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ALMOST THE BEST OF THREE WORLDS: RISK,

CONSISTENCY AND OPTIONAL STOPPING FOR THE

SWITCH CRITERION IN NESTED MODEL SELECTION

Stéphanie Van Der Pas and Peter Grünwald

Leiden University and CWI

Abstract: We study the switch distribution, introduced by van Erven, Grünwald

and De Rooij (2012), applied to model selection and subsequent estimation. While

switching was known to be strongly consistent, here we show that it achieves min-

imax optimal parametric risk rates up to a log logn factor when comparing two

nested exponential families, partially confirming a conjecture by Lauritzen (2012)

and Cavanaugh (2012) that switching behaves asymptotically like the Hannan-

Quinn criterion. Moreover, like Bayes factor model selection, but unlike standard

significance testing, when one of the models represents a simple hypothesis, the

switch criterion defines a robust null hypothesis test, meaning that its Type-I er-

ror probability can be bounded irrespective of the stopping rule. Hence, switching

is consistent, insensitive to optional stopping and almost minimax risk optimal,

showing that, Yang’s (2005) impossibility result notwithstanding, it is possible to

‘almost’ combine the strengths of AIC and Bayes factor model selection.

Key words and phrases: AIC-BIC dilemma, consistency, exponential family, model

selection, optional stopping, post model selection estimation, switch distribution,

worst-case risk.

1. Introduction

We consider the following standard model selection problem, where we have

i.i.d. observations X1, . . . , Xn and wish to select between two nested parametric

models,

M0 = {pµ | µ ∈M0} and M1 = {pµ | µ ∈M1}. (1.1)

Here the Xi are random vectors taking values in some set X , M1 ⊆ Rm1 for some

m1 > 0 andM0 = {pµ : µ ∈M0} ⊂ M1 represents an m0-dimensional submodel

ofM1, where 0 ≤ m0 < m1. We may thus denoteM0 as the ‘simple’ andM1 as

the ‘complex’ model. We assume that M1 is an exponential family, represented

as a set of densities on X with respect to some fixed underlying measure, so

that pµ represents the density of the observations, and we take it to be given in
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230 STÉPHANIE VAN DER PAS AND PETER GRÜNWALD

its mean-value parameterization. As the notation indicates, we require, without

loss of generality, that the parameterizations of M0 and M1 coincide, that is

M0 ⊂M1 is itself a set of m1-dimensional vectors, the final m1−m0 components

of which are fixed to known values. We restrict ourselves to the case in which

both M1 and the restriction of M0 to its first m0 components are products of

open intervals.

Most model selection methods output not just a decision δ(Xn) ∈ {0, 1}, but

also an indication r(Xn) ∈ R of the strength of evidence, such as a p-value or a

Bayes factor. As a result, such procedures can often be interpreted as methods for

hypothesis testing, whereM0 represents the null model andM1 the alternative;

a very simple example of our setting is when the Xi consist of two components

Xi ≡ (Xi1, Xi2), which according to M1 are independent Gaussians, whereas

underM2 they can have an arbitrary bivariate Gaussian distribution and hence

can be dependent. Since we allowM0 to be a singleton, this setting also includes

some simple, classical yet important settings such as testing whether a coin is

biased (M0 is the fair coin model, M1 contains all Bernoulli distributions).

We consider three desirable properties of model selection methods: (a) opti-

mal worst-case risk rate of post-model selection estimation (with risk measured in

terms of squared error loss, squared Hellinger distance, Rényi or Kullback-Leibler

divergence); (b) consistency, and (c), for procedures which also output a strength

of evidence r(Xn), whether the validity of the evidence is insensitive to optional

stopping under the null model. We evaluate the recently introduced model se-

lection criterion δsw based on the switch distribution (van Erven, Grünwald and

De Rooij (2012)) on properties (a), (b) and (c).

The switch distribution, introduced by1 van Erven, Grünwald and de Rooij

(2007), was originally designed to address the catch-up phenomenon, which oc-

curs when the best predicting model is not the same across sample sizes. The

switch distribution can be interpreted as a modification of the Bayesian predic-

tive distribution. It also has an MDL interpretation: if one corrects standard

MDL approaches (Grünwald (2007)) to take into account that the best predict-

ing method changes over time, one naturally arrives at the switch distribution.

Lhéritier and Cazals (2015) describe a practical application for two-sample se-

quential testing related to the developments in this paper, but in a nonparametric

context. We briefly give the definitions relevant to our setting in Section 2; for

1Matlab code for implementing model selection, averaging and prediction by the switch distribution
is available at http://www.blackwellpublishing.com/rss. In general run times are comparable to those
of the corresponding Bayesian methods.

http://www.blackwellpublishing.com/rss
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all further details we refer to van Erven, Grünwald and De Rooij (2012) and S5

in the Supplementary Materials.

When evaluating any model selection method, there is a well-known tension

between properties (a) and (b): the popular AIC method (Akaike (1973)) achieves

the minimax optimal parametric rate of order 1/n in the above problem, but is

inconsistent; the same holds for the many popular model selection methods that

asymptotically tend to behave like AIC, such as k-fold (for fixed k) and leave-one-

out-cross-validation, the bootstrap and Mallow’s Cp in linear regression (Efron

(1986); Shao (1997); Stone (1977)). On the other hand, BIC (Schwarz (1978))

is consistent in the sense that, for large enough n, it selects the smallest model

containing the ‘true’ µ, but it misses the minimax parametric rate by a factor

of log n. The same holds for traditional Minimum Description Length (MDL)

approaches (Grünwald (2007)) and Bayes factor model selection (BFMS) (Kass

and Raftery (1995)), of which BIC is an approximation. This might lead one

to wonder if there exists a single method that is optimal in both respects. A

key result by Yang (2005) shows that this is impossible: any consistent method

misses the minimax optimal rate by a factor g(n) with limn→∞ g(n) =∞.

In Section 4.2 we show that, Yang’s result notwithstanding, the switch distri-

bution allows us to get very close to satisfying properties (a) and (b) at the same

time, at least in the above problem (Yang’s result was shown in a nested linear

regression rather than our exponential family context, but it does hold in our

exponential family setting as well; see the discussion at the end of Section 3.3).

