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ABSTRACT
Algorithms are written in pseudocode. However the imple-
mentation of an algorithm in a conventional, imperative pro-
gramming language can often be scattered over hundreds of
lines of code thus obscuring its essence. This can lead to dif-
ficulties in understanding or verifying the code. Adapting
or varying the original algorithm can be laborious.

We present a case study showing the use of Common Lisp
macros to provide an embedded, domain-specific language
for graph algorithms. This allows these algorithms to be
presented in Lisp in a form directly comparable to their pseu-
docode, allowing rapid prototyping at the algorithm level.

As a proof of concept, we implement Brandes’ algorithm
for computing the betweenness centrality of a graph and see
how our implementation compares favourably with state-
of-the-art implementations in imperative programming lan-
guages, not only in terms of clarity and verisimilitude to the
pseudocode, but also execution speed.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms; E.1 [Data Struc-
tures]: Graphs and networks; D.3.3 [Language Constructs
and Features]: Patterns; D.2.3 [Coding Tools and Tech-
niques]: Control Structures

General Terms
Algorithms, Design, Languages

Keywords
Graph algorithms, Lisp macros, Pseudocode, Verification

1. INTRODUCTION
Much effort is invested in ensuring that programs faith-

fully implement the algorithms on which they are based.
Test-driven development [7], Software Verification [13] and
a variety of other methodologies have been developed in ef-
forts to achieve this goal.

But what could be better than a computer program that
not only resembles the algorithm upon which it is based so
closely as to inspire confidence in its implementation, but
also runs with an efficiency competitive with more verbose
implementations in lower-level programming languages?

We present a proof of concept of a Common Lisp library
for programming in this manner and argue that it fulfils the
above desiderata as well as having further advantages for
pedagogy and experimentation in the field of algorithms.

Pseudograph is a Common Lisp library which provides
this functionality permitting graph algorithms to be written
in a manner similar to their pseudocode.

2. PSEUDOCODE
The lingua franca for presenting algorithms is pseudocode.

Pseudocode is a jargon intended to be understood by prac-
tising professional programmers and computer scientists but
lacking any formal semantics or standard. Students of data
structures and algorithms learn pseudocode from their text-
books [10]. Computer scientists use it to publish descriptions
of novel algorithms [12].

Pseudocode describes algorithms in a way which is pro-
gramming-language independent. Machine-level implemen-
tation details are omitted, as are any consideration of data
abstraction and error handling.

Although pseudocode is intended to be read by humans,
not by machines, some attempts have been made to de-
sign programming languages which have more of a natural-
language nature [16, 1]. Indeed, the syntax of the Python
programming language [26] has been praised for its clarity
and the natural way in which it can express algorithms [21].

3. LISP APPROACHES
In his book Practical Common Lisp [27, pp. 250–252],

Peter Seibel presents an approach to using Common Lisp’s
tagbody and go special operators to “translate” algorithms
from pseudocode into working Lisp code which is subse-
quently manually refactored into more natural Lisp code.

As an example he translates Donald Knuth’s Algorithm S
from the Art of Computer Programming [19, p. 142].

First the algorithm is translated into Lisp code which al-
though “not the prettiest” is a verifiably “faithful translation
of Knuth’s algorithm”. Subsequently the code is manually
refactored, checking at each step, until it no longer resem-
bles Knuth’s recipe but still gives confidence that it indeed
implements it.

This approach goes against the grain. Lisp is a pro-
grammable programming language that we should be able
to bend to our will, shaping the language from the bottom
up until it can express the problems we are tackling at the
level at which they are expressed [17].

Lisp is the ultimate extensible programming language, de-
riving this power from the Lisp macro. Lisp macros allow us
to create new binding constructs and control constructs, al-
ter evaluation order, define data languages and improve code
readability. Lisp macro programming is the extension of
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Figure 1: An undirected graph

the Lisp language by developing domain-specific languages
(DSL) [15] embedded within Lisp itself.

Here we put macros to work to define such a DSL for ex-
pressing graph algorithms which are written in pseudocode.
Graph algorithms can then be written in the DSL in their
natural form once and for all, not requiring any further
rewriting or refactoring.

4. GRAPH ALGORITHMS
Graph theory is a field of mathematics dealing with rela-

tions between objects [8]. An undirected graph is a set of
nodes (or vertices) together with a set of edges (unordered
pairs) on these nodes. Such a graph is usually depicted as
in Figure 1; nodes as numbered circles and edges as links
joining them.

Many other kinds of graphs can be considered such as di-
rected graphs and graphs with weights or other attributes
associated with their nodes and/or edges but for the pur-
poses of this article we will limit ourselves to undirected
graphs of a simple nature as in Figure 1.

