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Single enzyme molecules display inevitable, stochastic fluctuations in their catalytic activity. In metab-
olism, for instance, the stochastic activity of individual enzymes is averaged out due to their high copy
numbers per single cell. However, many processes inside cells rely on single enzyme activity, such as
transcription, replication, translation, and histone modifications. Here we introduce the main theoret-
ical concepts of stochastic single-enzyme activity starting from the Michaelis–Menten enzyme mecha-
nism. Next, we discuss stochasticity of multi-substrate enzymes, of enzymes and receptors with
multiple conformational states and finally, how fluctuations in receptor activity arise from fluctuations
in signal concentration. This paper aims to introduce the exciting field of single-molecule enzyme
kinetics and stochasticity to a wider audience of biochemists and systems biologists.

� 2013 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

Essentially all cellular reactions are catalyzed by enzymes,
regardless of whether metabolism, signal transduction, or gene
expression is considered. In metabolism, enzymes interconvert
metabolites to generate the energy and precursors for macromo-
lecular synthesis. As passive or active transporters, enzymes trans-
port molecules in and out of the cell. Other enzymes covalently
modify signaling proteins, metabolic enzymes, and nucleosomes,
or transport macromolecules across the cell by free energy-driven
translocation along the cytoskeleton. Thus, enzymes can operate as
catalysts, either coupled to free energy transduction or not, or as
molecular motors. In the latter case free energy dissipation is cou-
pled to, for instance, directed motion of enzymes along actin or to
the bacterial flagella in chemotaxis. When environmental condi-
tions change, organisms adjust enzyme concentrations to rewire
their molecular networks to better meet current demands. Natural
selection acts on beneficial, genetic mutations that alter the
concentrations or kinetic properties of enzymes. In other words,
enzymes lie at the basis of cell functioning and are central to any
quantitative understanding in cell biology. Moreover, molecular
systems biology studies require knowledge of enzyme properties
to be able to assess how the concerted activities of enzymes, orga-
nized in networks, give rise to cell function.

The quantitative understanding of enzyme kinetics was
pioneered by Michaelis and Menten in 1913 [1], followed by Briggs
and Haldane in 1925 [2]. About 50 years later, Cleland unified most
of this work in a comprehensive theory of monomeric enzyme
kinetics in a series of seminal papers [3–5]. The work about feed-
back-regulation of metabolic enzymes [6,7] initiated studies on
the kinetics of oligomeric enzymes, which were later followed by
many studies on hemoglobin (reviewed in [8]). Oligomeric en-
zymes are composed out of several, interacting subunits that can
display cooperativity and may be under allosteric control [9]. This
lead to the development of allosteric and cooperative enzyme
kinetics: the concerted symmetry model of Monod, Wyman, and
Changeux [10], the sequential model by Koshland, Nemethy, and
Filmer [11], and more recently, the reversible Hill equation by Hof-
meyr and Cornish-Bowden [12]. All these theories of enzymology
are macroscopic theories of enzyme kinetics, considering the aver-
age properties of ensembles of enzymes.
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Macroscopic theories in enzymology about monomeric and
multimeric enzyme kinetics do not refer to the inherently stochas-
tic aspects of the activity of single enzyme molecules. Enzyme
ensembles concern thousands to millions of proteins that each
function independently. Much can be learned about enzymes from
those studies. For example, in metabolism the simultaneous activ-
ity of a huge number of enzymes matters most often. Conse-
quently, the ensemble perspective gives the relevant picture.
However, from the study of single enzyme molecules valuable
additional insight can be gained about enzyme mechanisms
[13,14]. Moreover, in many cellular functions it is the activity of
single enzymes that matters. Examples are protein transport along
the cytoskeleton or mRNA synthesis via transcription, which are
inherently single-enzyme activities. In those latter examples, spon-
taneous, stochastic fluctuations in the activity of a single enzyme
can have profound consequences that can be propagated to the
phenotypic properties of a cell, on which natural selection acts.
Thus in those cases the study of single enzyme molecules is re-
quired to understand fundamental aspects of cell biology.

The experimental study of single enzyme copies was pioneered
by B. Rotman in 1961 [15], but gained real momentum only three
decades later with the advance of single-molecule fluorescence
microscopy techniques (reviewed in [14]). Here we limit ourselves
to the theoretical aspects of the activity of single enzyme mole-
cules. We use several illustrative examples of the activity of single
enzyme molecules to introduce the reader to the main stochastic
models (Supplemental material) and concepts of this exciting field
in enzymology.

