
Web Browser Accessibility using Open Source Software

Željko Obrenović
CWI

P.O. Box 94079, 1090 GB
Amsterdam, The Netherlands
zeljko.obrenovic@cwi.nl

Jacco van Ossenbruggen
CWI

P.O. Box 94079, 1090 GB
Amsterdam, The Netherlands

jacco.van.ossenbruggen@cwi.nl

ABSTRACT
A Web browser provides a uniform user interface to dif-
ferent types of information. Making this interface univer-
sally accessible and more interactive is a long term goal still
far from being achieved. Universally accessible browsers re-
quire novel interaction modalities and additional function-
alities, for which existing browsers tend to provide only par-
tial solutions. Although functionality for Web accessibility
can be found as open source and free software components,
their reuse and integration is complex because they were de-
veloped in diverse implementation environments, following
standards and conventions incompatible with the Web.

To enable the integration of existing partial solutions within
a mainstream Web browser environment, we have developed
a middleware infrastructure, AMICO:WEB. This enables
browser access to a wide variety of open source and free soft-
ware components. The main contribution of AMICO:WEB
is in enabling the syntactic interoperability between Web
extension mechanisms and a variety of integration mecha-
nisms used by open source and free software components. It
also bridges the semantic differences between the high-level
world of Web XML-based APIs and the low-level APIs of
the device-oriented world.

We discuss the design decisions made during the develop-
ment of AMICO:WEB in the context of Web accessibility,
using two typical usage scenarios: one describing a disabled
user using a mainstream Web browser with additional in-
teraction modalities; another describing a non-disabled user
browsing in a suboptimal interaction situation.

Categories and Subject Descriptors
K.4.2 [Computers and Society]: Assistive technologies
for persons with disabilities; H.5.2 [Information Inter-
faces and Presentation]: User Interfaces; D.2 [Software]:
Software Engineering; K.4.2 Computers and Society [Social
Issues]: Handicapped persons / special needs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
W4A2007 - Technical Paper, May 07–08, 2007, Banff, Canada. Co-Located
with the 16th International World Wide Web Conference.
Copyright 2007 ACM 1-59593-590-8/06/0010 ...$5.00.

General Terms
Human Factors, Design, Standardization

Keywords
Web Accessibility, User Interfaces, Open Source Software,
Software Platform, Middleware

1. INTRODUCTION
Web 2.0 applications typically have users browsing and

creating content. Accessible Web 2.0 software has thus not
only to support the traditional output modalities, but also
a rich variety of input modalities that go beyond the typ-
ical link and form based interaction of the first generation
Web tools. Although Asynchronous JavaScript and XML
(AJAX) and similar GUI approaches labelled as Web 2.0
may provide richer interfaces for the average user, its use
often results in poorer interfaces in terms of accessibility.
We feel that the same technology underlying current AJAX
interfaces in combination with novel interaction modalities
could also be used to improve accessibility, without harming
the AJAX-based rich interface for non-disabled users.

The main problem is that AJAX and similar approaches
currently do not have access to interaction modalites beyond
keyboard and mouse interaction supported by browsers. The
open source community has, on the other hand, developed
a number of freely available components that can be used
to enrich Web interaction. Examples include libraries for
vision-based interaction modalities [9, 20], lexical tools [5,
30], and speech input and output for many languages [8, 14,
17, 24]. A natural question arrives: can we borrow from
these solutions, and reuse them in combination with Web
(2.0) technologies?

Open source software (OSS) components are, however, de-
veloped for other purposes, in diverse implementation envi-
ronments, following standards and conventions often incom-
patible with the Web. As a consequence, using open source
and free software components often comes with a high price
[11]: even though you get OSS components for free, you
usually have to invest significant time and effort to inte-
grate them, as your team needs to master at least several
programming languages, integration interfaces and network
protocols. This is not acceptable for many Web developers,
who cannot be expected to work under unrealistic economic
models in which they are required to ”spend too much and
receive too little”, supporting the needs of a small number of
users [22]. The biggest price, however, is paid by the users
who are still unable to access the Web efficiently.

15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To address these problems we developed AMICO:WEB,
an infrastructure that facilitates efficient reuse and integra-
tion of OSS components into the Web environment. The
main contribution of AMICO:WEB is in enabling the syn-
tactic and semantic interoperability between Web extension
mechanisms and a variety of integration mechanisms used
by open source and free software components. Its design
is based on our experiences in solving practical problems
where we have used open source components to improve ac-
cessibility of rich media Web applications.

The remainder of this paper is structured as follows. We
first introduce two sample scenarios that are used to illus-
trate the problem and potential solutions. We discuss the
pros and cons of existing solutions and discuss other related
work. We give a high level overview of the AMICO:WEB
infrastructure and describe how this infrastructure is used
to implement solutions to the problems of the two sample
scenarios. Finally, we discuss some of the open issues, and
conclude with plans for future work.

2. EXAMPLE SCENARIOS
We describe two accessibility scenarios that we use to illus-

trate the problem and proposed solution. The first scenario
describes Michelle, a disabled user using a standard Web
browser with additional interaction modalities. The second
describes Simon, a non-disabled user using a browser that
helps him to use foreign language Web sites. Note that both
use cases deal with a range of very specific problems, but are
intended to represent a wide variety of accessibility issues.
They are also intended to show that many accessibility is-
sues are not specific to disabled users. For example, Web
sites that are accessible for users with bad eyesight are of-
ten also accessible for users with good eyesight that need to
interact with the same site in poor lighting conditions.

2.1 Scenario 1: Michelle
Michelle has a spinal cord injury, and she cannot use her

hands sufficiently well to control a keyboard or mouse. She
uses a mainstream Web browser that has been enhanced
with camera-based input and a speech-recogniser to help her
access the Internet. A camera-based face detector tracks
the position of her face and her proximity to the screen,
while a camera-based motion detector tracks the direction
and intensity of her head movements. Using these modal-
ities, Michelle can, for example, scroll the page by moving
her head up or down, or control the playback of Youtube
movies with movements. Both modalities use her ordinary
Web camera. The speech recogniser enables her to navi-
gate Web pages, follow links, and give common Web browser
commands. Although she uses the browser most of the time
without the keyboard or mouse, when she is using the key-
board, the browser checks her input, and suggests spelling
corrections.

