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On a conjecture of Erdos (II) 

. van de Lune & H.J.J. te Riele 

ABSTRACT 

For any integer n ~ 2 let m = m(n) be determined by 

( l _ .!_) n l ( I _ _L_) n • 
m > 2 > m-l 

In this note it will be shown that 

n n 
• • • + m > (m+ I) 

and 

.. 
for almost all n. Compare the conjecture of ERDOS stated in the Amer. Math. 

Monthly, Vol. 56 (1949), p.343 (Advanced Problem 431+7). 

KEY WORDS & PHRASES: Inequalities, sums of powers of integers.; uniform dis

tribu t·ion. 



0. INTRODUCTION 

.. 
In [I] ERDOS proposed the following problem: Prove that if m and n are 

positive integers such that 

(0.0) 

then 

(0. l) 

and 

(0.2) 

(0.3) 

I 
> - > 

2 
(I __ l_)n 

m-l 

n n n n 
l + 2 + • • • + ( m- 2) < ( m- 1 ) 

In+ 2n + ••• + mn > (m+l)n. 

Show also that 

1n infinitely many instances and that 

(0.4) n n n n 
I + 2 + ••• + (m-1) > m 

1n infinitely many instances. 

The first partial solution of this problem was recently given by the 

first named author [4]. He showed by elementary means that (0.1) is true 

indeed and, in a similar fashion, he also proved the related inequality 

( 0. 5) 
n n n n 

I + 2 + • • • + ( m+ 1) > ( m+ 2 ) • 

In the meanwhile TIJDEMAN has simplified the proof of (O.l) consider

ably (see [4; addendum]). 

In this paper we will investigate the remaining inequalities (0.2), 

(0.3) and (0.4). 

It will be shown that the natural density of all n for which (0.2), 

resp. (0.3), 1s true is equal to I, so that (0~3) certainly holds true 
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in infinitely many instances. However, we have not succeeded in finding 

any n for which either (0.2) or (0.3) is false. Also, we have no example 

in which (0.4) is true. 

1. PRELIMINARIES AND THE MAIN THEOREM 

In [4] it was already shown that we may assume n ~ 2 and that from 

(O.O) it follows that for any given n the number m = m(n) is uniquely de

termined by 

( 1. 1) A(n) < m(n) < A(n) + I 

or, equivalently, by 

(1. 2) m(n) = [A(n)] + !, 

where 

(1.3) A(n) = 
l I 
-1/n - I+ / 

1 - 2 2 1 n -

From (I.I), (1.3) and [4; lemma 3.3] it follows that 

(1.4) m(n) > A(n) = l + l > I + { n _ .!._} > __ n_ 
exp(log 2) _ 1 log 2 2 log 2 

n 

so that 

( l • 5) n 
m(n) < log 2. 

Also, by (l.1), (l.3) and [4; lemma 3.3] we have 

( I. 6) m(n) < l + A(n) = 2 + 1 < 2 + { n 
exp(~) _ 1 log 2 

n 

< n +l ~ 
= log 2 2 + 24 

1 
- - + 

2 
log 2} < 

12 n 



Since m(2) = 4 and 

(L 7) 
n 3 log 2 

2n, + -· + 
24 

< 
log 2 2 (n~)) 

it follows that 

( l • 8) 
n l 

--> -
m(n) = 2' (n~2). 

Moreover, from (1,4) and (1.6) it is clear that 

(I. 9) lim _n_ = log 2. 
m(n) n-+<xi 

Similarly as in [4] we define 

m 
(1.10) CJ (n) = 

m I 
k=I 

In [5] it was shown that for all m,n E: N 

(m, nE N). 

(I.I l) 
mn+l(m+l)n mn(m+l)n+I 

___ ....;_. _____ <CJ (n) < ---'---''----

( I ) n+ l n+ I m ( 1 ) n+ l n+ I • 
m+ - m m+ - m 

We now define 8 = 8(m,n) by 

( I • 12) o (n) 
m 

n n 
m (m+l) (m+8) 

= -------
( l) n+I n+I 
m+ -m 

or, more explicitly, by 

(1.13) G(m,n) = -m + 
a (n) 

(m+l) m {l - (~)n+I} 
n m+l 

m 

so that by (l.1 I) we have 

(1.14) 0 < 0(m,n) < I. 

