
Performance Analysis of a
Dynamic Query Processing Scheme *

~4.L. Kersten
S. Shair-Ali

C.A. van den Berg

Centre for Mathematics and Compufer Science
P.O. Box 4079, 1009 AB Amsterdam

The Netherlands

Abstract

Tra~iltional query optimizers produce a fixed query evaluation plan based on assumptions about data
distribution and processor workloads. However, these assumptions may not hold at query execution time.
In this paper, we propose a dynamic query processing scheme and we present the performance results
obtained by simulation of a queueing network model of the proposed software architecture.

Key Words gz Phrases: database machines, dynamic query processing, performance analysis.
I985 Mathematics Subjec~ Classi~cation: 69C40, 69C24, 69H24, 69H26, 69H33
I990 CR Categories: C.4, C.2.4, H.2.4, H.2.6~ H.3.3, 1.6.3

1 I n t r o d u c t i o n

Exploitation of distributed processing capacity provided by large multi-processor systems remains
one of the cornerstones to improve the performance of database management systems. The key to
achieve this goal lies in the architecture of the query optimizer and the query execution strategy. To
illustrate, several large research groups have produced research prototypes that attack the problem
from a different angle. To name a few:

The distributed query processing technique of Bubba lea90] is a multi-stage set-at-a-time tech-
nique. That is, the levels in the query plan lead to several stages at run time, where the transport of
intermediate results between the layers in the plan is based on declustering the tuples first. Moreover,
the program components to solve the query are dynamically loaded upon need at each processing
step.

The query processing techniques of PRISMA [KAH+88] and GAMMA [DGS+90] are based on a
pipelined query processing technique. During query optimization the pipe layout is determined and
its junctions are mapped to processing nodes. Subsequently, the query is solved in a datafiow driven
manner.

Although each prototype has demonstrated performance improvement over centralized query
processing, they are mostly based on the same hidden assumptions, which may still block a potential
leap in performance for large scale multiprocessors.

The predominant assumptions are that a query optimizer generates the single optimal plan of
action and that it does not take into account the possibly disastrous effect of concurrent running

*The work reported in this paper was conducted as part of the PRISMA project, a joint effort with Philips Research
Eindhoven~ partially supported by the Dutch "Stimulerlngsprojectteam Informaticaonderzoek (SPIN)".

260

queries. For example, concurrent queries may have an exclusive lock on a relation fragment, which
may cause a delay in the estimated response time. This knowledge could be used to switch to an
alternative plan at runtime, which would exploit the waiting time to produce a partial result already
in another way.

Furthermore, the query plan is based on simple estimates about the data distribution. A plan is
normally not adjusted when these estimates turn out to be wrong. At best a query processor aborts
the query when one of the subqueries produce an empty result or the query optimizer regularly re-
freshes its statistics. Ideally, the query processor could dynamically adjust the plan upon recognition
of major deviations from the statistics maintainecL An approach in this direction is also presented
by [CW89].

The query plan generated in PRISMA (to a lesser extend in Bubba and Gamma) is based on an
a priori known number of processors. For example, a query that joins three relations can be assigned
5 processors for pipelined processing. Equally, the query optimizer can design a plan that uses tens
of processors using a declustering scheme on the relations and intermediate results. Unfortunately,
either plan is fixed, which means that all resources should be conceptually acquired during query
startup to guarantee the response time aimed for. In particular, the database should be properly
declustered before, such that parallel execution for a large class of queries pays off.

Fixing the number of processors within the query plan also ignores the relative speed by which
the operands produce their (partial) answers. For example, to deal with a bursty behavior of the
processes involved, it would be better to automatically acquire more processors when work is available
and release processors when nothing is left to be processed.

The dynamic query processing scheme described in the sequel is based on the observation that
the strong relationship between query plan and query execution should be weakened. Instead, we
propose to consider query processing a dual problem. First, how to solve a query when you have a
(small) portion of the database within the query program buffers. The techniques for this can be
borrowed from centralized query processing. Second, how to collect the interesting portions and how
to distribute the work over the available processors using a centralized scheduler.

The core of this paper is an investigation in the potential performance bottlenecks that might arise
from this scheme. We have constructed a queueing network model, to gain insight in the behavior of
our query processing scheme. Using a parameter setting that reflects the properties of a reasonably
tuned distributed operating system and main-memory DBMS implementation, we conclude that a
central scheduler does not become an immediate bottleneck.

