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Abstract: We study the switch distribution, introduced by Van Erven et al. (2012),
applied to model selection and subsequent estimation. While switching was known to
be strongly consistent, here we show that it achieves minimax optimal parametric risk
rates up to a log logn factor when comparing two nested exponential families, partially
confirming a conjecture by Lauritzen (2012) and Cavanaugh (2012) that switching
behaves asymptotically like the Hannan-Quinn criterion. Moreover, like Bayes factor
model selection but unlike standard significance testing, when one of the models rep-
resents a simple hypothesis, the switch criterion defines a robust null hypothesis test,
meaning that its Type-I error probability can be bounded irrespective of the stopping
rule. Hence, switching is consistent, insensitive to optional stopping and almost mini-
max risk optimal, showing that, Yang’s (2005) impossibility result notwithstanding, it
is possible to ‘almost’ combine the strengths of AIC and Bayes factor model selection.
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1. Introduction

We consider the following standard model selection problem, where we have i.i.d. observa-
tions X1, . . . , Xn and we wish to select between two nested parametric models,

M0 = {pµ | µ ∈M0} and M1 = {pµ | µ ∈M1}. (1.1)

Here the Xi are random vectors taking values in some set X , M1 ⊆ Rm1 for some m1 > 0
and M0 = {pµ : µ ∈ M0} ⊂ M1 represents an m0-dimensional submodel of M1, where
0 ≤ m0 < m1. We may thus denote M0 as the ‘simple’ and M1 as the ‘complex’ model.
We will assume that M1 is an exponential family, represented as a set of densities on X
with respect to some fixed underlying measure, so that pµ represents the density of the
observations, and we take it to be given in its mean-value parameterization. As the notation
indicates, we require, without loss of generality, that the parameterizations ofM0 andM1

coincide, that is M0 ⊂ M1 is itself a set of m1-dimensional vectors, the final m1 − m0

components of which are fixed to known values. We restrict ourselves to the case in which
bothM1 and the restriction ofM0 to its first m0 components are products of open intervals.

Most model selection methods output not just a decision δ(Xn) ∈ {0, 1}, but also an
indication r(Xn) ∈ R of the strength of evidence, such as a p-value or a Bayes factor. As
a result, such procedures can often be interpreted as methods for hypothesis testing, where
M0 represents the null model andM1 the alternative; a very simple example of our setting
is when the Xi consist of two components Xi ≡ (Xi1, Xi2), which according to M1 are
independent Gaussians whereas under M2 they can have an arbitrary bivariate Gaussian
distribution and hence can be dependent. Since we allowM0 to be a singleton, this setting
also includes some very simple, classical yet important settings such as testing whether a
coin is biased (M0 is the fair coin model,M1 contains all Bernoulli distributions).

We consider three desirable properties of model selection methods: (a) optimal worst-case
risk rate of post-model selection estimation (with risk measured in terms of squared error
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loss, squared Hellinger distance, Rényi or Kullback-Leibler divergence); (b) consistency, and,
(c), for procedures which also output a strength of evidence r(Xn), whether the validity of
the evidence is insensitive to optional stopping under the null model. We evaluate the recently
introduced model selection criterion δsw based on the switch distribution (Van Erven et al.,
2012) on properties (a), (b) and (c).

The switch distribution, introduced by1 Van Erven et al., (2007), was originally designed
to address the catch-up phenomenon, which occurs when the best predicting model is not
the same across sample sizes. The switch distribution can be interpreted as a modification
of the Bayesian predictive distribution. It also has an MDL interpretation: if one corrects
standard MDL approaches (Grünwald, 2007) to take into account that the best predicting
method changes over time, one naturally arrives at the switch distribution. Lhéritier and
Cazals (2015) describe a successful practical application for two-sample sequential testing,
related to the developments in this paper but in a nonparametric context. We briefly give
the definitions relevant to our setting in Section 2; for all further details we refer to Van
Erven et al. (2012) and E in the Appendix.

When evaluating any model selection method, there is a well-known tension between
properties (a) and (b) above: the popular AIC method (Akaike, 1973) achieves the minimax
optimal parametric rate of order 1/n in the problem above, but is inconsistent; the same holds
for the many popular model selection methods that asymptotically tend to behave like AIC,
such as k-fold (for fixed k) and leave-one-out-cross-validation, the bootstrap and Mallow’s
Cp in linear regression (Efron, 1986; Shao, 1997; Stone, 1977). On the other hand, BIC
(Schwarz, 1978) is consistent in the sense that for large enough n, it will select the smallest
model containing the ‘true’ µ; but it misses the minimax parametric rate by a factor of log n.
The same holds for traditional Minimum Description Length (MDL) approaches (Grünwald,
2007) and Bayes factor model selection (BFMS) (Kass and Raftery, 1995), of which BIC
is an approximation. This might lead one to wonder if there exists a single method that is
optimal in both respects. A key result by Yang (2005) shows that this is impossible: any
consistent method misses the minimax optimal rate by a factor g(n) with limn→∞ g(n) =∞.

In Section 4.2 we show that, Yang’s result notwithstanding, the switch distribution allows
us to get very close to satisfying property (a) and (b) at the same time, at least in the
problem defined above (Yang’s result was shown in a nested linear regression rather than
our exponential family context, but it does hold in our exponential family setting as well;
see the discussion at the end of Section 3.3). We prove that in our setting, the switch model
selection criterion δsw (a) misses the minimax optimal rate only by an exceedingly small
gsw(n) � log log n factor (Theorem 1). Property (b), strong consistency, was already shown
by Van Erven et al. (2012). The factor gsw(n) � log log n is an improvement over the extra
factor resulting from Bayes factor model selection, which has gbfms(n) � log n. Indeed, as
discussed in the introduction of van Erven et al. (2012), the catch-up phenomenon that
the switch distribution addresses is intimately related to the rate-suboptimality of Bayesian
inference. Van Erven et al. (2012) show that, while model selection based on switching
is consistent, sequential prediction based on model averaging with the switching method
achieves minimax optimal cumulative risk rates in general parametric and nonparametric
settings, where the cumulative risk at sample size n is obtained by summing the standard,
instantaneous risk from 1 to n. In contrast, in nonparametric settings, standard Bayesian
model averaging typically has a cumulative risk rate that is larger by a log n factor. Using
the cumulative risk is natural in sequential prediction settings, but Van Erven et al. (2012)
left open the question of how switching would behave for the more standard, instantaneous
risk. In contrast to the cumulative setting, we cannot expect to achieve the optimal rate
here by Yang’s (2005) result, but it is interesting to see that switching gets so close.

We now turn to the third property, robustness to optional stopping. While consistency in
the sense above is an asymptotic and even somewhat controversial notion (see Section 6),
there exists a nonasymptotic property closely related to consistency that, while arguably
more important in practice, has received relatively little attention in the recent statistical

1Matlab code for implementing model selection, averaging and prediction by the switch distribution is
available at http://www.blackwellpublishing.com/rss. In general run times are comparable to those of the
corresponding Bayesian methods.
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literature. This is property (c) above, insensitivity to optional stopping. In statistics, the issue
was thoroughly discussed, yet never completely resolved, in the 1960s; nowadays, it is viewed
as a highly desirable feature of testing methods by, for example, psychologists; see (Sanborn
and Hills, 2014; Wagenmakers, 2007). In particular, it is often argued (Wagenmakers, 2007)
that the fixed stopping rule required by the classical Neyman-Pearson paradigm severely
and unnecessarily restricts the application domain of hypothesis testing, invalidating much
of the p-values reported in the psychological literature. Approximately 55% of psychologists
admitted in a survey to deciding whether to collect more data after looking at their results to
see if they were significant (John et al., 2012). We analyze property (c) in terms of robust null
hypothesis tests, formally defined in Section 5. A method defines a robust null hypothesis
test if (1) it outputs evidence r(Xn) that does not depend on the stopping rule used to
determine n, and (2) (some function of) r(Xn) gives a bound on the Type-I error that
is valid no matter what this stopping rule is. Standard (Neyman-Pearson) null hypothesis
testing and tests derived from AIC-type methods are not robust in this sense. For example,
such tests cannot be used if the stopping rule is simply unknown, as is often the case when
analyzing externally provided data — but this is just the tip of an iceberg of problems with
nonrobust tests. For an exhaustive review of such problems we refer to Wagenmakers (2007)
who builds on, amongst others, Berger and Wolpert (1988) and Pratt (1962).

Now, as first noted by Edwards et al. (1963), in simple versus composite testing (i.e.
whenM0 is a singleton), the output of BFMS, the Bayes factor, does provide a robust null
hypothesis test. This is one of the main reasons why for example, in psychology, Bayesian
testing is becoming more and more popular (Andrews and Baguley, 2012; Dienes, 2011),
even among ‘frequentist’ researchers (Sanborn and Hills, 2014). Our third result, in Sec-
tion 5, shows that the same holds for the switch criterion: ifM0 is a singleton, so that the
problem (1.1) reduces to a simple versus composite hypothesis test, then the evidence r(Xn)
associated with the switching criterion has the desired robustness property as well and thus
in this sense behaves like the Bayes factor method. The advantage, from a frequentist point
of view, of switching as compared to Bayes is then that switching is a lot more sensitive:
our risk rate results directly imply that the Type II error (1−power) of the switch criterion
goes to 0 as soon as, at sample size n, the distance between the ‘true’ distribution µ1 and
the null model, i.e. infµ∈M0

‖µ − µ1‖22 is of order (log log n)/n; for Bayes factor testing, in
order for the Type-II error to reach 0, this distance must be of order (log n)/n (this was in-
formally recognized by Lhéritier and Cazals (2015), who reported substantially larger power
of switching as compared to the Bayes factor method in a sequential two-sample testing
setting).

Thus, for singleton M0, switching gives us ‘almost the best of three worlds’: minimax
rate optimality up to a log log n factor (in contrast to BFMS), consistency (in contrast
to AIC-type methods) and nonasymptotic insensitivity to optional stopping (in contrast to
standard Neyman-Pearson testing) in combination with a small Type-II error. For composite
M0, we show in Section 5 that nonasymptotic robustness to optional stopping still holds,
albeit only in a much weaker sense — thus pointing towards an obvious goal for future
work, discussed in Section 6: can we modify the switch distribution so as to get full optional
stopping robustness also for compositeM0?

Organization This paper is organized as follows. The switch criterion is introduced in
Section 2. In Section 3, we provide some preliminaries: we list the loss/risk functions for
which our result holds, describe the sets in which the truth is assumed to lie, and discuss the
tension between consistency and rate-optimality. Suitable post-model-selection estimators
to be used in combination with the switch criterion are introduced in Section 4, after which
our main result on the worst-case risk of the switch criterion is stated. We also go into the
relationship between the switch criterion and the Hannan-Quinn criterion in that section. In
Section 5 we define robust null hypothesis tests, give some examples, and show that testing
by switching has the desired nonasymptotic robustness to optional stopping; in constrast,
AIC does not satisfy such a property at all and the Hannan-Quinn criterion only satisfies an
asymptotic analogue. We also provide some simulations that illustrate our results. Section 6
provides some additional discussion and ideas for future work. All proofs are given in the
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Appendix.

Notations and Conventions We use xn = x1, . . . , xn to denote n observations, each
taking values in a sample space X . For a set of parameters M , µ ∈ M , and x ∈ X , pµ(x)
invariably denotes the density or mass function of x under the distribution Pµ of random
variable X, taking values in X . This is extended to n outcomes by independence, so that
pµ(xn) :=

∏n
i=1 pµ(xi) and Pµ(Xn ∈ An), abbreviated to Pµ(An), denotes the probability

that Xn ∈ An for Xn = X1, . . . , Xn i.i.d. ∼ Pµ. Similarly, Eµ denotes expectation under Pµ.
As is customary, we write an � bn to denote 0 < limn→∞ inf an/bn ≤ limn→∞ sup an/bn <
∞. For notational simplicity we assume throughtout this paper that whenever we refer to a
sample size n, then n ≥ 3 to ensure that log log n is defined and positive.

Throughout the text, we refer to standard properties of exponential families without
always giving an explicit reference; all desired properties can be found, in precise form, in
(Barndorff-Nielsen, 1978) and, on a less formal level, in (Grünwald, 2007, Chapter 18,19).

2. Model Selection by Switching

The switch distribution (Van Erven et al., 2007; 2012) is a modification of the Bayesian
predictive distribution, inspired by Dawid’s (1984) ‘prequential’ approach to statistics and
the related Minimum Description Length (MDL) Principle (Barron et al., 1998; Grünwald,
2007). The corresponding switch criterion can be thought of as Bayes factor model selection
with a prior on meta-models, where each meta-model consists of a sequence of basic models
and associated starting times: until time t1, follow model k1, from time t1 to t2, follow model
k2, and so on. The fact that we only need to select between two nested parametric models
allows us to considerably simplify the set-up of Van Erven et al. (2012), who dealt with
countably infinite sets of arbitrary models.

It is convenient to directly introduce the switch criterion as a modification of the Bayes
factor model selection (BFMS). Assuming equal prior 1/2 on each of the models M0 and
M1, BFMS associates each modelMk, k ∈ {0, 1}, with a marginal distribution pB,k with

pB,k(xn) :=

∫
µ∈Mk

ωk(µ)pµ(xn)dµ, (2.1)

where ωk is a prior density on Mk. It then selects model M1 if and only if pB,1(xn) >
pB,0(xn).

The basic idea behind MDL model selection is to generalize this in the sense that each
model Mk is associated with some ‘universal’ distribution pU,k; one then picks the k for
which pU,k(xn) is largest. pU,k may be set to the Bayesian marginal distribution, but other
choices may be preferable in some situations. Switching is an instance of this; in our simplified
setting, it amounts to associatingM0 with a Bayes marginal distributon pB,0 as before. pU,1
however is set to the switch distribution psw,1. This distribution corresponds to a switch
between modelsM0 andM1 at some sample point s, which is itself uncertain; before point
s, the data are modelled as coming from M0, using pB,0; after point s, they are modelled
as coming from M1, using pB,1. Formally, we denote the strategy that switches from the
simple to the complex model after t observations by p̄t; psw,1 is then defined as the marginal
distribution by averaging p̄t over t, with some probability mass function π (analogous to a
Bayesian prior) over t ∈ {1, 2, . . .}:

p̄t(x
n) = pB,0(xt−1) · pB,1(xt, . . . , xn | xt−1)

psw,1(xn) =

∞∑
t=1

π(t)p̄t(x
n),

where switching at t = 1 corresponds to predicting with pB,1 at each data point, and
switching at any t > n to predicting with pB,0. We remind the reader that even for i.i.d.
models, pB,1(xt, . . . , xn | xt−1) usually depends on xt−1 — the Bayes predictive distribution
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learns from data. The model selection criterion δsw mapping sequences of arbitrary length
to k ∈ {0, 1} is then defined, for each n, as follows:

δsw(xn) =


0 if

psw,1(xn)

pB, 0(xn)
≤ 1

1 if
psw,1(xn)

pB, 0(xn)
> 1

. (2.2)

When defining psw,1 it is sufficient to consider switching times that are equal to a power of
two. Thus, we restrict attention to ‘priors’ π on switching time with support on 20, 21, 22, . . ..
For our subsequent results to hold, π should be such that π(2i) decays like i−κ for some
κ > 1. An example of such a prior with κ = 2 is π(2i) = 1/((i+ 1)(i+ 2)), π(j) = 0 for any
j that is not a power of 2.