Since (for a proof, see [SJ) 

3 
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( L 15) 
l m0 + 1(m+J) 0 + mn(m+l)n+l 

a (n) > - ----------------- = 
m = 2 ( 1 ) n+ I n+ l m+ - m 

n n 1 m (m+l) (m+:,) 
( l) n+l n+l • 
m+ - m 

(m, nE N) 

we even have 

( l. 16) 
l 
2 ~ e(m,n) < I. 

Concerning the function 8(m,n) we have the following 

(MAIN) THEOREM 1. If for n ~ 2 the number m = m(n) is determined by (0.0) 

then 

(1.17) lim 8(m,n) = 2(1-log 2), 
n-+<x> 

Before proving this theorem we first examine the sums o (n) somewhat 
m 

closer, By means of the Euler-Maclaurin sunnnation formula we readily ob-

tain (see [2; p.527]) 

( 1. 18) a (n) 
m 

n+ I I m n 
=--+-m + 

n+l 2 

[E-] 
2 B 
, ...2E_( n )mn-2r+ I 
l 2r 2r-l 

r=l 

or, equivalently 

(1.19) 
a (n) 1 m m 
--=--+-+ 

n n+l 2 
m 

[~] 
2 

I 
r=l 

B2r 2 I ( n ) - r+ 
2r 2r-1 m ' 

where the Bernoulli numbers Bare defined by 

( l , 20) 
z --= 

oo B 
l r r -z r! r=O 

<lzl<21r). 

It is well known that for any real a# 0 (see [2; p.528]) 

(l.21) 

where 

(1.22) 

l I I k B2r 2r-l 
rL (2r) ! a. + ¾: (a) ---=---+ 

a. I a. 2 e -

11< (a.) = 
a. ax 2k+ l ( 1 

J O P Zk+ 1 (x) e dx 
ea-1 



so that 

(1. 23) 
m 1 

-----+-= 
en/m_ 1 n 2 

t B2r (E.)2r-l n 
l ( 2r) ! m + \: (m) • 

r=l 

Taking k =[%]in (1.23) it follows from (1.19) and (1.23) that 

( I • 24) 

= I B2r (-mn)2r-1{ 1 _ n(n-l) ••• (n-2r+2)} + R._ (-mn) = 
r=2 (2r)! n2r-l -1< 

k B2r 
= l --,-...,-;- (E_)2r-l 8 (2r-2) + R (-mn) 

r=2 (2r)! m n k 

where o (·) is defined by 
n 

( I , 25) o (a) = l - ( I - .!..) ( l - I) ... (l - ~), 
n n n m 

From (1.25) it is easily seen that for any fixed a EN 

(l. 26) lim n 8 (a) 
n 

l 
= I + 2 + ••• +a= 2 a(a+l), 

n-+oo 

Also, by mathematical induction, it is easily shown that 

(I. 27) (0 < ) o (a) 
n n 

As a consequence we have 

I B2 cE./r-1 on(2r-2)1 ( l • 28) 
(2r~! m 

IB2rl (2n/r-1 =-
(2r)! 2n m , 

so that, in view of (l.5), 

( l~a<n;n~2). 