We prove that in our setting, the switch model selection criterion δsw misses the

minimax optimal rate only by a factor of gsw(n) � log log n (Theorem 1). Prop-

erty (b), strong consistency, was shown by van Erven, Grünwald and De Rooij

(2012). The factor gsw(n) � log logn is an improvement over the factor result-

ing from Bayes factor model selection, gbfms(n) � log n. Indeed, as discussed

in the introduction of van Erven, Grünwald and De Rooij (2012), the catch-up

phenomenon that the switch distribution addresses is intimately related to the

rate-suboptimality of Bayesian inference. van Erven, Grünwald and De Rooij

(2012) show that, while model selection based on switching is consistent, sequen-

tial prediction based on model averaging with the switching method achieves

minimax optimal cumulative risk rates in general parametric and nonparametric

settings, where the cumulative risk at sample size n is obtained by summing the

standard, instantaneous risk from 1 to n. In contrast, in nonparametric settings,

standard Bayesian model averaging typically has a cumulative risk rate that is

larger by a log n factor. Using the cumulative risk is natural in sequential pre-



232 STÉPHANIE VAN DER PAS AND PETER GRÜNWALD

diction settings, but van Erven, Grünwald and De Rooij (2012) left open the

question of how switching would behave for the more standard, instantaneous

risk. In contrast to the cumulative setting, we cannot expect to achieve the opti-

mal rate here by Yang’s (2005) result, but it is interesting to see that switching

gets so close.

We now turn to robustness to optional stopping. While consistency here

is an asymptotic and even somewhat controversial notion (see Section 6),there

exists a nonasymptotic property closely related to consistency that, while ar-

guably more important in practice, has received relatively little attention in the

literature. This is the insensitivity to optional stopping. In statistics, the issue

was thoroughly discussed, yet never completely resolved, in the 1960s; nowadays,

it is viewed as a highly desirable feature of testing methods by, for example,

psychologists; see Wagenmakers (2007); Sanborn and Hills (2014). In particular,

it is often argued (Wagenmakers (2007)) that the fixed stopping rule required

by the classical Neyman-Pearson paradigm severely and unnecessarily restricts

the application domain of hypothesis testing, invalidating much of the p-values

reported in the psychological literature. Some 55% of psychologists admitted in

a survey to deciding whether to collect more data after looking at their results to

see if they were significant (John, Loewenstein and Prelec (2012)). We analyze

property (c) in terms of robust null hypothesis tests, formally defined in Section 5.

A method defines a robust null hypothesis test if (1) it outputs evidence r(Xn)

that does not depend on the stopping rule used to determine n, and (2) (some

function of) r(Xn) gives a bound on the Type-I error that is valid no matter

what the stopping rule. Standard (Neyman-Pearson) null hypothesis testing and

tests derived from AIC-type methods are not robust in this sense. For example,

such tests cannot be used if the stopping rule is simply unknown, as is often

the case when analyzing externally provided data — but this is just the tip of

an iceberg of problems with nonrobust tests. For an exhaustive review of such

problems we refer to Wagenmakers (2007) who builds on, amongst others, Berger

and Wolpert (1988) and Pratt (1962).

Now, as first noted by Edwards, Lindman and Savage (1963), in simple

versus composite testing, the output of BFMS, the Bayes factor, does provide a

robust null hypothesis test. This is one of the main reasons why for example, in

psychology, Bayesian testing is becoming more and more popular (Dienes (2011);

Andrews and Baguley (2012)), even among ‘frequentist’ researchers (Sanborn and

Hills (2014)). In Section 5 we show that the same holds for the switch criterion:

if M0 is a singleton, so (1.1) reduces to a simple versus composite hypothesis
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test, then the evidence r(Xn) associated with the switching criterion has the

desired robustness property as well, and thus in this sense behaves like the Bayes

factor method. The advantage, from a frequentist point of view, of switching as

compared to Bayes is then that switching is more sensitive: our risk rate results

directly imply that the Type II error (1− power) of the switch criterion goes to

0 as soon as, at sample size n, the distance between the ‘true’ distribution µ1

and the null model, infµ∈M0
‖µ− µ1‖22, is of order (log log n)/n; for Bayes factor

testing, this distance must be of order (log n)/n (this was informally recognized by

Lhéritier and Cazals (2015), who reported substantially larger power of switching

as compared to the Bayes factor method in a sequential two-sample test setting).

Thus, for singleton M0, switching gives us minimax rate optimality up to

a log log n factor (in contrast to BFMS), consistency (in contrast to AIC-type

methods), and nonasymptotic insensitivity to optional stopping (in contrast to

standard Neyman-Pearson testing), in combination with a small Type-II error.

For compositeM0, we show that nonasymptotic robustness to optional stopping

still holds, albeit only in a much weaker sense — thus pointing towards an obvi-

ous goal for future work: the modification of the switch distribution to get full

optional stopping robustness for composite M0.

Organization This paper is organized as follows. The switch criterion is in-

troduced in Section 2. In Section 3, we provide some preliminaries: we list the

loss/risk functions for which our result holds, describe the sets in which the

truth is assumed to lie, and discuss the tension between consistency and rate-

optimality. Suitable post-model-selection estimators to be used in combination

with the switch criterion are introduced in Section 4, after which our main result

on the worst-case risk of the switch criterion is stated. We also go into the re-

lationship between the switch criterion and the Hannan-Quinn criterion in that

section. In Section 5 we define robust null hypothesis tests, give some examples,

and show that testing by switching has the desired nonasymptotic robustness

to optional stopping; in constrast, AIC does not satisfy such a property at all

and the Hannan-Quinn criterion only satisfies an asymptotic analogue. We also

provide some simulations that illustrate our results. Section 6 provides some

additional discussion and ideas for future work. Proofs are given in the Supple-

mentary Materials.

Notation and Conventions We use xn = x1, . . . , xn to denote n observations,

each taking values in a sample space X . For a set of parameters M , µ ∈M , and

x ∈ X , pµ(x) denotes the density or mass function of x under the distribution
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Pµ of random variable X, taking values in X . This is extended to n outcomes

by independence, so that pµ(xn) :=
∏n
i=1 pµ(xi) and Pµ(Xn ∈ An), abbreviated

to Pµ(An), denotes the probability that Xn ∈ An for Xn = X1, . . . , Xn i.i.d.

∼ Pµ. Similarly, Eµ denotes expectation under Pµ. We write an � bn to denote

0 < limn→∞ inf an/bn ≤ limn→∞ sup an/bn <∞. When we refer to a sample size

n, n ≥ 3.

When we refer to standard properties of exponential families they can be

found, in precise form, in (Barndorff-Nielsen (1978)) and, on a less formal level,

in (Grünwald (2007, Chapters 18,19)).