To prepare for Theorem 1, we instantiate the switch criterion to the problem (1.1). We
define pB,1 as any distribution of the form (2.1) where ω1 is a continuous prior density on
M1 that is strictly positive on all µ ∈ M1. To define pB,0 we need to take a slight detour,
because we parameterizedM0 in terms of an M0 that has a fixed value on its final m1−m0

components: it is an m0-dimensional family with an m1-dimensional parameterization, so
one cannot easily express a prior onM0 as a density onM0. To overcome this, we distinguish
between the case that m0 = 0 and m0 > 0. In the former case M0 has a single element ν,
and we define pB,0 = pν . In the latter case, we define Π′0 : M0 → Rm0 as the projection
of µ ∈ M0 on its first m0 components, and Π′0(M0) := {Π′0(µ) : µ ∈ M0}. For µ ∈ M0,
we define pΠ′0(µ) = pµ, and we then let ω0 be a continuous strictly positive prior density on
Π′0(M0), and we define pB,0(xn) :=

∫
µ′∈Π′0(M0)

ω0(µ′)pµ′(x
n)dµ′.

Two important remarks are in order: first, the fact that we associateM1 with a distribu-
tion incorporating a ‘switch’ fromM0 toM1 does not mean that we really believe that data
were sampled, until some point t, according toM0 and afterwards according toM1. Rather,
it is suggested by prequential and MDL considerations, which suggest that one should pick
the model that performs best in sequentially predicting data; and if the data are sampled
from a distribution in M1 that is not in M0, but quite close to it in KL divergence, then
pB,1 is suboptimal for sequential prediction, and can be substantially outperformed by psw,1.
This is explained at length by Van Erven et al. (2012), and Figure 1 in that paper especially
illustrates the point. The same paper also explains how one can use dynamic programming
to arrive at an implementation that has the same computational efficiency as computation
of the standard Bayes model selection decision.

Second, the criterion (2.2) as defined here is not 100% equivalent to the special case
of the construction of Van Erven et al. (2012) specialized to two models, but rather a
simplification thereof. We do this purely for ease of explanation: varying the exponent κ in
the prior π(2i) ∝ i−κ defined above — which is a free parameter of the switch distribution
— has a stronger effect on the switch criterion than switching between the two versions of
the switch distribution. This is explained in the Appendix, where we also explain why all
our results continue to hold if we were to follow the original construction; conversely, the
strong consistency result for the construction of Van Erven et al. (2012) trivially continues
to hold for the criterion (2.2) used in the present paper.

3. Rate-optimality of post-model selection estimators

This section contains some background to our main result, Theorem 1. In Section 3.1, we
first list the loss functions for which our main result holds, and define the CINECSI sets in
which the truth assumed to lie. We then discuss the minimax parametric risk for our model
selection problem in Section 3.2. This section ends with a discussion on the generality of the
impossibility result of Yang (2005) in Section 3.3.

3.1. Loss functions and CINECSI sets

LetM = {pµ | µ ∈ M} be an exponential family given in its mean-value parameterization
with M ⊂ Rm a product of m open, possibly but not necessarily unbounded intervals for
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some m > 0; see the Appendix for a formal definition of exponential families and mean-
value parameterizations. Note that we do not require the family to be ‘full’; for example,
the Bernoulli model with success probability µ ∈ M1 = (0.2, 0.4) counts as an exponential
family in our (standard) definition.

Suppose that we measure the quality of a density pµ′ as an approximation to pµ by a loss
function L : M ×M → R. The standard definition of the (instantaneous) risk of estimator
µ̆ :

⋃
i>0 X i → M at sample size n, as defined relative to loss L, is given by its expected

loss,
R(µ, µ̆, n) = Eµ [L(µ, µ̆(Xn))] ,

where Eµ denotes expectation over X1, . . . , Xn i.i.d. ∼ Pµ. Popular loss functions are:

1. The squared error loss: dSQ(µ′, µ) = ‖µ′ − µ‖22;
2. The standardized squared error loss which is a version of the squared Mahalonobis

distance, defined as
dST (µ′‖µ) := (µ− µ′)T I(µ′)(µ− µ′), (3.1)

where T denotes transpose, I(·) is the Fisher information matrix, and we view µ and
µ′ as column vectors;

3. The Rényi divergence of order 1/2, defined as

dR(µ′, µ) = −2 logEµ′
[
(pµ(X)/pµ′(X))

1
2

]
;

4. The squared Hellinger distance dH2(µ′, µ) = 2
(

1− Eµ′
[
(pµ(X)/pµ′(X))

1
2

])
;

5. The KL (Kullback-Leibler) divergence D(pµ′‖pµ), henceforth abbreviated to D(µ′‖µ).

We note that there is a direct relationship between the Rényi divergence and squared
Hellinger distance:

dH2(µ′, µ) = 2
(

1− e−dR(µ′,µ)/2
)
. (3.2)

In fact, as we show below, these loss functions are all equivalent (equal up to universal
constants) on CINECSI sets. Such sets will play an important role in the sequel. They are
defined as follows:

Definition 1 (CINECSI). A CINECSI (Connected, Interior-Non-Empty-Compact-Subset-
of-Interior) subset of a setM is a connected subset of the interior ofM that is itself compact
and has nonempty interior.

The following proposition is proved in the Appendix.

Proposition 1. LetM be the mean-value parameter space of an exponential family as above,
and let M ′ be a CINECSI subset of M . Then there exist positive constants c1, c2, . . . , c6 such
that for all µ, µ′ ∈M ′,

c1‖µ′ − µ‖22 ≤ c2 · dST (µ′‖µ) ≤ dH2(µ′, µ) ≤ dR(µ′, µ) ≤ D(µ′‖µ) ≤ c3‖µ′ − µ‖22. (3.3)

and for all µ′ ∈M ′, µ ∈M (i.e. µ is now not restricted to lie in M ′),

dH2(µ′, µ) ≤ c4‖µ′ − µ‖22 ≤ c5 · dST (µ′‖µ) ≤ c6‖µ′ − µ‖22. (3.4)

CINECSI subsets are a variation on the INECCSI sets of (Grünwald, 2007). Our main
result, Theorem 1, holds for all of the above loss functions, and for general ‘sufficiently
efficient’ estimators. While the equivalence of the losses above on CINECSI sets is a great
help in the proofs, we emphasize that we never require these estimators to be restricted to
CINECSI subsets of M — although, since we require M to be open, every ‘true’ µ ∈ M
will lie in some CINECSI subset M ′ of M , a statistician who employs the modelM cannot
know what this M ′ is, so such a requirement would be unreasonably strong.
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3.2. Minimax parametric risk

We say that a quantity fn converges at rate gn if fn � gn. We say that an estimator µ̆ is
minimax-rate optimal relative to a modelM = {pµ | µ ∈M} restricted to a subset M ′ ⊂M
if

sup
µ∈M ′

R(µ, µ̆, n)

converges at the same rate as
inf
µ̇

sup
µ∈M ′

R(µ, µ̇, n), (3.5)

where µ̇ ranges over all estimators of µ at sample size n, that is, all measurable functions
from Xn to M .

For parametric models, the minimax risk (3.5) is typically of order 1/n when R is de-
fined relative to any of the loss measures defined in Section 3.1 and M ′ is an arbitrary
CINECSI subset of M (Van der Vaart, 1998) — models for which this holds include e.g.
most location families and all curved exponential families, which include as a special case
all standard exponential families. For this reason, from now on we refer to 1/n as the
minimax parametric rate. Note that, crucially, the restriction µ ∈ M ′ is imposed only on
the data-generating distribution, not on the estimators, and, since we will require models
with open parameter sets M such that for every δ > 0, there is a CINECSI subset M ′δ
of M with supµ∈M infµ′∈M ′δ ‖µ − µ′||22 < δ, every possible µ ∈ M will also lie in some
CINECSI subset M ′δ that ‘nearly’ covers Mδ. This makes the restriction to CINECSI M ′
in the definition above a mild one. Still, it is necessary: at least for the squared error loss,
for most exponential families (the exception being the Gaussian location family), we have
inf µ̇ supµ∈M ′δ R(µ, µ̇, n) = Cδ/n for some constant Cδ > 0, but the smallest constant for
which this holds may grow arbitrarily large as δ → 0, the reason being that the determinant
of the Fisher information may tend to 0 or ∞ as δ → 0.

Now consider a model selection criterion δ :
⋃
i>0 X i → {0, 1, . . . ,K − 1} that selects,

for given data xn of arbitrary length n, one of a finite number K of parametric models
M0, . . . ,MK−1 with respective parameter sets M0, . . . ,MK−1. One way to evaluate the
quality of δ is to consider the risk attained after first selecting a model and then estimating
the parameter vector µ using an estimator µ̆k associated with each model Mk. This post-
model selection estimator (Leeb and Pötscher, 2005) will be denoted by µ̆k̆(xn), where k̆
is the index of the model selected by δ. The risk of a model selection criterion δ is thus
R(µ, δ, n) = Eµ

[
L(µ, µ̆k̆(Xn))

]
, where L is a given loss function, and its worst-case risk

relative to µ restricted to M ′k ⊂Mk is given by

sup
µ∈M ′k

R(µ, δ, n) = sup
µ∈M ′k

Eµ
[
L(µ, µ̆k̆(Xn))

]
. (3.6)

We are now ready to define what it means for a model selection criterion to achieve the
minimax parametric rate.

Definition 2. A model selection criterion δ achieves the minimax parametric rate if there
exist estimators µ̆k, one for each Mk under consideration, such that, for every CINECSI
subset M ′k of M :

sup
µ∈M ′k

R(µ, δ, n) � 1/n.

Just as in the fixed-model case, the restriction µ ∈ M ′k is imposed only on the data-
generating distribution, not on the estimators.

3.3. The result of Yang (2005) transplanted to our setting

In this paper, as stated in the introduction, we further specialize the setting above to problem
(1.1) where we select between two nested exponential families, which we shall always assume
to be given in their mean-value parameterization. To be precise, the ‘complex’ model M1

contains distributions from an exponential family parametrized by an m1-dimensional mean
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vector µ, and the ‘simple’ modelM0 contains distributions with the same parametrization,
where the final m1−m0 components are fixed to values νm0+1, . . . , νm1

. We introduce some
notation to deal with the assumption that M1 and its restriction of M0 to its first m0

components are products of open intervals. Formally, we require that M1 and M0 are of the
form

M1 = (ζ1,1, η1,1)× . . .× (ζ1,m1 , η1,m1)

M0 = (ζ0,1, η0,1)× . . .× (ζ0,m0 , η0,m0)× {νm0+1} × . . .× {νm1} (3.7)

where, for j = 1, . . . ,m0, we have −∞ ≤ ζ1,j ≤ ζ0,j < η0,j ≤ η1,j ≤ ∞; and for j =
m0 + 1, . . . ,m1, we have −∞ ≤ ζ1,j < νj < η1,j ≤ ∞.

For example, M1 could contain all normal distributions with mean µ and variance σ2,
with mean value parameters µ1 = µ2 + σ2 and µ2 = µ, and M1 = (0,∞)× (−∞,∞), while
M0 could contain all normal distributions with mean zero and unknown variance σ2, so
M0 = (0,∞)× {0}.

Yang (2005) showed in a linear regression context that a model selection criterion cannot
both achieve the minimax optimal parametric rate and be consistent; a practitioner is thus
forced to choose between a rate-optimal method such as AIC and a consistent method such
as BIC. Inequality (3.9) below provides some insight into why this AIC-BIC dilemma can
occur. A similar inequality appears in Yang’s paper for his linear regression context, but it
is still valid in our exponential family setting, and the derivation — which we now give —
is essentially equivalent.

To state the inequality, we need to relate µ1 ∈M1 to a component in M0. For any given
µ1 = (µ1,1, . . . , µ1,m1

)T ∈M1, we will define

Π0(µ1) := (µ1,1, . . . , µ1,m0
, νm0+1, . . . , νm1

)T (3.8)

to be the projection of µ1 on M0. The difference between Π0 of (3.8) and Π′0 in Section 2 is
that Π0 is a function from Rm1 to Rm1 , whereas Π′0 is a function from Rm1 to Rm0 ; Π0(µ1)
and Π′0(µ1) agree in the first m0 components. Note that Π0(µ1) obviously minimizes, among
all µ ∈M0, the squared Euclidean distance ‖µ−µ1‖22 to pµ1

; somewhat less obviously it also
minimizes, among µ ∈M0, the KL divergence D(pµ1‖pµ) (Grünwald, 2007, Chapter 19); we
may thus think of it as the ‘best’ approximation of the ‘true’ µ1 within M0; we will usually
abbreviate Π0(µ1) to µ0.

Let An be the event that the complex model is selected at sample size n. Since M1 is
an exponential family, the MLE µ̂1 is unbiased and µ̂0 coincides with µ̂1 in the first m0

components, so that Eµ1
[µ0 − µ̂0(Xn)] = 0, and hence we can rewrite, for any µ1 ∈M1, the

squared error risk as

R(µ1, δ, n) = Eµ1

[
1An‖µ1 − µ̂1(Xn)‖22 + 1Acn‖µ1 − µ̂0(Xn)‖22

]
= Eµ1

[
1An‖µ1 − µ̂1(Xn)‖22 + 1Acn‖µ0 − µ̂0(Xn)‖22 + 1Acn‖µ1 − µ0‖22

]
≤ Eµ1

[
‖µ1 − µ̂1(Xn)‖22 + ‖µ0 − µ̂0(Xn)‖22

]
+ P(Acn)‖µ1 − µ0‖22

≤ 2R(µ1, µ̂1, n) + P(Acn)‖µ1 − µ0‖22. (3.9)

The first part of the proof of our main result, Theorem 1, extends this decomposition to
general estimators and loss functions.