2. Results

2.1. Fluctuations in the activity of a Michaelis–Menten enzyme

In this section we derive some of the microscopic properties of
enzyme kinetics, which concern the stochastic activity of the single
enzyme molecules, and relate those to classical enzyme kinetic
parameters (i.e. KM and VMAX). In particular, we discuss the distri-
bution of times between subsequent product formations catalyzed
by a single enzyme, the turnover time distribution, and how this
relates to the catalysis rate of the enzyme. In the Supplemental
material we present two methods how this can be done for arbi-
trarily complex enzyme mechanisms. When the Michaelis–Menten
(MM) mechanism is considered, the mean turnover time turns out
to give rise to the well-known MM rate equation.

The simplest model that gives rise to the MM enzyme mechanism
considers one enzyme (E), one substrate (S), one enzyme-substrate
complex (ES), and one product (P). The enzyme-substrate complex
can either dissociate into the enzyme and substrate or catalysis can
occur giving rise to product and the original enzyme (Fig. 1A).

Deterministic models of enzyme activity fail to capture the
discreteness and stochasticity effects that occur when enzyme mole-
cules are present at low copy numbers. If we assume that the cell is a
well-stirred compartment, we can ignore molecular positions and
diffusion. Then, we can use the chemical master equation (CME)
[16] to describe the stochastic activity of a single enzyme (reviewed
in [17]). The CME determines the probability that the system is in a
specific state at a given (future) time. A single state is a particular
combination of the number of E, ES, S and P molecules per cell. Note
that from the stochastic perspective the state is a vector of integers
(the (copy) number of a specific molecule per cell) and not of real
numbers as one would have in a deterministic, macroscopic descrip-
tion when concentrations are considered. The general description of
the CME is given in Eq. (S-6) and describes the rate of change in the
probability mass to observe the system in a particular state. It is a
balance equation for the probability mass of the states. A more
specific description of the CME is given by:
dPðx;tjx0;t0Þ
dt

¼
X
r2R

arðx�v rÞ �Pðx�v r;tjx0;t0Þ�
X
r2R

arðxÞ �Pðx;tjx0;t0Þ

ð1Þ

Here, x is the state vector which contains the number of molecules
(denoted later by N) of each species in time, P(x,tjx0,t0) is the prob-
ability to observe the system in state x at time t given the initial
state x0 at time t0, vr is the state-change vector of reaction r (vector
with stoichiometric coefficients) and ar(x) is the propensity function
of reaction r, i.e., the probability per unit time that reaction r fires
given that the system is currently in state x.

For the simple model shown in Fig. 1A, the propensity functions
are given by (very similar to mass-action kinetics),

a1ðxÞ ¼ kþ1 � NE � NS

a2ðxÞ ¼ k�1 � NES

a3ðxÞ ¼ kc � NES

ð2Þ

where NE, NS, and NES are the copy numbers – number of molecules
– of E, S, and ES, respectively. Note that rate constants of unimolec-
ular reactions are independent of the system volume (V), whereas
rate constants of bimolecular reactions (e.g. kþ1 ) are inversely pro-
portional to V. This is because the search time for two reactant mol-
ecules depends on volume [18].

If we assume that the number of substrate molecules, NS, is held
constant the state-change vectors for the simple enzyme kinetics
model are given by,

v1 ¼ ð�1;1;0Þ
v2 ¼ ð1;�1;0Þ
v3 ¼ ð1;�1;1Þ

ð3Þ

of which the entries correspond to the stoichiometric coefficients of
the molecules in the same order as they occur in the state vector x:

x ¼ ðNE;NES;NPÞ ð4Þ

Thus, reaction (2) produces one molecule E and consumes one mol-
ecule ES (S is considered fixed and therefore not specified).

We consider only a single enzyme copy, which implies that NES

is 0 if NE is 1 and vice versa (Fig. 1B and 1C). Production events of P
will occur at irregular intervals when a single enzyme is modeled
with the CME. An example is shown in Fig. 1D where three differ-
ent trajectories of a stochastic simulation are shown. Each simula-
tion started from the same initial conditions and with the same
kinetic parameters. These trajectories fluctuate around the analyt-
ical solution for a large ensemble of the same enzyme molecules.
This ensemble is described by the set of ordinary differential equa-
tions that characterize the deterministic, macroscopic dynamics of
an ensemble of independent enzyme molecules.