2. Model Selection by Switching

The switch distribution (van Erven, Grünwald and de Rooij (2007); van Er-

ven, Grünwald and De Rooij (2012)) is a modification of the Bayesian predictive

distribution, inspired by Dawid (1984) ‘prequential’ approach to statistics and

the related Minimum Description Length (MDL) Principle (Barron, Rissanen

and Yu (1998); Grünwald (2007)). The corresponding switch criterion can be

thought of as Bayes factor model selection with a prior on meta-models, where

each meta-model consists of a sequence of basic models and associated starting

times: until time t1, follow model k1, from time t1 to t2, follow model k2, and so

on. The fact that we only need to select between two nested parametric mod-

els allows us to considerably simplify the set-up of van Erven, Grünwald and

De Rooij (2012), who dealt with countably infinite sets of arbitrary models.

It is convenient to directly introduce the switch criterion as a modification

of the Bayes factor model selection (BFMS). Assuming equal prior 1/2 on each

of the modelsM0 andM1, BFMS associates each modelMk, k ∈ {0, 1}, with a

marginal distribution pB,k with

pB,k(x
n) :=

∫
µ∈Mk

ωk(µ)pµ(xn)dµ, (2.1)

where ωk is a prior density on Mk. It then selects model M1 if and only if

pB,1(xn) > pB,0(xn).

The basic idea behind MDL model selection is to generalize this in the sense

that each model Mk is associated with some ‘universal’ distribution pU,k; one

then picks the k for which pU,k(x
n) is largest. pU,k may be set to the Bayesian

marginal distribution, but other choices may be preferable in some situations.

Switching is an instance of this; in our simplified setting, it amounts to associating

M0 with a Bayes marginal distributon pB,0 as before. pU,1 however is set to
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the switch distribution psw,1. This distribution corresponds to a switch between

modelsM0 andM1 at some sample point s, which is itself uncertain; before point

s, the data are modelled as coming from M0, using pB,0; after point s, they are

modelled as coming fromM1, using pB,1. Formally, we denote the strategy that

switches from the simple to the complex model after t observations by p̄t; psw,1

is then defined as the marginal distribution by averaging p̄t over t, with some

probability mass function π (analogous to a Bayesian prior) over t ∈ {1, 2, . . .}:

p̄t(x
n) = pB,0(xt−1) · pB,1(xt, . . . , xn | xt−1),

psw,1(xn) =

∞∑
t=1

π(t)p̄t(x
n),

where switching at t = 1 corresponds to predicting with pB,1 at each data point,

and switching at any t > n to predicting with pB,0. Even for i.i.d. models,

pB,1(xt, . . . , xn | xt−1) usually depends on xt−1 — the Bayes predictive distribu-

tion learns from data. The model selection criterion δsw mapping sequences of

arbitrary length to k ∈ {0, 1} is then defined, for each n, as:

δsw(xn) =


0 if

psw,1(xn)

pB, 0(xn)
≤ 1,

1 if
psw,1(xn)

pB, 0(xn)
> 1.

(2.2)

When defining psw,1 it is sufficient to consider switching times that are a power

of two. Thus, we restrict attention to ‘priors’ π on switching time with support

on 20, 21, 22, . . .. For our subsequent results to hold, π should be such that π(2i)

decays like i−κ for some κ > 1. An example of such a prior with κ = 2 is

π(2i) = 1/((i+ 1)(i+ 2)), π(j) = 0 for any j that is not a power of 2.

To prepare for Theorem 1, we instantiate the switch criterion to the problem

(1.1). We define pB,1 as any distribution of the form (2.1) where ω1 is a con-

tinuous prior density on M1 that is strictly positive on all µ ∈ M1. Because we

parameterizedM0 in terms of an M0 that has a fixed value on its final m1−m0

components, it is an m0-dimensional family with an m1-dimensional parameter-

ization, so one cannot easily express a prior on M0 as a density on M0. Thus,

when M0 has a single element ν, we define pB,0 = pν , when m0 > 0, we define

Π′0 : M0 → Rm0 as the projection of µ ∈ M0 on its first m0 components, and

Π′0(M0) := {Π′0(µ) : µ ∈ M0}. For µ ∈ M0, we define pΠ′
0(µ) = pµ, and we then

let ω0 be a continuous strictly positive prior density on Π′0(M0), and we define

pB,0(xn) :=
∫
µ′∈Π′

0(M0) ω0(µ′)pµ′(xn)dµ′.

That we associateM1 with a distribution incorporating a ‘switch’ fromM0
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to M1 does not mean that we really believe that data were sampled, until some

point t, according to M0, then according to M1; rather, it is suggested by pre-

quential and MDL considerations, that suggest that one should pick the model

that performs best in sequentially predicting data. If the data are sampled from

a distribution in M1 that is not in M0, but quite close to it in KL divergence,

then pB,1 is suboptimal for sequential prediction, and can be substantially out-

performed by psw,1, see van Erven, Grünwald and De Rooij (2012).

The criterion (2.2) is not equivalent to the special case of the construction

of van Erven, Grünwald and De Rooij (2012), specialized to two models, but

rather a simplification thereof. We do this for ease of exposition; the impact of

simplifying the original switch criterion to (2.2) is minimal. Varying the exponent

κ in the prior π(2i) ∝ i−κ defined above — which is a free parameter of the

switch distribution — has a stronger effect on the switch criterion than switching

between the two versions of the switch distribution. This is explained in the

Supplementary Materials, where we also explain why all our results continue

to hold if we were to follow the original construction; conversely, the strong

consistency result for the construction of van Erven, Grünwald and De Rooij

(2012) trivially continues to hold for the criterion (2.2).

3. Rate-Optimality of Post-Model Selection Estimators

This section contains some background to our main result, Theorem 1. In

Section 3.1, we first list the loss functions for which our main result holds, and

define the CINECSI sets in which the truth is assumed to lie. We then discuss

the minimax parametric risk for our model selection problem in Section 3.2. This

section ends with a discussion on the generality of the impossibility result of Yang

(2005) in Section 3.3.

3.1. Loss functions and CINECSI sets

Let M = {pµ | µ ∈ M} be an exponential family given in its mean-value

parameterization with M ⊂ Rm a product of m open, possibly but not necessarily

unbounded intervals for some m > 0. We do not require the family to be ‘full’;

for example, the Bernoulli model with success probability µ ∈ M1 = (0.2, 0.4)

counts as an exponential family in our (standard) definition.