The first term on the right of (3.9) is of order 1/n. The second term depends on the
‘Type-II error’, i.e. the probability of selecting the simple model when it is not actually true.
A low worst-case risk is attained if this probability is small, even if the true parameter is
close to µ0. This does leave the possibility for a risk-optimal model selection criterion to
incorrectly select the complex model with high probability. In other words, a risk-optimal
model selection method may not be consistent if the simple model is correct. The theorem
by Yang (2005), arguing from decomposition (3.9), essentially demonstrates that it cannot
be. Due to the general nature of (3.9), it seems likely that his result holds in much more
general settings: a procedure attains a low worst-case risk by selecting the complex model
with high probability, which is excellent if the complex model is indeed true, but leads to
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inconsistency if the simple model is correct. Indeed, we have shown in earlier work that the
dilemma is not restricted to linear regression, but occurs in our exponential family problem
(1.1) as well as long asM0 = {ν} is a singleton (see (Van der Pas, 2013) for the proof, which
is a simple adaptation of Yang’s proof that, we suspect, can be extended to nonsingleton
M0 as well). Hence, as the switch criterion is strongly consistent (Van Erven et al. (2012)),
we know that the worst-case risk rate of the switch criterion cannot be of the order 1/n in
general.

4. Main result

We perform model selection by using the switch criterion, as specified in Section 2. After the
model selection, we estimate the underlying parameter µ. We discuss post-model selection
estimators suitable to our problem in Section 4.1. We are then ready to present our main
result, Theorem 1 in Section 4.2, stating that the worst-case risk for the switch criterion
under the loss functions listed in Section 3.1 attains the minimax parametric rate up to a
log log n factor.

4.1. Post-model selection: sufficiently efficient estimators

Our goal is to determine the worst-case rate for the switch criterion applied to two nested
exponential families, which we combine with an estimator as follows: if the simple model is
selected, µ will be estimated by an estimator µ̆0 with range M0. If the complex model is
selected, the estimate of µ will be provided by another estimator µ̆1 with range M1. Our
result will hold for all estimators µ̆0 and µ̆1 that are sufficiently efficient :

Definition 3 (sufficiently efficient). The estimators {µ̆k →Mk | k ∈ {0, 1}} are sufficiently
efficient with respect to a divergence measure dgen(·‖·) if (with µ0 = Π0(µ1) as in (3.8)), for
every CINECSI subset M ′1 of M1, there exists a constant C > 0 such that for all n,

sup
µ1∈M ′1

Eµ1
[dgen(µ0‖µ̆0)] ≤ C · sup

µ1∈M ′1
Eµ1

[dgen(µ1‖µ̆1)] ≤ C

n
. (4.1)

Note that this is a stronger requirement than just rate-optimality: we additionally re-
quire that, if the estimate µ̆0 is used on data sampled from µ1 ∈ M1 (‘misspecification’),
then still µ̆0 converges to µ0, the best approximation of µ1 within M0 at rate O(1/n). In
the Appendix we provide a detailed discussion of sufficiently efficient estimators by means
of several examples. In a nutshell, it turns out that for (standardized) squared error and
Hellinger distance, the MLE is either sufficiently efficient (e.g. for the Gaussian and gamma
families), or can be made sufficiently efficient by trivial modifications. For the same losses,
Bayes MAP estimates based on proper priors are sufficiently efficient without modification
for nearly all exponential families. For Rényi and KL divergences, MLEs can sometimes be
problematic but Bayes MAP estimators are still usually sufficiently efficient.

4.2. Main result: risk of the switch criterion

We now present our main result, which states that for the exponential family problem
under consideration, the worst-case instantaneous risk rate of δsw is of order (log log n)/n.
Hence, the worst-case instantaneous risk of δsw is very close to the lower bound of 1/n, while
the criterion still maintains consistency.

The theorem holds for any of the loss functions listed in Section 3.1. We denote this
by using the generic loss function dgen, which can be one of the following loss functions:
squared error loss, standardized squared error los, KL divergence, Rényi divergence of order
1/2, or squared Hellinger distance. Apart from the sufficiently efficient condition on µ̆0 and
µ̆1, there are two minor conditions on the priors used in defining the switch distribution:
assumption 2 below rules out the use of improper prior densities, but will hold for any other
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prior normally considered for exponential family inference. Assumption 3 requires that the
prior probability of switching at time t = 2i is strictly decreasing and not exponentially
small in i. Since these priors are user-defined and not dependent on the underlying true
distribution, these conditions can easily be satisfied in practice.

Theorem 1. Let M0 = {pµ | µ ∈ M0} and M1 = {pµ | µ ∈ M1} be nested exponen-
tial families in their mean-value parameterization, where M0 ⊆ M1 are of the form (3.7).
Assume:

1. µ̆0 and µ̆1 are sufficiently efficient estimators relative to the chosen loss dgen;
2. δsw is constructed with pB,0 and pB,1 defined as in Section 2 with priors ωk that admit

a strictly positive, continuous density;
3. and psw,1 is defined relative to a prior π with support on {0, 1, 2, 4, 8, . . .} and π(2i) ∝

i−κ for some κ > 1.

Then for every CINECSI subset M ′1 of M1, we have:

sup
µ1∈M ′1

R(µ1, δsw, n) = O

(
log log n

n

)
,

for R(µ, δsw, n) the risk at sample size n defined relative to the chosen loss dgen.

Example 1. [Our Setting vs. Yang’s] Yang (2005) considers model selection between two
nested linear regression models with fixed design, where the errors are Gaussian with fixed
variance. The risk is measured as the in-model squared error risk (‘in-model’ means that
the loss is measured conditional on a randomly chosen design point that already appeared
in the training sample). Within this context he shows that every model selection criterion
that is (weakly) consistent cannot achieve the 1/n minimax rate. The exponential family
result above leads one to conjecture that the switch distribution achieves O((log log n)/n)
risk in Yang’s setting as well. We suspect that this is so, but actually showing this would
require substantial additional work. Compared to our setting, Yang’s setting is easier in some
and harder in other respects: under the fixed-variance, fixed design regression model, the
Fisher information is constant, making asymptotic results hold nonasymptotically, which
would greatly facilitate our proofs (and obliterate any need to consider CINECSI sets or
undefined MLE’s). On the other hand, evaluating the risk conditional on a design point is
not something that can be directly embedded in our proofs.

Example 2. [Switching vs. Hannan-Quinn] In their comments on Van Erven et al.
(2012), Lauritzen (2012) and Cavanaugh (2012) suggested a relationship between the switch
model selection criterion and the criterion due to Hannan and Quinn (1979). For the expo-
nential family models under consideration, the Hannan-Quinn criterion with parameter c,
denoted as HQ, selects the simple model, i.e. δHQ(xn) = 0, if

− log pµ̂0
(xn) < − log pµ̂1

(xn) + c log log n,

and the complex model otherwise. In their paper, Hannan and Quinn show that this criterion
is strongly consistent for c > 1.

As shown by Barron et al. (1999), under some regularity conditions, penalized maximum
likelihood criteria achieve worst-case quadratic risk of the order of their penalty divided
by n. One can show (details omitted) that this is also the case in our specific setting and
hence, that the worst-case risk rate of HQ for our problem is of order (log log n)/n. Our main
result, Theorem 1, shows that the same risk rate is achieved by the switch distribution, thus
partially confirming the conjecture of Lauritzen (2012) and Cavanaugh (2012): HQ achieves
the same risk rate as the switch distribution and, for the right choice of c, is also strongly
consistent. This suggests that the switch distribution and HQ, at least for some specific
value c0, may behave asymptotically indistinguishably. The earlier results of Van der Pas
(2013) suggest that this is indeed the case if M0 is a singleton; if M0 has dimensionality
larger than 0, this appears to be a difficult question which we will not attempt to resolve
here — in this sense the conjecture of Lauritzen (2012) and Cavanaugh (2012) has only been
partially resolved.
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Because HQ and δsw have been shown to be both strongly consistent and achieve the
same rates for this problem, one may wonder whether one criterion is to be preferred over
the other. For this parametric problem, HQ has the advantage of being simpler to analyze
and implement. The criterion δsw can however, be used to define a robust hypothesis test
as in Section 5 below. As we shall see there, HQ is insensitive to optional stopping in an
asymptotic sense only, whereas robust tests such as the switch criterion are insensitive to
optional stopping in a much stronger, nonasymptotic sense. Except for the normal location
model, for which the asymptotics are precise, the HQ criterion cannot be easily adapted
to define such a robust, nonasymptotic test. Another advantage of switching is that it can
be combined with arbitrary priors and applied much more generally, for example when
the constituting models are themselves nonparametric (Lhéritier and Cazals, 2015), are so
irregular that standard asymptotics such as the law of the iterated logarithm are no longer
valid, or are represented by black-box predictors such that ML estimators and the like cannot
be calculated. In all of these cases the switch criterion can still be defined and — given the
explanation in the introduction of Van Erven et al. (2012) — one may still expect it to
perform well.

5. Robust null hypothesis tests

Bayes factor model selection, the switch criterion, AIC, BIC, HQ and most model selection
methods used in practice are really based on thresholding the output of a more informative
model comparison method. This is defined as a function from data of arbitrary size to the
nonnegative reals. Given data xn, it outputs a number r(xn) between 0 and ∞ that is a
deterministic function of the data xn. Every model comparison method r and threshold t has
an associated model selection method δr,t that outputs 1 (corresponding to selecting model
M1) if r(xn) ≤ t, and 0 otherwise. As explained below, such model comparison methods
can often be viewed as performing a null hypothesis test withM0 the null hypothesis,M1

the alternative hypothesis and t akin to a significance level.
Example 1 (BFMS): The output of the Bayes factor model comparison method is the

posterior odds ratio rBayes(x
n) = P(M0|xn)/P(M1|xn). The associated model selection

method (BFMS) with threshold t selects modelM1 if and only rBayes(xn) ≤ t.
Example 2 (AIC): Standard AIC selects modelM1 if log(pµ̂1

(xn)/pµ̂0
(xn)) > m1 −m0.

We may however consider more conservative versions of AIC that only selectM1 if

log(pµ̂1
(xn)/pµ̂0

(xn))− (m1 −m0) ≥ − log t. (5.1)

We may thus think of AIC as a model comparison method that outputs the left-hand side
of (5.1), and that becomes a model selection method when supplied with a particular t.

Now classical Neyman-Pearson null hypothesis testing requires the sampling plan, or
equivalently, the stopping rule, to be determined in advance to ensure the validity of the
subsequent inference. In the important special case of (generalized) likelihood ratio tests, this
even means that the sample size n has to be fixed in advance. In practice, greater flexibility in
choosing the sample size n is desirable (Wagenmakers (2007) provides sophisticated examples
and discussion). Below, we discuss hypothesis tests that allow such flexibility by virtue of the
property that their Type I-error probability remains bounded irrespective of the stopping
rule used. These robust null hypothesis tests are defined below. As will be shown, whenever
the null hypothesis M0 = {pµ0} is ‘simple’, i.e. a singleton (simple vs. composite testing),
both Bayes factor model selection (BFMS) and the switch distribution define such robust
null hypothesis tests, whereas AIC does not and HQ does so only in an asymptotic sense.
As we argue in Section 5.3, the advantage of switching over BFMS is then that, while both
share the robustness Type-I error property, switching has significantly smaller Type-II error
(larger power) than BFMS when the ‘truth’ is close to M0, which is a direct consequence
of it having a smaller risk under the alternative M1. To make this point concrete, and
to indicate what may happen if M0 is not a singleton, we provide a simulation study in
Section 5.4.
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5.1. Bayes Factors with singleton M0 are Robust under Optional Stopping

In many cases, for each 0 < α < 1 there is an associated threshold t(α), which is a
strictly increasing function of α, such that for every t ≤ t(α) we have that δr,t becomes
a null hypothesis significance test (NHST) with type-I error probability bounded by α. In
particular, then δr,t(α) is a standard NHST with type-I error bounded by α. For example,
for AIC with M0 = {0} and M1 = R representing the normal family of distributions with
unit variance, we may select t(α) = exp(−2/z2

α/2), where zα/2 is the upper (α/2)-quantile
of the standard normal distribution. This results in the generalized likelihood ratio test at
significance level α.

We say that model comparison method r defines a robust null hypothesis test for null
hypothesisM0 if for all µ0 ∈M0, all 0 ≤ α ≤ 1,

Pµ0
(∃n : δr,t(α) (Xn) = 1) ≤ α. (5.2)

Hence, a test that satisfies (5.2) is a valid NHST test at each fixed significance level α, inde-
pendently of the stopping rule used. If a researcher can obtain a maximum of n observations,
the probability of incorrectly selecting the complex model will remain bounded away from
one, regardless of the actual number of observations made.

It is well-known that Bayes factor model selection provides a robust null hypothesis test
if we set t(α) = α, as long as M0 is a singleton. In other words, we may view the output
of BFMS as a ‘robust’ variation of the p-value. This was already noted by Edwards et al.
(1963) and interpreted as a frequentist justification for BFMS; it also follows immediately
from the following result.

Theorem 2 (Special Case of Eq. (2) of Shafer et al. (2011)). Let M0,M1,M0 and M1

be as in Theorem 1 with common support X ⊂ Rd for some d > 0. Let (X1, X2, . . .) be an
infinite sequence of random vectors all with support X , and fix two distributions, P̄0 and P̄1

on X∞ (so that under both P̄0 and P̄1, (X1, X2, . . .) constitutes a random process). Let, for
each n, p̄(n)

j represent the marginal density of (X1, . . . , Xn) for the first n outcomes under
distribution P̄j, relative to some product measure ρn on (Rd)n (we assume P̄0 and P̄1 to be
such that these densities exist). Then for all α ≥ 0,

P̄0

(
∃n :

p̄
(n)
0 (Xn)

p̄
(n)
1 (Xn)

≤ α

)
≤ α.

We first apply this result for Bayes factor model selection, with model priors π0 = π1 =
1/2 , so that rBayes(x

n) = P(M0|xn)/P(M1|xn) = pB,0(xn)/pB,1(xn). We immediately see:

Corollary 1. If M0 = {µ0} represents a singleton null model, then pB,0 = pµ0
so that,

applying Theorem 2 with PB,0 = Pµ0
, we see from (5.2) that, if we set t(α) = α, then Bayes

factor model selection constitutes a robust hypothesis test for null hypothesisM0.