In recent years graph theory has found application as the
underlying model for the study of Complex Networks [23],
such as social, computer and biological networks. With the
recent increase in size of available networks and of the asso-
ciated data sets, much research has been focusing on algo-
rithms for computing properties of graphs.

As a case study, we consider one such graph property. The
betweenness centrality of a node in a graph is a measure of
the network load that passes through that node. It is the
accumulated total number of messages passing through that
node when every pair of nodes sends and receives a single
message along each shortest path connecting the pair. This
notion was first introduced in graph theory by Anthonisse
in 1971 [4] who named it the “rush” of the graph. In the
world of sociology, betweenness centrality was introduced
by Linton Freeman in 1977 [14] and has become an impor-
tant measure of the relative influence of members of social
networks.

A straightforward algorithm based on all-pairs shortest
paths can calculate the betweenness centrality in time O(n3)
where n is the number of nodes in the graph. Several in-
cremental improvements were proposed but a breakthrough
came in 2001 in the form of Brandes’ algorithm [9], which
runs in O(nm), where m is the number of edges in the graph.
Brandes’ algorithm consists of two phases: the computation
of the lengths and numbers of shortest paths between all
pairs; and then, the summing of all pair dependencies. Bran-
des’ innovation was to recognise that the dependencies could
be summed cumulatively by maintaining several attributes
at each node of the graph.

5. EXECUTABLE PSEUDOCODE
In order to express Brandes and similar algorithms, we

employ Common Lisp macros to build a DSL for graph al-
gorithms. This DSL is pseudograph.

Central to pseudograph are two macros, vlet and elet

which allow attributes on vertices and edges, respectively,
to be declared, initialised, assigned and updated. Together
with further macros for iteration over nodes and edges, they
form the core of pseudograph.

In pseudograph the n vertices of a graph are represented
by the consecutive integers [0, n). Its undirected edges are
represented by unordered pairs of vertices. Pseudograph
uses straightforward implementations of queues and stacks.

Brandes’ algorithm as originally presented in his paper [9,
p. 10] is shown in Figure 2. We have highlighted some sec-
tions in colour. These highlighted sections correspond to the
similarly coloured sections in the pseudograph implemen-
tation of the algorithm in Figure 3. An explication of the
usage in the various sections of the implementation follows.

The code sections which are not highlighted are merely
Common Lisp code containing calls to underlying stack and
queue libraries.

The sections highlighted in red make use of pseudograph
macros for iteration over the nodes of a graph (do-nodes)
and over the elements of stacks (do-stack) and queues (do-
queue). Note how do-stack (respectively do-queue) pops an
element from the given stack (queue) and binds a variable
to that element for the body of the macro. This corresponds
directly to Brandes’ pseudocode for

while S not empty do
pop w ← S;
...

end while

The three sections highlighted in blue are the header parts
of uses of pseudograph’s vlet macro (“vertex let”). vlet

takes care of the initialisation of and assignment to the ver-
tex attributes of a graph. Like Common Lisp’s let special
form, vlet binds values to the specified variables in the lex-
ical scope of its body, vlet differing in that it binds a vector
of (copies of) the given value to each variable. The size of
these vectors is given by the first argument to vlet. For
example, the vlet in the second blue block makes three vec-
tors of size n, each element of the first vector containing (a
copy of) an empty queue, each element of the second the
fixnum 0 and each element of the third the value of the vari-
able unfound. These values are then bound in parallel to
the variables pred, sigma and dist, respectively.

As well as binding initial values to its variables, vlet de-
fines a number of macros which have bindings local to the
body of the vlet. These local macros permit operations
assigning values to elements of the locally defined vectors
such as updating, incrementing, enqueueing, etc.. Uses of
these local macros are highlighted in yellow in the figures.
Examples of the behaviour of these local macros appearing
in Brandes’ algorithm are as follows.

• The form (dist v) accesses the vth element of the
vector dist

• The form (sigma start = 1) assigns the value 1 to
the startth element of the vector sigma

• The form (sigma w += (1+ (dist v))) increments the
wth element of the sigma vector by one plus the vth



Figure 2: Brandes’ algorithm in pseudocode (from [9, p. 10], colouring added).



Figure 3: Brandes’ algorithm in Common Lisp “executable pseudocode”



element of the dist vector.

• The form (pred w enqueue v) adds the value v to the
queue in the wth element of pred. vlet allows the
use of other operations similar to enqueue in its place
permitting access and update of other data structures
where required.

• Finally, the form (bc) returns the entire vector bc

5.1 Advantages
The pseudograph DSL provides a number of advantages

over traditional implementations.
The local macros in the vlet body permit the expression

of the operations in the pseudocode of Brandes’ algorithm in
a manner sufficiently similar to the original pseudocode to
allow immediate, at-a-glance comparison. This gives confi-
dence that the program is indeed a faithful implementation
of the algorithm in pseudocode form.