Suppose that we measure the quality of a density pµ′ as an approximation

to pµ by a loss function L : M × M → R. The standard definition of the

(instantaneous) risk of estimator µ̆ :
⋃
i>0X i → M at sample size n, as defined
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relative to loss L, is given by its expected loss,

R(µ, µ̆, n) = Eµ [L(µ, µ̆(Xn))] ,

where Eµ denotes expectation over X1, . . . , Xn i.i.d. ∼ Pµ. Popular loss functions

are: squared error loss: dSQ(µ′, µ) = ‖µ′ − µ‖22; standardized squared error loss:

dST (µ′‖µ) := (µ− µ′)T I(µ′)(µ− µ′), (3.1)

where T denotes transpose, I(·) is the Fisher information matrix, and we view

µ and µ′ as column vectors; Rényi divergence of order 1/2: dR(µ′, µ) = −2 log

Eµ′ [(pµ(X)/pµ′(X))1/2]; squared Hellinger distance dH2(µ′, µ)=2(1− Eµ′ [(pµ(X)/

pµ′(X))1/2]); and Kullback-Leibler divergence D(pµ′‖pµ), henceforth abbreviated

to D(µ′‖µ).

There is a direct relationship between the Rényi divergence and squared

Hellinger distance:

dH2(µ′, µ) = 2
(

1− e−dR(µ′,µ)/2
)
. (3.2)

We show below that these loss functions are all equivalent (equal up to universal

constants) on CINECSI sets, defined as follows.

Definition 1 (CINECSI). A CINECSI (Connected, Interior-Non-Empty-Com-

pact-Subset-of-Interior) subset of a set M is a connected subset of the interior

of M that is itself compact and has nonempty interior.

The following proposition is proved in the Supplementary Materials.

Proposition 1. Let M be the mean-value parameter space of an exponential

family, and let M ′ be a CINECSI subset of M . Then there exist positive constants

c1, c2, . . . , c6 such that for all µ, µ′ ∈M ′,

c1‖µ′ − µ‖22 ≤ c2 · dST (µ′‖µ) ≤ dH2(µ′, µ) ≤ dR(µ′, µ) ≤ D(µ′‖µ) ≤ c3‖µ′ − µ‖22.
(3.3)

and for all µ′ ∈M ′, µ ∈M ,

dH2(µ′, µ) ≤ c4‖µ′ − µ‖22 ≤ c5 · dST (µ′‖µ) ≤ c6‖µ′ − µ‖22. (3.4)

CINECSI subsets are a variation on the INECCSI sets of Grünwald (2007).

Our main result holds for all the above loss functions, and for general ‘sufficiently

efficient’ estimators. The equivalence of the losses on CINECSI sets helps in the

proofs, but we never require these estimators to be restricted to CINECSI subsets

of M — although, since we require M to be open, every ‘true’ µ ∈M will lie in

some CINECSI subset M ′ of M , albeit unknown.
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3.2. Minimax parametric risk

We say that a quantity fn converges at rate gn if fn � gn. We say that an

estimator µ̆ is minimax-rate optimal relative to a model M = {pµ | µ ∈ M}
restricted to a subset M ′ ⊂M if

sup
µ∈M ′

R(µ, µ̆, n) � inf
µ̇

sup
µ∈M ′

R(µ, µ̇, n),

where µ̇ ranges over all estimators of µ at sample size n.

For parametric models, (3.2) is typically of order 1/n when R is defined

relative to any of the loss measures defined in Section 3.1 and M ′ is an arbi-

trary CINECSI subset of M (van der Vaart (1998)) — models for which this

holds include e.g. most location families and all curved exponential families,

which include as a special case all standard exponential families. For this rea-

son, we refer to 1/n as the minimax parametric rate. The restriction µ ∈ M ′

is imposed only on the data-generating distribution, not on the estimators and,

since we require models with open parameter sets M such that for every δ > 0,

there is a CINECSI subset M ′δ of M with supµ∈M infµ′∈M ′
δ
‖µ − µ′||22 < δ, every

possible µ ∈ M will also lie in some CINECSI subset M ′δ that ‘nearly’ covers

Mδ. This makes the restriction to CINECSI M ′ a mild one. Still a restriction

is necessary; at least for squared error loss, for most exponential families, we

have inf µ̇ supµ∈M ′
δ
R(µ, µ̇, n) = Cδ/n for some constant Cδ > 0, which can grow

arbitrarily large as δ → 0.

Now consider a model selection criterion δ :
⋃
i>0X i → {0, 1, . . . ,K−1} that

selects, for given data xn of arbitrary length n, one of a finite number K of para-

metric models M0, . . . ,MK−1 with respective parameter sets M0, . . . ,MK−1.

One way to evaluate the quality of δ is to consider the risk attained after first

selecting a model and then estimating the parameter vector µ using an esti-

mator µ̆k associated with each model Mk. This post-model selection estima-

tor (Leeb and Pötscher (2005)) is denoted by µ̆k̆(x
n), where k̆ is the index

of the model selected by δ. The risk of a model selection criterion δ is thus

R(µ, δ, n) = Eµ
[
L(µ, µ̆k̆(X

n))
]
, where L is a given loss function, and its worst-

case risk relative to µ restricted to M ′k ⊂Mk is given by

sup
µ∈M ′

k

R(µ, δ, n) = sup
µ∈M ′

k

Eµ
[
L(µ, µ̆k̆(X

n))
]
. (3.5)

Definition 2. A model selection criterion δ achieves the minimax parametric

rate if there exist estimators µ̆k, one for eachMk under consideration, such that,

for every CINECSI subset M ′k of M ,
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sup
µ∈M ′

k

R(µ, δ, n) � 1

n
.

The restriction µ ∈M ′k is imposed only on the data-generating distribution,

not on the estimators.

3.3. The result of Yang (2005) transplanted to our setting

We specialize the above setting to problem (1.1) where we select between two

nested exponential families, given in their mean-value parameterization. Thus

M1 contains distributions from an exponential family parametrized by an m1-

dimensional mean vector µ, and the ‘simple’ model M0 contains distributions

with the same parametrization, where the final m1 −m0 components are fixed

to values νm0+1, . . . , νm1
. We require that M1 and M0 are of the form

M1 = (ζ1,1, η1,1)× · · · × (ζ1,m1
, η1,m1

),

M0 = (ζ0,1, η0,1)× · · · × (ζ0,m0
, η0,m0

)× {νm0+1} × · · · × {νm1
} (3.6)

where, for j = 1, . . . ,m0, we have −∞ ≤ ζ1,j ≤ ζ0,j < η0,j ≤ η1,j ≤ ∞; and for

j = m0 + 1, . . . ,m1, we have −∞ ≤ ζ1,j < νj < η1,j ≤ ∞.