What happens ifM0 is not singleton? Full robustness would require that (5.2) holds for
all µ0 ∈M0. The simulations below show that this will in general not be the case for Bayes
factor model selection. Yet, the same reasoning as used in Corollary 1 implies that we still
have some type of robustness in a much weaker sense, which one might call “robustness in
prior expectation” relative to prior ω0 on M0. Namely, we have for all 0 ≤ α ≤ 1:

PB,0(∃n : δr,t(α) (Xn) = 1) ≤ α, (5.3)

where PB,0 is the Bayes marginal distribution under prior ω0. In other words, if the beliefs
of a Bayesian who adopts prior ω0 on model M0 were accurate, then the BFMS method
would still give robust p-values, independently of the stopping rule. While for a subjective
Bayesian, such a weak form of robustness might perhaps still be acceptable, we will stick to
the stronger definition instead, equating ‘robust hypothesis tests’ with tests satisfying (5.3)
uniformly for all µ0 ∈M0.
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Remark In practice we may very well be interested in a significance level αn that is a
fixed function of the sample size n, i.e., given data Xn, we choose M1 iff the output of
the model comparison method is larger than t(αn). Both Bayesian and switch-based model
comparison may be used in this manner, and Theorem 2 still holds with α replaced by αn;
we focus on the fixed α case for simplicity only.

5.2. AIC is not, and HQ is only Asymptotically Robust

The situation for AIC is quite different from that for BFMS and switching: for every function
t : (0, 1)→ R>0, we have, even for every single 0 < α < 1, that δAIC,t(α) is not a robust null
hypothesis test for significance level α. Hence AIC cannot be transformed into a robust test
in this sense. This can immediately be seen when comparing a 0-dimensional (fixed mean
µ0) with a 1-dimensional Gaussian location family M1 (extension to general multivariate
exponential families is straightforward but involves tedious manipulations with the Fisher
information). Evaluating the left hand side of (5.1) yields that δAIC,t(α) will select the
complex model if ∣∣∣∣∣

n∑
i=1

X̃i

∣∣∣∣∣ ≥
√

2n

t(α)
, (5.4)

where the X̃i are variables with mean 0 and variance 1 if M0 is correct. Hence, as a con-
sequence of the law of the iterated logarithm (see for example Van der Vaart (1998)), with
probability one, infinitely many n exist such that the complex model will be favored, even
though it is incorrect.

It is instructive to compare this to the HQ criterion, which, in this example, using the
same notation as in (5.4), selects the complex model if∣∣∣∣∣

n∑
i=1

X̃i

∣∣∣∣∣ ≥√2cn log log n.

If c > 1 (the case in which HQ is strongly consistent), then this inequality will almost surely
not hold for infinitely many n, as again follows from the law of the iterated logarithm.
The reasoning can again be extended to other exponential families, and we find that the
HQ criterion with c > 1 is robust to optional stopping in the crude, asymptotic sense that
the probability that there exist infinitely many sample sizes such that the simple model is
incorrectly rejected is zero. Yet HQ does not define a robust hypothesis test in the sense
above: to get the numerically precise Type I-error bound (5.2) we would need to define t(α)
in a model-and sample-size-dependent manner, which is quite complicated in all cases except
the Gaussian location families where the asymptotics hold precisely. We note that the same
type of asymptotic robustness holds for the BIC criterion as well.

5.3. Switching with singleton M0 is Robust under Optional Stopping

The main insight of this section is simply that, just like BFMS, switching can be used as a
robust null hypothesis test as well, as long asM0 is a singleton: we can view the switch distri-
bution as a model comparison method that outputs odds ratio rsw(xn) = pB,0(xn)/psw,1(xn).
Until now, we used it to select model 1 if rsw(xn) ≤ 1. If instead we fix a significance level α
and select model 1 if rsw(xn) ≤ α, then we immediately see, by applying Theorem 2 in the
same way as for the Bayes factor case, that rsw constitutes a robust null hypothesis test as
long as M0 is a singleton model (of course, if we select M1 as soon as rsw outputs t ≤ α,
then α is merely an upper bound on the Type-I error; the actual value might even be lower,
as illustrated in the simulations below). Similarly – at least if the priors involved in the
switch criterion are chosen independently of the stopping rule — just like BFMS, the result
rsw(xn) of model comparison by switching does not depend on the ‘sampling intentions’ of
the analyst, thus addressing the two most problematic issues with Neyman-Pearson testing
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— at least for singletonM0. Yet, from a frequentist perspective, switching is preferable to
BFMS, since it has substantially better power (type-II error) properties. As could already be
seen from Yang’s decomposition (3.9), there is an intimate connection between Type-II error
and the risk rate achieved by any model comparison method. Formally, we have the follow-
ing result, a direct corollary of Theorem 4 of the Appendix, which is itself a major building
block of our main result Theorem 1 (plug in γ = α−1 into (D.3) to get the corollary):

Corollary 2. Using the same notations and under the same conditions as Theorem 1, for
any α > 0, there exist constants C1, C2 > 0 such that, for every CINECSI subset M ′1 of M1,
for every sequence µ(1)

1 , µ
(2)
1 , . . . of elements of M ′1 with for all n, infµ0∈M0 ‖µ

(n)
1 − µ0‖22 ≥

C1(log log n)/n, we have

P
µ
(n)
1

(rsw(xn) ≥ α) ≤ C2

log n
. (5.5)

Hence, for any fixed significance level, the power of testing by switching goes to 1 as long
as the data are sampled from a distribution µ(n)

1 in M1 that is farther away from M0 than
order (log log n)/n; for BFMS, the power only goes to 1 if µ(n) is farther away than order
O((log n)/n).

Corollary 2 holds for general M0 including composite ones. Yet robustness to optional
stopping (and hence ‘almost the best of three worlds’) only holds if M0 is a singleton; if
M0 is composite, then — using again the same argument as for the Bayes factor case (see
Corollary 1 and directly below) — we immediately see from Theorem 2 that the much weaker
‘prior expected robustness’ property (5.3) still holds. But, the simulations below show that
full robustness does fail if µ0 is ‘atypical’, i.e. if it resides far out in the tails of the prior
ω0. A major question for future work is now obviously whether there exist versions of the
switch criterion that give a truly robust null hypothesis test even under a composite null
hypothesisM0. We return to this question in Section 6.

5.4. Simulation study

We now provide a simulation to illustrate the differences between AIC, BIC, HQ and the
switch criterion in terms of consistency, strong consistency and robustness to optional stop-
ping, illustrating the insights of the previous subsections. In each setting, two of the following
three models are compared:

• M0 = {N (0, 1)}.
• M1 = {N (µ, 1), µ ∈ R}, with a normal prior with mean zero and variance equal to

100 on µ.
• M2 = {N (µ, σ2), µ ∈ R, σ ∈ R>0}, with a normal-inverse-gamma prior: µ|σ2 ∼
N (0, C × σ2), σ2 ∼ IG(α, β), with C = 100, α = 1, β = 1.

To illustrate standard consistency, M1 and M2 are considered. In the first setting, M1

is true. N = 1000 data sets of length n = 2500 are generated from a standard normal
distribution, and AIC, BIC, HQ with c = 1.05 and δsw are evaluated at each sample size.
The average selected model index (0 forM1, 1 forM2) is given in Figure 1.

In the second setting,M2 is true. The data is generated from a normal distribution with
mean 0 and a variance that is varied. For each value of σ, N = 1000 datasets of length
n = 2500 are generated, and the four model selection criteria are evaluated at that sample
size. The average selected model index is given in Figure 2.

The results are as expected. When the complex model is true, AIC is most likely to select
it, at the cost of inconsistency when the simple model is true. BIC is the slowest to correctly
select the complex model and the first to correctly select the simple model. HQ and δsw
show intermediate behaviour, HQ being slightly more likely to select the complex model.

To illustrate strong consistency and optional stopping, three scenarios are considered:

1. M0 vs M1, data from a standard normal distribution (“scenario 1" — Theorem
2/Corollary 1 implies that switching defines a test that is robust with respect to
optional stopping).
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2. M1 vs M2, data from a standard normal distribution (“scenario 2”, Theorem 2 does
not only imply robustness, because null model is composite).

3. M1 vsM2, data from a normal distribution with mean 35 and variance 1 (“scenario
3", Theorem 2 again does not imply robustness).

We create N = 1000 data sets of length nmax = 10000 in each scenario. We select the
complex model when δsw is larger than 20 (in terms of the robust p-value interpretation of
Theorem 2, this corresponds to a significance level of 0.05). We estimate two probabilities
at each sample size n:

• The probability that there will ever be a model index after n at which the complex
model will be selected (Figure 3), approximated by checking whether the complex
model is selected at any sample size between n and 3nmax.

• The probability that there exists a model index before n at which the complex model
would have been selected (Figure 4).

Figure 3 can be interpreted as a check whether strong consistency holds — if it does, then
the probabilities should converge to 0 as n→∞. Van Erven et al.’s (2007) theorem implies
that strong consistency holds in all three scenarios, and the graphs confirm this — even
though for scenario 3, in which data comes from a µ ∈M0 that is ‘atypical’ under the prior,
it takes a bit longer — illustrating that strong consistency is not a uniform notion. The
graph also illustrates that strong consistency can be viewed as an asymptotic, nonuniform
version of robustness to optional stopping — it implies that from some sample size (which
may be very large though) onwards, one will never again falsely reject no matter how long
one keeps sampling.

Figure 4 refers to nonasymptotic optional stopping: in scenario 1, the conditions from
Theorem 2 hold, and indeed the figure shows that the probability that the complex model
is ever incorrectly selected even when optional stopping is used, is bounded by 0.05 (the
observed bound is 0.015). In scenarios 2 and 3, the conditions from Theorem 2 do not hold. In
scenario 2, the behaviour of the switch criterion is similar to scenario 1. However, in scenario
3, the probability of a false rejection opportunity before sample size n is not bounded by
0.05, but quickly goes to 0.15. We clearly see that δsw is not robust to optional stopping in
scenario 3.

When the simplest model is not a singleton, the choice of prior on the model parameters
(in scenarios 2 and 3 on µ inM1 and on (µ, σ2) inM2) affects the results. In both scenario
2 and 3, δsw must still satisfy the weak, prior-expected version of robustness (5.3), as we
have seen in Section 5.3. In scenario 2, the prior is centered at the data-generating value of
zero and we do observe actual robustness. In scenario 3 however, the prior is centered at
zero while the data is generated with a mean of 35, 3.5 standard deviations away from the
prior mean — thus µ is ‘atypical’ under the prior, and, as the figure shows, nonasymptotic
robustness is violated.

6. Discussion and Future Work

In this paper we showed that switching combines near-rate optimality, consistency and,
for singletonM0, robustness to optional stopping. We end the paper by highlighting three
issues which, we feel, need additional discussion: first, the desirability of consistency; second,
whether there is anything ‘special’ to the switch criterion as opposed to other possible trade-
offs between risk optimality and consistency; and third, the limitations of switching in its
current form.

Consistency Since the desirability of consistency, in the sense of finding the smallest
model containing the true distribution, is somewhat controversial, let us discuss it a bit
further. The main argument against consistency is made by those adhering to Box’s maxim
‘Essentially, all models are wrong, but some are useful’ (Box and Draper, 1987). According
to some, the goal of model selection should therefore not be to select a non-existing ‘true’
model, but to obtain the best predictive inference or best inference about a parameter
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Average selected model index 
 Index 0 is correct

n

0.0

0.2

0.4
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0 500 1000 1500 2000 2500

AIC HQ, c = 1.05 Switch BIC

Fig 1. N = 1000 data sets of length n = 2500 are generated from a standard normal distribution and the
criteria are evaluated at each sample size. The figure shows the average selected model index (0 for M1, 1
for M2). The true index is 0.

Average selected model index 
 Index 1 is correct

σ
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1.00 1.05 1.10

AIC HQ, c = 1.05 Switch BIC

Fig 2. N = 1000 data sets of length n = 2500 are generated from a normal distribution with mean 0 and
variance σ2 for a range of values of σ. The criteria are evaluated at n = 2500. The figure shows the average
selected model index (0 for M1, 1 for M2). The true index is 1.
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Probability of false rejection opportunity 
 after sample size n

n
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Fig 3. N = 1000 data sets of length nmax = 10000 in each scenario, from the simple model. The complex
model is selected when δsw(xn) > 20. Estimated probability that there exists a model index after n at which
the complex model will be selected. Results shown up to n = 1500 for clarity. After n = 1500, the three
curves are indistinguishable and all very close to zero.
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 before sample size n
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Fig 4. Setting as Figure 3. Estimated probability that there exists a model index before n at which the
complex model would have been selected.
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(Burnham and Anderson, 2004; Forster, 2000). Another issue with consistency is that it is
a ‘nonuniform’ notion, which in our context means that — as is indeed easy to see — it
is impossible to give a bound on the probability under Pµ of selecting the wrong model at
sample size n that converges to 0 uniformly for all µ ∈M . This nonuniformity implies that
consistency is of little practical consequence for post-model selection inference (Leeb and
Pötscher, 2005).

As to the first argument, one can reply that there do exist situations in which a model
can be correct, for example in the field of extrasensory perception (Bem, 2011), in which
it seems exceedingly likely that the null model (expressing that no such thing exists) is
correct; another example is genetic linkage (Gusella et al., 1983; Tsui et al., 1985). The
second argument is more convincing, but only to argue that even if consistency holds, a
method may not be very useful in practice. It does not contradict that consistency can
sometimes be a highly desirable (but never the only highly desirable) property — we feel
that this is the case whenever we are not purely interested in prediction but instead are
also seeking to find out whether a certain structural relationship (e.g. dependence between
variables) holds or not.

Going one step further, it seems a good idea to study model selection methods not in
terms of the asymptotic, nonuniform notion of consistency but instead by a more tangible
finite-sample analogue. For the case of just two models, Type-I and Type-II errors provide
exactly this analogue — note that if both errors go to 0 as n→∞, this implies consistency.
Thus, the practical importance of the present work, for us, is mostly that model comparison
by switching defines, like Bayes, a robust null hypothesis test — providing Type-I errors
irrespective of the stopping rule and thus more in line with actual practice — yet has better
Type-II error behaviour, allowing the Type-II error to become small (i.e. the power to go
to 1) whenever the true distribution sits at a distance of order

√
(log log n)/n rather than√

(log n)/n, as with Bayes. We only showed robustness for singletonM0, however, and our
simulations show that it may fail for composite M0, so the major goal for future work is
therefore, to come up with methods that are robust to optional stopping also under composite
M0.