We are interested in the time to make one product molecule,
i.e., to increase NP by 1. Directly after the previous product mole-
cule has been synthesized the enzyme is in the unbound state.
Therefore, we consider an initial condition with NE(0) = 1,
NES(0) = 0 and use the CME to determine how the probability
P(NE, NES, NP, t) changes over time from this initial condition. Note
that the number of molecules of P does not matter in this case, as it
does not influence any of the elementary enzyme rates.

Substituting Eqs. (2)–(4) into Eq. (1) gives the CME for our sim-
ple enzyme kinetics model:

dPð1;0;NP ; tjx0; t0Þ
dt

¼ k�1 � Pð0;1;NP; tjx0; t0Þ þ kc � Pð0;1;NP

� 1; tjx0; t0Þ � kþ1 � NS � Pð1;0;NP; tjx0; t0Þ

� dPð0;1;NP ; tjx0; t0Þ
dt

¼ kþ1 � NS � Pð1;0;NP; tjx0; t0Þ � k�1 þ kc
� �

� Pð0;1;NP ; tjx0; t0Þ ð5Þ



0

1

N
E

B

0 20 40 60 80 100 120
Time

0

1

N
E

S

C

0 20 40 60 80 100 120 140
Time

0

10

20

30

40

50

N
P

D

10 −1 10 0 10 1

Turnover time

0.00

0.05

0.30

0.25

0.20

0.15

0.10

0.35

0.40

Pr
ob

ab
ilit

y
de

ns
ity

E

A

Fig. 1. One substrate irreversible. (A) Irreversible Michaelis–Menten kinetics. kþ1 ; k
�
1 , and kc denote rate constants (see the Supplemental material for complete model

description). (B–C) Time-series data of NE and NES, respectively. (D) Stochastic simulations (done with StochPy; http://stochpy.sourceforge.net) indicate fluctuations of the
molecule numbers of P around the analytical solution (linear line). (E) Analytical turnover times for three different sets of parameters ðNS ¼ kþ1 ¼ k�1 ¼ 1; kc ¼ 1 (red), kc = 0.1
(green, dashed), and kc = 2 (blue, dotted). Vertical lines illustrate the mean turnover times corresponding to the MM equation.
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Since we are considering a single enzyme molecule we have the
constraint NE + NES = 1 whereas the values of NP can take any posi-
tive discrete value. With initial conditions as defined above and
t0 = 0, the probability that a product is formed after time t equals
the product of the catalytic rate (kc) and the probability that the en-
zyme is in the substrate bound state,

f ðtÞ ¼ kc � Pð0;1;NP ; tjNEð0Þ ¼ 1;NESð0Þ ¼ 0Þ

¼ aðeð�cþbÞt=2 � eð�c�bÞt=2Þ
b

ð6Þ

with a ¼ kþ1 kcNS; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4kþ1 kcNS þ k�1 þ kc þ kþ1 NS

� �2
q

, and
c ¼ k�1 þ kc þ kþ1 NS. This distribution is illustrated in Fig. 1E for three
different sets of parameters where the vertical lines illustrate the
mean turnover time, hti. To obtain Eq. (6) we solved the CME given
in Eq. (5) at time equals 0. Then for NP = 0, we have
P(0,1,Np � 1,tjx0, t0) = 0 and the initial conditions for the system of
equations in (5) becomes P(1,0,Np, tjx0, t0) = 1 and P(0,1,Np, tjx0, t0) =
0. The resulting two linear differential equations can be solved
analytically to give rise to Eq. (6).
Subsequently, the mean turnover time can be calculated from
(6):

hti ¼
Z 1

0
tf ðtÞdt ¼ k�1 þ kc þ kþ1 NS

kckþ1 NS
¼

k�1 þkc

kþ1
þ NS

kcNS
¼def Km þ NS

VmaxNS
ð7Þ

Here we identify the MM constant, KM ¼ k�1 þkc

kþ1
, and, the maximal en-

zyme rate, Vmax = kc(NE + NES) = kc. Hence, the mean turnover time
hti equals the inverse of the catalysis rate of the enzyme as de-
scribed by the MM rate equation. In general, the mean turnover
time for any enzyme mechanism equals the inverse of the catalysis
rate as derived from the quasi-steady state assumption. Thus, the
deterministic, macroscopic model of classical enzyme kinetics con-
siders the mean activity of an ensemble of independent enzyme
molecules. Eq. (6) describes the stochasticity in the turnover times
between consecutive product molecules that arise due to the fluctu-
ating catalytic activity of a single enzyme molecule.