The resulting code is succinct, a mere 30 lines. In fact
the resulting code is almost line-for-line equivalent to the
original pseudocode. As a comparison, the implementation
of Brandes’ algorithm in the Boost Graph Library [28] runs
to over 600 lines of C++. Checking that this code faithfully
implements the pseudocode is not a trivial task and certainly
not as immediate as checking the pseudograph code.

Since the pseudograph code is executable, experimenta-
tion with graph algorithms can be carried out at the pseu-
docode level. A computer scientist wishing to investigate
variants of a graph algorithm can immediately edit, execute
and experiment without having to carry out intricate cod-
ing in a large code base. In this way, Lisp’s advantage as
a vehicle for rapid prototyping [25], with incremental de-
velopment, program introspection and read-eval-print loop
allowing short development cycles can be brought right to
the algorithm level.

The pseudograph DSL provides a concise API surface
area. The correct coding of a variety of graph algorithms on
this DSL gives confidence in the correctness in the underly-
ing Lisp code.
Pseudograph can also be used for educational purposes.

Krishnamurthi points out how “Lisp programmers have long
used macros to extend their language” before continuing to
lament the “paucity of effective pedagogic examples of macro
use” [20]. Since pseudograph has a common vocabulary
with text books on graph algorithms, students can readily
implement and experiment with them at the pseudocode
level leading to better understanding.

And finally, the process can be reversed and pseudocode
in LATEX format can be generated and pretty printed from
the pseudograph implementation of an algorithm allowing
the results of such experimentation to be included in doc-
umentation and reports with the guarantee that no errors
have been introduced during transcription.

One could consider making the syntax available within
vlet even more like the corresponding pseudocode by per-
mitting expressions such as (sigma[s] = 1) for σ[s] = 1.
We choose not to do this for the same reasons that we pre-
fer the syntax of Jonathan Amsterdam’s iterate package
[3] over the syntax of Common Lisp’s loop facility [29].

Where Lisp’s loop facility provides a complete“Pascalish”
sublanguage for carrying out iteration, the iterate package
provides a more naturally Lisp-like syntax which is more eas-
ily embedded, extended and customised. In our view loop

could be seen as iterate taken too far but we acknowledge
this may be a matter of taste. We feel that our executable
pseudocode is similar enough to the original pseudocode for
at-a-glance comparison, while still enjoying all the advan-
tages of Lisp syntax as enumerated by Amsterdam in [2].

5.2 Performance
With all of the advantages listed above, one might be

forgiven for thinking that the resulting pseudograph code
would be unable to compete for speed with carefully coded
implementations in lower level imperative programming lan-
guages. However nothing is further from the truth.

Note, for example, that the initialisation of variables in the
vlet macro also permits any keyword arguments accepted
by make-array [29] such as type declarations, for example:

(vlet n ((cb 0.0 :element-type ’float)

(dist unfound :element-type ’fixnum)

...

These particular declarations allow a Lisp compiler to intro-
duce optimizations for the vertex attributes.

We performed initial comparisons of our pseudograph
code for Brandes with implementations in NetworkX, igraph
and Boost Graph Library.

NetworkX [22] is a Python language software package for
the creation, manipulation, and study of the structure, dy-
namics, and functions of complex networks. It advertises
itself as “high-productivity software” and it lives up to that
billing by allowing the programmer to quickly set up and
experiment with graphs of various sorts. However although
Python shines in ease of use, it sacrifices performance. Com-
parison showed our implementation of Brandes in pseudo-
graph to be between 2 and 3 times faster that the corre-
sponding NetworkX implementation.

igraph [18, 11] is a collection of network analysis tools with
the emphasis on efficiency, portability and ease of use. It has
front ends for Python, C and R. Although the code appears
fast, the igraph implementation of Brandes algorithm fails to
run on graphs with 64 or more nodes due to data structure
limitations. This precluded a meaningful comparison with
pseudograph.

To get an indication of the performance of our pseudo-
graph implementation of Brandes’ algorithm we turned to
the Boost Graph Library [28]. Boost is a collection of C++

libraries that are open source and peer reviewed. Their li-
braries are widely regarded as being efficient and of high
quality. In many areas Boost libraries are de facto stan-
dards and we take them to be the state-of-the-art yardstick
against which we could get a first indication of the speed of
our code.

We generated graphs of various sizes following the Newman-
Watts-Strogatz model [24]. This is a model of so-called
small-world graphs, a type of particular interest since it
frequently occurs in social networks and other complex net-
works. The graphs are generated by connecting the nodes in
a ring, then connecting each node to a number of its nearest
neighbours, then rewiring each edge randomly with a fixed
probability.