Our architecture also indicates an alternative caching strategy for database systems, based on
dynamic replication of database fragments during query processing. Finally, the model indicates
that reasonable linear speedup for processing join queries on a PRISMA-like database machine is
attainable.

The remainder of this report is organized as follows. In Section 2, we describe a global architecture
for our dynamic query optimization scheme. Section 3 describes the performance model and the
simulation parameters. The basic queueing model is introduced in Section 4, while an improved
model to deal with distributed caching is given in Section 5. We conclude with a summary and an
indication of future research.

2 T h e Qstar architecture

In this section, we give a system architecture for our dynamic query processing scheme. Its main
purpose is to show an evolutionary path for the PRISMA system architecture in sufficient detail.
Furthermore, this architecture is used as a reference model for the performance analysis and a mock-
up implementation to validate our approach. The system's nickname is Qatar, which indicates the
central role of individual queries.

The Qstar design objectives diverge from the PRISMA approach in several aspects. First, we do
not assume that there exists a query optimizer that produces uniformly good, yet static query plans.

261

SQL runtime I SQL l,sonrce

~uery . ~rocesslng Monitor generates Qstar / ~ :~ Compiler

il ~uery' i ~~!!i ii!!i !

One-Fragment One-Fragment Data
Manage r

Concurrency Control

Figure h The Qstar architecture

Rather, we aim for a dynamic query optimization strategy.
Second, we favor repetitive queries over ad-hoc, i.e. one shot queries. That is, we believe that

most queries in practice are recurrent in nature. That is, successive calls only differ in the constants
included. This warrants a compiled approach to gain performance.

Third, we foresee that most applications are browsing in nature, i.e. selecting a few tuples followed
by a lengthy delay during which the user (application) absorbs the data. This calls for mechanisms
that not only control the order and speed of presenting the tuptes to the application program (i.e.
cursor control), but also those that control the actual query resolution without blocking resources in
the database (i.e. memory and processors) for lengthy periods.

The global system architecture is modelled after PRISMA and consists of three layers (Figure 1).
The bottom layer is a collection of One Fragment Managers (OFM) and a concurrency controller.
Each OFM is a relational data manager geared towards supporting a single horizontal relation frag-
ment. In particular, it provides a relational algebra interface and a checkpoint/recovery facility. The
OFMs do not contain any knowledge about other OFMs. l~ther, their orchestration is handled at
the distribution level.

The distribution level of Qstar differs from PRISMA in the following aspects. The query entered
by the user is processed by the SQL parser, analyzed for semantics errors, logically optimized, and,
finally, a code generator produces a Query Processing Monitor (QPM) and a Query Processor Object
(QPO). A QPO contains the algorithms to solve the query under the assumption that (all) data is
available within the local address space of the process, i.e. a main-memory buffer pool. Moreover,
it contains an interface with the One Fragment Managers to extract (replace) portions from (in) the
database. Each QPO can thus be seen as a query specific server. Several may be active in handling
a single request, while any number of QPOs may have been installed on a processor pool.

The QPOs are managed by a single Query Processing Monitor, which contains a strategy to obtain
database portions from the OFMs and which distributes the workload over the QPOs. The QPM,

262

comparable with a transaction manager, i s also given the responsibility for distributed integrity- and
concurrency- control. A more detailed description of the OFM, QPO, and QPM is given below.

2 . 1 O n e - F r a g m e n t m a n a g e r

The base relations are managed by a so-called One Fragment Managers (OFM). Like in PRISMA
they are always optimized towards supporting a single relation fragment. That is, an OFM is ideally
compiled from a single (extended) SQL create statement.

Each OFM is implemented as a server object, that contains at least two kinds of threads. A
communication thread and a storage thread. The communication thread handles the communication
with the clients, such as queues incoming requests for execution and enquiries. The storage thread
deals with storage subsystems, such as the file servers, and it evaluates the relational subqueries.

To illustrate, consider the case that a QPM requests a range selection on the base table. That is,
the OFM receives the message select segment, which is queued upon arrival. Once a storage thread
is scheduled for execution, it picks a request from the queue of pending queries and prepares a local
processing plan. This plan is subsequently taken into execution and the qualifying tuples are copied
into a tupte segment. Once the tuple segment is full, the client is notified with the message segment
cached.

The tuple segment itself is not being sent, but it remains cached in the OFM. It can be obtained
by interested parties later on by issuing a get segment message, which is handled directly by the
communication thread. The tuple segment is set up such that no additional copying is needed to
reply.