For example, M1 could contain all normal distributions with mean µ and

variance σ2, with mean value parameters µ1 = µ2 + σ2 and µ2 = µ, and M1 =

(0,∞) × (−∞,∞), while M0 could contain all normal distributions with mean

zero and unknown variance σ2, so M0 = (0,∞)× {0}.
Yang (2005) showed in a linear regression context that a model selection

criterion cannot both achieve the minimax optimal parametric rate and be con-

sistent. Our (3.8) provides some insight into why this can occur. A similar

inequality in Yang’s paper, in a linear regression context, remains valid in our

exponential family setting, and the derivations are essentially equivalent.

For µ1 = (µ1,1, . . . , µ1,m1
)T ∈M1, take

Π0(µ1) := (µ1,1, . . . , µ1,m0
, νm0+1, . . . , νm1

)T (3.7)

to be the projection of µ1 on M0. Here Π0 is a function from Rm1 to Rm1 , whereas

Π′0 in Section 2 is a function from Rm1 to Rm0 ; Π0(µ1) and Π′0(µ1) agree in the

first m0 components. Thus Π0(µ1) minimizes, among all µ ∈ M0, the squared

Euclidean distance ‖µ− µ1‖22 to pµ1
, and it also minimizes, among µ ∈ M0, the

KL divergence D(pµ1
‖pµ) (Grünwald (2007, Chap. 19)); we think of it as the

‘best’ approximation of the ‘true’ µ1 within M0, and usually abbreviate Π0(µ1)

to µ0.

Let An be the event that the complex model is selected at sample size n.
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Since M1 is an exponential family, the MLE µ̂1 is unbiased and µ̂0 coincides

with µ̂1 in the first m0 components, so that Eµ1
[µ0 − µ̂0(Xn)] = 0. Hence we

can rewrite, for any µ1 ∈M1, the squared error risk as

R(µ1, δ, n) = Eµ1

[
1An‖µ1 − µ̂1(Xn)‖22 + 1Acn‖µ1 − µ̂0(Xn)‖22

]
= Eµ1

[
1An‖µ1 − µ̂1(Xn)‖22 + 1Acn‖µ0 − µ̂0(Xn)‖22 + 1Acn‖µ1 − µ0‖22

]
≤ Eµ1

[
‖µ1 − µ̂1(Xn)‖22 + ‖µ0 − µ̂0(Xn)‖22

]
+ P(Acn)‖µ1 − µ0‖22

≤ 2R(µ1, µ̂1, n) + P(Acn)‖µ1 − µ0‖22. (3.8)

The first term on the right of (3.8) is of order 1/n. The second term depends

on the probability of selecting the simple model when it is not true. A low worst-

case risk is attained if this probability is small, even if the true parameter is close

to µ0. This leaves the possibility for a risk-optimal model selection criterion

to incorrectly select the complex model with high probability, or, a risk-optimal

model selection method may not be consistent if the simple model is correct. The

theorem by Yang (2005) shows that it cannot be. It seems likely that his result

holds in much more general settings: a procedure attains a low worst-case risk by

selecting the complex model with high probability, which leads to inconsistency

if the simple model is correct. The same holds in our exponential family problem

(1.1) as long as M0 = {ν} is a singleton (van der Pas (2013)). As the switch

criterion is strongly consistent (van Erven, Grünwald and De Rooij (2012)), the

worst-case risk rate of the switch criterion cannot be of the order 1/n in general.

4. Main Result

We perform model selection by using the switch criterion; after the model se-

lection, we estimate the underlying parameter µ. We discuss post-model selection

estimators suitable to our problem in Section 4.1. We present our main result in

Section 4.2: the worst-case risk for the switch criterion under the loss functions

listed in Section 3.1 attains the minimax parametric rate up to a log log n factor.

4.1. Post-model selection: sufficiently efficient estimators

Our goal is to determine the worst-case rate for the switch criterion applied to

two nested exponential families, which we combine with an estimator as follows:

if the simple model is selected, µ is estimated by an estimator µ̆0 with range

M0; if the complex model is selected, µ is estimated by another estimator µ̆1

with range M1. Our result holds for all estimators µ̆0 and µ̆1 that are sufficiently

efficient :
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Definition 3 (sufficiently efficient). The estimators {µ̆k → Mk | k ∈ {0, 1}}
are sufficiently efficient with respect to a divergence measure dgen(·‖·) if, with

µ0 = Π0(µ1), for every CINECSI subset M ′1 of M1 there exists a constant C > 0

such that for all n,

sup
µ1∈M ′

1

Eµ1
[dgen(µ0‖µ̆0)] ≤ C · sup

µ1∈M ′
1

Eµ1
[dgen(µ1‖µ̆1)] ≤ C

n
. (4.1)

This is a stronger requirement than just rate-optimality: we additionally

require that, if the estimate µ̆0 is used on data sampled from µ1 ∈M1 (‘misspec-

ification’), then µ̆0 converges to µ0, the best approximation of µ1 within M0 at

rate O(1/n). In the Supplementary Materials we provide a detailed discussion of

sufficiently efficient estimators by means of several examples.

4.2. Main result: risk of the switch criterion

We show that for the exponential family problem under consideration, the

worst-case instantaneous risk rate of δsw is of order (log log n)/n, while maintain-

ing consistency.

The theorem holds for squared error loss, standardized squared error loss,

KL divergence, Rényi divergence of order 1/2, or squared Hellinger distance,

with dgen denoting any of them. Apart from the sufficiently efficient condition

on µ̆0 and µ̆1, we rule out the use of improper prior densities, and require that

the prior probability of switching at time t = 2i be strictly decreasing and not

exponentially small in i. Since these priors are user-defined, these conditions can

easily be satisfied.

Theorem 1. Let M0 = {pµ | µ ∈ M0} and M1 = {pµ | µ ∈ M1} be nested

exponential families in their mean-value parameterization, where M0 ⊆ M1 are

of the form (3.6). If µ̆0 and µ̆1 are sufficiently efficient estimators relative to the

chosen loss dgen; and if δsw is constructed with pB,0 and pB,1 defined as in Section

2 with priors ωk that admit a strictly positive, continuous density; and if psw,1 is

defined relative to a prior π with support on {0, 1, 2, 4, 8, . . .} and π(2i) ∝ i−κ for

some κ > 1, then for every CINECSI subset M ′1 of M1, we have

sup
µ1∈M ′

1

R(µ1, δsw, n) = O

(
log logn

n

)
,

for R(µ, δsw, n) the risk at sample size n defined relative to the chosen loss dgen.