The browser also offers Michelle some (limited) interac-
tion with 3D and multimedia content on the Web. For ex-
ample, she can examine an X3D/VRML scene by moving
hear head left or right, and walk through the scene by mov-
ing her head forwards or backwards. She can also go to a
specific 3D viewpoint using speech. In the case of multime-
dia content, the browser detects embedded movies or music
clips in the page, enabling her to use speech to start, stop or
pause the playback, and to change the volume. When she
temporarily leaves her position, the browser face detector

recognises that there is no one in front of the screen, so it
pauses the playback, resuming it when she returns. This is
better than using speech, which works less reliably because
of the background sound from the multimedia content.

2.2 Scenario 2: Simon
Simon is a French student who recently moved to the

Netherlands. He has a solid knowledge of English and has
started to learn Dutch. His knowledge of Dutch, however, is
still not sufficient to enable him to use Dutch Web sites ef-
ficiently. If he wants to use e-banking services, for example,
he can do so reliably only if he uses Dutch version of his bank
Web site. Also, he wants to improve his social life by joining
sports or dancing clubs, which, as they have mostly Dutch
members, offer only Dutch texts, with optional out-dated
and less detailed English versions.

Luckily, his new browser extensions offer him help. While
interacting with a Web page, he can select the text and hear
the translation of it from a text-to-speech (TTS) engine in
English or French. This is much better than using online or
offline dictionaries as they require him to lose the focus of
his work. Simon also prefers this to usage of online transla-
tion services, which can translate whole pages on-the-fly, but
which almost always change the layout of the page, or re-
move part of its functionality, especially if the Web site uses
scripts or complex session management. Also, as his Dutch
improves, he wants the system to help him with translations
less and less.

The browser remembers his translation requests, saving
phrases he asked for, the URI of the page, date and time.
When he next visits the page, the browser shows him the
phrases that he has requested in previous visits. He can also
use this as a learning tool, getting a list of most frequently
asked phrases, or, for example, the list of words from the
last week asked more than twice.

In addition, the browser offers him speech input services.
For example, when filling in online forms he can say the
word in English, while the browser translates it into Dutch
and enters the translated word in the field.

3. EXISTING SOLUTIONS
Both of the presented scenarios require novel interaction

modalities and browser functions. Some of the existing so-
lutions can be used to implement a part of these scenarios.
In this section we identify these solutions, and discuss their
main limitations.

The most visible outcome of the W3C Web Accessibil-
ity Initiative (WAI) [26] is a set of standards, guidelines,
and checklists, provided within. These documents provide
a common understanding of the Web accessibility issues,
helping designers and developers to meet proposed require-
ments. W3C also runs several activities directly or indi-
rectly related to Web accessibility, to support interaction
modalities beyond the keyboard and mouse. For example,
the MultiModal Interaction (MMI) activity [27] covering in-
put via speech, handwriting and keystrokes, and output via
displays, pre-recorded and synthetic speech, audio, and tac-
tile mechanisms, such as mobile phone vibrators and Braille
strips. The W3C Speech Interface Framework [29] further
extends speech interaction, covering issues of voice dialogs,
speech synthesis, speech recognition, telephony call control
for voice browsers and other requirements for interactive
voice response applications, including use by people with

16

hearing or speaking impairments. The W3C Device Inde-
pendence initiative promotes the idea of ”Access to a Uni-
fied Web from Any Device in Any Context by Anyone” [25].
However, experience shows that these guidelines have not
been successful in producing accessible Web sites [16]. W3C
initiatives on alternative interaction modalities cover just a
subset of modalities required by accessibility solutions, such
as speech and handwriting. Moreover, it is still not clear how
and when they will be implemented. One of the problems
is a requirement that components have to be built accord-
ing to specified interfaces, which can be a high threshold for
many developers.

Besides these standardization and regulation efforts, there
are also solutions related to our work that attempt to make
a more accessible Web by adapting and extending exist-
ing (non-accessible) Web components. We classify these
approaches into four groups: general purpose accessibility
tools, browsers specifically designed for disabled people, adapted
open source Web browsers, and browser extensions and plu-
gins.

3.1 General Purpose Accessibility Tools
General purpose accessibility tools, such as screen read-

ers, can be used with any application, and consequently with
Web browsers. New versions of operating systems, such as
Windows XP, include speech input modality and accessibil-
ity tools such as a narrator or magnifier. In early work on
Web accessibility, Asakawa et al. used ScreenReader/2, a
screen reader for OS/2, with Netscape Navigator [1].

The problem with general purpose tools is that they can
access the application only through relatively low-level ap-
plication interfaces provided by the operating system. There-
fore, these tools cannot easily understand the structure of
the presentation, nor access all the functions that the appli-
cation provides. For example, Simon can use these tools to
”talk” with the Web browser, but speech interaction with
generic speech commanders is usually limited to menu items,
and it is not adaptable to the content of the Web page.

3.2 Specially Designed Browsers
Several browsers specifically have been designed for people

with disabilities, such as BrookesTalk [31] or pwWebSpeak1

(see [28] for an overview).
Specially designed browsers have not been very popular

solutions, as users normally prefer to use standard browsers
with accessibility adaptations, rather than specially designed
browsers, which also label them as ”disabled” [22]. Spe-
cialised browsers also tend to be less rich in functionality,
and cover just a small part of the functionality necessary for
the implementation of our example scenarios.

