of kni by Bcd is strongly correlated to its repression by Hb;

The regulatory weights WKr
hb , W gt

gt , and WKr
kni have relatively small independent confidence

intervals. Results for these weights in Table 3.3 are based on the threshold 0.005 for classifi-
cation of regulations. With a larger threshold, such as 0.01, for all 3 weights ’no regulation’
type can be concluded confirming the corresponding predictions from Figure 3.8. Finally, we
note that ETll

Kr is not correlated to any other weight. Posterior Kr is strongly repressed by
Gt and somewhat weaker by Hb and Kni. Apparently, due to these interactions, repression
of Kr by Tll is somewhat redundant in the model.

4 Conclusions

In this note we have investigated the model for spatio-temporal pattern formation of gap
gene products (hb, Kr, gt, and kni) in early development of Drosophila. Previous studies of
the gap gene system [2, 5, 6, 7, 8] along with these gap genes also included in the model
the products of genes cad and tll as state variables. In our model we have included cad

and tll as time-variable external inputs. This is a more natural way to model that they
regulate gap genes, but not vice versa. Contrary to previous studies where protein Bcd
was used as external input constant in time, we have incorporated its temporal behaviour
in our model. Finally, new data for hkb [10] has allowed us to supplement the gap gene
network by including hkb as time-variable external input. Note that hkb, which is absolutely
necessary for correct regulation of posterior hb domain, was missing in previous studies of
the gap gene system. Thereby, our model describes the spatio-temporal dynamics of 4 gap
genes and includes 4 external inputs. It is noteworthy that with our model the complexity
of the problem is reduced both with regard to the number of equations and the number of
unknown parameters compared to previous models.

The model has a number of unknown parameters among which the most interesting are
the regulatory weights, each one representing quantitatively the regulation of one gene by
another gene. Following the common way, we have inferred the unknown parameters by
fitting model outputs to gap gene data [3, 4]. As cost function to minimize in the parameter
estimation procedure we have used both the Ordinary Least Squares (OLS) sum, similar
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to all previous studies, and the Weighted Least Squares (WLS) sum with weights taken
inversely proportional to the corresponding standard deviations of the experimental error
distributions. Since the standard deviations are available from [4], the WLS method does
not require additional computational work compared to the OLS search.

We have used the gradient-based Levenberg-Marquardt (LM) method in the optimization
with the initial parameter values obtained from global search runs using Simulated Annealing
(SA). A large amount of runs has been performed to obtain the parameter estimates, 740
and 209 with OLS and WLS search, respectively. From the obtained parameter sets we first
selected the low-scoring sets based on the values of OLS and WLS sums only. It gave us
117 WLS and 589 OLS parameter sets. While the network topology based on the values
of the estimated regulatory weights in the WLS case (Figure 3.8) shows an agreement with
the known genetic evidences, corresponding OLS results reveal a number of contradictions.
Interestingly, all those OLS sets which have disagreements with the theory, despite having an
overall reasonable fit to the data, do possess one patterning defect (hump) in the expression
of Kr in the region where this gene is not expressed in the data. By manual inspection of
model outputs we have selected 39 OLS parameter sets which do not have that artefact. The
network topology based on these sets (Figure 3.4) is in agreement with genetic evidence.
Thus, the selection of parameter sets reveals the first drawback of using the OLS rather than
the WLS measure. While the selection criterion based on the cost function value is sufficient
for the WLS case, an additional check for patterning defects in the OLS model outputs has
to be performed. Moreover, with WLS search we have done less estimation runs and still
obtained more parameter sets than with OLS search.

The model outputs produced with the selected WLS parameter sets reveal a better fit at
the boundaries of the gap gene domains at late stages of cycle 14A than the corresponding
OLS patterns. Additionally, WLS patterns are more consistent with each other which is
indicated by less variation in the model outputs.

Our results, both OLS and WLS, show a significant improvement in the regulation of the
posterior hb domain compared to previous results. Namely, the posterior boundary of this
domain is set up correctly and the anterior shift in the peak of the domain is present in the
model outputs while previous models failed to reproduce such a shift. More importantly,
with our network also the shift in time of the posterior boundary of the posterior hb domain
is detected. We have shown that this shift is solely based on the regulatory mechanism
rather than being forced by diffusion (Figures 3.3 and 3.7). Namely, the boundary shift is
due to the suppressive repression of hb by Hkb. In previous studies, gap gene models failed
to show this shift because hkb was missing in the network.

Confidence interval analysis for the selected OLS and WLS parameter estimates show
no significant difference from each other in terms of their determinability. In both cases
qualitative conclusions can be made only for 17 (out of 32) regulatory weights (Tables 3.1
and 3.2). Thus, the network topology based only on the values of parameter estimates is not
entirely confirmed by confidence interval analysis. However, there is a significant improve-
ment in comparison with the corresponding results in [8] where qualitative conclusions were
deduced only for 9 weights. This improvement is most likely due to the change of genes cad

and tll from state variables to external inputs in our model and decreasing by that the level
of uncertainty in the model parameters.

We have used our OLS and WLS parameter sets for qualitative prediction of gap gene
expression in tll and hkb mutants (Figures 3.6 and 3.9). In tll mutants both OLS and
WLS sets fail to predict correctly the expression of gap genes, except for Kr which is not
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altered. In hkb mutants the posterior hb domain in WLS outputs does not retract from the
posterior pole in agreement with the experiments [9], while OLS results fail to reproduce
such behaviour. Additionally, expression of other gap genes in WLS outputs is not changed
suggesting that Hkb does not regulate those genes. In OLS results this is observed only for
Kr.

The confidence intervals for WLS parameter sets show that all diffusion parameters
and the regulatory weights corresponding to regulation of Kr, gt, and kni by Hkb can
be eliminated from parameter space, i.e., they can be fixed during the search. We have
performed additional WLS runs with those parameters fixed and selected 66 low-scoring
sets from the obtained results. With the new parameter estimates, firstly, we have achieved
an improvement in the qualitative conclusions for some of the regulatory weights (Table 3.3).
Secondly, tll mutants with those sets give correct qualitative predictions for the expression
of all gap genes (Figure 3.10).

To sum up, based on the results of our analysis, we conclude that the WLS sum is a
more suitable measure for infering a gap gene circuit from the experimental data than the
OLS sum.
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Figure 4.1: Model outputs for the 39 selected OLS parameter sets (green lines) vs data (red
lines) for gap genes at all time points Ti (i = 0, 1, . . . , 8). Axes are as in Figure 2.1.
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Figure 4.2: Model outputs for the 117 selected WLS parameter sets (green lines) vs data
(red lines) for gap genes at all time points Ti (i = 0, 1, . . . , 8). Axes are as in Figure 2.1.
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Figure 4.3: Dependent (green lines) and independent (red lines) confidence intervals for
all regulatory weights in the gap gene model are plotted along the vertical axis for the 39
selected OLS parameter sets.
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Figure 4.4: Dependent (green lines) and independent (red lines) confidence intervals for all
regulatory weights in the gap gene model are plotted along the vertical axis for the 117
selected WLS parameter sets. Note the different scale in y-axis for some of the regulatory
weights compared to the corresponding plot in Figure 4.3.
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Figure 4.5: Dependent (green lines) and independent (red lines) confidence intervals for
all regulatory weights in the gap gene model are plotted along the vertical axis for the 66
selected WLS parameter sets obtained with duffusion parameters and the regulatory weights
corresponding to the regulation of gap genes Kr, gt, and kni by Hkb being fixed during the
search.
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