242 STÉPHANIE VAN DER PAS AND PETER GRÜNWALD

Example 1 (Switching vs. Hannan-Quinn). In their comments on van Erven,

Grünwald and De Rooij (2012), Lauritzen (2012) and Cavanaugh (2012) sug-

gested a relationship between the switch model selection criterion and the crite-

rion due to Hannan and Quinn (1979). For the exponential family models under

consideration, the Hannan-Quinn criterion with parameter c, denoted as HQ has

δHQ(xn) = 0 if

− log pµ̂0
(xn) < − log pµ̂1

(xn) + c log logn,

and is 1 otherwise. Hannan and Quinn show that this criterion is strongly con-

sistent for c > 1.

As shown by Barron, Birgé and Massart (1999), under some regularity con-

ditions, penalized maximum likelihood criteria achieve worst-case quadratic risk

of the order of their penalty divided by n. One can show that this holds in our

specific setting and hence, that the worst-case risk rate of HQ for our problem

is of order (log log n)/n. Our main result has the same risk rate achieved by the

switch distribution, thus partially confirming the conjecture of Lauritzen (2012)

and Cavanaugh (2012): HQ achieves the same risk rate as the switch distribu-

tion and, for the right choice of c, is also strongly consistent. Thus the switch

distribution and HQ, at least for some specific value c0, may behave asymptoti-

cally indistinguishably. van der Pas (2013) suggests that this is indeed the case

if M0 is a singleton and, in this sense the conjecture of Lauritzen (2012) and

Cavanaugh (2012) has only been partially resolved.

To compare the two, for this parametric problem, HQ has the advantage

of being simpler to analyze and implement. The criterion δsw can however, be

used to define a robust hypothesis test as in Section 5 below. We show that HQ

is insensitive to optional stopping in an asymptotic sense only, whereas robust

tests such as the switch criterion are insensitive to optional stopping in a much

stronger, nonasymptotic sense. Another advantage of switching is that it can be

combined with arbitrary priors and applied more generally, for example when the

constituting models are themselves nonparametric (Lhéritier and Cazals (2015)).

5. Robust Null Hypothesis Tests

Bayes factor model selection, the switch criterion, AIC, BIC, HQ, and most

model selection methods used in practice are based on thresholding the output

of a more informative model comparison method. Given data xn, one outputs

a number r(xn) between 0 and ∞ that is a deterministic function of the data

xn. Every model comparison method r and threshold t has an associated model
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selection method δr,t that outputs 1 (corresponding to selecting model M1) if

r(xn) ≤ t, and 0 otherwise. Such model comparison methods can often be

viewed as performing a null hypothesis test with M0 the null hypothesis, M1

the alternative hypothesis, and t akin to a significance level.

Example 2 (BFMS). The output of the Bayes factor model comparison method

is the posterior odds ratio rBayes(x
n) = P(M0|xn)/P(M1|xn). The associated

model selection method (BFMS) with threshold t selects model M1 if and only

rBayes(x
n) ≤ t.

Example 3 (AIC). Standard AIC selects model M1 if log(pµ̂1
(xn)/pµ̂0

(xn)) >

m1−m0, but we consider more conservative versions of AIC that only selectM1

if

log

(
pµ̂1

(xn)

pµ̂0
(xn)

)
− (m1 −m0) ≥ − log t. (5.1)

We can thus think of AIC as a model comparison method that outputs the left-

hand side of (5.1), and that becomes a model selection method when supplied

with a particular t.

Neyman-Pearson null hypothesis testing requires the sampling plan, or equiv-

alently, the stopping rule, to be determined in advance to ensure the validity of

the subsequent inference. Greater flexibility in choosing the sample size n is

desirable (Wagenmakers (2007) provides examples and discussion). We discuss

hypothesis tests that allow such flexibility in that their Type I-error probability

remains bounded irrespective of the stopping rule used, and term them robust

tests. We find that for simple vs. composite testing, both Bayes factor model se-

lection (BFMS) and the switch distribution define such tests, whereas AIC does

not and HQ does so only in an asymptotic sense.

5.1. Bayes factors with singleton M0 are robust under optional stop-

ping

In many cases, for each 0 < α < 1 there is an associated threshold t(α),

a strictly increasing function of α, such that for every t ≤ t(α), δr,t is a null

hypothesis significance test (NHST) with type-I error probability bounded by α.

In particular, δr,t(α) is a standard NHST with type-I error bounded by α.

We say that model comparison method r defines a robust null hypothesis test

for null hypothesis M0 if, for all µ0 ∈M0 and 0 ≤ α ≤ 1,

Pµ0
(∃n : δr,t(α)(X

n) = 1) ≤ α. (5.2)

Hence, a test that satisfies (5.2) is a NHST test at each fixed significance level α,
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independently of the stopping rule used. If a researcher can obtain a maximum of

n observations, the probability of incorrectly selecting the complex model remains

bounded away from one, regardless of the number of observations made.

We may view the output of BFMS as a ‘robust’ variation of the p-value.

This was noted by Edwards, Lindman and Savage (1963) and interpreted as a

frequentist justification for BFMS.

Theorem 2 (Special Case of Eq. (2) of Shafer et al. (2011)). Let M0,M1,M0

and M1 be as in Theorem 1 with common support X ⊂ Rd for some d > 0. Let

(X1, X2, . . .) be an infinite sequence of random vectors all with support X , and

fix distributions, P̄0 and P̄1 on X∞ If for each n, p̄
(n)
j represents the marginal

density of (X1, . . . , Xn) for the first n outcomes under distribution P̄j, relative to

some product measure ρn on (Rd)n then for all α ≥ 0,

P̄0

(
∃n :

p̄
(n)
0 (Xn)

p̄
(n)
1 (Xn)

≤ α

)
≤ α.

We first apply this result for Bayes factor model selection, with model priors

π0 = π1 = 1/2 , so that rBayes(x
n) = P(M0|xn)/P(M1|xn) = pB,0(xn)/pB,1(xn).

We immediately see:

Corollary 1. If M0 = {µ0} is a simple null model, then pB,0 = pµ0
so that from

(5.2), if t(α) = α, Bayes factor model selection is a robust test.