3.3 Adapted Open Source Browsers
The availability of source code for browsers such as Mozilla2

has resulted in several approaches that have created adapted
browser versions with added accessibility functions. For ex-
ample, as part of the accessibilityWorks project, Hanson
et al. [10] provided software enhancements to the Mozilla
browser to allow users to control the accessibility features of
their browsing environment. They developed user controls
to support a number of adaptations that can increase the

1http://www.soundlinks.com/pwgen.htm
2http://www.mozilla.org/

usability of Web pages for a diverse population of users, in-
cluding transformations that can change page presentation,
mouse and keyboard input correction, as well as vision-based
control for users unable to use their hands for computer in-
put. Their work focuses on a limited set of user controls
that facilitate adaptations that can increase the usability of
Web pages for a larger population of users. A subset of the
functions of this browser, such as vision-based control, can
be useful for our sample scenario with Michele.

The main problem with adaptations based on changing
the source code of Web browsers is the complexity of devel-
opment and maintenance of such code. Changing browser
code requires significant developer effort, and a solid knowl-
edge of implementation details of the Web browser. This
kind of adaptation is usually feasible for companies that can
invest significant resource in such efforts. Maintaining mul-
tiplatform support and installation is an additional concern,
while reuse of results in a new version of the browser can re-
quire a significant effort. Reuse and integration of other
components is limited by the implementation platform that
the browser uses.

3.4 Browser Extensions
Browser extensions, such as the Mozilla / Firefox Acces-

sibility Extension3, are aimed at making it easier for people
with a disability to view and navigate Web content. It can
also be used by developers to check their structural markup
to make sure it matches the page content. Another popular
extension is the Greasemonkey Mozilla/Firefox extension4

that allows users to apply javascript and DHTML ”user
scripts” to any Web page. Greasemonkey enables users to
add fragments of DHTML (”user scripts”) to any Web page
to change its behaviour. User scripts can control any aspect
of a Web page’s design or interaction through the Firefox
API. Greasemonkey scripts can be applied to all pages, or
just selected ones, based on the URI pattern provided with
the scripts. It has been used to improve accessibility Web
page behaviour to display access keys, add shortcut keys to
common page function (such as previous and next links or
navigation), remove pop-up windows, and allow image re-
sizing and page zooming. Fire Vox is another open source
Firefox/Mozilla extension5, which works as a screen reader
designed especially for Firefox. It supports features, such
as identifying headings, links and images, providing naviga-
tional assistance, and support for MathML and CSS speech
module properties. It currently uses the FreeTTS [8] engine
output.

Toolbar extensions, however, cannot solve the problem of
providing alternative input modalities beyond browser sup-
ported keyboard and mouse input, needed for both of our
example scenarios.

4. WEB ACCESSIBILITY: POTENTIAL OF
OPEN SOURCE AND FREE SOFTWARE

Existing solutions cannot be used to fully implement the
scenarios presented in Section 2. For these scenarios it is
necessary to use many components and services, both locally
and remotely. Only some of these components are available
within current Web browsers. On the other hand, there are

3https://addons.mozilla.org/firefox/1891/
4http://greasemonkey.mozdev.org/
5http://www.firevox.clcworld.net/

17

thousands of open source projects that cover issues useful
for Web accessibility, and that provide necessary function-
ality to implement our example scenarios. For example, the
open source community has developed a huge number of
components that can be used to support novel interaction
modalities. Just for the domain of computer vision, there
are hundreds of freely available computer vision software
modules6. However, reusing these components within the
Web environment is not an easy task.

In this section we identify the main challenges in reusing
OSS component. We also identify the basic requirements
for integration middleware infrastructure that can simplify
reuse of OSS and free components and services in the Web
environment.

4.1 Reuse and Integration of OSS and Free
Software

Reuse and integration of OSS and free components within
the existing Web infrastructure is complicated because they
are developed for other purposes, in diverse implementation
environments, and therefore cannot be easily embedded into
the Web components. OSS projects mostly cover the needs
of their developers, while the addition of features and other
modifications is driven by the interest and wishes of the con-
tributors [13]. The choice of development environment and
supported platforms is also very diverse and driven by the
needs and experience of contributors. The main question,
therefore, is how to combine components that use a wide va-
riety of (often low level) protocols and application program-
ming interfaces with incompatible (high level) standards,
such as those used on the Web.

The basic idea of our approach is the development of an
infrastructure that can exploit the potential of available OSS
components and provide a flexible mapping between exist-
ing Web extension mechanisms and OSS integration mecha-
nisms. The introduction of a flexible middleware infrastruc-
ture, to facilitate integration of components, brings many
advantages to developers as it can significantly speed up ap-
plication development [12].

Using some of the existing component-off-the-shelf (COTS)
middleware systems is practically impossible for most open
source components, as they usually use very diverse tech-
nologies, protocols, and implementation platforms, which
makes it hard to wrap the code in COTS compliant pack-
ages. Existing systems for loosely integration of components
[7] are aimed at collaborative applications or context-aware
computing, and cannot easily be used in other domains. Fur-
thermore, they support only a limited number of integration
interfaces.

Our approach is similar to that taken by Miller et al.
[15], where they extended their LAPIS7 experimental Web
browser with an interface to the UNIX command shell, in or-
der to help users automate HTML interfaces creating pipelines
of Web services and local programs. With our approach,
however, we want to reuse more services, supported on dif-
ferent platforms, and to extend standard and widely used
browsers.

4.2 Requirements for Integration Infrastruc-
ture

6http://www.cs.cmu.edu/∼cil/v-source.html
7http://groups.csail.mit.edu/graphics/lapis/

The basic requirement for our infrastructure is an exten-
sion of standard main stream Web browsers through exist-
ing extension mechanisms. Users prefer standard browsers
with supplementary accessibility adaptations, rather than
browsers specially designed for users with disabilities [22].
As we have already mentioned in Section 3.2, specialised
browsers provide only a limited set of functions, and tend
to ”label” users as being disabled. Secondly, existing Web
extension mechanisms, such as browser toolbar extensions,
scripting and plugins, provide powerful and sophisticated in-
terfaces to browser functionality, while the development of
extensions is usually much easier than approaches, such as,
changing the source code of the browser. Moreover, exten-
sions can be installed by an ordinary user in a few steps.