Following the reasoning of Qian [19] we can decompose hti into
a sum of dwell times of each state multiplied with the average

http://stochpy.sourceforge.net
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Fig. 2. Two substrates. Models where two substrates bind in either a sequential
manner (A) or a random manner (B). See the Supplemental material for complete
model description.
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number of times, n, that the E and ES states are visited before a
product molecule is formed:

hti ¼ 1
kþ1 NS|ffl{zffl}
htEi

þ 1
k�1 þ kc|fflfflfflffl{zfflfflfflffl}
htESi

0
BBB@

1
CCCA kc þ k�1

kc|fflfflfflffl{zfflfflfflffl}
n

ð8Þ

Here htEi and htESi, respectively, equal the life time of the E and the
ES state and the factor n expresses the number of enzyme cycles
ES ? E + S ? ES up to a productive event ES ? E + P.

To characterize the stochasticity in the production process, we
determine the noise of the turnover time distribution. The noise
is given by the variance in the turnover time, hd2t i, divided by
the squared mean turnover time:

hd2ti
hti2

¼ ht
2i � hti2

hti2
¼ 1þ 2kþkcNS

ðk�1 þ kcÞ2 þ 2k�1 kþ1 NS þ ðkþ1 Þ
2
N2

S

 !�1

ð9Þ

In the limit of either very low or very high substrate molecule num-
bers, the turnover time distribution approaches an exponential
turnover time distribution. Accordingly, the turnover noise ap-
proaches 1. For instance, when NS becomes high, the mean turnover
becomes 1/kc; the catalytic step becomes rate limiting. For interme-
diate substrate concentrations the noise is lower than 1. In other
words, the two-step nature of the process (binding plus catalysis)
reduces the noise below that of an exponential distribution. We
note that exponential distribution is often considered a ‘‘noisy’’ dis-
tribution, because its mean and standard deviation are equal.

2.2. Universality of the Michaelis–Menten equation from a single-
molecule perspective

In the previous section we have identified the classical MM
equation as the inverse of the mean turnover time of single en-
zyme molecule, following the MM mechanism (Fig. 1). Most enzy-
matic reactions, however, do not follow this simple scheme. Firstly,
bi-substrate reactions account for roughly 60% of known enzy-
matic reactions. Secondly, in many cases reactions cannot be con-
sidered irreversible. Thirdly, many enzymatic reactions involve
multiple intermediate states. Nonetheless, the MM equation has
been applied successfully to many such enzymes. In this section,
we take a look at some of those mechanisms, again from a sin-
gle-molecule perspective and show which types of mechanisms
do or do not lead to the well-known hyperbolic substrate
dependence.

Bi-substrate mechanisms are usually classified according to a
scheme developed by Cleland [3], for instance, as sequential (either
ordered or random) or as ping pong. We will start by deriving and
comparing the mean turnover times, hti, as a function of both sub-
strates for the two sequential mechanisms depicted in Fig. 2A.
Using Eq. (S-4) one obtains:
htorderedi ¼ a0 þ
a1

NS1

þ a2

NS2

þ a3

NS1 NS2

ð10Þ

htrandomi ¼
a0 þ a1NS1 þ a2N2

S1

a3NS1 þ a4N2
S1

ð11Þ

where for the random mechanism the number of molecules of the
second substrate, NS2 , is considered constant (an analogous expres-
sion is obtained when NS1 is constant and substrate two is varied).
The ai are coefficients that depend only on the rate constants and
the concentration of the fixed substrate. The ordered sequential
mechanism obeys the MM equation for both substrates. More spe-
cifically, when one substrate concentration is kept fixed, the mean
turnover time depends linearly on the inverse of the other substrate
concentration. This is, however, not true for the random sequential
mechanism, only in the limit of saturating concentrations of the
fixed substrate. Where does this difference come from?