How special is the switch distribution? Since Yang proved that in general, the
conflict between consistency and risk-optimality is not resolvable, one might argue that any
model selection rule just picks some position in the spectrum of behaviours of consistency
vs. risk-optimality. For example, one might have a modified HQ criterion which picks M1

if, using the same setup and notation as in (5.4),∣∣∣∣∣
n∑
i=1

X̃i

∣∣∣∣∣ ≥√n log log log n. (6.1)

By the central limit theorem, such a method will be consistent, yet when combined with
an efficient estimator will achieve the minimax estimation rate up to a log log log n factor,
improving on the switch criterion by an additional logarithm. Note however that both the
switch distribution and HQ (with c > 1) achieve strong consistency. The meaning of strong
consistency is illustrated in Figure 3 above: it means that, from some n onward, the wrong
model will never be selected any more, no matter how long one keeps sampling. It is easy
to see from the law of the iterated logarithm that any strongly consistent method can have
rate no faster than order (log log n)/n — in particular, (6.1) is not strongly consistent.
Thus, in this sense both switching and HQ do take a special place in the consistency vs.
risk-optimality spectrum as obtaining the fastest rates compatible with strong consistency,
which may be viewed as asymptotic robustness to optional stopping. While this may mostly
be of theoretical interest, the switch distribution also takes a special place in terms of its
nonasymptotic robustness to optional stopping: again, the law of the iterated logarithm
implies that any model comparison method that defines a robust hypothesis test cannot
achieve estimation rate better than order (log log n)/n. Again, the main open question here
is whether one can modify it so that robustness for compositeM0 is achieved as well.
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FutureWork— Limitations of the Switch Distribution and Our Results Whereas
the results in this paper all apply to the original switch distribution as defined by Van Er-
ven et al. (2007) and a simplification thereof, for full robustness to optional stopping with
composite M0, some substantial changes have to be made, as suggested by the results in
Figure 4. Initial research suggests that such a modification of the switch distribution might
indeed be constructed, based on techniques in Ramdas and Balsubramani (2015); whereas,
compared to Bayes factor testing, in the current switch criterion, pB,1 is modified to another
distribution and pB,0 can remain the same, in this new version we would also have to change
pB,0 — the resulting distribution would not have a Bayesian interpretation any more. While
this work is still under development, to avoid the nonrobustness seen in Figure 4 as much as
possible, for the time being we recommend using flat priors (but in this case, not completely
flat - Jeffreys’ prior on µ is improper, in which case Theorem 2 holds in none of the scenarios
and simulations — not reported here — show that optional stopping robustness is violated).

Another limitation lies not in the switch distribution, but in our results: these are re-
stricted to two nested exponential family models. It would be interesting to extend them
to more than two models — highlighting the distinction between model selection and test-
ing — and going beyond exponential families. We are hopeful that switching still behaves
well in such contexts — we note that the risk rate convergence results of Van Erven et al.
(2012) were for countable, possibly infinite collections of completely general models — but
they invariably dealt with the cumulative risk. While all our experiments suggest that small
cumulative risk usually goes together with small instantaneous risk, formal analysis of the
switch criterion’s instantaneous risk is far more difficult, and the present paper heavily relies
on sufficiency to do so — so extension of our results beyond exponential families would be
difficult.

Before doing so, we would prefer to modify the switch distribution further, since the
present version has a drawback when used in nonsequential settings: the precise results it
gives are dependent on the order of the data, even if all the models under consideration
are i.i.d. Thus, it would be interesting and challenging to design an alternative, order-
independent method that, like the switch distribution, is strongly consistent, near rate-
and power-optimal, and is robust to optional stopping under compositeM0. Such a method
would essentially truly achieve the best of the three worlds we considered in this paper —
and this is the method we aim for in our future research.
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We start by listing some well-known properties of exponential families which we will
repeatedly use in the proofs. Then, in Section D, we provide a sequence of technical lemmata
that lead up to the proof of our main result, Theorem 1. Finally, in Section E, we compare
the switch distribution and criterion as defined here to the original switch distribution and
criterion of Van Erven et al. (2012).

Additional Notation Our results will often involve displays involving several constants.
The following abbreviation proves useful: when we write ‘for positive constants ~c, we have
...’, we mean that there exist some (c1, . . . , cN ) ∈ RN , with c1, . . . , cN > 0, such that ...
holds; here N is left unspecified but it will always be clear from the application what N is.
Further, for positive constants ~b = (b1, b2, b3), we define small~b(n) as

small~b(n) =

{
1 if n < b1

b2e
−b3n if n ≥ b1,
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and we frequently use the following fact. Suppose that E1, E2, . . . is a sequence of events such
that P(En) ≤ small~b(n). Then we also have, for any event A, and for all n,

P(A, Ecn) ≥ P(A)− small~b(n), (.2)

as is immediate from P(A, Ecn) = P(A)− P(A, En) ≥ P(A)− P(En).
The components of a vector µ ∈ Rn are given by (µ1, µ2, . . . , µn). If the vector already

has an index, we add a comma, for example µ1 = (µ1,1, µ1,2, . . . , µ1,n). A sequence of vectors
is denoted by µ(1), µ(2), . . ..

Appendix A: Definitions Concerning and Properties of Exponential Families

The following definitions and properties can all be found in the standard reference (Barndorff-
Nielsen, 1978) and, less formally, in (Grünwald, 2007, Chapters 18 and 19).

A k-dimensional exponential family is a set of distributions on X , which we invariably
represent by the corresponding set of densities {pθ | θ ∈ Θ}, where Θ ⊂ Rk, such that any
member pθ can be written as

pθ(x) =
1

z(θ)
eθ
Tφ(x)r(x) = eθ

Tφ(x)−ψ(θ)r(x), (A.1)

where φ(x) = (φ1(x), . . . , φk(x)) is a sufficient statistic, r is a non-negative function called
the carrier, z the partition function and ψ(θ) = log z(θ). We assume the representation (A)
to be minimal, meaning that the components of φ(x) are linearly independent.

The parameterization in (A.1) is referred to as the canonical or natural parameterization;
we only consider families for which the set Θ is open and connected. Every exponential family
can alternatively be parameterized in terms of its mean-value parameterization, where the
family is parameterized by the mean µ = Eθ[φ(X)], with µ taking values in M ⊂ R, where
µ as a function of θ is smooth and strictly increasing; as a consequence, the set M of mean-
value parameters corresponding to an open and connected set Θ is itself also open and
connected. Whenever for data x1, . . . , xn, we have 1

n

∑n
i=1 φ(xi) ∈ M , then the maximum

likelihood is uniquely achieved by the µ that is itself equal to this value,

µ̂(xn) =
1

n

n∑
i=1

φ(xi). (A.2)

We thus define the maximum likelihood estimator (MLE) to be equal to (A.2) whenever

1

n

n∑
i=1

φ(Xi) ∈M. (A.3)

Since the result below which directly involves the MLE (Lemma 3) does not depend on
its value for xn with 1

n

∑n
i=1 φ(xi) 6∈ M , we can leave µ̂(xn) undefined for such values.

However, if we want to use the MLE as a ‘sufficiently efficient’ estimator as used in the
statement of Theorem 1, we need to define µ̂(xn) for such values in such a way that the
‘sufficiently efficient property’ (4.1) is satisfied. The following examples show various ways
of constructing such sufficiently efficient estimators.

Example 3. [Sufficient Efficiency for MLE’s for squared (standardized) error and
Hellinger] For many full families such as the full (multivariate) Gaussians, Gamma and
many others, (A.3) holds µ-almost surely for each n, for all µ ∈ M . If we compare two
familiesM0 andM1 given in their mean-value parameterization with M0 ⊂M1 whereM1

is any such family, then the MLE is almost surely well-defined for M1 and thus we need
not worry about the issue indicated above. We can then take µ̆1 := µ̂1 to be the MLE for
M1. To get a sufficiently efficient estimator for M0, we take µ̆0 to be the projection of µ̂1

on the first m0 coordinates (usually (A.3) will still hold for M0 and then this µ̆0 will also
be the MLE forM0). This pair of estimators will be sufficiently efficient for (standardized)
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squared error and squared Hellinger distance, i.e. (4.1) holds for these three losses. To show
this, note that from Proposition 1, Eq. (A.7), we see that it is sufficient to show that (4.1)
holds for the squared error loss. Since the j-th component of µ̂1 is equal to n−1

∑n
i=1 φj(Xi)

and Eµ1 [n−1
∑n
i=1 φj(Xi)] = µ1,j and varµ1

[
n−1

∑n
i=1 φj(Xi)

]
= n−1varµ1 [φj(X1)] , it

suffices to show that
sup

µ1∈M ′1
sup

j=1,...,m1

varµ1
[φj(X1)] = O (1) ,

which is indeed the case since M ′1 is a CINECSI set, so that the variance of all φj ’s is
uniformly bounded on M ′1 (Barndorff-Nielsen, 1978).

Example 4. [Other sufficiently efficient estimators for squared (standardized)
error and Hellinger] For models such as the Bernoulli or multinomial, (A.3) may fail
to hold with positive probability: the full Bernoulli exponential family does not contain
the distributions with P (X1 = 1) = 1 and P (X1 = 0) = 1, so if after n examples, only
zeros or only ones have been observed, the MLE is undefined. We can then go either of
three ways. The first way, which we shall not pursue in detail here, is to work with so-
called ‘aggregate’ exponential families, which are extensions of full families to their limit
points. For models with finite support (such as the multinomial) these are well-defined
(Barndorff-Nielsen, 1978, page 154–158) and then the MLE’s for these extended families
are almost surely well-defined again, and the MLE’s are sufficiently efficient by the same
reasoning as above. Another approach that works in some cases (e.g. multinomial) is to
take µ̆1 to be a truncated MLE, that, at sample size n, maps Xn to the MLE within some
CINECSI subset M (n)

1 of M1, where M
(n)
1 converges to M1 as n increases in the sense that

sup
µ∈M(n)

1 ,µ′∈M1\M(n)
1
‖µ−µ′‖22 = O(1/n). The resulting truncated MLE, and its projection

onM0 (usually itself a truncated MLE) will then again be sufficiently efficient. This approach
also works if the modelsM0 andM1 are not full but restricted families to begin with. For full
families though, a more elegant approach than truncating MLE’s is to work with Bayesian
posterior MAP estimates with conjugate priors. For steep exponential families (nearly all
families one encounters in practice are steep), one can always find conjugate priors such that
the Bayes MAP estimates based on these priors exist and take a value in M1 almost surely
(Grünwald and de Rooij, 2005). They then take the form µ̆1 =

∑n
i=1(φ(Xi)+λ0µ

◦
1)/(n+λ0),

where λ0 > 0 and µ◦1 ∈M1 are determined by the prior. µ̆0 can then again be taken to be the
projection of µ̆1 onto M0. Under the assumption that µ1 is contained in a CINECSI set M ′1,
one can now again show, using the same arguments as in Example 3, that such estimators
are sufficiently efficient for squared (standardized) error and Hellinger loss.

Example 5. [Sufficient Efficiency for Rényi and KL divergence] As is well-known,
for the multivariate Gaussian model with fixed covariance matrix, the squared error risk and
KL divergence are identical up to constant factors, so the unrestricted MLE’s will still be
sufficiently efficient for KL divergence. For other models, though, the MLE will not always
be sufficiently efficient. For example, with the Bernoulli model and other models with finite
support, to make the unrestricted MLE’s well-defined, we would have to extend the family
to its boundary points as indicated in Example 3. Since, however, for any 0 < µ < 1 and
µ′ = 0, the KL divergence D(µ‖µ′) = ∞ and Pµ(µ̂(Xn) = µ′) > 0, the unrestricted MLE
in the full Bernoulli model including the boundaries will have infinite risk and thus will
not be sufficiently efficient. The MAP estimators tend to behave better though: Grünwald
and de Rooij (2005) implicitly show that for 1-dimensional families, under weak conditions
on the family (Condition 1 underneath Theorem 1 in their paper) — which were shown to
hold for a number of families such as Bernoulli, Poisson, geometric — sufficient efficiency
for the KL divergence still holds for MAP estimators of the form above. We conjecture that
a similar result can be shown for multidimensional families, but will not attempt to do so
here.

A standard property of exponential families says that, for any µ ∈ M , any distribution
Q on X with EX∼Q[φ(X)] = µ, any µ′ ∈M , we have

EX∼Q
[
log

pµ(X)

pµ′(X)

]
= EX∼Pµ

[
log

pµ(X)

pµ′(X)

]
= D(µ‖µ′), (A.4)
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the final equality being just the definition of D(·‖·). Now fix an arbitry sample xn. By taking
Q to be the empirical distribution on X corresponding to sample xn, it follows from (A.4)
that if µ̂(xn) ∈M then also the following relationship holds for any µ′ ∈M :

1

n
log

pµ̂(xn)(x
n)

pµ′(xn)
= D(µ̂(xn)‖µ′). (A.5)

(A.4) and (A.5) are a direct consequence of the sufficiency of µ̂1(Xn), and folklore among
information theorists. For a proof of (A.4) and more details on (A.5), see e.g. (Grünwald,
2007, Chapter 19), who calls this the robustness property of the KL divergence for exponential
families.

We are now in a position to prove Proposition 1, which we repeat for convenience.

Proposition 1 Let M , a product of open intervals, be the mean-value parameter space
of an exponential family, and let M ′ be a CINECSI subset of M . Then there exist positive
constants ~c such that for all µ, µ′ ∈M ′,

c1‖µ′ − µ‖22 ≤ c2 · dST (µ′‖µ) ≤ dH2(µ′, µ) ≤ dR(µ′, µ) ≤ D(µ′‖µ) ≤ c3‖µ′ − µ‖22. (A.6)

and for all µ′ ∈M ′, µ ∈M (i.e. µ is now not restricted to lie in M ′),

dH2(µ′, µ) ≤ c4‖µ′ − µ‖22 ≤ c5 · dST (µ′‖µ) ≤ c6‖µ′ − µ‖22. (A.7)

Proof. We start with (A.6). The third and fourth inequality are immediate by using− log x ≥
1− x and Jensen’s inequality, respectively. From standard properties of Fisher information
for exponential families (Barndorff-Nielsen, 1978) we have that, for any CINECSI (hence
compact and bounded away from the boundaries ofM) subsetM ′ ofM , there exists positive
~C with

0 < C1 = inf
µ∈M ′

det I(µ) < sup
µ∈M ′

det I(µ) = C2 <∞, (A.8)

from which we infer that for all µ′ ∈M ′, µ, µ′′ ∈ Rm,

C3‖µ− µ′′‖22 ≤ (µ− µ′′)T I(µ′)(µ− µ′′) ≤ C4‖µ− µ′′‖22, (A.9)

for some 0 < C3 ≤ C4 < ∞. Using (A.9), the first inequality is immediate, and the final
inequality follows straightforwardly from a second-order Taylor approximation of KL diver-
gence as in (Grünwald, 2007, Chapter 4). It only remains to establish the second inequality.
Now, since M ′ is CINECSI and hence compact the fifth (rightmost) inequality implies that
there is a C5 <∞ such that supµ,µ′∈M ′ D(µ′‖µ) < C5 and hence, via the fourth inequality,
that supµ,µ′∈M ′ dR(µ′, µ) < C5. Equality (3.2) now implies that there is a C6 such that

sup
µ,µ′∈M ′

dR(µ′, µ)/dH2(µ′, µ) < C6. (A.10)

Using again (A.8), a second order Taylor approximation as in Van Erven and Harremoës
(2014) now gives that for some constant C7 > 0, ‖µ− µ′‖22 ≤ C7dR(µ′, µ) for all µ, µ′ ∈M ′.
The first result, (A.6), now follows upon combining this with (A.10).