Associated with each tuple segment we keep reconstruction information, such as the range query,
the base table portion being used, and the cost involved in re-producing it. When a tuple segment
should make room for a new one, this information can be used to decide whether to copy the partial
result to disk or to reconstruct it when need arises.

2 . 2 T h e Q u e r y P r o c e s s i n g O b j e c t

The prime task of a Query Processing Object is to evaluate a query upon receiving the message reduce
vector from the Query Processing Monitor. A segment vector consists of a list of tuple segment id's,
one for each database variable mentioned in the query. Upon receipt, the QPO first acquires copies
of the tuple segments mentioned in the message. This involves communication with one or more
OFMs when the tuple segment was not already cached in the workspace of the QPO itself.

The QPO algorithm should be designed such that partial results are produced as quickly as
possible with minimal space consumption. For example, a hash-index can be associated with each
incoming tuple segment. When all segments have arrived the join algorithm can use them to quickly
discard non-qualifying tuple combinations.

Following, two strategies can be applied to produce a result. First, the traditional approach is
to actually construct an intermediate relation, which contains only the target tuples. This involves
joining the tuple segments, and copying the qualifying tuples into tuple segments. This intermediate
is presented to the outside world analogous to the base tables.

Second, result construction is delayed until it is actually needed in the application. Therefore, for
each database variable a new segment is produced that contains the tuples that participate somehow
in the result. The final phase, i.e. construction of the target tuples, is done within the application
workarea.

The prime advantage is that the communication overhead for emitting the result is never greater
than th.e sum of its input. The drawback is that the actual relationship among the tuples should
be reconstructed by building indices again. We expect that re-construction is less expensive th~n
shipping indices.

263

!
1 select segment l

I
J c~lle(1

One-fragment
Manager

0 run,stop,resume

l
Query I 3 reduce vector

Processing 1
Monitor ~ 6

4 send segment I Query

P I Processing
5 get segment Object

Figure 2: The Qstar communication pattern

2 .3 T h e Q u e r y P r o c e s s i n g M o n i t o r

The prime task of the Query Processing Monitor (QPM) is to distribute the workload over the
OFMs and the available QPOs to produce the partial results. The communication pattern is shown
in Figure 2. The run, stop, resume, and abort are user commands. The message select segment tells
the OFM to produce a new tuple segment. The OFM replies with the message segment cached, when
it has read a segment from disk. The message reduce vector tells a QPO to produce a reduced copy
of the operands, such that no tuptes are retained that provably will not be part of the final result.
When the QPO has completed this task it will respond with the message result.

The QPM itself is divided into three major components; the pairing-, the filter-, and the schedule
- component. They will be discussed in following paragraphs using the query to join two Wisconsin
10K relations, relA10k ~ relB10k.

Assume that the OFMs involved in maintaining the base relations have received a request to
produce a tuple segment. Then, in due time, they will notify the QPM that such a segment has been
cached. Say, the first segment of reiA10k is cached, denoted by relA10k[1], which is recorded by the
QPM.

When the message segment cached arrives from the other OFM, say relB10k[1], then all possible
pairings are made with previously cached relA10k segments. In this case, a task reduce vector is
formulated to reduce the tuple segments by evaluating the query for retA10k[1] and relB10k[1]. This
task is stored in a work table. Once the result becomes available its status is turned into cached. This
pairing algorithm is applied to all segments being cached. The effect is formation of the Cartesian
product over all relations operands in the query, i.e. a nested-loop over tuple segments. To illustrate,
the table below contains a portion of the administration kept by the QPM.

l'cached l relA10k[1]
i cached I relB10k[lI

select relA10k[2]
cached relB 10k[2]
i select relB10k[3]
I reduce relA10k[1] relB10k[2]
t cached.., relAlOk[1] relBlOk[11

2 6 4

To improve the response time of a query considerably we could filter the tasks to avoid firing
useless (sub)tasks. This filter uses semantic knowledge to reduce the Cartesian search space generated
by the pairing component. For example, we might use rain/max values over the join attributes
supplied by the OFM to drop vectors that do not overlap. The net effect is to take only those tasks
into execution that contribute to the query result.

The filtered vectors are handed to the scheduler that maintains a table of available QP0s. For
each QPO it knows the segments already stored there and the amount of slack resources. Thus, it
can direct the vector to the least costly QPO, i.e. cheapest in communication.