In addition to these basic requirements, and in order to
support wider reuse of available software and services, based
on our experiences with reusing OSS, we have identified the
following requirements that such an infrastructure has to
fulfil:

• Support multiple integration interfaces, and enable in-
tegration of new interfaces. Components from open
source projects use diverse integration interfaces, such
as XML-RPC, OpenSound Control, HTTP, TCP, of
which none is predominant. Adapting components to
one common interface is not an easy task, and some-
times not possible, as OSS components are developed
in diverse implementation environments.

• Bridge semantic and temporal gaps. Low-level compo-
nents, such as sensors, and higher level components,
such as Web services, work with significantly different
data structures and temporal constraints. For exam-
ple, sensors, such as a face detector, can send dozens of
UDP packages per second with simple data structures
about detected events. Web services, on the other
hand, use more complex HTTP protocol and complex
XML encoded data, with delay which is sometimes
measured in seconds. To enable integration of compo-
nents that work with significantly different data struc-
tures and temporal constraints, the infrastructure has
to be able to abstract and map different data types
and to support temporal functions, such as frequency
filtering.

• Enable flexible and reusable integration. One of the
weaknesses of existing component integration systems
is that, when using them, developers usually have to
agree on many rules, such as naming conventions, if
they want to connect components. The infrastructure
should not require such agreements and should pro-
vide the definition of the connection among compo-
nents that can bridge this semantic gap and which can
(at least in part) be reused.

• Dynamic integration and fault tolerance. To support
various user needs, the platform has to support dy-
namic fault-tolerant reconnection of modules, possibly
depending on the current state of the system. Opti-
mal interaction configuration can also differ from user
to user. Fault tolerance is necessary as many of the
components are still under development and are often
not very stable.

• Use open standards. OSS developers have a body of
standards that multiple vendors have agreed upon.

18

Figure 1: AMICO:WEB and application interfaces.

Standardisation provides a significant driving force for
further progress because it codifies best practises, en-
ables and encourages reuse, and facilitates interwork-
ing between complementary tools.

5. AMICO:WEB
The main contribution of our work is the development

of a brokering infrastructure that connects Web extension
mechanism with a wide variety of interfaces found in many
OSS components. The AMICO:WEB infrastructure enables
developers to rapidly prototype and experiment with vari-
ous OSS components in a Web environment. It consists of
two main parts: a brokering infrastructure and Web inte-
gration mechanisms. The brokering infrastructure, called
AMICO (Adaptable Multi-Interface COmmunicator), is a
generic platform, used to support rapid prototyping with
OSS components in different domains [19]. It was designed
to meet the above requirements for reuse of heterogeneous
OSS components AMICO:WEB is the extension of this plat-
form into the Web domain. The infrastructure and some ex-
amples are available at the SourceForge Web site 8. In this
section we describe the design of the AMICO:WEB broker-
ing infrastructure and its Web integration interfaces.

5.1 The Brokering Infrastructure
The proposed brokering infrastructure is based on the

publish-subscribe design pattern. It is well suited for inte-
gration of loosely-coupled parties, and often used in context-
aware and collaborative computing. A publisher may up-
date a shared data repository without being concerned with
whether any subscribers are listening for updates. When
using simple data structures, the loosely coupled approach
can be highly adaptable, so that new applications can both
reuse existing data in the repository and add their own data
without breaking the infrastructure. This approach is also
fault tolerant, as components run as independent processes.
In the loosely coupled model, components can run on dif-
ferent machines in a distributed environment. Components
communicate by exchanging events through a shared data

8http://amico.sourceforge.net

repository consisting of named slots. Components can up-
date the slots, and register for notifications about changes.

A key difference between our infrastructure and regular
notification services is based on our requirement for sup-
porting more than one integration interface. AMICO:WEB
provides a unified view on different communication inter-
faces, based on a common space to interconnect them. As
Figure 1 shows, we support several widely used standard
communication protocols. AMICO:WEB is extensible, and
it is possible to add new communication interfaces. Most of
the communication adapters are bidirectional. For example,
an XML-RPC communication interface may run an XML-
RPC server, enabling other modules to update and read data
through this interface, and it also enables the definition of
XML-RPC adapters that map this data to parameters of
method calls on other XML-RPC servers. It is also possible
to directly communicate with AMICO:WEB using a TCP
connection, or by sending UDP packages.

The infrastructure enables a flexible configuration of the
integration through instantiation of new, derived slots from
slots directly updated by the components. Therefore, appli-
cations do not have to directly use slots updated by other
modules, but they can add transformations that adapt these
values for their own needs. New slots are derived by using
a set of transformations defined in XSLT [4], a widely used
and rich transformation language supported by many ex-
isting tools. Transformations can also be reused in different
scenarios. The transformations provide the means for bridg-
ing the different levels of abstraction found in the different
data structures used by each module. For example, they
can abstract low level data so that we, instead of receiving
all low level events, receive notification only when, for exam-
ple, user enters some area in the camera visual field, or when
detected movement activity is above or below given thresh-
olds. They can also solve the problem of different temporal
constraints of components. For example, transformations
can use time stamps to derive new slots that are updated
with lower frequency, allowing higher level modules to ig-
nore other updates. In this way modules can be simpler as
they do not have to be changed to meet the synthetic and
temporal constraints of other modules, and can be reused in
other situations.

AMICO is realised as a Java application, and has been
tested on several operating systems.

To connect our brokering infrastructure with the Web on
client, proxy and server side, we have developed several in-
tegration components. The focus of work in this paper is on
integration with the browser side. In Section 7.3 we briefly
discuss integration mechanisms for proxy and server compo-
nents.

5.2 Browser Integration Mechanisms
We use several browser extension mechanisms in combina-

tion with AMICO:WEB: Firefox/Mozilla extensions, com-
plex scripting libraries such as AJAX, and applets.