IB2rl (E.) 2r- l 
2r-2 2 

< 
(2r)! - m n 

= 

5 

a (n) 
m ---= n 
m 
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(1.29) 
I I B2r I 2 l 

( 2 log 2) r- . 
< 2 (2r) ! ' 

the right hand side of (1.29) being the general term of a convergent series 

with positive terms (see (l.20) and note that log 2 < TT). Hence~ by a uni

form convergence argument (or by Lebesgue's dominated convergence theorem) 

we obtain 

(l. 30) ~ B2r (E.)2r-ln 
lim l ( 2r)! m 8n(2r-2) = 
n+oo r=2 

00 B2r 2 l I 1 -,--...,........ (log 2) r- -(2r-2) (2r-l) == 
l (2r)! 2 

r=2 

l 2 00 B2r 2 3 
= 2(log 2) r12 (2r)!(2r-1)(2r-2)(log 2) r- = 

1 2 d2 { 00 B2r 2r-l} 
= 2(log2) - 2 I (2r)!x • 

dx r=2 x = log 2 

Now observe that (see [2; p.204]) 

(l.31) 
B2 2 B4 4 

x cot x = I - 2T (2x) + 4!" (2x) - + ••• 

from which it 1s easily seen that 

( I • 32) 
oo B 
1 2r 2r-l 
l --x 

r=2 (2r)! 
i ix l x 

= - cot - - - - -2 2 X 12 

so that 

(1.33) j_~ { I B2r x2r-l} = £ {i.. cot ix _ _!_ _ ~} = 
2 (2r) ! dx2 2 2 x 12 dx r=2 

2 d { l } 2 e -x - ex 
= - 3 + dx 4( . ix)2 = - 3 - ( -x/2 x/2)4 

x s1.n 2 x e -e 

which, for x = log 2, takes the value 

( l • 34) £ {i.. cot ix - ..!_ - ..!..} 
d 2 2 2 X 12 l 2 x x= og 

-2 
= ----3 + 6. 

(log 2) 



Hence, defining 

(l.35) P (n) 
k B2r 2 = ~ __ (-n-) r-1 ( ) 

n l (2r)! m(n) 8n 2r-2 
r=2 

it follows from (1.24) that form= m(n) 

(I. 36) 
a (n) 
_m __ = --- + 1 _ m _ p (n) _ R_ (-mn) 

mn en/m_ 1 n(n+l) n k 

where, in view of (1.30), (1.33) and (1.34) 

(1.37) lim p(n) = .!_(log 2) 2 { - 2 + 6} = 
n-+oo 2 (log 2) 3 

As to I\(;) we have the following estimate 

( I • 38) 

(~)2k+l 

11\C;) I ~ :/m 
e -l 

Joi Ip 2k+ I (x) I em dx. 

nx 

Since 

2 
log 2 + 3(1og 2) • 

( I. 39) max 
0.2._x~l 

Ip 2k+ I (x) I 4 <----
= (2TT)2k+I ' 

(see [2; p.527]) 

and 

( I. 40) 

it follows from (1.5), (l.8) and (l .38) that 

(1.41) IR_ (-mn) I __ < (log 2)n 8 
k 2TI le- l 

so that ~ (;) tends exponentially fast to zero as n • 00 , 

As a simple consequence of (1.36), (1.37) and (1.41) we have 

~i.42) 
a (n) 

lim _m __ = ---- + I 
n-+oo mn e log 2 - I 

= 2 

(a relation which may also be proved by much simpler means). 

7 



8 

PROOF OF THEOREM I. From (1.13) it follows that 

(I. 43) {
o (n) } o (n) 
m ( ( 1 )n+l) m (l (1-m+ll)n+l).· 8 (m, n) = m n I - 1 - - - 1 + -- -m+l n 
m m 

Since 

(1.44) lim (I+ o.(n))n = ea if lim o.(n) 
n-+<x> n n-+<» 

= a 

it follows from (1.9) and (1.42) that 

( 1. 45) 
o (n) 

lim _m __ (1 - (1--1-)n+l) = 2 • (1 - 21) = 
n m+l n-+<x> m 

so that, in order to determine lim 8(m,n), we only need to study the asymp-

totic behaviour of 
n-+oo 

( I .46) {om(n) l I 
( l (1--)n+) m--;- - m+l 

m 

_J( I m _ p(n) _ (n))( _ (l --1-)n+l) _ 1} = 
= wl en/m_ 1 + 1 - n(n+l) n ~ m 1 m+l 

_ -m{ m + p(n)} {i _ (l __ l_)n+t1.J + 
- n(n+l) n m+l 

+ m{( / + 1)(1 - (1--1-)n+l) - 1} - m R (~) {1 - (1 --1-)n+t}. 
n m 1 m+l -1< m m+l 

e -

Since ~(i) tends exponentially fast to zero as n + 00 and m(n) = O(n) it 

follows easily that 

(1.47) { I n+I} I - ( I - m+l) = O. 