As to (A.7), the second and third inequality are immediate from (A.9). For the first
inequality, note that, since M ′ is CINECSI and we assume M to be a product of open
intervals, there must exist another CINECSI subset M ′′ of M strictly containing M ′ such
that infµ′∈M ′,µ∈M\M ′′ ‖µ′−µ‖22 = δ for some δ > 0. We now distinguish between µ in (A.7)
being an element of (a) M ′′ or (b) M \M ′′. For case (a) (A.6), with M ′′ in the role of M ′,
gives that there is a constant C8 such that for all µ ∈M ′′, dH2(µ′, µ) ≤ C8‖µ′−µ‖22. For case
(b), µ ∈M \M ′′, we have ‖µ′ − µ‖22 ≥ δ and, using that squared Hellinger distance for any
pair of distributions is bounded by 2, we have dH2(µ′, µ) ≤ (2/δ)‖µ′ − µ‖22. Thus, by taking
c4 = max{C8, 2/δ}, case (a) and (b) together establish the first inequality in (A.7).
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Appendix B: Preparation for Proof of Main Result: Results on Large
Deviations

LetM1 and M1 be as in Theorem 1. For the following result, Lemma 1, we set µ̂′1(Xn) :=
n−1

∑
φ(Xi), so that µ̂′1(Xn) = µ̂1(Xn) whenever n−1

∑
φ(Xi) ∈ M1. It is essentially a

multidimensional extension of a standard information-theoretic result, with KL divergence
replaced by squared error loss. This standard result states the following: wheneverM1 is a
single-parameter exponential family (that is, m1 = 1), then for any µ ∈ M1, all a, a′ > 0
with µ+ a ∈M1, µ− a′ ∈M1,

Pµ(µ̂′1(Xn) ≥ µ+ a) ≤ e−nD(µ+a‖µ). ; Pµ(µ̂′1(Xn) ≤ µ− a′) ≤ e−nD(µ−a′‖µ). (B.1)

For a simple proof, see (Grünwald, 2007, Section 19.4.2); for discussion see (Csiszár, 1984)
— the latter reference gives a multidimensional extension of (B.1) but of a very different
kind than Lemma 1 below. To prepare for the lemma, letM1 and M1 be as in Theorem 1
and, for any µ ∈M1 and any ~a,~b ∈ Rm1

>0 , define the `∞-rectangle R∞(µ,~a,~b) = {µ′ ∈ Rm1 :
∀j = 1, . . . ,m1,−bj ≤ µ′j − µj ≤ aj}.

Lemma 1. LetM1 and M1 be as in Theorem 1 and fix an arbitrary CINECSI subset M ′1 of
M1. Then there is a c > 0 (depending on M ′1) such that, for all µ ∈M1, all n, all ~a,~b ∈ Rm1

>0

such that R∞(µ,~a,~b) ⊂M ′1,

Pµ(µ̂′1(Xn) 6∈ R∞(µ,~a,~b)) ≤ 2m1e
−nc·(minj min{aj ,bj})2 . (B.2)

Proof. For j = 1, . . . ,m1, d ∈ R, let ~ej represent the jth standard basis vector, such
that µ + d~ej = (µ1, . . . , µj−1, µj + d, µj+1, . . . , µm1

), and let Dµ+d~ej := D(µ + d~ej‖µ).
We now have that there exist constants ca,1, . . . , ca,m1 , cb,1, . . . , cb,m1 > 0 such that for
c := min{ca,1, . . . , ca,m1 , cb,1, . . . , cb,m1}, all n,

Pµ(µ̂1(Xn) 6∈ R∞(µ,~a,~b)) ≤
m1∑
j=1

Pµ(µ̂1,j(Xn) ≥ µj + aj) +

m1∑
j=1

Pµ(µ̂1,j(X
n) ≤ µj − bj)

≤
m1∑
j=1

(
e−nDµ+aj ~ej + e−nDµ−bj ~ej

)
≤

m1∑
j=1

(
e−nca,ja

2
j + e−ncb,jb

2
j

)
≤ 2m1e

−nc·(minj min{aj ,bj})2 ,

Here the first inequality follows from the union bound, and the second follows by applying,
for each of the 2m1 terms, (B.1) above to the one-dimensional exponential sub-family {pµ |
µ ∈M1∩{µ : µ = µ+d~ej for some d ∈ R}}. The third follows by Proposition 1 together with
the equivalence of the `2 and sup norms on Rm1 , and the final inequality is immediate.

Lemma 2. Under conditions and notations as in Theorem 1, let µ, µ′ be elements of M1

and suppose XN = (Xn1
, . . . , Xn2

) is a sequence of i.i.d. observations of length N from pµ.
Then, for any A ∈ R:

Pµ
(

log
pµ(XN )

pµ′(XN )
< A

)
≤ e 1

2Ae−
N
2 dR(µ′,µ). (B.3)

Proof. For any A, by Markov’s inequality:

Pµ
(

log
pµ(XN )

pµ′(XN )
< A

)
= Pµ

((
pµ′(X

N )

pµ(XN )

) 1
2

> e−
1
2A

)
≤ e 1

2AEµ

[(
pµ′(X

N )

pµ(XN )

) 1
2

]

= e
1
2A

(
Eµ

[(
pµ′(Xn1)

pµ(Xn1
)

) 1
2

])N
= e

1
2Ae

log

(
Eµ

[(
p
µ′ (Xn1

)

pµ(Xn1
)

) 1
2

])N

= e
1
2Ae
−N2

(
− 1

1−1/2
log Eµ

[(
p
µ′ (Xn1

)

pµ(Xn1
)

) 1
2

])
= e

1
2Ae−

N
2 dR(µ,µ′). (B.4)
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Proposition 2. LetM0,M1,M0,M1 be as in Theorem 1 and let M ′1 be a CINECSI subset
of M1. Then there exists another, larger, CINECSI subset M ′′1 of M1 and positive constants
~b such that M ′1 is itself a CINECSI subset of M ′′1 and for both j ∈ {0, 1}, the ML estimator
µ̂j(x

n) satisfies
sup
µ∈M ′1

Pµ(µ̂j(X
n) 6∈M ′′1 ) ≤ small~b(n).

Proof. M1 can be written as in (3.7), and hence we can define a set

M ′′1 = [ζ∗1,1, η
∗
1,1]× . . .× [ζ∗1,m1

, η∗1,m1
]

for values ζ∗1,j , η∗1,j ∈ R such thatM ′′1 is a CINECSI subset ofM1. SinceM ′1 is connected with
compact closure in interior of M1 and M ′′1 is a subset of M1, we can choose the ζ∗1,j , η∗1,j ∈ R
such that M ′1 is itself a CINECSI subset of M ′′1 . Since M ′1 is connected and its closure is in
the interior of M ′′1 which is itself compact, it follows that there is some δ > 0 such that, for
all µ′1 ∈ M ′1, µ′′1 6∈ M ′′1 , all j ∈ {1, . . . ,m1}, it holds |µ′1,j − µ′′1,j | > δ. It now follows from
Lemma 1, applied with ~a chosen such that R∞(µ′,~a) = M ′′1 , that for every µ′ ∈M ′1, all n,

Pµ′ (µ̂1(Xn) 6∈M ′′1 ) ≤ C1e
−nC2δ

2

for some constants C1, C2. Here we used that by construction, each entry of ~a must be at
least as large as δ. Since µ̂1,j(x

n) and µ̂0,j(x
n) coincide for 0 < j ≤ m0 and µ̂0,j(x

n) is
constant for m0 < j ≤ m1, the result follows for µ̂0(xn) as well.

Appendix C: Preparation for Proof of Main Result: Results on Bayes Factor
Model Selection

Lemma 3. Let M0,M1,M0,M1 be as in Theorem 1 and let, for j ∈ {0, 1}, M ′j be a
CINECSI subset of Mj. For both j ∈ {0, 1}, there exist positive constants ~c,~b such that for
all µ1 ∈M ′1,

c1 ≤ n−mj/2 ·
pµ̂j(Xn)(X

n)

pB,j(Xn)
≤ c2, (C.1)

with Pµ1
-probability at least 1− small~b(n).

Proof. For a Bayesian marginal distribution pB defined relative to m-dimensional expo-
nential family M given in its mean-value parameterization M , with a prior ω(·) that is
continuous and strictly positive on M , we have as a consequence of the familiar Laplace
approximation of the Bayesian marginal distribution of exponential famlies as in e.g. (Kass
and Raftery, 1995),

pB(xn) ∼
( n

2π

)−m/2
· ω(µ̂(xn))√

det I(µ̂(xn))
pµ̂(xn)(x

n).

As shown in Theorem 8.1 in (Grünwald, 2007), this statement holds uniformly for all se-
quences xn with ML estimators in any fixed CINECSI subset M ′ of M . By compactness
of M ′, and by positive definiteness and continuity of Fisher information for exponential
families, the quantity ω(µ̂)/

√
det I(µ̂) will be bounded away from zero and infinity on such

sequences, and, applying the result to both the families M0 and M1 it follows that there
exist c1, c2 > 0 such that for all n larger than some n0, uniformly for all sequences xn with
µ̂j(x

n) ∈M ′j , we have:

c1 ≤ n−mj/2 ·
pµ̂j(xn)(x

n)

pB,j(xn)
≤ c2. (C.2)

The result now follows by combining this statement with Proposition 2.
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Lemma 4. Let M0,M1,M0, M1 and the Bayesian marginal distribution pB,0 be as in
Theorem 1. Let M ′1 be a CINECSI subset of M1. Then there exist positive constants ~c and
~b such that for all n, all µ1 ∈M ′1, all A ∈ R,

Pµ1

(
log

pB,1(Xn)

pB,0(Xn)
< A

)
≤ nm1/2 · c1 · e

1
2 c2Ae−

n
2 c3‖µ1−µ0‖22 + small~b(n),

where for each µ1, µ0 = Π0(µ1) as in (3.8).

Proof. Fix constants C1, C2 such that they are smaller and larger respectively than the
constants c1, c2 from Lemma 3 and define

En =

{
Xn : C1 ≤ n−m1/2

pµ̂1(Xn)(X
n)

pB,1(Xn)
≤ C2

}
.

Using Lemma 3, we have that there exists positive ~b such that for all A ∈ R,

Pµ1

(
log

pB,1(Xn)

pB,0(Xn)
< A

)
=Pµ1

(
log

pB,1(Xn)

pB,0(Xn)
< A, En

)
+ Pµ1

(
log

pB,1(Xn)

pB,0(Xn)
< A, Ecn

)
≤Pµ1

(
log

C−1
2 n−m1/2pµ̂1(Xn)(X

n)

pB,0(Xn)
< A, En

)
+ small~b(n)

≤Pµ1

(
log

C−1
2 n−m1/2pµ1

(Xn)

pB,0(Xn)
< A

)
+ small~b(n)

= Pµ1

(
log

pµ1(Xn)

pB,0(Xn)
< A+ logC2n

m1/2

)
+ small~b(n). (C.3)

To bound this probability further, we need to relate pB,0 to pB′,0, the Bayesian marginal
likelihood under model M0 under a prior with support restricted to a compact set M ′0.
To define M ′0, note first that there must exist a CINECSI subset, say M ′′1 , of M1 such
that M ′1 is itself a CINECSI subset of M ′′1 . Take any such M ′′1 and let M ′0 be the closure
of M ′′1 ∩M0. Given ω, the prior density on Π′(M0) used in the definition of pB,0, define
ω′(ν) = ω(ν)/

∫
ν∈Π′(M ′0)

ω(ν)dν as the prior density restricted to and normalized on Π′(M ′0)

and let pB′,0 be the corresponding Bayesian marginal density on Xn.
To continue bounding (C.3), define

E ′n =

{
Xn : C3 ≤ n−m0/2

pµ̂0(Xn)(X
n)

pB,0(Xn)
≤ C4 and C3 ≤ n−m0/2

pµ̂0(Xn)(X
n)

pB′,0(Xn)
≤ C4

}
,

with C3 and C4 smaller and larger respectively than the constants c1 and c2 resulting from
Lemma 3 (note that Lemma 3 can be applied to pB′,0 as well, by taking M0 in that lemma
to be the interior of M ′0 as defined here). Set C5 > C4/C3, and note that for any A1 ∈ R,
abbreviating Pµ1

(
log

pµ1 (Xn)

C5pB′,0(Xn) < A1

)
to p∗, we have

Pµ1

(
log

pµ1
(Xn)

pB,0(Xn)
< A1

)
=Pµ1

(
log

pµ1
(Xn)

pB,0(Xn)
< A1,

pB0
(Xn)

pB′,0(Xn)
< C5

)
+ Pµ1

(
log

pµ1
(Xn)

pB,0(Xn)
< A1,

pB0
(Xn)

pB′,0(Xn)
≥ C5

)
≤Pµ1

(
log

pµ1
(Xn)

C5pB′,0(Xn)
< A1

)
+ Pµ1

(pB,0(Xn) ≥ C5pB′,0(Xn))

=p∗ + Pµ1
(pB,0(Xn) ≥ C5pB′,0(Xn))

≤p∗ + Pµ1

(
pB,0(Xn)

pB′,0(Xn)
≥ C5, E ′n

)
+ Pµ1

(
pB,0(Xn)

pB′,0(Xn)
≥ C5, (E ′n)c

)
≤p∗ + 0 + small~b(n). (C.4)
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Now it only remains to bound p∗. To this end, let

C6 :=

∫
ν∈Π′(M ′0)

√
ω(ν)dν. (C.5)

Since M ′0 has compact closure in the interior of M0 and we are assuming that ω has full
support on M0, we have that C6 <∞.