Again, we can decompose the mean turnover time into the
mean duration spent in each state multiplied by the average num-
ber of times that this state is visited before a product molecule is
formed. For the sequential mechanism the dwell times in the states
are htEi ¼ 1

kþ1 NS1
; htES1i ¼ 1

k�1 þkþ2 NS2
, and htES1S2i ¼ 1

k�2 þkc
. Any linear com-

bination of those dwell times – as long as the coefficients do not
depend on NS1 themselves – will yield a linear relationship be-
tween ht i and 1=NS1 . For NS2 the derivation is a bit more involved.
The average number of times that the enzyme goes through state
ES1S2 before a product is formed is given by

k�1 þ kþ2 NS2

kþ2 NS2

 !
kc þ k�2

kc

� �
ð12Þ

Here, the first term is the inverse of the probability that when the
enzyme is in the ES1 state it will continue to the ES1S2 state. The
second term is the inverse of the probability that product formation
occurs when the system is in the ES1S2 state. Multiplying Eq. (12)
with the average dwell time in the ES1 state results in the 1=NS2

relationship.
For the random mechanism the dwell times equal

htEi ¼ 1
kþ1 NS1

þkþ2 NS2
; htES1i ¼ 1

k�1 þkþ4 NS2
; htES2i ¼ 1

k�2 þkþ3 NS1
, and

htES1S2i ¼ 1
k�3 þk�4 þkc

. A linear combination of these dwell times does

not result in a linear dependence on the inverse of the substrate
concentration. The reason is that binding of a substrate to two
(or more) possible states – in the example S1 can bind to the free
enzyme but also to the ES2 complex – leads to multiple dwell time
terms of the form 1

aþkNS
. In general, the average number of times

that the state is visited does not lead to cancellation of the denom-
inator. In a similar way as the bi-substrate sequential ordered
mechanisms, the mean turnover times for models with multiple
intermediate states can be derived. Such models have been used
to describe the enzymatic action of ribosomes [20] and molecular
motors [21]. If all states are visited in a sequential order, the MM
equation holds for the inverse of the mean turnover times of those
enzyme mechanisms.

2.3. Stochastic switching between enzyme conformations

Single-molecule studies of a number of single-substrate en-
zymes indicate that the average time between turnovers obeys
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the MM kinetics. However, these measurements also show that the
turnover time distribution and the correlations between subse-
quent turnover times do not fit the equations for the simple model
discussed in Section 2.1 [13,22–25]. Instead, the results are better
explained by a model where the enzyme can switch between mul-
tiple conformations that have different catalytic activities and/or
substrate affinities. This phenomenon is called dynamic disorder.
(Note that inhibitors can cause the same behavior. In this case
the enzyme switches between inhibitor bound and unbound states
[26].)

Here, we illustrate dynamic disorder for a simple model with
two different conformations shown in Fig. 3A. Although most
experimental data could only be fitted to models with more than
10 states, a two state model does give insight into how the turn-
over time distribution and the turnover time correlations change
in comparison to the one state model. We consider two conforma-
tions that have the same substrate association and dissociation
rate constants (k+ and k�) but that differ in the catalytic rate con-
stant, kc. While the turnover time distribution for the model with-
out conformational changes is given by a single exponential rise
and a single exponential decay (Eq. (6)), multiple conformations
lead to multiple exponentials in the decay of the distribution.
The two timescales become apparent when the switching between
the conformations is slow in comparison with the catalytic rates.
This results in bimodal turnover time distributions as is illustrated
in Fig. 3B.

For a two conformation model the average turnover time can be
expressed as

hti ¼ b0 þ b1NS þ b2N2
S

b3NS þ b4N2
S

ð13Þ

where the coefficients b0 to b4 are functions of the kinetic parame-
ters. Therefore, in general this model does not follow the MM kinet-
ics. However, there exist a number of conditions where ht i is
approximately linearly dependent on 1/NS [27–31]. The most
biologically relevant condition is where the conversions between
conformations are slow in comparison to the catalytic rate
(quasi-steady state condition). Under that condition, and if the only
difference between conformations is in the catalytic rate constant,
the inverse of the average turnover time equals Eq. (14) [13],

1
hti ¼

Vmax½S�
½S� þ Km

ð14Þ

Vmax ¼
X

i

wi

kcat;i

 !�1

Km ¼
Vmax þ k�

kþ

Here, the summation runs over all conformations and the wi denote
weights corresponding to the probability of the conformations. This
illustrates that although the average turnover time has the same
substrate dependency as in the classical MM equation, its micro-
scopic interpretation is different.

In the experimental data, the multi-exponential decay of the
turnover time distribution is observed only at sufficiently high sub-
strate concentrations. At low concentrations, the binding of sub-
strate is rate limiting and the shape of the turnover time
distribution resembles that given in Eq. (6). Besides the mean turn-
over time as a function of substrate concentration, also its noise
hd2ti/hti2 is instructive to investigate. This value is sometimes
called the randomness parameter [32]. It contains information
about the type of dynamic disorder.