Next we observe that 

(1.48) { m p (n)} . { m2 m } !!: m n(n+l) + -n- = !: n(n+l) + 'ii' n(n) = 

= __ 12_)..,,..2 + lo~ 2 {- lo~ 2 + 3 (log 2)2} = 3 log 2, 
(log 
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so that 

(i .49) 

Finally we have 

( I • 50) mf (-,-.-- + l ) ( I - ( 1 - _l_) n+ l ) l en/m _ 1 m+l 

1 _ en/m(l __ l_) n+ 1 
1 m+l 

lfl = m -----,----- = n/m 1 e -

-e-n""'t-m-_-1 { l - exp(~ + (n+ I) log(] - m!l))} = 

m 
= - ---,---

en/m - I 

n 1 
exp(-+ (n+l)log(l --1)) - l { l 

m m+ • ; + (n+l)log(l - m!l)f 
(O#) .!!. + (n+l)log(l --1- 1) 

m m+ 

so that, in view of 

(1.51) lim {; + (n+l)log(I - m!l)} = 
n-+<io 

I log 2 + log 2 = 0 

it follows that 

( 1.52) lim ( L 50) 
n-+<io 

= - lim m{: + (n+l) log( l - m!I)} = 
n-+<io 

= - lim m{; - (n+l)(m!l + l 2 + O(~))} = 
n-+<io 2 (m+ I) m 

I I 
= - (log 2 - l - 2 log 2) = - 2 log 2. 

Combining (1.45) through (1.52) with (1.43) it follows that 

(I. 53) lim 8(m,n) = l + 0 - flog 2 + (1 - ½ log 2) = 2(1-log 2) 
n-+<io 

completing the proof of the theorem. 0 
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2. APPLICATIONS TO ERDOS' CONJECTURE 

THEOREM 2.1. The set of all n EN for which inequality (0.2) is false has 

natural density equal to zero. 

THEOREM 2.2. The set of all n EN for which inequality (0.3) is false has 

natural density equal to zero. 

Before proving these theorems we study the numbers m(n) - \(n) some

what closer. 

LEMMA 2.1. If the real sequence {a(n)}:=I is unifoY'mly distributed modulo 

(u.d. mod 1) and if {S(n)}:=l is any convergent real sequence then also 
00 

{a(n) + S(n)}n=l is u.d. mod I. 

PROOF. Exercise. 

00 

LEMMA 2.2. The (real) sequence {a(n)}n=l is u.d. mod 1 if and only if the 

sequence {-a(n)}:=l is u.d. mod I. 

PROOF, Exercise. 

00 

LEMMA 2.3. The sequence {m(n) - \(n)}n=2 is uniformly distributed on the 

intewal (0, J). 

PROOF. Since m(n) EN and \(n) < m(n) < A(n) + l it suffices to show that 
00 

{-\(n)}n=2 is u.d. mod l. In view of lemma 2.2 it therefore suffices to 
00 

show that {\(n)}n=2 is u.d. mod I. 

Observing that 

( 2. I) \(n) ] 
l 

I + 1 = + 
2 l /n - I 

= = log 2 exp( ) -
n 

l 
n I oc.!.)) n 1 o(.!.) = + (log 2 --+ = + - + 2 n log 2 2 n ' 

( n-+oo) 

00 

it follows from lemma 2.1 and the irrationality of log 2 that {\(n)}n=2 is 

u.d. mod I (compare [3; p.92, Satz 9]), proving the lemma. D 
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LEMMA 2.4. If {a(n)}:=l is uniformly distributed on the interval (0,1) and 

{a(I\_)}~=l is any convergent subsequence then the natural density of {nk}~=l 

is equal to zero. 