Now using Markov’s inequality as in the proof of Lemma 2, that is, the first line of (B.4)
with pB′,0 in the role of pµ′ , gives, for any A2 ∈ R,

Pµ1

(
log

pµ1
(Xn)

pB′,0(Xn)
< A2

)
≤ e 1

2A2Eµ1

[(
pB′,0(Xn)

pµ1(Xn)

) 1
2

]
. (C.6)

The expectation on the right can be further bounded, defining ω′′ =
√
ω/C6 and noting that

ω′′ is a probability density, as

Eµ1

[(
pB′,0(Xn)

pµ1
(Xn)

) 1
2

]
≤ Eµ1

[(∫
ν∈Π′(M ′0)

ω(ν)1/2pν(Xn)1/2dν

pµ1
(Xn)1/2

)]

= C6 · Eµ∼ω′′Eµ1

[(
pµ(Xn)

pµ1(Xn)

) 1
2

]
≤ C6 · Eµ1

[(
pµ◦(X

n)

pµ1(Xn)

) 1
2

]
,

where µ◦ ∈ M ′0 achieves the supremum of Eµ1

[(
pµ◦ (Xn)

pµ1 (Xn)

) 1
2

]
within M ′0. By compactness

of M ′0 and continuity, this supremum is achieved. The final term can be rewritten, following
the same steps as in the second and third line of (B.4), as

Eµ1

[(
pµ◦(X

n)

pµ1
(Xn)

) 1
2

]
= e−

n
2 dR(µ1,µ

◦). (C.7)

Since M ′0 and M ′1 are both CINECSI, it now follows from Proposition 1 that for some fixed
C7 > 0,

dR(µ1, µ
◦) ≥ C7‖µ1 − µ◦‖22 ≥ C7‖µ1 − µ0‖22, (C.8)

where the latter inequality follows by the definition of µ0 = Π0(µ1), see the explanation below
(3.8). Combining (C.6), (C.7) and (C.8), we have thus shown that for all n, all µ1 ∈M1, all
A2 ∈ R,

Pµ1

(
log

pµ1
(Xn)

pB′,0(Xn)
< A2

)
≤ C6e

1
2A
′′
e−

n
2C7‖µ1−µ0‖22 . (C.9)

The result now follows by combining (C.3), (C.4) and (C.9).

Appendix D: Proof of Main Result, Theorem 1

Proof Idea The proof is based on analyzing what happens if X1, X2, . . . , Xn are sampled
from p

µ
(n)
1

, where µ
(1)
1 , µ

(2)
1 , . . . are a sequence of parameters in M ′1. We consider three

regimes, depending on how fast (if at all) µ(n)
1 converges to µ(n)

0 as n → ∞. Here µ(n)
0 =

Π0(µ
(n)
1 ) is the projection of µ(1) onto M0, i.e. the distribution in M0 defined, for each n, as

in (3.8), with µ1 and µ0 in the role of µ(n)
1 and µ(n)

0 , respectively. Our regimes are defined
in terms of the function f given by

f(n) :=
‖µ(n)

1 − µ(n)
0 ‖22

log logn
n

=
n · ‖µ(n)

1 − µ(n)
0 ‖22

log log n
, (D.1)
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which indicates how fast dSQ(µ
(n)
1 , µ

(n)
0 ) grows relative to the best possible rate (log log n)/n.

We fix appropriate constants Γ1 and Γ2, and we distinguish, for all n with Γ2 log n ≥ Γ1,
the cases:

f(n) ∈


[0,Γ1] Case 1
[Γ1,Γ2 log n] Case 2 (Theorem 4)
[Γ2 log n,∞] Case 3 (Theorem 3).

For Case 1, the rate is easily seen to be upper bounded by O((log log n)/n), as shown inside
the proof of Theorem 1. In Case 2, Theorem 4 establishes that the probability that model
M0 is chosen is at most of order 1/(log n), which, as shown inside the proof of Theorem 1,
again implies an upper-bound on the rate-of convergence of O((log log n)/n). Theorem 3
shows that in Case 3, which includes the case that ‖µ(n)

1 − µ(n)
0 ‖22 does not converge at all,

the probability that model M0 is chosen is at most of order 1/n, which, as again shown
inside the proof of Theorem 1, again implies an upper-bound on the rate-of convergence of
O((log log n)/n).

The two theorems take into account that µ(n)
1 is not just a fixed function of n, but may

in reality be chosen by nature in a worst-case manner, and that f(n) may actually fluctuate
between regions for different n. Combining these two results, we finally prove the main
theorem, Theorem 1.

Theorem 3. Let M0,M1, M ′1 and psw,1(xn) be as in Theorem 1. Then there exist positive
constants ~b,~c such that for all µ1 ∈M ′1, all n,

Pµ1
(δsw(Xn) = 0) ≤ c1 · nm1/2 · e−c2n‖µ

(n)
1 −µ

(n)
0 ‖

2
2 + small~b(n), (D.2)

where µ(n)
0 = Π0(µ

(n)
1 ) is as in (3.8). As a consequence, with Γ2 := c−1

2 (1 +m1/2), we have
the following: for every sequence µ(1)

1 , µ
(2)
1 , . . . with f(n) as in (D.1) larger than Γ2 log n, we

have
P
µ
(n)
1

(δsw(Xn) = 0) ≤ c1
n

+ small~b(n).

Proof. We can bound the probability of selecting the simple model by:

P
µ
(n)
1

(δsw(Xn) = 0) = P
µ
(n)
1

(
psw,1(Xn)

pB,0(Xn)
≤ 1

)
= P

µ
(n)
1

(∑∞
i=0 π(2i)p̄2i(X

n)

pB,0(Xn)
≤ 1

)
≤ P

µ
(n)
1

(
π(1)pB,1(Xn)

pB,0(Xn)
≤ 1

)
.

Now (D.2) follows directly by applying Lemma 4 to the rightmost probability. For the second
part, set Γ2 = c−1

2 (1 + m1/2). By assumption f(n) > Γ2 log n, we have ‖µ(n)
1 − µ(n)

0 ‖22 >
Γ2(log n)(log log n)/n. Applying (D.2) now gives the desired result.

Theorem 4. Let f be as in (D.1) and M ′1 be as in Theorem 1. For any γ > 0, there exist
constants Γ1,Γ3 > 0 such that, for every sequence µ(1)

1 , µ
(2)
1 , . . . of elements of M ′1 with for

all n, f(n) > Γ1, we have

P
µ
(n)
1

(
psw,1(Xn)

pB,0(Xn)
≤ γ

)
≤ Γ3

log n
. (D.3)

In particular, by taking γ = 1, we have

P
µ
(n)
1

(δsw(Xn) = 0) ≤ Γ3

log n
.

The probabilities thus converge uniformly at rate O(1/(log n)) for all such sequences µ(1)
1 , µ

(2)
1 , . . ..
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Proof. We specify Γ1 later. By assumption, we have π(2i) & (log n)−κ for i ∈ {0, . . . , blog2 nc}.
We can restrict our attention to the strategy that switches to the complex model at the penul-
timate switching index, due to the following inequality: for any fixed γ, there exist positive
constants ~C such that for all large n:

P
µ
(n)
1

(
psw,1(Xn)

pB,0(Xn)
≤ γ

)
≤ P

µ
(n)
1

(∑blog2 nc
i=0 π(2i)p̄2i(X

n)

pB,0(Xn)
≤ γ

)

≤ P
µ
(n)
1

(∑blog2 nc
i=0 p̄2i(X

n)

pB,0(Xn)
≤ C1(log n)κ

)

≤ P
µ
(n)
1

(
p̄2blog2 nc−1(Xn)

pB,0(Xn)
≤ C1(log n)κ

)
= P

µ
(n)
1

(
log

p̄2blog2 nc−1(Xn)

pB,0(Xn)
≤ κ log log n+ C2

)
. (D.4)

For the remainder of this proof, we will denote the penultimate switching index by n∗, that
is: n∗ = 2blog2 nc−1. Now apply Lemma 3 twice, which gives that there exist C3, C4 such
that, with probability at least 1− small~b(n),

log p̄n∗(X
n) = log pB,0(Xn∗) + log pB,1(Xn|Xn∗) =

= log pB,0(Xn∗) + log pB,1(Xn)− log pB,1(Xn∗)

≥ log pB,0(Xn∗) + log pµ̂1(Xn)(X
n)− log pµ̂1(Xn∗ )(X

n∗) +
m1

2
log

n∗

n
− C3

≥ log pB,0(Xn∗) + log
pµ̂1(Xn)(X

n)

pµ̂1(Xn∗ )(X
n∗)
− C4, (D.5)

where we used that log n∗

n is of the order of a constant, because n∗ is between n
4 and n

2 .
From this, applying again Lemma 3 twice, it follows that there exists ~b and C5, C6 such that
for all n, with probability at least 1− small~b(n),

log
p̄n∗(X

n)

pB,0(Xn)
≥ log

pB,0(Xn∗)

pB,0(Xn)
+ log

pµ̂1(Xn)(X
n)

pµ̂1(Xn∗ )(X
n∗)
− C4

= − log
pµ̂0(Xn)(X

n)

pµ̂0(Xn∗ )(X
n∗)
− m0

2
log

n∗

n
+ log

pµ̂1(Xn)(X
n)

pµ̂1(Xn∗ )(X
n∗)
− C5

≥ − log
pµ̂0(Xn)(X

n)

pµ̂0(Xn∗ )(X
n∗)

+ log
pµ̂1(Xn)(X

n)

pµ̂1(Xn∗ )(X
n∗)
− C6 (D.6)

where we again used that log n∗

n can be bounded by constants. Let Bn be the event that
(D.6) holds. By (D.4) and (D.6), for all large n, all β ≥ 1,

P
µ
(n)
1

(
psw,1(Xn)

pB,0(Xn)
≤ γ

)
≤ P

µ
(n)
1

(
log

p̄n∗(X
n)

pB,0(Xn)
≤ κ log log n+ C2

)
≤P

µ
(n)
1

(
log

p̄n∗(X
n)

pB,0(Xn)
≤ κ log log n+ C2,Bn

)
+ P

µ
(n)
1

(Bcn)

≤P
µ
(n)
1

(
− log

pµ̂0(Xn)(X
n)

pµ̂0(Xn∗ )(X
n∗)

+ log
pµ̂1(Xn)(X

n)

pµ̂1(Xn∗ )(X
n∗)
− C6 ≤ κ log log n+ C2

)
+ small~b(n)

=P
µ
(n)
1

(
E(1)
n

)
+ small~b(n) ≤ P

µ
(n)
1

(
E(β)
n

)
+ small~b(n), (D.7)

where we defined

E(β)
n =

{
log

pµ̂1(Xn)(X
n)

pµ̂1(Xn∗ )(X
n∗)
·
pµ̂0(Xn∗ )(X

n∗)

pµ̂0(Xn)(Xn)
≤ A(β)

n

}
(D.8)
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and, for β ≥ 1, we set A(β)
n = βκ log logn+ C2 − C6.

Below, if a sample is split up into two parts x1, . . . , xn∗ and xn∗+1, . . . , xn, these partial
samples will be referred to as xn

∗
and x>n

∗
respectively. We also suppress in our notation

the dependency of An, En and Dj,n as defined below on β; all results below hold, with the
same constants, for any β ≥ 1.

We will now bound the right-hand side of (D.7) further. Define the events

D1,n =

{
log

p
µ
(n)
1

(xn)

p
µ
(n)
1

(xn∗)
≤ log

pµ̂1(Xn)(x
n)

pµ̂1(Xn∗ )(x
n∗)

+An

}

D0,n =

{
log

p
µ
(n)
0

(xn)

p
µ
(n)
0

(xn∗)
≥ log

pµ̂0(Xn)(x
n)

pµ̂0(Xn∗ )(x
n∗)
−An

}
.

The probability in (D.7) can be bounded, for all β ≥ 1, as

P
µ
(n)
1

(En) = P
µ
(n)
1

(En,D0,n ∩ D1,n) + P
µ
(n)
1

(En, (D0,n ∩ D1,n)c) + small~b(n)

≤ P
µ
(n)
1

(En,D0,n,D1,n) + P
µ
(n)
1

(Dc1,n) + P
µ
(n)
1

(Dc0,n) + small~b(n). (D.9)

We first consider the first probability in (D.9): there are constants ~C such that, for all large
n,

P
µ
(n)
1

(En,D0,n,D1,n)

≤ P
µ
(n)
1

(
log

p
µ
(n)
1

(Xn)

p
µ
(n∗)
1

(Xn∗)
−An + log

p
µ
(n)
0

(Xn)

p
µ
(n)
0

(Xn∗)
−An ≤ An

)

= P
µ
(n)
1

(
log

p
µ
(n)
1

(X>n∗)

p
µ
(n)
0

(X>n∗)
≤ 3An

)
≤ e 3

2Ane−
n
4 dR(µ

(n)
1 ,µ

(n)
0 ) ≤ e(3/2)βκ log logn+C7e−C8n‖µ(n)

1 −µ
(n)
0 ‖

2
2 = eC7(log n)(3/2)βκ−Γ1·C8 ,

(D.10)

where Γ1 is as in the statement of the theorem, the second inequality follows by Lemma 2
and noting n∗ < n

2 , we used Proposition 1.
We now consider the second probability in (D.9). Using pµ̂1(Xn)(x

n) ≥ p
µ
(n)
1

(xn) we have

the following, where we define the event Fn = {µ̂1(Xn∗) ∈ M ′1} with M ′1 the CINECSI
subset ofM1 mentioned in the theorem statement: there is C9, C10 > 0 such that for al large
n,

P
µ
(n)
1

(Dc1,n) = P
µ
(n)
1

(
log

p
µ
(n)
1

(Xn)

p
µ
(n)
1

(Xn∗)
> log

pµ̂1(Xn)(X
n)

pµ̂1(Xn∗ )(X
n∗)

+An

)

≤ P
µ
(n)
1

(
log

pµ̂1(Xn)(X
n)

p
µ
(n)
1

(Xn∗)
> log

pµ̂1(Xn)(X
n)

pµ̂1(Xn∗ )(X
n∗)

+An

)

≤ P
µ
(n)
1

(
log

pµ̂1(Xn∗ )(X
n∗)

p
µ
(n)
1

(Xn∗)
> An,Fn

)
+ P

µ
(n)
1

(Fcn)

≤ P
µ
(n)
1

(
D(µ̂1(Xn∗)‖µ(n)

1 ) > An,Fn
)

+ small~b(n)

≤ P
µ
(n)
1

(
‖µ̂1(Xn∗)− µ(n)

1 ‖22 > C9An,Fn
)

+ small~b(n)

≤ P
µ
(n)
1

(
‖µ̂1(Xn∗)− µ(n)

1 ‖∞ >
√
C9An/m1

)
+ small~b(n) (D.11)

≤ e−C10An = e−C10(C2−C6) 1

(log n)C10βκ
, (D.12)

where we used the KL robustness property (A.5), Proposition 1 and Lemma 1.
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The third probability in (D.9) is considered in a similar way. Using pµ̂0(Xn∗ )(X
n∗) ≥

p
µ
(n)
0

(Xn∗) we have C11, C12 > 0 such that:

P
µ
(n)
1

(Dc0,n) = P
µ
(n)
1

(
log

p
µ
(n)
0

(Xn)

p
µ
(n)
0

(Xn∗)
< log

pµ̂0(Xn)(X
n)

pµ̂0(Xn∗ )(X
n∗)
− 1

3
An

)

≤ P
µ
(n)
1

(
log

p
µ
(n)
0

(Xn)

pµ̂0(Xn∗ )(x
n∗)

< log
pµ̂0(Xn)(X

n)

pµ̂0(Xn∗ )(X
n∗)
− 1

3
An

)

= P
µ
(n)
1

(
log

pµ̂0(Xn)(X
n)

p
µ
(n)
0

(Xn)
>

1

3
An

)

≤ C11
1

(log n)C12βκ
(D.13)

where we omitted the last few steps which are exactly as in (D.11).
We now finish the proof by combining (D.9), (D.10), (D.11) and (D.13), which gives

that, if we choose β ≥ max{1/(κC10), 1/(κC12)} and, for this choice β, we choose Γ1 as in
(D.10) as Γ1 ≥ (1 + (3/2)βκ)/C8, then we have P

µ
(n)
1

(En) ≤ Γ4/(log n) for some constant Γ4

independent of n; the result now follows from (D.7).