Without dynamic disorder, the noise in the turnover time distri-
bution for very low and very high substrate concentrations
approaches 1. Under those conditions, the shape of the turnover
time distribution is determined by a single rate limiting step
(either substrate binding or catalysis). This gives rise to an expo-
nential turnover time distribution. For intermediate substrate con-
centrations there are two reaction steps that occur on comparable
timescales. Consequently, the noise can become lower than 1. In
contrast, the noise in turnover times can become larger than 1 with
dynamic disorder in the catalytic rates. In the limit of slow conver-
sion between conformations, the turnover time distribution be-
comes a weighted average of the turnover distributions for each
conformation. This results into a higher noise than in each individ-
ual distribution. Dynamic disorder in the dissociation rate con-
stant, however, does not increase the noise above one [30].

In addition to the turnover time distribution, a time trace of
turnovers for a single enzyme contains information about correla-
tions between subsequent turnover times. These correlations can
be compared to model predictions. There are two different mea-
sures for the autocorrelation of such time traces. The first of these
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measures is the turnover time correlation (sometimes called lag(k)
autocorrelation). This is the correlation between one turnover and
its kth successor. The second of these measures is signal correla-
tion. Signal correlations are defined as the autocorrelation of the
signal function. This is a sum of Dirac delta functions of the times,
ti, at which product formation occurred, sðtÞ ¼

P
idðt � tiÞ.

The application of both types of correlation functions to single-
molecule MM kinetics is analyzed in detail elsewhere [33]. The
advantage of the latter is that it reflects the true timescale of the
correlations. Nonetheless, for many experimental observations
the signal function is not zero between turnover times. In addition,
it does not have the Dirac delta as shape for a signal (usually the
signal is detected over finite time and its intensity varies between
events). This can lead to aberrations in comparison with theoretical
predictions from idealized signal functions, especially around t = 0.

Using Eq. (S-5) we can calculate the turnover time correlation
from the rate parameters. This type of correlation distinguishes be-
tween models with and without conformational switches. For
models with a single catalytically active conformation, the turn-
over time correlation is equal to zero for k > 0 and it becomes po-
sitive for models with multiple conformations. This is not true for
the signal autocorrelation function which can have positive values
for t > 0 also with a single conformation enzyme. In Fig. 3C we
illustrate that the slower the switching between conformations
the slower is the decrease in correlation with increasing k. Note
that fluctuations in the substrate level can also introduce correla-
tions in both types of correlation functions.

2.4. G-protein coupled receptors

Many types of signaling receptors (or transcription factors)
could be considered as a special case of the model with multiple
conformations discussed in the previous section. These receptors
switch between two (main) states of which only one is active for
signaling. Typically, switches occur because of a conformational
change bringing about a change in conformation of an intracellular
domain to affect intracellular signaling. Binding of the receptor li-
gand – the signal – then shifts the equilibrium between the two
receptor conformations. Fig. 4A shows a simple model of such a
two-state receptor where binding of ligand (L) induces a shift from
state R1 to R2. An example of such receptors are G-protein coupled
receptors; in contrast, receptor tyrosine kinases (RTKs) require ATP
hydrolysis for conformation changes.

In the model we consider, only the R2 state can bind to the
intracellular substrate (S; e.g. GGDP) and convert it to a product
(P; e.g. GGTP). This product can be thought of as a second messen-
ger; a small molecule that transmits the information from the
membrane receptor to downstream intracellular signaling pro-
cesses. With only one of the two states being active, the production
of second messengers from a single receptor molecule can occur in
bursts. A production period is then followed by a period of inactiv-
ity while the receptor exists in R1 conformation (Fig. 4B).

The product (P) time traces (Fig. 4B) are comparable to those
observed in transcriptional bursting [34]. The turnover time distri-
bution (Fig. 4C) shows the two timescales characteristic for burst-
ing systems [34]. The distributions of times spent in the active and
inactive states can be calculated in an analogous manner as the
turnover time distribution (Supplemental material Eq. (S-1)).