5.2.1 Firefox/Mozilla Extensions
Based on the MIT Simile open source Java Firefox Exten-

sion9, we developed a generic AMICO:WEB Firefox/Mozilla
extension. The Firefox extension mechanism gives us access
to browser functionality and through it we can also read
and change the content of a Web page dynamically. Within

9http://simile.mit.edu/java-firefox-extension/

19

Figure 2: Parameters for the ScriptingApplet used
to control the playback of the RealPlayer plugin em-
bedded in an HTML page.

the toolbar extension, we have added a thread that opens a
TCP connection to AMICO to send and receive events from
the infrastructure. The communication is bidirectional, e.g.
the toolbar maps the events from the infrastructure to the
calls of the browser API, and it can update AMICO:WEB
with data from the browser. In Section 6 we describe how
we have used this mechanism to enable browsers to commu-
nicate with online translation services, databases and TTS
engines.

Other browsers, such as Internet Explorer, also allow de-
velopments of customised extensions. We have focused, how-
ever, on extensions for Firefox/Mozilla due to its multiplat-
form support and because it is available as an open source
project.

5.2.2 Complex Scripting Libraries
Scripting libraries used within HTML pages offer more

and more interactivity and connectivity. For example, AJAX
can access the server side without reloading the page, and
scripting functions can also use this mechanism to access
AMICO. To do so, AJAX functions can use XMLHttpRe-
quest object, and access AMICO through the AMICO HTTP
interface. AMICO returns an XML encoded list of requested
values. The limitation of this approach is that it can only
be used in pull mode, i.e. scripts can update or request any
values from AMICO, while they cannot receive notifications
from AMICO.

5.2.3 Applets and Scripts
To enable fully bidirectional communication between AM-

ICO and the browser, we have worked on other approaches,
such as combined usage of Java applets and scripting. We
have developed two applets for this purpose: ContentChang-
erApplet and ScriptingApplet. Both applets open a TCP
connection to AMICO. ContentChangerApplet registers for
any variable that contains a Web link and it reloads the
content of the Web browser when the variable is changed.
The link, for example, could be provided by a user who
speaks the phrase associated with an often visited Web site.
ScriptingApplet specifies the mapping between AMICO no-

tifications and calls of HTML scripting functions. Scriptin-
gApplet, therefore, transforms notifications sent from the
communicator into calls of script functions, and in the same
time enables script functions to update AMICO:WEB. The
applet is completely reconfigurable through PARAM tags,
and developers can use it to control any scriptable element in
the HTML page. It is also very small (about 6kB compiled),
so its usage within the page does not introduce significant
delay. ScriptingApplet can be used with any scripts includ-
ing complex scripting libraries such as AJAX. We have used
our applet to control interaction in Mozilla, Firefox, and
Internet Explorer Web browsers, including:

• Controlling standard elements of HTML page through
DOM interfaces; changing content, such as text in
a paragraph; changing style elements, such as back-
ground colour; or changing the layout, such as moving
image controls by a camera.

• Controlling playback in multimedia movie and music
plugins, such as RealPlayer, Windows Media Player,
and QuickTime players.

• Accessing and manipulating VRML/X3D scenes, us-
ing Scene Authoring Interface (SAI) scripting API ex-
posed by VRML/X3D players [6].

Figure 2 illustrates parameters of the scripting applet used
to control the playback of the RealPlayer plugin. The applet
registers for changes of data slot named ”action” (which can
have values ”start”, ”pause”, ”stop”) and variable ”color”.
Whenever these data change, the applet receives a notifica-
tion and starts the appropriate script function.

6. USING AMICO:WEB TO IMPLEMENT
THE EXAMPLE SCENARIOS

We have used AMICO:WEB to implement the two exam-
ple scenarios described in Section 2. With these two sce-
narios we illustrate how relatively complex and novel use
cases can be implemented using AMICO:WEB along with
existing open source and free software components without
radical changes in the Web interface design. Both scenarios
support client side integration, and currently work only on
Firefox / Mozilla browsers. All components used in these
scenarios are available for download from our SourceForge
Web site, as well as video material demonstrating the use of
these components10.

6.1 Used OSS and Free Components
For processing of human input by camera we have used

face and motion detectors based on the OpenCV computing
vision library [20], and the HandVu gesture recogniser [9].
The face detector detects number of faces, their size and po-
sition. The motion detector detects intensity and direction
of motion. HandVu recognises several hand gestures, and it
can track the position and angle of the hand.

For speech input and output, we used a English speech
recogniser based on Sphinx-4 [24], and three open source
TTS engines: the FreeTTS English TTS engine [8], the
NEXTENS Dutch TTS engine [17], and the Mary TTS en-
gine that currently supports English, German and Tibetan
[14].

10http://amico.sourceforge.net/amico-demos.html

20

For storage and querying of data, we have used our SQL
interface to a relational user database in MySQL, and our
Sesame RDF interface to access a Sesame RDF triple store
[23].

We have also used two remote Web services: Yahoo Ba-
belFish translation service11, and the Google spelling checker
service12.

The listed components and services use very different tech-
nologies. We had to combine several protocols and integra-
tion approaches to be able to deploy them seamlessly in a
single browser session. All components run as independent
services, connected with our infrastructure through some of
the supported interfaces. For the face and motion detectors
we have implemented C++ adapters using a socket library,
where we have modified the original OpenCV programs to
send detected events as UDP packages to AMICO. We ac-
cess the HandVu system through the HandVu TCP protocol.
The Mary and Nextens TTS engines also use a TCP-based
interface, with their own application specific protocols. For
the FreeTTS engine, AMICO has been extended with a Java
wrapper, communication between AMICO and the wrapper
is also over TCP. ConceptNet uses an XML-RPC interface,
and the Google spelling checker uses a SOAP interface. For
access to SQL databases we have used existing ODBC and
JDBC drivers, and for access to the Sesame RDF reposi-
tory, we have used Sesame’s Java API. The components are
relatively simple, and unaware of other components. This
context independence enables their reuse in other scenarios.