3 Performance Analysis Method

The performance analysis of the Qstar architecture is based on modelling it as a queueing network. In
particalar, for each component in the system architecture we could identify an arrival time distribu-
tion function (A), a service time distribution function(B), the number of services(n) and the service
discipline(d). This leads to an element of the queueing model space (A/B/c /d) , using Kendail's
notation [Kle75].

Unfortunately, queueing theory does not yet provide answers to all possible combinations, nor
is it possible to cast the behavior of Qstar in a set of closed formula. Therefore, we have used the
queueing network model as a basis for a discrete event simulation, where the characteristics are part ly
described by distribution functions and partly described by algorithms. Following, the simulation
scheduler can collect the relevant measurements of the interesting performance indicators.

The queueing network modelling package QNAP21version 5.0 has been used [CII84]. This package
contains algorithms for discrete event simulation and algorithms for analytic solutions. The analytic
solvers yield exact and approximate steady-state solutions provided the simulation model satisfies
some severe constraints, such as, mutual independence between stations.

The major limitation of a simulation is its production of average indicators instead of exact or
approximation results and the processing time involved to gain stable results, which limits the number
of cases that can be covered. (Some of the runs lasted for days.) Furthermore, the complexity of
the QPM is reduced by ignoring the filtering component. The result on our simulation is that the
performance figures indicate a 'worst-case' situation, because there is no semantic feedback in the
system to reduce the amount of work generated within the QPM.

3 . 1 P e r f o r m a n c e m e a s u r e m e n t s

The focal point of our performance analysis are the questions what is the Qs~ar system utiliza~ion
and will Qstar exhibit a linear speed up for large number of processors. To answer these questions
we acquired several performance factors from our simulation.

The prime simulation variable is the number of QPO centers, because it relates to the fraction
of the PRISMA machine that could have been used. Furthermore, we are interested in the following
output measures:

• system measures

- system throughput (in terms of processed segment vectors per second)
This will be an indication for query response time. The number of vectors estimated
during query compilation divided by the system's throughput yields the response time.

- average number of messages in system
This will be an indication for the network load. Too many messages cause network con.
gestion.

• service center measures (QPM, OFM, QPO)

i QNAP2 (Queueing Network Analysis Package 2) is copyrighted by CII HONEYWELL BULL and INRIA 1981,1982

265

- utilization of a center
This will be an indication for a possible bottleneck in the system. A relative high utilization
percentage, that increases with each additional QPO, will limit the performance in the
long run.

- average residence time
This represents the waiting time in a queue and in the service center of a station.

- throughput
This highlights centers for further improvement

- average queue length
A high performance implementation will be infeasible, if this is accompanied by large
queues at stations and show insufficient buffering capacity.

We limited the amount of data gathered from the simulation to the messages that requested
joined segment vectors.

3 . 2 T h e p a r a m e t e r s e t t i n g s

The parameter settings for our simulation are not directly derived from the PRISMA machine,
because no stable figures were available at the time of writing. Instead, we have used parameter
settings that reflect a reasonably optimized distributed operating system and we used our experience
in writing a main-memory OFM early on in the project. As such, the parameter settings reflect a
system that could emerge within the next few years. A more detailed validation of the parameter
settings for the queueing model is underway.

The test query we will be working with is as follows:

r e l A 1 0 k ~ r e l B 1 0 k ~ r e l C 1 0 k

We begin with the mean time to transport data over the network. These values are based on
Amoeba network characteristics [MvRT+90].

The setup costs for communication 1.0 ms
Transfer costs of data (per Kb) 1.1'S ms
Total costs for communication 1 ÷ 1.1 * S ms

The parameter 'S' represents the data size in Kb. Since communication is negatively influenced by
small blocks, we use a segment size of 32 Kb. Although the Qstar query processing scheme could
request the OFMs to project out the unwanted attributes from the relations, we assume in our
simulation that this has not been done. Consequently, each segment contains about 160 tuples.