For a composite M0, full robustness requires that (5.2) holds for all µ0 ∈
M0. Our simulations show that this is generally not the case for Bayes factor

model selection. We still have robustness in a weaker sense, robustness in prior

expectation relative to prior ω0 on M0, in that for all 0 ≤ α ≤ 1,

PB,0(∃n : δr,t(α)(X
n) = 1) ≤ α, (5.3)

where PB,0 is the Bayes marginal distribution under prior ω0. Thus, if the prior

ω0 on modelM0 holds, then the BFMS method still gives robust p-values, inde-

pendently of the stopping rule.

Remark 1. One may be interested in a significance level αn that is a fixed

function of the sample size n. Both Bayesian and switch-based model comparison

may be used in this manner, and Theorem 2 still holds with α replaced by αn.

5.2. AIC is not, and HQ is only asymptotically robust

Here, for every function t : (0, 1) → R>0 we have, even for every single

0 < α < 1, that δAIC,t(α) is not a robust test for significance level α, and AIC
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cannot be transformed into a robust test in this sense. For example, compare

a 0-dimensional (fixed mean µ0) with a 1-dimensional Gaussian location family

M1. Evaluating the left hand side of (5.1), δAIC,t(α) selects the complex model

if ∣∣∣∣∣
n∑
i=1

X̃i

∣∣∣∣∣ ≥
√

2n

t(α)
, (5.4)

where the X̃i are variables with mean 0 and variance 1 if M0 is correct. As a

consequence of the Law of the Iterated Logarithm (see for example van der Vaart

(1998)), with probability one infinitely many n exist such that the complex model

is favored, even though it is incorrect.

In this example, the HQ criterion, in the notation of (5.4), selects the complex

model if ∣∣∣∣∣
n∑
i=1

X̃i

∣∣∣∣∣ ≥√2cn log logn.

If c > 1 (when HQ is strongly consistent), this inequality almost surely fails for

infinitely many n, as again follows from the Law of the Iterated Logarithm. This

reasoning can be extended to other exponential families, and we find that the

HQ criterion with c > 1 is robust to optional stopping in the crude, asymptotic

sense that the probability that there exist infinitely many sample sizes such that

the simple model is incorrectly rejected is zero. Yet HQ does not define a robust

hypothesis test in the sense above: to get the numerically precise Type I-error

bound (5.2) we would need to define t(α) in a model-and sample-size-dependent

manner, which is quite complicated in all cases except the Gaussian location

families where the asymptotics hold precisely. The same type of asymptotic

robustness holds for the BIC criterion as well.

5.3. Switching with singleton M0 is robust under optional stopping

As with BFMS, switching can be used as a robust null hypothesis test, as long

asM0 is a singleton: we can view the switch distribution as a model comparison

method that outputs odds ratio rsw(xn) = pB,0(xn)/psw,1(xn). Until now, we

used it to select model 1 if rsw(xn) ≤ 1. If instead we fix a significance level

α and select model 1 if rsw(xn) ≤ α, then we immediately see, by applying

Theorem 2 in the same way as for the Bayes factor case, that rsw constitutes

a robust null hypothesis test as long as M0 is a singleton model (of course, if

we select M1 as soon as rsw outputs t ≤ α, then α is merely an upper bound

on the Type-I error; the actual value might even be lower, as illustrated in the
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simulations below). From a frequentist perspective, switching is preferable to

BFMS, since it has substantially better power (Type-II error) properties. As can

be seen from (3.8), there is a connection between Type-II error and the risk rate

achieved by any model comparison method.

Corollary 2. Using the same notation and conditions of Theorem 1, for any

α > 0, there exist constants C1, C2 > 0 such that, for every CINECSI subset M ′1
of M1, and every sequence µ

(1)
1 , µ

(2)
1 , . . . of elements of M ′1 satisfying for all n,

infµ0∈M0
‖µ(n)

1 − µ0‖22 ≥ C1(log log n)/n, we have

Pµ(n)
1

(rsw(xn) ≥ α) ≤ C2

log n
. (5.5)

For a fixed significance level, the power of testing by switching goes to 1 as

long as the data are sampled from a distribution µ
(n)
1 in M1 farther away from

M0 than O((log log n)/n); for BFMS, the power goes to 1 if µ(n) is farther away

than order O((log n)/n).

Corollary 2 holds for general M0 including composite ones. Yet robustness

to optional stopping only holds if M0 is a singleton; if M0 is composite then,

using again the same argument as for the Bayes factor case, we see from Theo-

rem 2 that the much weaker ‘prior expected robustness’ property (5.3) still holds.

Simulations show that full robustness does fail if µ0 is far out in the tails of the

prior ω0.

5.4. Simulation study

We did a simulation to illustrate the differences between AIC, BIC, HQ, and

the switch criterion in terms of consistency, strong consistency and robustness to

optional stopping. In each setting, two of three models were compared: M0 =

{N (0, 1)}; M1 = {N (µ, 1), µ ∈ R}, with a normal prior with mean zero and

variance equal to 100 on µ; M2 = {N (µ, σ2), µ ∈ R, σ ∈ R>0}, with a normal-

inverse-gamma prior: µ|σ2 ∼ N (0, C × σ2), σ2 ∼ IG(α, β), with C = 100, α =

1, β = 1.

To illustrate standard consistency,M1 andM2 were considered. In the first

setting, M1 was true. N = 1,000 data sets of length n = 2,500 were generated

from a standard normal distribution, and AIC, BIC, HQ with c = 1.05 and δsw

were evaluated at each sample size. The average selected model index (0 forM1,

1 for M2) is given in Figure 1.

In the second setting,M2 was true. The data were generated from a normal

distribution with mean 0 and a variance that varied. For each value of σ, N =

1,000 datasets of length n = 2,500 were generated, and the four model selection
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Average selected model index 
 Index 0 is correct

n

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1,000 1,500 2,000 2,500

AIC HQ, c = 1.05 Switch BIC

Figure 1. N = 1,000 data sets of length n = 2,500 were generated from a standard normal
distribution and the criteria were evaluated at each sample size. The figure shows the
average selected model index (0 for M1, 1 for M2). The true index is 0.