6.2 Implementation of Interaction Modalities
for Example Scenarios

The components and services described in the previous
section have been arranged in different configurations, and
connected to the browser to support the interaction modal-
ities needed for the example scenarios.

Figure 3 shows the basic configuration for the implementa-
tion of the interaction modalities in Michelle’s scenario. The
face detector, motion sensor and gesture recogniser (see Fig-
ure 4) are used exclusively, that is, only one of these modules
is loaded at any time, depending on the desired interaction.
Modules can be loaded and unload during an interaction
session, or this can be configured before the modules are
started. To support this flexible component loading, we use
ProcessRunner, an auxiliary tool that is a standard part of
the AMICO platform. A Sesame RDF database contains
additional data about user profiles, such as user language
and other preferences.

This basic configuration is connected to the browser in
several ways. The AMICO Firefox extension directly ac-
cesses the browser functionality, and maps commands de-
rived from input modalities into actions such as scrolling
the Web page, or copying text. Data captured by sensors
is also communicated to the ScriptingApplet, that is embed-
ded in Web pages by Greasemonkey at the client side. We
have developed several Greasemonkey user scripts that en-
able this basic configuration to be used with various Web
sites.

With the Google spelling checker, we enabled a user to,
after typing the content, asks for correction of the text. This
modality is again integrated in a browser using the Scriptin-

11http://babelfish.yahoo.com/
12http://code.google.com/apis/soapsearch/

Figure 3: AMICO:WEB configuration of Scenario 1.

Figure 4: Screenshots of three visual input modal-
ity components: face detector, motion detector, and
gesture recogniser.

gApplet. Using Greasemonkey, we search the page for all tex-
tual fields, and add scripts that capture the onfocus events,
in order to determine the field currently in use. When the
user requests a correction, we read the content of the ac-
tive field, send it to AMICO:WEB, which than contacts the
Google spelling checker through Google’s SOAP interface.
AMICO:WEB parses the XML response from the Google
service, and sends the corrected text back to the Scriptin-
gApplet which updates the field with the spelling suggestion.

Figure 5 shows the basic configuration of Simon’s sce-
nario. The external components are integrated with the
Web browser through a toolbar extension (Figure 6), that
was developed for this scenario by extending the standard
AMICO Firefox Extension extension described in Section
5.2.1.

In this interaction scenario, Simon can browse any Web
site, select a word, phrase or whole sentence, and use his
browser’s toolbar to request translation or pronunciation of
the text. When he requests translation, the toolbar up-
dates the corresponding variable inside AMICO:WEB. AM-
ICO:WEB then contacts the BabelFish translation service
through its HTTP interface, requesting the translation of
the selected text, from the language selected in the toolbar,
to Simon’s preferred language which is defined in his AM-
ICO:WEB user profile. AMICO:WEB receives the HTML

21

Figure 5: AMICO:WEB configuration of Scenario 1.

encoded response from the BabelFish service, which is then
translated by AMICO:WEB’s XML processor into valid XHTML
code (based on JTidy library13). The XML processor then
extracts translated text based on given XPath expression,
and translated text is sent to the appropriate TTS engine
that pronounces the translated text. The full functionality
of the system is currently limited by the languages supported
by the BabelFish translation service and by the availability
of the TTS engines.

Each request for translation is recorded in the SQL database,
with data about original and translated text, page location,
and date and time of translation. When the user again vis-
its the same page, previously requested translations are pre-
sented in the combo box of the toolbar (as shown in Figure
6). Words selected in the combo box are highlighted in the
text. In preliminary evaluations, the average time for trans-
lation was about 1s, mostly caused by the delay of calling
out to BabelFish.

With speech input, translation is supported in a similar
fashion. A speech recogniser updates an AMICO:WEB vari-
able with the recognised text. AMICO:WEB than sends
the text to the BabelFish translation service, extracts the
translated text, and than sends translated text to the tool-
bar extension that inserts it in a currently active text field
in HTML form. Optionally, translated text could also be
pronounced by a TTS engine.

7. DISCUSSION
Our approach extends and adapts standard Web compo-

nents and can be used on a wide variety of Web sites as
it does not require specialised markup of the Web pages.
However, there are still many open problems of which we
discuss three: hiding the complexity of infrastructure from
the user, practical problems with applets and scripting, and
proxy and server integration mechanisms. We discuss these
issues based on early practical experiences in usage of AM-
ICO:WEB in several projects and teaching.

13http://jtidy.sourceforge.net/

Figure 6: AMICO’s Firefox toolbar extension sup-
porting Scenario 2.

7.1 Hiding the Complexity of the Infrastruc-
ture from the User

Using the OSS components in the proposed manner comes
with a price, which is mostly connected to the ease of in-
stalling and adjusting the adaptation to the user. Although
developers could provide AMICO:WEB solutions as well
packaged solutions and unified interfaces to underlying com-
ponents, it is also necessary to install software that cannot
be packaged with AMICO:WEB. In some cases we were able
to package OSS components with our infrastructure and a
single install procedure. In other cases, however, it is neces-
sary that the user downloads and configures additional third
party components. This can be a serious problem if the in-
stallation procedure of these components is not straightfor-
ward.

Second problem is how to hide the complexity of running
diverse OSS components from the users. In our approach,
most of the OSS components run as independent services,
connected with our platform through one of the supported
interfaces. While AMICO:WEB provide solutions connect-
ing these components, they still all have to be started and
come up before the system works. Asking a user to manu-
ally start all the necessary components and services is def-
initely not an option. Therefore, as part of our platform,
we provide several auxiliary tools, that hide the complexity
of the infrastructure from the user. One of such tools is a
flexible OSS component loader, that dynamically loads the
necessary components based on a given configuration script.
End-users see only resulting behaviour of the system, while
the tools run the necessary software in the background.