We further assume rather lengthy RPC messages of 250 bytes. These are needed to send the
segment vectors around. The corresponding delays introduced by the network are:

for a segment transfer 32'1.1÷1 -- 36.2 ms
for a RPC 1 ÷ 0.25"1.1 = 1.3 ms

The mean time for an OFM to prepare a segment, i.e. local query optimization and index lookup,
is related to the segment size and pre-selection cost within the OFM. For the latter a3pects we used a
fixed cost of 20 ms. During selection the qualifying tuples are be ~copied into a result tuple segment.
The processing time is calculated as follows:

Time to prepare a tuple segment 20.0 ms
Time to move data around in memory (per Kb) 0.2 * 32 ms
Total costs for preparing a segment 26.4 ms

The task of a QPO is to handle a M-way join. The costs involved are based on a hash-join
algorithm that consumes 0.1 ms per tuple. We assume that each QPO produces a single segment
that contains 5% of the input tuples. The processing time of a QPO over M relations becomes:

266

M * hash-index construction M * 160 * 0.1 = 16.0 * M ms
one join scan to collect result = 0.1 * M ms
5% tuple construction M * 0.2 * 0.05 * 160 * 0.200 = 0.32 * M ms
Processing time to join M relations 16.42 * M ms

The delay from the network for transferring the result becomes:

Transfer of result 5~ from 160 tuples
Size of result 8 * 200 * M bytes

1 . 6 " 1 . 1 " M + 1 = 1.8*M + 1 ms

The experiments are conducted with 3 OFMs (3-way relation join), thus:

Time to join 3 relation segments 3"16.42 ms = 49.26 ms
Time to transfer result over the network 1.8'3 + 1 ms = 6.4 ms

The PRISMA machine has a fully interconnected network architecture, where each link has a
bandwidth of 20 Mbits/sec. The simulations are performed under these network assumptions.

4 Qstar queueing model
In this section we describe the general queueing network layout of Qatar, the message classes and the
modelling assumptions. In the remaining sections we illustrate an analytic model for the components
involved. The outcome of this section is a basic model that captures the message flows and the
processing characteristics of the basic Qstax implementation. Some illustrative performance figures
axe given to highlight its behavior under the parameter settings. In the next section we will improve
the basic model by using the caching of segments within QPOs to enable segment exchange between
QPOs.

4 . 1 M e s s a g e c l a s s e s

The components of the Qstar architecture are mapped to service centers in the queueing network.
That is, we have a single service center to model the QPM, a fixed number (m) of OFM service
centers that hold the query operands, and a variable number (n) of service centers for the QPOs. In
addition, we assume a service center that mimicks the user input, called SR.C, and a service center
for the communication network, that models the network delays. The corresponding message classes
and propagation paths are as follows:

class-O S R C - * Q P M
This class marks the beginning of a new vector evaluation.

class-1 Q P M --* OFM~ -* Q P M
The QPM produces m class-1 messages for each cIass-O messages to request a selection by the
i-th OFM.

class-P Q P M --* QPOj --~ Q P M
The QPM converts the answers by the OFM into segment vector evaluation requests to be sent
to the QPOs. Upon receipt of the answer it marks the vector as being cached.

class-3 QPOj -* OFM~ -* QPOj
In a QPO the vector request is turned into a request to the OFMs to deliver the necessary
segments for processing.

267

To avoid unnecessary complications we have not included the network component in this list.
Actually all paths go through the network service center. The exception is the SRC ---* Q P M link
which is internal to the QPM.

F~rthermore, the SRC includes a heuristic to avoid over- and underflowing the QPM center with
(user) requests. That is, the source will keep on supplying requests until the number of segments
already at the QPM center exceeds twice the number of idle QPOs. Thereafter, it reduces to a slow
rate to avoid overflowing QPM.

4 . 2 M o d e l a s s u m p t i o n s

The analytic models derived for the system components are based on the assumption that service
times for all classes within a service center are exponentially distributed and the service discipline
is First Come First Serve. ~r thermore , the communication is asynchronous, which avoids blocking
the individual service centers (deadlock as well). Finally, we assume infinite buffering capacity and
sufficient bandwidth to handle the requests. The latter assumptions are quantified in the subsequent
simulations, which show that indeed this assumption holds for PRISMA-like m~hines.

4.3 Analytical model

The Qstar components can be individually characterized with an analytic model. For brevity we wilt
illustrate the modeling of QPM only. The models for OFM QPO, and network have been obtained
in a similar fashion.

The QPM center deals with three message classes. The class-$ messages communicate with the
QPO and the class-1 messages with the OFM. ~r thermore , it receives the class-O messages produced
by an internal source to mark the start of a new vector evaluation.