The burst size distribution can also be derived analytically [35].
If switching between the ligand bound and the free receptor state
is faster than switching between active and inactive states, the
durations of active and inactive periods approach exponential dis-
tributions and the burst size becomes geometrically distributed. At
the other extreme, if ligand association and dissociation is slow in
comparison to switching between active and inactive states, those
durations follow distributions with bi-exponential decay.
If signaling by a single cell would occur via a single receptor
molecule, the bursting activity of second messenger production
would limit information transmission. Unless, of course, the life
time of the second messenger is long enough such that fluctuations
in its production rate due to bursting are effectively averaged out.
However, this picture changes when multiple receptors are inde-
pendently signaling at the level of a single cell. Since, their activity
periods are then out of synchrony, bursting is reduced very effec-
tively. This is illustrated in Fig. 4B and C where we depict the turn-
over time distributions and the time traces of product formation
for one, three, and ten independent receptors. The noise in turn-
over time decreases from 18.2 (for the single receptor) to 1.1 (for
the ensemble of ten receptors). A bacterium with ten receptors
per cell would therefore not experience bursting in intracellular
signaling processes. Eukaryotes tend to have thousands of recep-
tors per cell.

For any type of turnover time distribution, the superposition of
several processes with this distribution will lead to an aggregate
turnover time distribution that converges to an exponential distri-
bution when the number of super imposed processes goes to infin-
ity [36]. Interestingly, ten receptors already come very close to
generating an exponential turnover time distribution. Therefore,
even for a small organism like Escherichia coli the noise in the turn-
over time distribution of a single receptor or transcription factor
can be expected not to be relevant for signaling or transcription;
unless their copy numbers are between 1 and 5 per cell, which is
the case for some transcription factors in E. coli. There exists an
additional source of signaling noise that derives from stochastic
fluctuations in the ligand concentration that regulates the receptor.
This we will discuss in the following section.

2.5. Fluctuating ligand concentrations in signaling can cause signaling
errors

Cells derive information about the concentration of an extracel-
lular ligand from the fractional occupancy of receptors (occupancy
probability; fraction of time that the receptor is bound to a signal
molecule). Starting from the active receptor the signal is transmit-
ted into the cell. Each step in the signal transmission has its own
noise causing little errors in signal transmission that accumulate.
What sets the fundamental precision limits with which a cell can
sense the concentration of an extracellular ligand? It turns out that
those limits are set by at least two factors. The first factor is the
speed of diffusion with which ligand molecules arrive at the cellu-
lar membrane. The second factor is the time period over which the
receptor occupancy is averaged before an intracellular signaling
event is initiated. Berg and Purcell [37] and later (using fewer
assumptions) Bialek and Setayeshgar [38] derived these limits.
Here we will shortly review them as an example of noise at the sin-
gle enzyme level that is not due to the enzyme mechanism but de-
rives from the noise in an allosteric regulator.

For a receptor with radius s the average number of molecules, n,
in the receptor’s detection volume is proportional to c � s3, with c as
the extracellular ligand concentration. The number of molecules in
this volume follows a Poisson distribution (zero-order influx and
first-order efflux from the volume). Thus, the variance in this mol-
ecule number will equal the mean molecule number. As a result,
the standard deviation becomes, dn = (c � s3)1/2. This is the ‘‘error’’
in the ligand copy number that a single receptor molecule
experiences.

Measurement of the same molecule that was bound earlier to
the same receptor does not improve the estimate of extracellular
concentration, as it is not an independent measurement. Re-equil-
ibration of the ligand molecules in the volume s3 with the bulk
solution is required for an independent measurement. A time
average over the receptor occupancy does, therefore, reduce the
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Fig. 4. GPCR. (A) G-protein coupled receptor with ligand dependent shift between intracellular domain conformations (see Supplemental material for complete model
description). (B) Time traces of (bursting) product formation for a single enzyme (black), 3 enzymes (green, dashed), and 10 enzymes (blue, dotted). For the single enzyme,
occupancies of ligand bound states and active (R2) states are shown above. (C) Turnover time probability density function for a single enzyme (black), 3 enzymes (green,
circle), and 10 enzymes (blue, triangle) with kþ1 ¼ 0:01; k�1 ¼ 0:2; kþ2 ¼ 1; k�2 ¼ 0:2; kþs � ½S� ¼ 5; k�s ¼ 1; kf 1½L� ¼ 0:25; kr1 ¼ 2; kf 2½L� ¼ 0:25; kr2 ¼ 0:02, and kc = 10. Distributions
for 3 and 10 enzymes are derived from stochastic simulations (StochPy; http://stochpy.sourceforge.net). The distribution for the single enzyme is the analytical solution.
Noise in the turnover time distribution is indicated by g.
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fractional error in concentration, d c/c, more if the averaging time is
long in comparison to the time that it takes to replace the mole-
cules in the receptor’s detection volume by new ones (re-equilibra-
tion); because then several independent measurements are taken
and averaged over. The time it takes to clear a volume of size s3