The comparison was carried out on a standard Linux 3.19.2
distribution on a 2.9 GHz Intel i7 processor. Pseudograph
ran on Steel Bank Common Lisp version 1.2.8 with compiler
settings (optimize (speed 3) (safety 0)). Boost version
1.57 was compiled on gcc 4.9.2 with the -O3 compiler set-



Figure 4: Comparison of pseudograph with Boost on small-world graphs.

ting. In both cases, these are the most aggressive compiler
settings. The times shown are net run times after the graphs
have been loaded into the native data structures.

The results are shown in the graph in Figure 4. On the
x-axis is the product (nm) of the number of nodes and the
number of edges of the graph. On the y-axis, the CPU
time in seconds. Since Brandes is O(mn), we expect the
worst-case times on the graph to be roughly linear. Each
data point is a run of either the pseudograph or Boost im-
plementation of the betweenness centrality algorithm on an
instance of a small-world graph generated according to the
Newman-Watts-Strogatz model for n ∈ {10, 20, . . . , 300},
k ∈ {3, 4, . . . , n − 1}, p ∈ {0.1, 0.2, . . . , 0.9}. We make two
observations on the basis of these results.

As can be seen, pseudograph is competitive with Boost,
in some cases slower, in some faster. Linear regression on the
two sets of data points (indicated by the two straight lines
in Figure 4) shows the average pseudograph run time to be
increasing more slowly than that of Boost with a crossover
point at about mn = 1.6e7. This suggests that for larger
graphs, pseudograph will continue to outperform Boost on
average.

Further, it is noticeable that there is a greater variance in
the pseudograph data points than in those of Boost. This
might suggest that the performance of pseudograph is less
predictable than that of Boost.1

In order to find an explanation, we look more closely at

1One might think that garbage collection is respobsible.
However no garbage collection was triggered during the runs.

runs for a fixed number of nodes. Holding n fixed at 600 and
varying only the parameter k, generates graphs with a fixed
number of nodes but a varying number of edges. The run
times of neither implementation was sensitive to the value
of p so it was held fixed at 0.3. These results, shown in
Figure 5, are typical of those for graphs of other sizes.

As we can see, the Boost and pseudograph implemen-
tations have differing performance characteristics for graphs
which are sparse (having relatively few edges) and dense
(having relatively many edges). While the run time of Boost
increases uniformly with the density of edges, pseudograph’s
run time peaks before decreasing for very dense graphs. We
have no explanation for this behaviour but speculate that
it may be a property of bitsets a compact representation
pseudograph uses for subsets of integers in a range [0, n)
[5]. This bears further investigation. In any case, it appears
that this particular performance characteristic leads to the
larger variation of pseudograph run times in Figure 4.

Given the many other advantages of pseudograph stated
above, we regard the result that it can compete with the
Boost C++ library as very encouraging, especially since lit-
tle attempt has been made at optimising the pseudograph
code as yet. Currently, standard, straightforward represen-
tations are used for stacks and queues. The structure of
undirected graphs is represented as adjacency lists of sets
of nodes, which are represented as fixnums. These sets are
represented as bitsets.

We emphasise however that this initial test, while encour-
aging, is by no means conclusive. We plan full tests and
comparisons on other kinds of graphs and larger graphs.



Figure 5: Comparison of pseudograph with Boost on small-world graphs, n = 600, p = 0.3

6. CONCLUSIONS AND FUTURE WORK
We have shown a proof of concept for our approach to

programming graph algorithms by presenting an implemen-
tation of Brandes’ algorithm which is not only comparable
at a glance to the pseudocode of the original algorithm, but
also competitive in speed with state-of-the-art code for the
algorithm written in optimised C++.

To use the words of Krishnamurthi [20], we feel that this
approach represents ‘...a rare “sweet-spot” in the readability-
performance trade-off.’ Despite the long-standing popular
belief to the contrary, Lisp has been shown to be compet-
itive with lower-level programming languages for scientific
numerical computing [31, 30]. Our results now show that
this competitive performance need not be limited to numer-
ical computing.

The range of graph algorithms which we can express with
the machinery of pseudograph as it stands is surprisingly
large. As we have seen, Brandes’ algorithm requires main-
taining several vertex attributes. Other graph algorithms
such as Floyd-Warshall requires the maintenance of edge at-
tributes. This can be achieved using pseudograph’s elet

macro (edge let). Directed graphs can also be represented.
Moreover, such is the flexibility of the approach that novel
pseudocode constructs can readily be added to pseudo-
graph.

We are continuing to implement other graph algorithms
using this approach and experimenting with optimizations
of the code under the hood. The bottom-up nature of the
pseudograph code with clean interfaces makes it easy to
vary such representations independently of each other.

We plan to release our work under an open-source license
in the form of the Pseudograph library which will also be
packaged and submitted to Quicklisp [6].
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