We assume that the system consists of independent Poisson processes, thus the total input process
will be a Poisson process as well [Kle75]. Therefore, the overall interarrival time distribution of input
messages is exponential with factor Aq~,~. We further assume that the service time distributions for
the message classes is exponential, that is

s~(=) = ~q~., i e-~, ,=, '=.

The parameter # ~ , ~ models the following aspects:

• 1 : the mean time to prepare a request for a vector for the OFM.
Df~pra,O

• 1 : the mean time to prepare an evaluation request for the QPO.

• z : the mean time to register a join of the segments within a vector. ~f~m,2

The choice of our distribution functions makes the service time of the QPM center hyperexponential
(Hs) [gle75] namely:

2

4=0

The distinct ~m,d's denote the fractions of the messages of the corresponding calls-i in the input
stream. The average interproduction time is:

The resulting output rate will be:

1
~ q ~ n n = m

268

lass 0 gen. !
Exp(#,.~) Exp(#~#) ',

A,
. . V

!FM~

QPO centers (M/H~/1)

Class1

(
I

J.

-~ E~p(,,,o,,) J..

QPO,~

OFM centers (M/H2/1)

I
|

I
I
I
I
I

!
!
!

Classs

OFM~

t . . . _ I - - I

Figure 3: Basic model

269

To summarize the specifications for the QPM center (with i = 0,1, 2):

• total input rate factor: :~qp,~

• the arrival time distribution function : exp()~q~)

• probability message of class i in the input stream : ~qr~,i

• service time distribution class i message : exp(/~q~,~,i)

• total service distribution: hyperexponential (H3)

• average output rate : /zqp~n

• per class the messages are directed to an unique destination

• we classify the QPM center as : (M/H3~1)

• service discipline: FCFS

The analytical models for the OFM and QPO are developed along the same line. The input
streams are again considered independent Poisson distributions leading to hyperexponential distri-
butions as well. An overview of the resulting queueing model is shown in figure 3.

4 . 4 T h e n e t w o r k s e r v i c e

The network service process represents the trnnsfer delay encountered during interprocess communi-
cation. A routing mechanism for messages has been implemented in the simulator. The mechanism
is needed for modelling the communication, such as to impose a delay upon message transport. For
example, a class-2 message send from the QPM to a QPO process must encounter a different delay
than the returning message, which contains data and is larger.

All processes at a center will have the same probability of being chosen as a destination process.
This simplifies the routing mechanism by only distinguishing centers. A process in the destination
center is chosen randomly by the network to become the receiving process. Without this assumption
every path between processes should have been made distinguishable by an unique class, because
routing can not be specified in such details in an analytical queueing network model. The processes
involved are again modelled as Poisson processes, leading to hyperexponential distributions.

5 Eva luat ion

In the following we present the results obtained by running a simulation of the basic model. The
results of this experiment (see Section 5.1) show that the load of the different processes is not equally
distributed. The basic model is improved by introducing a segment exchange mechanism between
QPOs. This extended model shows a better load distribution. The results can be found in Section
5.2.

5 . 1 B a s i c m o d e l

The simulation results are shown in Figure 4 and 5. The simulated time has been set high, so as to
obtain statistical measures with a 95% confidence intervals of ~- 10% around the mean.

Figure 4 shows the utilization levels for the three system components. In this architecture, the
load on the OFMs is much higher than on the QPM and QPO. In particular, its reaches 90%
utilization with 20 processors already. The underlying cause is that the ergodic constraint at the
OFMs reaches equality at this point (~ ~ 1). That is, the expected number of arrivals ()~) at a center
reaches the serving capacity (#).

270

100

90

80

70

60

50

40

30

20

10

0

I I I I I I | I I

'ofm/mbusy'

Busy
%

I I I I I , I I l

2 4 6 8 10 12 14 16 18
n QPO

20

Figure 4: Utilization level

120

100

80

Packets
per 60
s e c

4O

20

0 I 1 I I ! I I I I

2 4 6 8 iO 12 14 16 18 20
n QPO

Figure 5: Throughput of messages

An indication of the total throughput for each process is given in Figure 5. The central role
of the QPM is .highlighted by the throughput of messages through this center. Furthermore, the
bottleneck is the OFM which can not adequately handle an increasing number of QPOs. Therefore
the throughput for QPOs decreases.