by diffusion is proportional to s2/D, with D as the ligand diffusion
coefficient. Exact coefficients again depend on the geometry of
the volume; the efflux out of the volume is D/s2c = kc and the auto-
correlation time then becomes 1/k. As a consequence, X = T/(s2/D)
independent measurements of the molecule number are achiev-
able in a time interval T. This reduces the error, dn, by a factor of
1/X1/2 (the variance decreases by the factor X�1 according to the

http://stochpy.sourceforge.net
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central limit theorem). In total, the coefficient of variation – ‘‘error’’
– in the concentration measurement can, therefore, be expected to
be equal to or higher than:

dn
n
¼ dc

c
¼ ðcs3Þ1=2

ðcs3ÞX1=2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T=ðs2=DÞcs3
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

DscT
p ð15Þ

A similar result can also be derived from a slightly different per-
spective: The rate with which ‘‘new’’ molecules, i.e., molecules that
have not bound to the receptor before, arrive at a single receptor is
proportional to 4Dsc. The exact expression depends on the geome-
try of the receptor (leading to differences between Eqs. (15) and
(16)). If the receptor is occupied with probability p, the number of
unique molecules bound to the receptor during a time interval T
therefore is proportional to 4Dsc(1 � p)T. Due to counting noise
alone, the minimum fractional error in the determination of the
receptor is:

dc
c
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� pÞ
p ffiffiffiffiffiffiffiffiffiffiffi

DscT
p ð16Þ

The error could be higher than this noise floor, but as shown in [37]
neither stirring of the medium nor swimming of the organism can
significantly improve this bound. The two ways in which the frac-
tional error can be minimized is by either taking longer time aver-
ages (increasing T) or by using multiple receptors.

Also in the case of multiple receptors only ‘‘new’’ molecules im-
prove the fractional error on the cell’s estimation of the concentra-
tion, ‘‘new’’ meaning here that a molecule did not bind to any of
the cell’s receptors before (‘‘double counting’’). The flux with which
such molecules arrive can be calculated exactly for the case that
receptors are distributed uniformly across the surface of a spheric
cell and equals [37]:

J ¼ 4paDc
Nsa

Nsþ pa
ð17Þ

Here, N denotes the number of receptor molecules and a the radius
of the cell. If receptors are distributed randomly rather than uni-
formly, the flux decreases only by a few percent. Whereas a cluster
of receptors receives a much lower flux of new molecules. The max-
imum flux of molecules would be achieved if the surface was com-
pletely covered with receptors. Interestingly, half of the maximum
flux is already achieved with N = pa/s receptors covering only about
1/1000 of the cell’s surface area. Also in the case of multiple recep-
tors the fractional error in concentration is equal to
dc
c ¼ ðJð1� pÞT=2Þ�1=2.

Some of these ideas have been tested experimentally on a sin-
gle-molecule level with the G-protein coupled cAMP receptor in
Dictyostelium [39,40]. The ligand cAMP as well as different proteins
in the signaling cascade, including the receptor and a few down-
stream messengers, were labeled fluorescently and monitored
with total internal reflection fluorescence microscopy. In this
way binding kinetics of the ligand as well as downstream signaling
events could be followed on a single-molecule level. The experi-
mental data confirmed the fundamental limits and showed that
the chemotactic system in Dictyostelium operates remarkably close
to these limits set by physics.

3. Concluding remarks

Enzymes are the workhorses of cells; essentially all cellular pro-
cesses are catalyzed by enzymes. Classically, enzymes have been
modeled with deterministic, macroscopic descriptions using
ordinary differential equations leading to the well-known equilib-
rium-binding and steady-state models of enzyme kinetics [41].
Single-molecule measurement methods have lead to the study of
the activity of single enzyme molecules [13,14]. These studies give
new insights into the roles of the fluctuating, catalytic activity of
enzymes due to the inherent stochasticity of enzyme-state transi-
tions, fluctuation in enzyme conformations, and in the substrates
of enzymes. Each of these aspects we have discussed in this work
using small mathematical models to introduce several of the main
concepts of this field to a wider audience.

The study of single-enzyme molecules indicates how molecular
processes in cells that are reliant on single-enzyme activity gener-
ate ‘‘noise’’ that can propagate to the phenotype. On top of that
noise is generated at the network level to give rise to significant
levels of non-genetic phenotypic heterogeneity, which is playing
a remarkably important role in the life of single cells [42].
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