PROOF. Exercise. 

PROOF OF THEOREM 2.1. If (0.2) is false for only finitely many n E :N then 

we are done. Therefore, we assume (0.2) to be false for infinitely many n. 

For these n we have 

(2.2) n n n n 
1 + 2 + ••• + m < (m+l) 

or, equivalently, 

(2.3) cr (n) < (m+l)n. 
m 

Hence, writing 6 instead of 6(m,n), 

(2.4) _m_n_(m_+_l __ )_0_(_m_+_e...,..) < 

( 1 ) n+l n+l m+ -m 

so that 

(2.5) 

or, equivalently , 

(2.6) 

which may be rewritten as 

(2. 7) 1 
m < ----,--,--....---

= (2 +~/1/n+l) _ I 
m 

From this it follows that 
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(2.8) 0 < m(n) - }..(n) = - 1 + m(n) - 1 < 
21/n_ 1 = 

< -1 
1 I 

+ 
(Z+!)(I/n+l) _ 1 2 l /n - 1 

= = 
m 

1 
1 

= - + = 
1 e I 

exp(-1 log(2 +-)) - 1 exp(- log 2) - 1 n+ m n 

= -1 + { n + 1 - .!. + o(l)} - { n - .!. + o(.!.)} = 
log(Z +~) 2 n log 2 2 n 

m 

= -1 + ---- + n{ 1 - ----,-2} + e e log log(2+-) log(2+-) m m 

1 
= -1 + ----,,--

log ( 2 + !) 
m 

e 
n log( 1 +2m) 

e log 2 log(2 +-) 
m 

In view of theorem we have 

(2.9) e 
lim n log( 1 + 2m) 
n-+<><> 

en 
= lim log( I + Zm)n = 

n 
1 . en 

log exp 1m 2m = 
n-+oo 

1 . en 
= 1m- = 

2m n-+<» 
(I-log 2)•log 2 

so that, if n runs through those positive integers for which (0.2) is 

false, we have 

(2. I 0) 
1 0 ~ lim sup{m(n) - A(n)} ~ -I + -log 2 

from which it is clear that 

(2. l I) lim{m(n) - A(n)} = O, 
n-+oo 

where n is such that (0.2) is false. 

(I-log 2)log 2 = O 

(log 2/ 

From this and lemmas (2.3) and (2.4) it follows that the set of all 

n for which (0.2) is false, has natural density equal to zero, completing 

the proof of theorem 2.1. 0 
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PROOF OF THEOREM 2.2. Suppose that (0.3) is false for infinitely many n E :N. 

For these n we have 

( 2. 12) ln + 2n + ··• + 

or, equivalently 

(2. 13) 
n 

am-I (n) ~ m • 

n n 
(m-1) ~ m 

Writing 8 instead of 8(m-l,n) we have in view of (1.12) that 

(2.14) 
n ~l ~l (m-1) (m-1+8) > m - (m-1) 

which may be rewritten as 

(2.15) m~ l + I 
(Z+-8-)(l/n+l) _ I 

m-1 

It follows that 

(2.16) l > m(n) - >,.(n) > I + 1 - (l + I ) = 
= ( 2 +_8_/1/n+l) _ l 21/n_ l 

m-1 

I =---------(2+-8-/1/n+I) _ I 
m-1 

2 1 /n _ 

and similarly as in the proof of theorem 2.1 it follows that 

(2.17) lim{m(n) - >,.(n)} = 
n-+«> 

where n is such that (0.3) is false. Again, utilizing lennnas (2.3) and (2.4) 

this completes the proof of theorem 2.2. D 

FINAL REMARK. In a forthcoming paper the first named author will demonstrate 

how the technique of this paper may be applied to the diophantine equation 

n n n n I + 2 + ••• + M = (M+I) 
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or, more generally, to 

n n n n 
J + 2 + • • • + M = G • (M+ l ) 

where G is any given positive rational number. 
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