5.1.1 N e t w o r k measures

The assumption that the network will not limit the system still holds, as can be seen in table
2. Using the message type distribution, obtained from the simulation, and the size of each message
type (Table 1), we have calculated in this table the total data throughput for each process. It turns
out that for all process types the required bandwidth is much lower than the network limit of 2
Mbytes/sec. Thus the capacity of a single network link is not exceeded. Under the assumption
that a fully interconnected network is used, we conclude that the global network bandwidth is not
exceeded either.

271

Message type size
RPC 0.5 Kb
Data 4.8 Kb
Segment 32.0 Kb

Table h Messages sizes

Process I/O Descriptlon
QPM IN segment cached from 0FMs

OUT

result from QPOs

reduce vector to QPOs
select segment to OFMs
partial result to user

Type Messages/sec Kb/sec
RPC 82.5
Data 27.0

170.9
RPC 27.0
RPC 82.5
Data 27.0

QPO IN reduce vector from QPM RPC 0,7
get segment from OFMs Segment 2.1

OUT result to QPM Data 0.7
send segment to OFMs RPC 2.1

select segment from QPM RPC 27.5
send segment from QPOs RPC 27.0

segment cached to QPM RPC 27.5
get segment to QPOs Segment 27.0

OFM IN

OUT

184.4
355.3

67.6

4.4
72.0

27.3

877.8
905.1

Table 2: Network requirements for the basic model

5.2 E x t e n d e d m o d e l

In the previous section we observed that the OFM forms the potential bottleneck in the system. The
congestion of the OFMs can be avoided by also using the QPOs as a cache for the tupte segments,
thereby spreading the load for accessing tuple segments over both the QPOs and OFMs. To simplify
the model, we assume unbounded caching resources at the QPOs. In the remainder of this section
we show the results of a simulation of this model.

This model was simulated under the same conditions as the previous model (i.e. accuracy, simu-
lation time). The results from these runs are presented in Figure 6 - 8.

In Figure 6 the utilization level of the three system components is shown. The bottleneck has
been shifted towards the QPM, which reaches saturation with 60 QPOs. However, the throughput
peak of the QPM is reached for a much lower number of QPOs (43), which means that between 43
and 60 one already faces a reduced payoff of parallel execution.

Compared with the simple model we have doubled the effective number of active QPOs and we
obtained a 5 times higher throughput (20 QPOs) by better utilization (See figure 8). Furthermore,
the model displays linear speedup in processing up to 30 QPOs.

5.2.1 Ne twork measures

As with the simulation of the basic model we verify the network assumption using the simulation
results. The calculations of the required network bandwidth for each processor link can be found in
Table 3. We see that although the maximum vector throughput has increased considerably (Figure

272

lO0

9o

80

70

6O
Busy

% 50

4O

30

20

10

I t I I ~ +

busy' - -

, q p o / ~ b . . y : - -

: , ' , , , ,
10 20 30 40 50 60 70

n QPO

F i gu re 6: U t i l i za t ion level

60O

5OO

40O

Packets
per 300
s e c

200

100

0 I I I I I I

10 20 30 40 50 60 70
n QPO

F i gu re 7: T h r o u g h p u t of m e s s a g e s

1 6 o I ' ' ' ' ' '

l caching - -

F / ~:g so I ~
60

4O

2O

o i i i i
0 10 20 30 40 50 60 70

n QPO

F i gu re 8: T o t a l n u m b e r of j o i ned vec to r s for b o t h mode l s .

273

Process I/O Description Type Messages/sec
QPM IN segment cached from OFMs RPC 26.9

reset from QPOs Data 75.2

QPO IN

OUT

OUT

reduce vector to QPOs RPC 75.2
select segment to OFMs RPC 26.9
partial result to user Data 75.2

reduce vector from QPM RPC 1.6
get segment from OFMs a~ad QPOs Segment 4.8
send segment from QPOs RPC 10.5

resdt to QPM Data 1.6
send segment to OFMs and QPOs RPC 4.8
get segment to QPOs Segment 10.5

OFM IN select s~n~ent from QPM RPC 9.0
send segment from QPOs RPC 9.1

OUT segment eachedto QPM RPC 9.0
get segment to QPOs Segment 9.1

Kb/sec

374.4

412.0
786.4

159.7

346.1
505.8

9.1

295.7
304.8

Table 3: Network requirements for the extended model

8), that the network throughput for each process does not exceed the maximum link bandwidth.

5 , 3 R e s p o n s e t i m e

The simulation results can be used to obtain an indication of the response time for the example
query. Recall that it represents a three-way join over the Wisconsin relations without support of
access paths and without reduction of the operands by pre-selection. Each relation contains 10K
tuples, which leads to about 60 segments per operand. Thus, a naive implementation of the QPM
would produce 216000 segment vectors (60s).