An additional problem is component reconfiguration dur-
ing an interactive session. The simplest approach to enable
dynamic reconfiguration among components is to start all
the necessary components at the same time and then just
reconfigure them when necessary. Some components, how-
ever, require exclusive access to resources such as a cam-
era. In other cases approach introduced unacceptable per-
formance and memory overhead. To solve this problem, we
have enabled the infrastructure to dynamically start and

22

stop necessary components, based on, for example, selection
of modalities from the browser toolbar.

Additionally, we have to solve the problem of giving the
user feedback via the web browser about the current state
of the platform. In our tests, starting some of the OSS com-
ponents, such as TTS engines or speech recognisers, some-
times took 10 seconds or more, so it is important that the
user knows when s/he can actually start to use the added
functionality. One approach that we have applied is to use
some elements of the browser interface, such as the tool-
bar extensions, to notify the user about the state, but this
is only possible when the user is using the AMICO:WEB
toolbar extensions. The other is to use background commu-
nication channels, such as speech output, to inform the user,
but that requires running a TTS engine, so it is appropri-
ate only when the TTS engine is part of the configuration
and already running. There are still open problems in this
area, and in future work we will work more on making the
infrastructure and its installation and configuration more
transparent and accessible.

7.2 Solving Practical Problems with Applets
and Scripting

There are two important problems that we have had to
solve in order to make usage of our applet integration in-
terface practical. Firstly, AMICO:WEB usually runs on the
client machine, as it has to connect to input devices, such
as cameras or microphone, and the ScriptingApplet has to
be able to connect to them. However, due to security lim-
itations, applets, if not signed, can communicate only with
the applications on the machine where the applet codebase
is [18]. The codebase does not have to be the same as the
Web site of the page. Therefore, to simplify usage of our
applet, and to avoid the need for running the Web server
at the local machine, we have embedded a simplified Web
server in the AMICO:WEB HTTP interface, which returns
the applet code on browser requests. This approach is also
more secure then signing the applets, as our applet now can
communicate only with local machine. The AMICO:WEB,
on the other hand, can be run in the Java sandbox config-
ured to reject applet connections outside the local machine.

A second problem is that we must somehow embed applets
in the Web page. For some of our own Web sites, we did this
manually, but this approach cannot be applied to other sites.
Applets can also be embedded on-the-fly using proxy han-
dlers or toolbar extensions. However, this approach is not
practical due to the complexity of parsing of HTML code
in the proxy server handlers, and it requires user to run a
personalised proxy on their machine. This approach is also
limited to generic functions, as the semantics of the Web
page are hard to understand from the HTML text. The
most flexible and practical way, although limited to Fire-
fox/Mozilla, proved to be the usage of our ScriptingApplet
in combination with the Greasemonkey toolbar extension,
described in Section 3.4. Even when it is possible to man-
ually embed the applet in the HTML page, this approach
allows more flexibility and is supports personalisation, as
each user can apply the adaptations that suits them best.

7.3 Proxy and Server Integration Mechanisms
AMICO:WEB can also be used with proxy and server-side

components. We have connected our platform with several
open source Java proxy servers, such as Paw (pro-active Web

filter) [21] and the Muffin WWW filtering system [3], with
proactive filtering, which allow plug-in integration of custom
filters and handlers. These filters and handlers can monitor
and even modify all the data requests and response parame-
ters. Proxies and AMICO:WEB can work together in several
modes. A proxy handler can analyse a Web page, and up-
date the AMICO:WEB with data about the page, which can
than be used by other modules connected to AMICO:WEB.
On the other hand, proxy handlers and filters can register
for notification about parameters from AMICO:WEB, and
change their content accordingly. Proxies can also serve as a
means of embedding ScriptingApplet to enhance client-side
interaction in existing content.

Active server pages can work with AMICO:WEB in a sim-
ilar bidirectional way. Server pages can query AMICO:WEB
for parameters that can be used to generate the content, for
example, to adapt the size of pages according to user prefer-
ences. Web servers can also send information about a Web
page that is not present in the metadata within the page.
For example, the server may send AMICO UDP packages
containing metadata about social cues from Web log files
about the current Web page, such as total number of visits,
average per day, the number of visitors that are currently
looking at the page.

8. CONCLUSION
We have presented our experiences in reusing open source

and free software to add additional accessibility functions to
existing Web components. We have developed an infrastruc-
ture that facilitates efficient reuse and integration of OSS
components in a Web environment. Our approach focuses
on reuse and rapid prototyping, and therefore complements
existing approaches, such as changing the source code of
the browser, which require significantly more developers’ re-
sources. Our approach is not aimed at replacing existing
approaches, but at providing a solution in situations where
it is not effective to use more homogeneous approaches, due
to, for example, the high price of development.

By connecting the infrastructure with existing extension
Web mechanisms, we were able to support many of the ac-
cessibility scenarios on the Web by integrating existing solu-
tions. We illustrate the proposed approach on two example
scenarios, one describing a disabled user using a standard
Web browser with additional interaction modalities, and
the other describing a non-disabled user using a browser
in a suboptimal interaction situation. Our approach is also
suitable for rapid prototyping of various other accessibility
improvements, which can then be evaluated early in the de-
velopment cycle.

We have started a collaboration with the School of Inter-
active Arts and Technology at Simon Fraser University in
Surrey, Canada, to use our approach to improve accessibil-
ity of Web based e-learning systems. At the Free Univer-
sity in Amsterdam, we have started to use this infrastruc-
ture to teach students how to rapidly develop solutions with
novel interaction modalities, especially with rich multime-
dia content and X3D/VRML interaction environments. We
are working with the V2 Institute from Rotterdam on using
our infrastructure to integrate more complex devices in Web
interaction, such as a biometric pillow with embedded sen-
sors for pressure, galvanic skin response (GSR), movement

23

patterns, and presence14.
In future work we would like to explore and connect our

infrastructure with other Web extension mechanisms, such
as Internet Explorer plugins, or the Google Web Toolkit
that enables building AJAX applications in the Java lan-
guage15. We are also working on increasing the number
of supported and tested OSS components. Our long term
goal is to provide, as part of the open source distribution of
AMICO:WEB, not only the platform itself, but also many
wrapped OSS components, and/or auxiliary configuration
files, that can be used directly with minimal configuration
efforts. Our work is also connected and in many aspects
complementary to recent W3C work on the Rich Web Ap-
plication Backplane [2], which is intended to provide a more
common integration infrastructure in the future.