Average selected model index 
 Index 1 is correct

σ

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.05 1.10

AIC HQ, c = 1.05 Switch BIC

Figure 2. N = 1,000 data sets of length n = 2,500 were generated from a normal
distribution with mean 0 and variance σ2 for a range of values of σ. The criteria were
evaluated at n = 2,500. The figure shows the average selected model index (0 for M1,
1 for M2). The true index is 1.

criteria were evaluated at that sample size. The average selected model index is

given in Figure 2.
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Probability of false rejection opportunity 
 after sample size n

n

0.00

0.05

0.10

0.15

0 500 1,000 1,500

scenario 1 scenario 2 scenario 3

Figure 3. N = 1,000 data sets of length nmax = 10,000 in each scenario, from the simple
model. The complex model was selected when δsw(xn) > 20. Estimated probability that
there exists a model index after n at which the complex model is selected. Results shown
up to n = 1,500, after which the three curves are indistinguishable.

The results are as expected. When the complex model is true, AIC is most

likely to select it, at the cost of inconsistency when the simple model is true.

BIC is the slowest to correctly select the complex model and the first to correctly

select the simple model. HQ and δsw show intermediate behaviour, HQ being

slightly more likely to select the complex model.

To illustrate strong consistency and optional stopping, three scenarios were

considered: M0 vsM1, data from a standard normal distribution, “scenario 1”,

switching defines a test that is robust with respect to optional stopping; M1 vs

M2, data from a standard normal distribution, “scenario 2”; M1 vs M2, data

from a normal distribution with mean 35 and variance 1, “scenario 3”.

We created N = 1,000 data sets of length nmax = 10,000 in each scenario.

We selected the complex model when δsw was larger than 20 corresponding to a

significance level of 0.05. We estimated two probabilities at each sample size n:

the probability that there is a model index after n at which the complex model

will be selected (Figure 3), approximated by checking whether the complex model

is selected at any sample size between n and 3nmax; the probability that there is

a model index before n at which the complex model isselected (Figure 4).

Figure 3 can be interpreted as a check on strong consistency, whether the

probabilities converge to 0 as n → ∞. van Erven, Grünwald and de Rooij’s
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Probability of false rejection opportunity 
 before sample size n

n

0.00

0.05

0.10

0.15

0 2,000 4,000 6,000 8,000 10,000

scenario 1 scenario 2 scenario 3

Figure 4. The setting of Figure 3. Estimated probability that there exists a model index
before n at which the complex model is selected.

(2007) theorem implies strong consistency in all three scenarios, and the graph

confirms this. The graph also illustrates that strong consistency is an asymptotic,

nonuniform version of robustness to optional stopping — from some sample size

on, one does not falsely reject no matter how long one keeps sampling.

Figure 4 refers to nonasymptotic optional stopping: in scenario 1, the con-

ditions from Theorem 2 hold, and the figure shows that the probability that the

complex model is ever incorrectly selected even when optional stopping is used,

is bounded by 0.05 (the observed bound is 0.015). In scenarios 2 and 3, the con-

ditions from Theorem 2 do not hold. In scenario 2, the behaviour of the switch

criterion is similar to that of scenario 1. In scenario 3, the probability of a false

rejection opportunity before sample size n goes to 0.15, and δsw is not robust to

optional stopping.

When the simplest model is not a singleton, the choice of prior on the model

parameters (in scenarios 2 and 3 on µ in M1 and on (µ, σ2) in M2) affects the

results. In both scenarios δsw still satisfies the weak, prior-expected version of

robustness (5.3). In scenario 2, the prior is centered at the data-generating value

of zero and suggests robustness. In scenario 3, the prior is centered at zero while

the data is generated with a mean of 35, 3.5 standard deviations away from the

prior mean and, as the figure shows, nonasymptotic robustness is violated.
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6. Discussion and Future Work

We highlight three issues which, we feel, need additional discussion: consis-

tency; whether there is anything ‘special’ to the switch criterion as opposed to

other possible trade-offs between risk optimality and consistency; the limitations

of switching in its current form.

Consistency Following Box’s maxim ‘Essentially, all models are wrong, but

some are useful’ (Box and Draper (1987)), some consider the goal of model selec-

tion is not to select a non-existing ‘true’ model, but to obtain the best predictive

inference or best inference about a parameter (Burnham and Anderson (2004);

Forster (2000)). Another issue with consistency is that it is impossible to give a

bound on the probability under Pµ of selecting the wrong model at sample size

n that converges to 0 uniformly for all µ ∈ M . This nonuniformity implies that

consistency is of little practical consequence for post-model selection inference

(Leeb and Pötscher (2005)).

In fact there do exist situations in which a model can be correct, for example

in the field of extrasensory perception (Bem (2011)), and in the area of genetic

linkage (Gusella et al. (1983); Tsui et al. (1985)). While consistency is not a

sufficient condition for being useful in practice, it can be desirable, for example in

determining whether a certain structural relationship (e.g. dependence between

variables) holds or not.

We consider studying model selection methods in terms of a finite-sample

analogue. The practical importance of our work, is mostly that model comparison

by switching defines, like Bayes, a robust null hypothesis test — providing Type-I

errors irrespective of the stopping rule and with better Type-II error behaviour.

We have shown robustness for singleton M0, however, and the major goal for

future work is to come up with methods that are robust to optional stopping

under composite M0.

How special is the switch distribution? Since Yang proved that in general,

the conflict between consistency and risk-optimality is not resolvable, one might

argue that any model selection rule just picks some position in the spectrum of

behaviours of consistency vs. risk-optimality. Switching and HQ do take a spe-

cial place in the consistency vs. risk-optimality spectrum as obtaining the fastest

rates compatible with strong consistency, which may be viewed as asymptotic

robustness to optional stopping. The switch distribution takes a special place

in terms of its nonasymptotic robustness to optional stopping in that the Law

of the Iterated Logarithm implies that any model comparison method that de-
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fines a robust hypothesis test cannot achieve estimation rate better than order

(log log n)/n. The main open question is then whether one can modify it so that

robustness for composite M0 is achieved as well.

Future Work — Limitations of the Switch Distribution and Our Re-

sults To achieve full robustness to optional stopping with compositeM0, some

substantial changes to the switch distribution have to be made. Initial research

suggests that such a modification of the switch distribution might be constructed

based on techniques in Ramdas and Balsubramani (2015). This work is under

development.

A limitation here is that our results are restricted to two nested exponential

family models. It would be interesting to extend them to more than two models

— highlighting the distinction between model selection and testing — and going

beyond exponential families. It would be interesting to design an alternative,

order-independent method that, like the switch distribution, is strongly consis-

tent, near rate- and power-optimal, and is robust to optional stopping under

composite M0.

Supplementary Materials

The online supplement contains the proofs of all theorems stated in this

paper, and the relationship between the version of the switch criterion studied

here, and the criterion introduced in van Erven, Grünwald and De Rooij (2012).
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