This job can be handled with 20 parallel QPOs without overloading any of the processors. Their
utilization level is about 30-40%. For this system configuration we need about l l m s per vector
(Figure 8), which leads to a response time of 2376 seconds. A response time of 1512 seconds can be
obtained, if 40 QPOs are used. Clearly, this is not competitive with current commercial systems,
because it is essentially based on the nested-loop join algorithm.

Yet, the response time can be improved dramatically when we spent little more time in preparing
the work within the OFM using well-known techniques. For example, the OFM may be requested to
hash-partition the relation into batches of 10 segments. This leads to an initial delay of 0.26 second
before the first segment batch becomes available. The advantage is that now the QPM filtering
component can drop all vectors that have incompatible hash values. After the first batch of each
OFM we can form 10 tasks, activating 10 QPOs as well. The second burst of each OFM will expand
the vector table to 10.2 s, generating enough work to keep 40 QPOs active. After the k-th burst it
will be 10.k s. In our example, we can hash partition the contents of the OFM of 60 segments into k=
6 batches. This results in a total amount of 2160 vectors with an expected response time of about
15 seconds. (The work within the OFM after k = 2 is overlapped by the processing in the QPOs.)

274

6 Summary

In this paper, we have presented an alternative approach for query processing on large multiproces-
sors. Our approach is based on breaking the "query into two smaller problems, namely, how to solve
the query for a small portion of the database and, how to schedule a large number of tasks, which
together form the query program. The hypothesis is that the combination leads to better system
utilization and smooths the fluctuations normally encountered in parallel query processing.

A queuing network model has been constructed that captures the processing aspects of our
architecture. It has been used to drive a discrete event simulation to experiment in a time efficient
way with two processing strategies, i.e. a central and decentralized caching of tuple segments.

The two simulations show that the central scheduler does not lead to an immediate bottleneck.
The linear speed-up curve flattens before the scheduler becomes overloaded. That is, the speedup
from parallelism becomes neglectable before the QPM becomes saturated. ~r thermore , the decen-
tralized caching of segments proved effective.

The system utilization in both cases is still limited, mainly due to the network activities, which
are modelled as independent processes. Thus, once a QPO has issued a request for a tuple segment
it has to wait for delivery; it does not take part in handling the communication protocols.

Designing the filter algorithm as well as query specific scheduling is an open-ended track. The
filter can do a better job once more feedback information is passed to the QPM about the contents
of the segments being cached. For example, as part of the message cached one could also return
the rain/max over the join attributes. This would enable the filter to precompute the overlap of a
proposed segment pairing (and drop k when no such overlap exists). F~rthermore, one can easily
configure a more static evaluation plan within the QPM to enforce a specific order of vector ewluation.

A lot more has to be done. The current activities are focussed on a validation of our simulation
in the 'real' multiprocessor environment. Furthermore, a comparison with architectures based on
static query plans is under way.

R e f e r e n c e s

[CII84] CII Honeywell Bull and INRIA. QNAPP, 1984. Introduction to QNAP2 and Reference
Manual.

[DGS+90] D . J . DeWitt, S. Ghadeharizadeh, D.A. Schneider, A. Bricker, H. Hsiao, and R. Ras-
mussen. The gamma database machine project. IEEE Transactions On Knowledge and
Data Engineering, 2(1), March 1990.

[ea90] H. Boral et al. Prototyping bubba, a highly parallel database system. IEEE Transactions
On Knowledge and Data Engineering, 2(1), March 1990.

[GW89] Goetz Graefe and Karen Ward. Dynamic query evaluation plans. In Proc. SIGMOD,
1989.

[KAH+88] M.L. Kersten, P.M.G. Apers, M.A.W. Houtsma, E.J.A. van Kuyk, and R.L.W. van de
Weg. A distributed~ main-memory database machine; research issues and a prelimi-
nary architecture. In M. Kitsuregawa, editor, Database Machines and knowledge Base
Machines, pages 853-369, 1988.

[Kle75] Leonard Kleinrock. Queueing Systems, Theory, volume 1. John Wiley ~ Sons, 1975.

[MvRT+90] S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. Renesse, and H. van Staveren.
Amoeba - a distributed operating system for the t990s. IEEE Computer Magazine, May
1990.