Proof of Theorem 1

Proof. We show the result in two stages. In Stage 1 we provide a tight upper bound on
the risk, based on an extension of the decomposition of the risk (3.9) to general families
and estimators µ̆0 and µ̆1 that are sufficiently efficient, i.e. that satisfy (4.1), and to losses
dgen(·‖·) equal to squared error loss, standardized squared error loss and KL divergence
(it is not sufficient to refer to Proposition 1 and prove the result only for squared error
loss, because the equivalence result of Proposition 1 only holds on CINECSI sets and our
estimators may take values outside of these; we do not need to consider Rényi and squared
Hellinger divergences though, because these are uniformly upper bounded by KL divergence
even for µ outside any CINECSI set). In Stage 2 we show how the bound implies the result.

Stage 1: Decomposition of Upper Bound on the Risk Let An be the event thatM1

is selected, as in Section 3.3. We will now show that, under the assumptions of Theorem 1,
we have for the constant C appearing in (4.1), for all µ1 ∈M ′1,

R(µ1, δ, n) ≤ 3C

n
+ 2P(Acn)dgen(µ1‖µ0), (D.14)

where the left inequality holds for all divergence measures mentioned in the theorem, and the
right inequality holds for dgen(·‖·) set to any of the squared error, the standardized squared
error or the KL divergence.

To prove (D.14), we use that for the three divergences of interest, for any µ1 ∈M1, µ ∈M0,
with µ0 ∈M0 as in (3.8), we have

dgen(µ1‖µ) ≤ 2(dgen(µ1‖µ0) + dgen(µ0‖µ)), (D.15)

For dgen(·‖·) the KL divergence, this follows because

D(µ1‖µ) = Eµ1

[
− log

pµ(X)

pµ1
(X)

]
= Eµ1

[
− log

pµ(X)

pµ0
(X)

]
+ Eµ1

[
− log

pµ0(X)

pµ1
(X)

]
= Eµ0

[
− log

pµ(X)

pµ0(X)

]
+ Eµ1

[
− log

pµ0
(X)

pµ1(X)

]
, (D.16)

where the last line follows by the robustness property of exponential families (A.4), since µ
and µ0 are both in M0.
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For dgen(·‖·) the squared and standardized squared error case we show (D.15) as follows:
Fix a matrix-valued function J : M1 → Rm2

1 that maps each µ ∈ M1 to a positive definite
matrix Jµ. We can write

dgen(µ‖µ′) = (µ− µ′)TJµ(µ− µ′). (D.17)

where Jµ is the identity matrix for the squared error case, and Jµ is the Fisher information
matrix for the standardized squared error case. (D.15) follows since we can write, for any
function Jµ of the above type including these two:

(µ1 − µ)TJµ1
(µ1 − µ) = (µ1 − µ0 + µ0 − µ)TJµ1

(µ1 − µ0 + µ0 − µ)

= (µ1 − µ0)TJµ1(µ1 − µ0) + (µ0 − µ)TJµ1(µ0 − µ) + 2(µ1 − µ0)Jµ1(µ0 − µ)

≤ 2
(
(µ1 − µ0)TJµ1

(µ1 − µ0) + (µ0 − µ)TJµ1
(µ0 − µ)

)
,

where the last line follows because for general positive definite m ×m matrices J and m-
component column vectors a and b, (b − a)TJ(b − a) ≥ 0 so that bTJ(b − a) ≥ aTJ(b − a)
and, after rearranging, bTJb+ aTJa ≥ 2aTJb.

We have thus shown (D.15). It now follows that

R(µ1, δ, n) = Eµ1

[
1Andgen(µ1‖µ̆1(Xn)) + 1Acndgen(µ1‖µ̆0(Xn))

]
≤ Eµ1

[
dgen(µ1‖µ̆1(Xn)) + 2 · 1Acn

(
dgen(µ0‖µ̆0(Xn)) + dgen(µ1‖µ0)

)]
≤ 3C

n
+ 2P(Acn)dgen(µ1‖µ0), (D.18)

where we used (D.15) and our condition (4.1) on µ̆0 and µ̆1. We have thus shown (D.14).

Stage 2 We proceed to prove our risk upper bound for the squared error loss, standardized
squared error loss and KL divergence, for which the right inequality in (D.14) holds; the
result then follows for squared Hellinger and Rényi divergence because these are upper
bounded by KL divergence. From (D.14) we see that it is sufficient to show that for all n
larger than some n0,

sup
µ1∈M ′1

{Pµ1
(Acn)dgen(µ1‖µ0)} = O

(
log log n

n

)
, (D.19)

for our three choices of dgen(·‖·). We first note that, sinceM ′1 is CINECSI, supµ1∈M ′1 dgen(µ1‖µ0)
is bounded by some constant C1. It thus follows by Proposition 2 that there exists some
CINECSI subset M ′′1 of M1 such that, with Bcn ⊂ Acn defined as Bcn = {xn : δ(xn) =
0; µ̂1(Xn) ∈M ′′1 }, we have

sup
µ1∈M ′1

{Pµ1
(Acn)dgen(µ1‖µ0)} = sup

µ1∈M ′1
{(Pµ1

(Bcn) + Pµ1
(Acn \Bcn))dgen(µ1‖µ0)}

= sup
µ1∈M ′1

{Pµ1
(Bcn)dgen(µ1‖µ0)}+ C1 · Pµ1

(µ̂(1) 6∈M ′′1 )

= sup
µ1∈M ′1

{Pµ1
(Bcn)dgen(µ1‖µ0)}+ small~b(n),

so that it is sufficient if we can show (D.19) with Bcn instead of Acn. But on the set Bcn, all
three divergence measures considered are within constant factors of each other, so that it is
sufficient if we can show that there is a constant C2 such that for all n larger than some n0,

sup
µ1∈M ′1

{Pµ1(Bcn) · ‖µ1 − µ0‖22} ≤ C2 ·
log log n

n
. (D.20)

Now, fix some µ1 ≡ µ(n)
1 and consider f(n) as in (D.1). By Theorem 3, Pµ1

(Bcn) ≤ C3/n for
some constant C3 that can be chosen uniformly for all µ1 ∈ M ′1 whenever f(n) > Γ2 log n
with Γ2 as in that theorem. Using also that ‖µ1−µ0‖22 is bounded by C1 as above, it follows
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that (D.20) holds whenever f(n) > Γ2 log n and (C1C3)/n ≤ C2(log log n)/n, i.e. whenever
f(n) > Γ2 log n and C2 ≥ C1C3/(log log n).

Second, suppose that Γ1 < f(n) ≤ Γ2 log n with Γ1 as in Theorem 4. Then by that
theorem, uniformly for all µ(n)

1 with such f(n), we have, with Γ3 as in that theorem,

‖µ(n)
1 − µ(n)

0 ‖22 · Pµ(n)
1

(δsw(Xn) = 0) = f(n) · log log n

n
· P

µ
(n)
1

(δsw(Xn) = 0) ≤

Γ2 · (log n) · log log n

n
· P

µ
(n)
1

(δsw(Xn) = 0) ≤ Γ2Γ3 ·
log log n

n
,

where µ(n)
0 = Π0(µ

(n)
1 ) is defined as in (3.8), so that (D.20) holds again whenever C2 ≥ Γ2Γ3.

Finally, suppose that f(n) ≤ Γ1 with Γ1 as in Theorem 4. Then (D.20) holds whenever
C2 ≥ Γ1. Combining the three cases we find that (D.20) holds whenever C3 ≥ max{Γ1,Γ2Γ3,
C1C3/(log log n)}; the result is proved.

Appendix E: Switching as in Van Erven et al. (2012)

The basic building block of the switch distribution and criterion as formulated by Van Erven
et al. (2012) is a countable set of sequential prediction strategies (also known as ‘prequen-
tial forecasting systems’ (Dawid, 1984)) {pk | k ∈ K}, where K is a finite or countable set
indexing the basic models under consideration. Thus, each model is associated with a cor-
responding prediction strategy, where a prediction strategy p is a function from

⋃
i≥0 X i to

the set of densities on X , where p(· | xn−1) denotes the density on X that xn−1 maps to,
and p(xn | xn−1) is to be interpreted as the probabilistic prediction that strategy p makes
for outcome Xn upon observation of the first n − 1 outcomes, Xn−1 = xn−1. For example,
for a parametric model {pθ | θ ∈ Θ} one can base pk on a Bayesian marginal likelihood,
pB(xn) :=

∫
Θ
ω(θ)pθ(x

n)dθ, where ω is a prior density on Θ. The corresponding prediction
strategy could then be defined by setting pk(xn | xn−1) := pB(xn)/pB(xn−1), the standard
Bayesian predictive distribution. In this paper, the basic strategies pk were always Bayesian
predictive distributions, but, in the spirit of Dawid (1984), one may consider other choices
as well.

After constructing the set of basic prediction strategies, a new family of prediction strate-
gies that switch between the strategies in the set {pk | k ∈ K} is defined. Formally, let S be
the set

S = {((t1, k1), . . . , (tm, km)) ∈ (N×K)
m |m ∈ N, 1 = t1 < t2 < . . . < tm} . (E.1)

Each s ∈ S specifies the times t1, . . . , tm at which a switch is made between the prediction
strategies from the original set, identified by the indices k1, . . . , km. The new family Q =
{qs | s ∈ S} is then defined by setting, for all n, xn ∈ Xn:

qs(xn | xn−1) = pkj (xn | xn−1), tj ≤ n < tj+1, (E.2)

with tm+1 =∞ by convention. We now define qs(xn) =
∏n
i=1 qs(xi | xi−1); one easily verifies

that this defines a joint probability density on Xn.
We now place a prior mass function π′ on S and define, for each n, the switch distribution

in terms of its joint density for Xn and S:

psw(xn, s) = qs(x
n)π′(s), psw(xn) =

∑
s∈S

psw(xn, s) =
∑
s∈S

qs(x
n)π′(s).

If the pk are defined as Bayesian predictive distributions as above, then, as explained by Van
Erven et al. (2012), the density psw(xn) can be interpreted as a Bayesian marginal density
of xn under the prior π′ on meta-models (model sequences) in S.

The switch distribution can be used to define a model selection criterion δ′sw by selecting
the model with highest posterior probability under the switch distribution. This is done by
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defining the random variable Kn+1(s) on S to be the index of the prediction strategy that
is used by qs to predict the (n+ 1)th outcome. The model selection criterion is then:

δ′sw(xn) = arg max
k

psw(Kn+1 = k | xn) = arg max
k

∑
s:Kn+1(s)=k psw(xn, s)

psw(xn)

= arg max
k

∑
s:Kn+1(s)=k qs(x

n)π′(s)∑
s∈S qs(x

n)π′(s)
, (E.3)

with ties resolved in any way desired.
In our nested two-model case, one might use, for example, a prior π′ with support on

S′ = {(1, 0), (1, 1), ( (1, 0), (2, 1) ), ( (1, 0), (4, 1) ), ( (1, 0), (8, 1) ), ( (1, 0), (16, 1), . . . )}.

Such a prior expresses that at time 1, for the first prediction, one can either switch to
(i.e., start with), model 0, and keep predicting according to its Bayes predictive distribution
— this strategy gets weight π((1, 0)). Or one can start with model 1, and keep predicting
according to its Bayes predictive distribution — this strategy gets weight π((1, 1)). Or one
can start with model 0 and switch to model 1 after 2i observations and then stick with 1
forever — this strategy gets weight π(( (1, 0), (2i, 1) )). If we now start with a prior π on
{1, 2, . . .} as in the main text and define π′((1, 0)) = 1/2, π′((1, 1)) = (1/2) · π(1), and for
i ≥ 1, π′((1, 0), (2i, 1)) = (1/2) · π(2i), then

∑
s∈S′ π

′(s) = 1, so π′ is a probability mass
function. A simple calculation gives that (E.3) based on switch prior π′ now chooses model
1 if ∑

1≤t<n

p̄t(x
n)π(t) > (1 + g(n)) · pB,0(xn), (E.4)

where g(n) =
∑
t≥n π(t); note that g(n) is decreasing and converges to 0 with increasing n.

(E.4) is thus an instance of the switch criterion of Van Erven et al. (2012). Comparing this
to (2.2), the criterion used in this paper, after rearranging we see that it chooses model 1 if∑

1≤t<n

p̄t(x
n)π(t) > (1− g(n)) · pB,0(xn),

which is more likely by constant factor to select model M0, the factor however tending to
1 with increasing n. It is completely straightforward to check that Theorem 1 and all other
results in this paper still hold if δsw with prior π as in the main text is replaced by δ′sw with
corresponding prior π′ as defined here; thus our results carry over to the original definitions
of Van Erven et al. (2012). Similarly, the proof for the strong consistency of δ′sw given by
Van Erven et al. (2012) carries through for δsw, needing only trivial modifications. From
(E.4) we see that modifying the prior π in either our or Van Erven et al.’s original criterion
has a similar effect as keeping the same π but switching between the two versions of the
switch criterion.
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