9. ACKNOWLEDGEMENTS
Part of this research was funded by the European ITEA

Passepartout project and the MultimediaN project of the
BSIK programme of the Dutch Government, and by Eu-
ropean Commission under contract FP6-027026 - Knowl-
edge Space of semantic inference for automatic annotation
and retrieval of multimedia content – K-Space. We thank
Lynda Hardman who provided useful feedback on the work
described here, and whose comments significantly improved
this article.

10. REFERENCES
[1] C. Asakawa and T. Itoh. User interface of a Home

Page Reader. In ASSETS ’98: Proceedings of the third
international ACM conference on Assistive
technologies, pages 149–156, Marina del Rey,
California, USA, 1998. ACM Press.

[2] M. Birbeck, J. Boyer, A. Gilman, K. Kelly,
S. Pemberton, and C. Wiecha. Rich Web Application
Backplane, W3C Note 19 July 2006,
http://www.w3.org/MarkUp/Forms/2006/backplane/.
W3C Note, 2006.

[3] M. Boyns. Muffin Web Filtering System,
http://muffin.doit.org/, 2004.

[4] J. Clark. XSL Transformations (XSLT) Version 1.0.
W3C Recommendation, 16 November 1999.

[5] ConceptNet. Commonsense and NLP Toolkit,
http://web.media.mit.edu/∼hugo/conceptnet/, 2006.

[6] W. Consortium. Extensible 3D (X3D) Specification
(ISO/IEC 19775:2004),
http://www.web3d.org/x3d/specifications/, 2004.

[7] W. K. Edwards. Putting computing in context: An
infrastructure to support extensible context-enhanced
collaborative applications. ACM Transactions on
Computer-Human Interaction (TOCHI),
12(4):446–474, December 2005.

[8] FreeTTS. Text-to-Speech Synthesizer,
http://freetts.sourceforge.net/, 2006.

[9] HandVu. Hand Gesture Recognitizer,
http://www.movesinstitute.org/∼kolsch/HandVu/,
2006.

[10] V. L. Hanson, J. P. Brezin, S. Crayne, S. Keates,
R. Kjeldsen, J. T. Richards, C. Swart, and S. Trewin.

14http://www.defekt.nl/∼moveme/
15http://code.google.com/webtoolkit/

Improving Web accessibility through an enhanced
open-source browser. IBM Systems Journal,
44(3):573–588, October-December 2005.

[11] M. J. Karels. Commercializing Open Source Software.
ACM Queue, 1(5), July–August 2003.

[12] A. Liu and I. Gorton. Accelerating COTS Middleware
Acquisition: The i-Mate Process. IEEE Software,
20(1):72–79, January 2003.

[13] T. R. Madanmohan and R. De. Open Source Reuse in
Commercial Firms. IEEE Software, 21(6):62–69,
November 2004.

[14] MARY. Text-to-Speech System for English, German
and Tibetan, http://mary.dfki.de/, 2006.

[15] R. C. Miller and B. A. Myers. Integrating a Command
Shell into a Web Browser. In Proceedings of USENIX
2000 Annual Technical Conference, pages 171–182,
San Diego, CA, 2000.

[16] S. Milne, A. Dickinson, A. Carmichael, D. Sloan,
R. Eisma, and P. Gregor. Are guidelines enough? An
introduction to designing Web sites accessible to older
people. IBM Systems Journal, 44(3):557–572,
October-December 2005.

[17] NeXTeNS. Text-to-Speech Synthesizer for Dutch,
http://nextens.uvt.nl/, 2006.

[18] S. Oaks. Java Security, 2 edition. O’Reilly Media,
2001.

[19] Z. Obrenovic, F. Nack, and L. Hardman. Designing
interactive ambient multimedia applications:
requirements and implementation challenges.
Technical Report INS-E0605, CWI, 2006.

[20] OpenCV. Computer Vision Library,
http://opencvlibrary.sourceforge.net/, 2006.

[21] PAW. Pro-active Web Filter,
http://paw-project.sourceforge.net/, 2006.

[22] J. T. Richards and V. L. Hanson. Web accessibility: a
broader view. In WWW ’04: Proceedings of the 13th
international Conference on World Wide Web, pages
72–79, New York, NY, USA, 2004. ACM Press.

[23] Sesame. RDF database, http://www.openrdf.org/,
2006.

[24] Sphinx-4. English Speech Recognizer,
http://cmusphinx.sourceforge.net/sphinx4/, 2006.

[25] W3C. Device Independence Activity. W3C working
group.

[26] W3C. Web Accessibility Initiative. W3C working
group.

[27] W3C. Multimodal Interaction Framework, W3C note,
6 May 2003, http://www.w3.org/TR/
mmi-framework/, 2003.

[28] W3C. Alternative Web Browsing Index,
http://www.w3.org/WAI/References/Browsing, 2006.

[29] W3C. ”Voice Browser” Activity,
http://www.w3.org/Voice/, 2006.

[30] WordNet. WordNet Lexical Reference System Project
Page, http://wordnet.princeton.edu/, 2006.

[31] Zajicek, M., Powell, C., Reeves, and C. 1998. A Web
navigation tool for the blind. In ASSETS ’98:
Proceedings of the Third international ACM
Conference on Assistive Technologies, pages 204–206,
Marina del Rey, California, USA, 1998. ACM Press.

24

